

2.0 Configuration File Structure

Page | 1

Velocity CAE Program

Generator

For Simulation to ATE and

ATE to ATE Conversion

Release 8.3.5.0

Configuration Guide

2.0 Configuration File Structure

Page | 2

Velocity CAE Program Generator Configuration

Guide

 COPYRIGHT NOTICE
Copyright  2016 Alliance ATE Consulting Group, Inc.

All rights reserved

Documentation version 3.0

Any technical documentation that is made available by Alliance ATE Consulting Group is

the copyrighted work of Alliance ATE Consulting Group and is owned by Alliance ATE

Consulting Group.

NO WARRANTY. The technical documentation is being delivered to you AS-IS and

Alliance ATE Consulting Group makes no warranty as to its accuracy or use. Any

use of the technical documentation or the information contained therein is at the risk

of the user. Documentation may contain technical or other inaccuracies or

typographical errors. Alliance ATE Consulting Group, Inc. reserves the right to make

change without prior notice.

No part of this publication may be copied without the express written permission of Alliance

ATE Consulting Group, 3080 Olcott St Suite 110C, Santa Clara, CA 95054.

TRADEMARKS
Velocity CAE Program Generator, and ShellConstructor are trademarks of Alliance ATE

Consulting Group.

SmarTest, 93000, and 93K are trademarks of Advantest Corporation.

Typographic Conventions

2.0 Configuration File Structure

Page | 3

This document uses specific typographic conventions in defining the syntax of all

Velocity Configuration File elements. The following is a list of those conventions for

each major syntactic category.

Bold Reserved words, such as keywords, plus any other symbols that are to be typed

exactly as shown.

Italicized Placeholder for a user-specified symbol; or, placeholder for a high-level syntactical

element – made up of smaller elements – that will be subsequently defined.

[] Regular style (not bold or italic) square brackets are used to enclose optional

elements. For elements in which square brackets are part of the syntax, the brackets

will be in bold font.

{ } Regular style (not bold or italic) braces (or, “curly brackets”) are used to enclose

elements that are to be repeated 0 or more times. For elements in which braces are

part of the syntax, the braces will be in bold font.

| The vertical bar is used to separate alternative choices for an element.

::= Two regular style colons and an equals sign means “can be replaced by”. This is

used for breaking down a high-level syntactical element into its constituent elements.

The following is an example of a syntax definition using the typographic conventions listed above:

PINS pinList startStopList [condition] [

map] where, pinList ::=

pinName|groupName{,pinName|groupNam

e} startStopList ::= startAddr-

stopAddr{,startAddr-stopAddr} condition

::= COND = {conditionList} where,

conditionList ::=

refPin[[relativeCycle]]=“pinState”{

2.0 Configuration File Structure

Page | 4

,refPin[[relativeCycle]]=“pinState”}

map ::= {MAP [originalStateList]:[targetState] }

where, originalStateList ::= one or more

single bit logic-state characters

targetState::= one or more single bit logic-

state characters OBSERVATIONS:

1. In the PINS definition:

a. The symbols pinList, startStopList, condition, and map are high-level

syntactical elements that are subsequently broken down into smaller

elements.

b. The use of regular style square brackets around condition and map means

that they are optional.

2. In the pinList definition (pinList ::=):

a. The symbol pinList is defined as a comma-separated list of elements in which

each element can be either a pinName or a groupName.

b. Note the use of the regular style vertical bar to indicate a choice of either

pinName or groupName.

c. Note the use of the regular style braces to indicate 0 or more additional

pinName or groupName elements, each preceded by a required comma.

d. The fact that the first occurrence of pinName|groupName is not enclosed in

square brackets or braces means that at least one element must be specified.

Any others are optional.

3. In the condition definition (condition ::=):

a. The use of bold style braces means that braces are to be typed as a required part

of the syntax.

4. In the conditionList definition (conditionList ::=):

2.0 Configuration File Structure

Page | 5

a. Note that the symbol relativeCycle is enclosed in two sets of square brackets.

b. The innermost brackets are in bold font, indicating that square brackets are to

be typed as a required part of the syntax.

c. The outermost brackets are in regular font, indicating that the element within

is optional.

2.0 Configuration File Structure

Page | 6

Table of Contents
1.0 GENERAL INFORMATION ... 10

1.1 What is a Configuration File? ... 10

1.2 Creating a Configuration File ... 11

2.0 CONFIGURATION FILE STRUCTURE ... 16

2.1 Elements of Syntax.. 17

2.2 Control Definitions ... 17

2.3 Line-Oriented Structure ... 19

2.4 List of Control Types .. 21

2.5 Order of Control Definitions .. 22

2.3 Example Configuration File .. 23

3.0 CONTROL DEFINITION REFERENCE ... 29

3.1 Environment Definitions ... 30

3.2 General Build Definitions .. 32

3.2.2 TARGET_PORT Definition ... 32

3.2.3 LIBRARY .. 34

3.2.4 HEADER .. 34

3.2.5 WARNING ... 35

3.2.6 BUS ... 35

3.3 Pin Configuration Definitions .. 36

3.3.1 PINLIST Definition ... 36

3.3.2 BIDIRECTIONAL CONTROL .. 38

3.3.3 GROUP Definition ... 39

2.0 Configuration File Structure

Page | 7

3.4 Source-Port-Specific Variables .. 41

3.4.1 IGNORE TIMEPLATE .. 41

3.4.2 JOB ... 41

3.4.3 MACROSTYLE .. 41

3.4.4 MASTER ... 42

3.4.5 PERSISTENCE ... 42

3.4.6 SYNC .. 43

3.4.7 UNDERSAMPLE ... 43

3.4.8 OVERSAMPLE ... 43

3.4.9 VCDPAGE .. 44

3.4.10 SAMPLE .. 45

3.5 Target-Port-Specific Variables.. 45

3.5.1 BINARY... 45

3.5.2 COMBINATION ... 47

3.5.3 CONTEXT .. 47

3.5.4 CONFIGURATION (PIN FILE) .. 48

3.5.5 CTIM ... 48

3.5.6 DOMAIN TRACKING .. 49

3.5.7 FAMILY .. 49

3.5.8 FASTMODE ... 50

3.5.9 FSPINS .. 50

3.5.10 MEMORY ... 51

3.5.11 METHOD ... 51

3.5.12 MODEL ... 52

3.5.13 STATEMAP .. 52

3.6 Verilog Feedback Variables ... 53

3.6.1 MAXDELTA Definition .. 53

3.6.2 MODULE ... 53

3.6.3 VERILOG Definition .. 54

3.6.4 WINDOW .. 54

3.6.5 FEEDBACK FILTER .. 55

2.0 Configuration File Structure

Page | 8

3.7 General Purpose Variables .. 57

3.7.1 COMMENT ... 57

3.7.2 DDRMODE .. 57

3.7.3 DELAY ... 59

3.7.4 INIT ... 59

3.7.5 PAGE ... 60

3.7.6 INIT ... 61

3.7.7 SUBROUTINE .. 62

3.7.7 PERPAT .. 62

3.7.7 PERPORT ... 63

3.7.7 BURSTMODE .. 63

3.7.8 TERMINATION .. 64

3.7.9 TRISTATE ... 64

3.7.10 WARNINGS ... 65

3.7.11 MINREPEAT .. 65

3.7.12 MAXLOOP ... 66

3.7.13 DEBUG .. 66

3.7.14 BURST ... 67

3.8 Timing Variables .. 67

3.8.1 CAPTUREMODE .. 69

3.8.2 CAPTURE.. 69

3.8.3 DATARATE ... 70

3.8.4 EDGES ... 71

3.8.5 EQUATION .. 72

3.8.6 NORMALIZE .. 72

3.8.7 OPTIMIZE .. 72

3.8.8 BLOCK ... 73

3.8.9 PERIOD ... 74

3.8.10 DRIVE Block .. 75

3.8.11 STROBE Block ... 76

3.8.13 RUNNINGCLOCKS ... 77

3.8.14 GLOBALSPEC ... 78

2.0 Configuration File Structure

Page | 9

4.0 CUSTOM LEVELS .. 80

4.0.2 Power Sequences ... 81

4.0.3 Power down sequencing .. 82

5.0 CUSTOM TIMING ... 83

5.01 TEST Definitions .. 84

5.02 FLOW Definitions... 91

6.0 CUSTOMIZING PATTERNS .. 93

6.2 BASE Syntax .. 94

6.3 Command and Parameter List Syntax .. 94

6.3.1 TYPE (optional) ... 95

6.3.2 DOMAIN (optional)... 95

6.3.3 FUNC (optional) .. 95

6.3.4 LOOP ... 96

6.3.5 REPEAT .. 96

6.3.6 MATCH ... 96

6.3.7 START .. 96

6.3.8 STOP ... 97

6.3.9 WAIT ... 97

6.3.10 CUSTOM PATTERN EXAMPLES .. 98

6.4 Logical Masking .. 99

6.4.1 PINS .. 99

6.4.2 MAPS .. 100

6.4.3 CONDITIONS ... 101

6.4.4 PIN DUPLICATION ... 102

6.5 Serial Masking .. 103

6.5.1 SYNTAX ... 103

6.5.2 EXAMPLES .. 104

2.0 Configuration File Structure

Page | 10

1.0 GENERAL INFORMATION

A brief look at what a Velocity CAE configuration file entails and how it is create

and used.

1.1 What is a Configuration File?

A Configuration File is a human-readable, ASCII text file used by Velocity to control the

conversion process.

Some of the aspects of the conversion process that a Configuration File controls are:

• The directory into which files generated by the conversion are to be written

• The period by which a VCD pattern is to be divided into cycles

• The target pin list, including test system resource assignments

• Pin groups

• Custom timing

• Custom levels

• Rules for creating custom patterns from existing patterns

• Standardized test and power up/down definitions

• Test flow

Every Velocity conversion – whether the ShellConstructor or Design-to-Test (D2T) or Tester-to-

Tester (T2T) – requires the use of a Configuration File.

If the user does not specify a Configuration File and attempts to run a conversion, Velocity will

display the following error message:

2.0 Configuration File Structure

Page | 11

Configuration Files can be given any name, within the limitations of the host operating system.

But, all names use a .cfg extension. They can reside in any directory that the user chooses.

1.2 Creating a Configuration File

As a human-readable, ASCII text file, a Configuration File can be created and edited using any

text editor. The user may choose to start from nothing and create the entire Configuration File in

the text editor; or, use an existing file as a template and edit those elements which differ.

As an alternative, Velocity offers a way to speed up the Configuration File creation process. The

Velocity GUI can quickly and automatically generate an initial Configuration File from an existing

pattern file that is to be converted.

The automatic process will create a file containing, at a minimum, the definition of the target file

path and the pin list. The user can then add any other required elements in the text editor.

1.2.1 Automatically Generating an Initial Configuration File

• From the GUI Configuration menu, select New.

• A window similar to the following will appear.

• Navigate to the directory containing the simulation output files or ATE files from

which you want to build a test program.

2.0 Configuration File Structure

Page | 12

• Select any one file which, at a minimum, defines all of the required pins to be used

in the test program.

• Click the Open button. A progress indicator window will pop up, following by a

completion message, similar to the one shown next:

• Note the location of the new Configuration file, as shown in the message. Click the

OK button to acknowledge.

1.3 What Happens During the Conversion Process?

In order to better understand the aspects of the pattern conversion process that are controlled by

the Configuration File, it is useful to have a basic understanding of what happens during

conversion.

1.3.1 Conversion Process Inputs

Every Velocity conversion takes, as input, one or more pattern files of one of the following

supported types:

• STIL

• VCD/EVCD

• WGL

• VCT

• CPTD (Credence ASL3000)

• XLS/ATP (Teradyne J750)

• XLS/ATP (Teradyne UltraFlex)

• ADR (Teradyne J973)

2.0 Configuration File Structure

Page | 13

• AVC/DVC (Advantest 93000)

1.3.2 “Cyclized” vs. “Uncyclized” Pattern Formats

ATE test systems output functional stimulus to the device (and sample functional responses from

the device) in the form of a vector sequence. The vectors are presented at a particular rate defined

by the cycle time (also known as the period).

The following are excerpts from a STIL pattern file and timing file, respectively, showing how

digital pattern sequences and corresponding cycle timing are represented in an ATE environment:

 /// // Pattern Block: example_vectors
/// Pattern example_vectors { Start_example_vectors:
 W "tps66000_10000";
 V { all = 0XXXXXXXXXXXXXXXXXXXZX00XXXXXX1XXXXXXX1XXXXX0X00X00XXXX1X; }
//0
 V { all = 0XXXXXXXXXXXXXXXXXXXZX00XXXXXX1XXXXXXX1XX0XX0X00X00XXXX1X; }
//1

/// // Timing Blocks
///
Timing "customTiming" {
 WaveformTable "tps66000_10000" {
 Period 'PERIOD';
 Waveforms {
 "addr[10]" {
 01Z { '0.000*PERIOD' D/U/Z;}
 LHXM { '0.091*PERIOD' L/H/X/T;}
 }
 "addr[11]" {
 01Z { '0.000*PERIOD' D/U/Z;}
 LHXM { '0.091*PERIOD' L/H/X/T;}
 }

Many other simulation and test data formats, such as WGL (Waveform Generation Language),

also have a concept of vectors and cycle times, which can be translated to tester independent STIL

format in a relatively straightforward manner. These kinds of pattern formats can be categorized

as cyclized formats.

The following are excerpts from a WGL file, showing how digital pattern sequences and cycle

timing, corresponding to the STIL example above, are represented in a WGL format:

2.0 Configuration File Structure

Page | 14

 pattern Chain_Scan_test("extal", "dft_setup", "dft_atpg", "dft_shift",
 …
 { Pattern 0 Cycle 0 Loop 0 }
 vector(+, tps66000_10000) := [0 0 0 0 0 0 0 - - - - - - - - - -
 …
 { Chain_test }
 { Pattern 0 Cycle 1 Loop 1 } { Begin chain test }
 repeat 6 vector(+, tps66000_10000) := [0 1 0 0 0 0 0 - - - - - - - -

 timeplate tps66000_10000 period 66000ps
 …
 "addr[10]" := input[0ps:S];
 "addr[11]" := input[0ps:S];
 …
 "addr[10]" := output[0ps:X, 6000ps:Q'edge];
 "addr[11]" := output[0ps:X, 6000ps:Q'edge];

OBSERVATIONS:

1. In the above comparison of STIL and WGL formats, the pins were not

defined in the same order; so, the vector columns will not match up. However,

the same underlying vector data, per pin, would be contained in each format.

2. In the STIL example on the previous page, note how vectors and cycle

timing are brought together by preceding a sequence of vector lines (those lines

that begin with “V”) with a waveform table selection line beginning with “W”.

The waveform table specified after the “W” is defined within the Timing Block

shown on the same page.

3. In the WGL example above, cycle timing is defined within a timeplate

definition, and then brought together with vectors in individual vector lines

(those lines containing the keyword vector), by referencing the timeplate name.

Not all pattern formats are cyclized. The most notable examples of non-cyclized formats are the

VCD (Value Change Dump) and EVCD (Extended Value Change Dump) formats. In these non-

cyclized formats, signal patterns are represented as a continuous stream of events, where an event

is a change of state at a particular point in time relative to the beginning of the pattern.

The following is an excerpt from an example VCD file:

2.0 Configuration File Structure

Page | 15

 … #1000
pT 0 0 <262 pT 0 0
<263 pX 6 0 <265 pX 6

0 <266 pL 6 0 <267
 #3000 pb 6 6 <9

pb 6 6 <10 pb 6 6

<11 pb 6 6 <12
 #4000 pN 6 6 <96

pN 6 6 <97 …

OBSERVATIONS:

1. The lines beginning with “#” are timestamps, with the time unit being

specified previously in the file with the $timescale statement. (In this example,

the time unit is 1ps; so, 1000 represents 1ns.)

2. Following each timestamp line is a sequence of value change lines, one for

each signal which changes state at that timestamp. (Signals which do not change

state at that timestamp are not listed.)

3. The first field of each value change line is the state to which the signal

changes. The fourth field is an arbitrary, user-defined symbol for a specific signal.

For VCD, Velocity will analyze the spacing of timing events for each signal, and determine a best-

fit tester cycle time and edge delays for your test program.

2.0 Configuration File Structure

Page | 16

2.0 CONFIGURATION FILE STRUCTURE

Information on the structure and syntax of a Velocity Configuration File.

2.0 Configuration File Structure

Page | 17

2.1 Elements of Syntax

Configuration Files are made up of a number of different types of syntactic elements.

At the top level, there are two main types of elements. These types are:

• Control Definitions, which define particular aspects of the conversion and program

generation process; and,

• comments, which begin with the ‘#’ symbol and continue to the end of the line.

2.2 Control Definitions

Control Definitions can be categorized into two forms: single-line and multi-line.

2.2.1 Single-line

A single-line definition begins with a keyword, includes one or more parameters, and continues to

the end of the line or to the beginning of a comment, whichever comes first.

The following PERIOD definition is an example of a single-line Control Definition:

PERIOD 5.000ns default

In this example, the keyword is PERIOD, and the two parameters are 5.000ns (the value of the

target period for cyclization) and default (the name given to this particular target period, or Clock

Domain).

2.2.2 Multi-line

A multi-line definition (also called a block) consists of a starting line, zero or more sub-parameter

lines, and an ending line.

• Starting Line

The starting line begins with a keyword and includes zero or more parameters.

• Sub-parameter Line

A sub-parameter line consists of one or more keywords and/or user-defined symbols or

values whose order depends on the type of Control Definition. Each line provides

further details in the definition of the Control.

2.0 Configuration File Structure

Page | 18

• Ending Line

The ending line consists of the keyword END followed by the starting line keyword.

The following PINLIST block definition is an example of a multi-line Control Definition:

PINLIST
ANALOG_VDD default IO ANALOG_VDD

CVDD default IO CVDD

HOLDn

END PINLIST

 default IO HOLDn

Note that the block begins with a starting line consisting only of the keyword PINLIST and ends

with an ending line consisting of END PINLIST. In between are sub-parameter lines that begin

with a pin name and consist of several parameters that define properties of the pin.

2.2.3 Comments

 Comments can appear anywhere within the Configuration File, with the following restrictions:

• They only extend to the end of the line. Multi-line comments require a separate starting

“#” for each line.

• Everything from the starting “#” to the end of the line is part of the comment. No part of

a Control Definition will be recognized by Velocity if placed after the “#”.

• If a comment is placed at the end of a Control Definition line, the starting “#” must be

separated from the last Control Definition line character by whitespace. (See below for

more information on the use of whitespace in Configuration Files.)

The following is an example of a multi-line comment in a Configuration File, with the comment

on each line taking up the entire line:

PinList Definition

The following is an example of a comment at the end of a Control Definition line (in this case, the

starting line of a TEST definition block):

TEST contNegative 150 # Continuity test with negative forcing current

2.2.4 Keywords

 Keywords are Velocity reserved words. That is, they may not be used for user-defined names,

such as ClockDomain names, Pin names, and Pattern names.

2.0 Configuration File Structure

Page | 19

Keywords are NOT case-sensitive. For example, Velocity would interpret period the same as

PERIOD or, even pErIoD. However, for readability purposes and for establishing a standard

convention, it is recommended that all keywords be in UPPER-CASE.

2.2.5 Parameters

 Parameters are elements of a Control Definition that allow the user to provide details for a

particular instance of the Control. The user does so by giving a user-defined symbol or value,

called an argument, at the corresponding parameter location.

For example, the first parameter in the starting line of the TEST block definition is the test name.

In the example above, the argument for that parameter is “contNegative”.

Arguments for parameters ARE case-sensitive. So, a later test flow definition referencing the

TEST called “contNegative” would have to specify the exact same case.

2.2.6 Use of Whitespace

Whitespace in a Configuration File includes spaces and tabs.

A Configuration File may contain any amount of whitespace at the beginning and end of lines, and

between keywords, parameters, and comments. Some parameters, such as the pin list of a PINS

masking definition, can be specified with multiple sub-elements separated by a non-whitespace

character. The following example shows a PINS sub-parameter definition within a PATTERN

block definition:

PATTERN func_pat_masked
 PINS Q0,Q1,Q2,Q3 55-83
END PATTERN

Note that the pin list, “Q0,Q1,Q2,Q3”, is considered the argument to one parameter of the PINS

definition. Therefore, it contains no embedded whitespace. The individual sub-elements (Pins in

this case) are separated only by commas. Likewise, the cycle range parameter is made up of a

start and stop address separated by a hyphen.

2.3 Line-Oriented Structure
 The main elements of a Configuration File – Control Definitions and Comments – follow, for

the most part, a line-oriented structure. That is, the end-of-line (i.e. carriage return) marks the

end of:

• Single-line Control Definitions;

• Starting and Ending lines of Multi-line Control Definitions;

• Sub-parameter lines of Multi-line Control Definitions (with exceptions noted below);

and,

• Comments.

2.0 Configuration File Structure

Page | 20

The only exceptions to the end-of-line termination are the masking sub-parameter definitions –

ON, OFF, and PINS – of a PATTERN block definition. Those sub-parameter definitions are

terminated by a semicolon (;) and are allowed to extend to multiple lines. This feature allows for

long, complex masking definitions. Refer to the detailed description of the PATTERN block

syntax later in this guide.

Also, as noted in the previous section of this guide on Comments, a Control Definition line may

be terminated by the beginning of a Comment on the same line.

2.0 Configuration File Structure

Page | 21

2.4 List of Control Types
The following table lists all of the available Control Types for a Configuration File, along with a

brief description.

Control Type Description

PATH Base directory path for test program files

DEVICE Sub-directory of path specified by PATH Control, used to hold

test program files for a specific device

PROGRAM Base file name used for various timing, levels, and pattern

files and subdirectories

SOURCE_PORT Default value for the Source port. This will cause the source

port to be automatically defined when the Configuration File

is loaded. Valid entries can be chosen from anything that is present

in the Source Port drop down list in the GUI.

TARGET_PORT Default value for the Target port. This will cause the target

port to be automatically defined when the Configuration File

is loaded. Valid entries can be chosen from anything that is present

in the Target Port drop down list in the GUI.

PERIOD Specifies the time period used for “cyclizing” a VCD or

EVCD pattern, per “Clock Domain”

EDGES Specifies maximum number of timing edges to expect within

a tester period

PINLIST Assigns type and tester resource to each active Pin

MODEL (Advantest 83K- and 93K-specific) Specifies tester model

MEMORY (Advantest 83K- and 93K-specific) Type of pattern memory

to use

METHOD (Advantest 83K- and 93K-specific) Type of test method to use

SUBROUTINE Defines whether pattern subroutines from source will be

flattened in-line with the calling pattern, or kept as a

separate, called pattern

2.0 Configuration File Structure

Page | 22

MACROSTYLE For STIL sources

PERSISTENCE Specifies whether Velocity samples a VCD file for a short or

a long portion for calculating a best-fit cyclization period

UNDERSAMPLE Specifies a strobe interval, N, to apply to a converted pattern,

in which only every Nth cycle can have output strobes, and

intervening cycles will be masked

DELAY Assigns cycle delay to pins listed

PATTERN Defines a custom pattern modified from an existing pattern

TIMING Defines custom timing for a set of Pins to override the timing

derived from the input files

LEVELS Defines DC levels for a set of Pins to be used in the test

program

POWER Defines a power up or power down sequence

TEST Creates a specific instance of a standardized test type

FLOW Defines a sequence of previously-defined TEST instances to

be inserted into the test program

TERM Defines the beginning of termination block that can be used

to Set the drive action for comparisons on IO pins

2.5 Order of Control Definitions

Many of the Control Definitions can reference elements that are defined in other Control

Definitions elsewhere in the Configuration File. For example, a TIMING block definition can

reference a Pin defined in the PINLIST block or a Group defined in a GROUP definition.

2.0 Configuration File Structure

Page | 23

Elements must be defined in a Configuration File before they can be referenced. Therefore, the

order of Control Definitions within the file is important. The order of the Control Types shown

in the previous table is the recommended order in which those types should be defined.

NOTE: It is not necessary to define every Control Type in a Configuration File.

Velocity uses a default set of properties and behaviors for those aspects of a

conversion not defined in the Configuration File. Only those Control Types with

properties which differ from the defaults need to be defined.

2.3 Example Configuration File

The following simple Configuration File example includes definitions from each of the Control

Types:

2.0 Configuration File Structure

Page | 24

ASCII Velocity Configuration File

PATH /home/field/testPrograms
DEVICE 56374
PROGRAM ShellExample

PIN LIST: This will define regular IO and power pin defs

PINLIST

 p0 default I 0 11

 p1 default I 0 83

 q0 default O 0 69

 q1 default O 0 76

 cpd default CLK 0 62

 cpu default CLK 0 55

 VS1 DPS POW 4 0
END PINLIST

GROUP clocks = "cpu,cpd"

Pattern lists

The following patterns will be translated. If the pattern is # not in the list, then it will

be skipped. If the pattern is # not in the source file then a warning will be issued.

PATTERN
multipleLoop
 BASE SpecFunc
 LOOP 5,10 16
END PATTERN

Timing and Levels

definitions will define the values of specs. The following
values will be assigned by default. Groups and pins can # be defined to override

defaults by using a pin name or group name.

TIMING default period 100ns offset 0ns

2.0 Configuration File Structure

Page | 25

2.0 Configuration File Structure

Page | 26

duty 50% drive 25%
receive 90%
END TIMING

LEVELS default
 POWER 3.3V
 VIL 10%
 VIH 90%
 VOL 40%
 VOH 60%
END LEVELS

Power up and power down

POWER nominal

 VS1 1.25V 500mA 5uS
END POWER

Test Definitions

 # The following tests will be defined as discrete functions

 # that can be executed as user commands or as part of flows

TEST contNegative 150
 TYPE cont
 FORCE -10uA
 CLAMP 2V

 LOW 400mV
 HIGH 800mV

 PINS ALL
END TEST

TEST funcSpec 1

 TYPE func
 PATTERN SpecFunc
END TEST

Flow Definition

The following tests will be executed in the following # order. If no

flow is defined, then all the tests will # be included in the order they are defined.

FLOW experimentName
 TEST contNegative

2.0 Configuration File Structure

Page | 27

 POWER nominal
 TEST funcSpec
 DELAY 15ms
 POWER off
END FLOW

2.0 Configuration File Structure

Page | 28

3.0 Control Definition Reference

Page | 29

3.0 CONTROL DEFINITION REFERENCE

Definitions and examples for all configuration file variables and blocks

3.0 Control Definition Reference

Page | 30

3.1 Environment Definitions

The Environment section of the Configuration File consists of a set of definitions that define the

location and naming of the target test program files. Typically, this is the first section in a

Configuration File.

Velocity divides the test program location and file names into three parts:

• base path – Typically, points to the directory used as the parent directory of all test

programs.

• Device name – Appended to the base path. Categorizes test programs by device.

• Program name – Specifies a base file name that Velocity will use for many of the

generated test files. (Pattern files for the target tester are typically named for the source

pattern files.)

The test program directory path and file names are defined by the following Control Types:

• PATH

• DEVICE

• PROGRAM

3.1.1 PATH

Syntax:

PATH pathName

where,

 pathName is a directory path specifier

Example:

PATH /home/programs

NOTE: The directory path specifier must use valid syntax for the underlying file

system.

3.0 Control Definition Reference

Page | 31

3.1.2 DEVICE

Syntax:

DEVICE directoryName

where,

 directoryName is the name of a directory

Example:

DEVICE myDeviceName

3.1.3 PROGRAM

Syntax:

PROGRAM filename [equaiontNumber]

where,

 fileName is the base name to be used for generated test files

 eqiationNumber is the base number to be used for equation set numbering

Example:
PROGRAM finalTest

PROGRAM

finalTest 10 # Begin witf equation set number 10

3.0 Control Definition Reference

Page | 32

Using the PATH, DEVICE, and PROGRAM Definitions in the above examples,

Velocity would create test program files for the Build under the directory

/home/programs/coolChip

A number of the created test files would begin with base file name finalTest. Their

location under the device directory (or subdirectories thereof) would depend on

the specific target test system.

3.2 General Build Definitions

The General Build section of the Configuration File consists of a set of definitions that define the

basic settings common to any conversion.

3.2.1 SOURCE_PORT Definition

Specifies the Source Port for the Velocity conversion. Valid entries can be chosen from anything

that is present in the Source Port drop down list in the GUI.

Syntax:

SOURCE_PORT sourcePortType

where, sourcePortType is a valid

licensed source entry.

Examples:

SOURCE_PORT WGL

SOURCE_PORT VCD

NOTE: The source type must match a valid licensed entry or this variable will be

ignored.

3.2.2 TARGET_PORT Definition

Syntax:

TARGET_PORT targetPortType

3.0 Control Definition Reference

Page | 33

where, targetPortType is a valid licensed target entry. Valid entries can be chosen from

anything that is present in the Target Port drop down list in the GUI.

Examples:

TARGET_PORT STIL

TARGET_PORT 93K

NOTE: The target type must match a valid licensed entry or this variable will be

ignored.

3.0 Control Definition Reference

Page | 34

3.2.3 LIBRARY

This variable is used to define the name and location of any predefined libraries that

you want to have included in the target program

Syntax:

 LIBRARY EXTERNAL|LOCAL LIBRARY_FILE_NAME

where,

 EXTERNAL|LOCAL directs Velocity whether to physically copy this library to the target

program or simply refer to its path through a makefile or some other method depending on

the target.

 LIBRARY_FILE_NAME is the path and name of the library file itself Examples:

HEADER
LOCAL /usr/local/lib/someLibrary.so

HEADER
EXTERNAL /usr/local/lib/ someLibrary.so

NOTE: referenced library file must be present and valid for the target

3.2.4 HEADER

This variable is used to define the name and location of any predefined headers that

you want to have included in the target program

Syntax:

 HEADER EXTERNAL|LOCAL HEADER_FILE_NAME

where,

 EXTERNAL|LOCAL directs Velocity whether to physically copy this header to the target

program or simply refer to its path throe a makefile or some other method depending on the

target.

 HEADER_FILE_NAME is the path and name of the header file itself Examples:

HEADER
LOCAL /usr/local/include/someHeader.h

3.0 Control Definition Reference

Page | 35

HEADER
EXTERNAL /usr/local/include/someHeader.h

NOTE: referenced header file must be present and valid for the target

3.2.5 WARNING

This variable allow the user to block WARNING statements that are generally ignorable such as MISSING

PIN warnings. Warnings for ASYNC or snapping will still be printed because they are indicating data edge

being moved in the output files. But, anything that is skipped in such a way that it is not going to affect

other pins will be left out if warnings are set to off

USAGE: WARNING ON|OFF

3.2.6 BUS

This variable sets the interpretation for BUSSES during export of ATE and REPLAY files and also how pin

names are chosen when generating a new CFG.

Bus representation means that square brackets would be used o indeix pins within a bus

By default BUS AUTO is used.

When BUS is OFF, the bracketed index would be replaced with an underscore for each index.

USAGE: BUS ON|OFF|AUTO

BUS ON: AutoGenerated PINLIST will use Bus notation so that Both the ATE and the REPLAY files will

use Bus notation

BUS OFF: AutoGenerated PINLIST will use Bus notation so that BOTH ATE and the REPLAY files will NOT

use Bus notation

BUS AUTO: AutoGenerated PINLIST will use Bus notation so that ATE will NOT use Bus notation, but

REPLAY files WILL use Bus notation.

3.0 Control Definition Reference

Page | 36

3.3 Pin Configuration Definitions

3.3.1 PINLIST Definition

Syntax:

PINLIST

 pinName domain pinType [slot] [channel] [alias1 [alias2…aliasN]]

END PINLIST

The PINLIST block defines, per pin, the tester channel assigned and any alternate versions of that

name used in the simulation or ATE conversion source.

The tester channel information that can be specified includes:

• domain:

o For digital pins: default or any port name that does not have a n underscore)

o For power supplies: DPS16, DPS32, UHC4, MSDPS (type must be POW)

• pinType: I, O, IO, CLK, TRIG, REF, POW, R, DIR, A, MASK or NC.

 I: pure input pin

 O: pure output

 IO: bidirectional

CLK: special case of input which will use spec values that apply to CLK instead of

regular simple drive actions when specs are available.

REF: pure input pin that is used as a zero reference for all edge values in a

VCD/EVCD.

POW: power pin. This would then assume that the domain value is assigned with a

power supply type

 R: relay pin (essentially unused. But, usefeul as a placeholder)

 A: analog pin (essentially unused. But, useful as a placegolder)

MASK: pin will be included in the output files, but all source data will be ignored.

Data will be assigned as “X” on all cycles

 NC: No Connect. Pin will be completely ignored as removed from outputs

TRIG: pure input that will automatically default all data to “0” so that triggers can

be added manually on the tester.

3.0 Control Definition Reference

Page | 37

• Slot number (optional)

• Channel number (optional)

• Aliases This is a space delimited list of alternate names that can be used in source files that

will be expressed in the target files as whatever is in the pinName field. You can specify

as many Aliases on a pin line – separated by whitespace – as you need. Velocity uses Aliases

to match simulation or ATE pin names that are different from the target pin name.

“REMOVE” as alias

Generally, aliases and pin names must be unique. The exception to this is when

the alias “REMOVE” is used. This is a special alias that instructs Velocity to

remove this pin from the resulting compiled target files, but leaves it in so that it

can be used as part of MASK blocks or sinmply as markers in the ascii files. The

pin will not be visible once loaded on the tester.

The following is an example of a PINLIST definition:

PinList
Definition
PINLIST

ANALOG_VDD DPS16 POW 230 2
HOLDn default I 101 1 hold_n holdn

WPn default O 101 8 wp_n anapadext_data_n DPS16

POW 230 3 END PINLIST

Pin ANALOG_VDD uses channel 2 of a DPS16 card in slot 230.

Also, note that pin HOLDn has aliases of hold_n and holdn, meaning that it can

take its data from simulation or ATE conversion sources that use either of those

alias names.

3.0 Control Definition Reference

Page | 38

3.3.2 BIDIRECTIONAL CONTROL
One special case within the PINLIST section is the bidirectional control pin. A control pin will

only be needed for standard VCD translations. This source port format does not have a state

character differentiation between input and output. Therefore, without the extra control wire, there

is no way to determine the IO state of a bidirectional pin. For these types of simulations, there

must always be a set of control wires that would also be included in the VCD file. These are

“virtual” pins that are used to define the IO direction of other pins. In other words, these pins are

controls for other pins.

The Velocity configuration syntax for these is similar to the regular pins except the alias column

would be used to make reference to another pin instead of merely providing an alternate name for

the active pin. There will then be two rows used to define each bidirectional pin. One for the pin

itself, and another for the control wire defining its IO state. Once this is defined the control wire’s

state is kept as the VCD file is processed. At any given time, if the control pin is actively high,

then the pin which it controls is set to output mode. If the control wire is low, then the pin which

it controls is set to input mode. Example

 DATA0 default IO data[0]

 DATA1 default IO data[1]

 DATA2 default IO data[2]

 DATA3 default IO data[3]

 control0 default DIR DATA0

 control1 default DIR DATA1

 control2 default DIR DATA2

 control3 default DIR DATA3

In the above example, there are 4 pins defined as IO and 4 pins defined as DIR. For the IO pins,

there is an alias that defines an alternate nomenclature that the simulation file might use to express

the given pin name. For the DIR pins, the alias column contains an entry that is already defined

as a column 1 pin name. This pseudo-alias is the key that provides the connection between the

control pin and its target.

The pin listed as DIR type will not show up in the target test pattern. These are treated as virtual

pins rather than real pins that would require data to be provided behind them.

As stated above, the default behavior for control pins is that a control pin high means output mode.

Control pin low means input mode. This behavior can be inverted by also inserting the keyword

“NEG” at the end of the control pin definition (after the alias). If the NEG keyword is used, then

the convention will be opposite. Control pin high will indicate input mode. Control pin low will

indicate output mode. Example

3.0 Control Definition Reference

Page | 39

 DATA0 default IO data[0]

 control0 default DIR DATA0 NEG

3.3.3 GROUP Definition

The GROUP Control definition allows you to assign a name to a group of pins, for easier reference

elsewhere in the Configuration file.

To define a Group, use the keyword GROUP followed by a Group name, followed by an equals

sign (=) and a comma-separated list of pin names enclosed in double-quotes (“”). The following

is an example of a Group definition:

GROUP DBUS = “D0, D1, D2, D3, D4, D5, D6, D7”

If you use a group as a member of another group, this group must have already

been defined. If not already defined a configuration loader error will occur.

3.0 Control Definition Reference

Page | 40

 Automatic Group definitions

There are a number of groups that are automatically generated. These groups are generated

automatically because certain API’s assume that they are there. For example, the functional

test API does an automatic connect on all pins. This assumes that there is a group named

“allpins” that is there and this group’s contents include all of the digital pins for a given device.

Automatic Group

Name

Description of Contents

allpins All digital pins not including any trigger pins that may be

assigned

allios All bidirectional pins

allins All pins that can have input actions. Includes bidirectionals

as well as input only pins

allouts All pins that can have output actions. Includes bidirectionals

as well as output only pins

triggerPins Group to collectively define all trigger pins

Allpins All digital pins including the trigger pins. This is used to

connect and disconnect all pins.

 allSupplies All DPS defined power pins

3.0 Control Definition Reference

Page | 41

3.4 Source-Port-Specific Variables

The Source-Port-Specific section of the Configuration File consists of a set of definitions that

define build settings specific to the selected Source Port.

3.4.1 IGNORE TIMEPLATE

Sometimes WGL files have timeplates that the user wants to ignore like at the start of a simulation.

You can instruct Velocity to ignore these timeplates.

IGNORE TIMEPLATE timeplatename

3.4.2 JOB

This directive is used to enable a specific job as defined in a J750 or UltraFlex source test program. This

feature is ignored for all other input ports. Wheen used, the active spec sheets for timing and levels are

picked from a specific job. If the job does not exist in the source, by a typo or any other reason, the last

job is always the one that is chosen. This is also what is chosen when no JOB is defined at all. Syntax:

JOB ;jobName’

Example:

JOB QA_TEST

3.4.3 MACROSTYLE

This variable will allows you to tell velocity how to interpret Macros and Procedure when loading STIL

simulation files. Depending on the way these are created variables to pass values into subroutines will

either be passed through STIL Macros or with STIL procedures. It will be one or the other but not both.

By default these are done with Macros. Therefore, therefor the default value for this flag is “1”. But, if

your source STIL files pass variables into procedures instead, you can handle this by disabling the passed

variable usage in the macros by setting the MACROSTYLE flag to “0”

Syntax:

MACROSTYLE 0|1

Example:

MACROSTYLE
0 # Procedures pass variables

MACROSTYLE 1 # Macros pass variables (This is default behavior)

3.0 Control Definition Reference

Page | 42

IEEE STIL is a very richly defined language. There are quite a few variations and

these are not always compatible with one another. If you translate a STIL pattern

and see scrambled data data or experience a crash, it is very often because the

MACROSTYLE variable is backward. In most cases, there will be header

information that tells Velocity where the file was generated which will then allow

Velocity to self determine the proper MACROSTYLE. But, sometimes hand

generated STIL will not have the necessary header information. That is why this variable is present.

It allows you to tune the STIL

translations accordingly.

3.4.4 MASTER

When using any of the EVCD format, there may be places where the state characters that are used

indicate that the bench and the DUT are both driving. If not specified, Velocity will take the DUT as the

master. That means that the competing drive values will result in the DUT value being used instead of the

bench. If you specify the bench as the master, the opposite will occur. EVCD state characters of “0” or

“1” will then be assumed to be tester drives instead of tester strobe values.

Syntax:

MASTER DUT|BENCH|CONFLICT

Example:

MASTER
DUT

MASTER BENCH

3.4.5 PERSISTENCE

By default, a very small portion of a VCD file is used to evaluate the pins and calculate periods.

Sometimes this is insufficient when multiple time domains are active. One domain my start toggling later

than another. For this reason, there may not be enough actions in one domain to properly calculate a

period. If this is the case, the user will receive a message that informs them that PERIOD values for one

domain will track with the other. If this is undesired there is a secondary calculation scheme that might

work. The is acalled “PERSISTENCE” mode. If enabled, a much larger page size will be used to

calculate periods.

This is disabled by default, but can be explicitly assigned with the following syntax.

Syntax:

PERSISTENCE ON|OFF

Example:

3.0 Control Definition Reference

Page | 43

PERSISTENCE ON # persistence is enabled

PERSISTENCE OFF # persistence is disabled

3.4.6 SYNC

SYNC will allow Velocity to tune itself to a given timestamp before it will start handling the calculations

for defining periods for VCD/EVCD translations. In certain instances, simulations will have multiple

data rates present in different domans. If the simulation is very large it may require a very large amount

of one domain to be processed before the second domain begins to toggle.

The SYNC variable will essentially fast forward the self discovery algorithm to focus on a particular area

of the simulation. This can speed the translation greatly for large simulations.

The SYNC point defaults to time zero unless overridden by ths variable which is defined in units of time.

Nanoseconds (ns) ar used if no unit is specified. Units can be used as well

Syntax:

SYNC timeValue[unit]

Example:

SYNC

1000 # SYNC period discovery to 1000ns

SYNC 5.52ms # SYNC period discovery to 5.32ms

3.4.7 UNDERSAMPLE

This allows you to apply a global value that will block strobes except in cycles with a clean modulus

to whatever is specified here. When OFF, all cycles are strobed.

Syntax

 UNDERSAMPLE ON|OFF

Examples:

UNDERSAMPLE OFF # No under-sampling

UNDERSAMPLE

5 # Under sample by a factor of 5

3.4.8 OVERSAMPLE

This allows you to apply a domain specific value that will allow oversampling to be used. This is

a good way to handle slow asynchronous behavior or to automatically insert oversampled strobing

if edge placements are not deterministic in the source format. This applies only to VCD/EVCD.

Other formats will ignore this feature

3.0 Control Definition Reference

Page | 44

The oversample value is applied only if self discovered timing is used for

VCD/EVCD translation. The calculated period would then be divided by the

oversample value to give a faster (oversampled) cycle period

Syntax

 OVERSAMPLE domainName value

Examples:

OVERSAMPLE default 10 # undersampling the default domain by a factor of 10
OVERSAMPLE I2C 10 # Under I2C domain by a factor or 10

3.4.9 VCDPAGE

This allows you indirectly control the size of pages that are used during a VCD translation. The

value is in percentage. This default to 100% but you can increase or decrease the page size

depending on this value. This is used to limit the size of loops when made smaller or remove page

boundary issues by making the page larger.

The default page value is 100%. The page is then calculated based upon the number

of pins and the density of activity. This is not something tht is specifically

controlled to a fixed value. This is a general property that can be used to give you

larger or smaller page sizes relative to the base.

Syntax

 VCDPAGE value

Examples:

VCDPAGE 10 # Use smaller page

VCDPAGE

500 # Use larger page

3.0 Control Definition Reference

Page | 45

3.4.10 SAMPLE

Sample provides a way to tell the VCD/EVCD loader how to build waveforms relative to the

calculated or pre-defined PERIOD for each time domain. By default, the entire set of actions

within each tiled cycle will be turned into a waveform which contains all of the actions. Those

actions will then be assigned to a state character that will be used to reference that waveform.

If there are multiple actions within a cycle then that waveform will include all of those actions

unless the default behavior is overridden to give a different representation.

The available actions can be used to tell Velocity to build a waveform based on all of the actions,

the initial action, the last action, one ‘primary’ action, or the action at a particular location within

that cycle by percentage

SAMPLE AUTO

SAMPLE SINGLE

SAMPLE BEFORE

SAMPLE AFTER

SAMPLE 90%

NOTE: The best way to think about the argument of SAMPLE is to apply meaning based on

what the desired interpretation of OUTPUT actions should be. Inputs will retain their pulsing

waveforms. But, outputs can be filterd using the value of SAMPLE. i.e. Strobe before and

edge. Strobe after an edge. Strobe in the middle of a cycle. Strobe BOTH edges of a clock pulse

etc…

3.5 Target-Port-Specific Variables

The Target-Port-Specific section of the Configuration File consists of a set of definitions that define

build settings specific to the selected Target Port.

3.5.1 BINARY

Compilation to the 93K will result in a pattern master file as well as a merged binary file. If you wish to

include statistics in the compilation then you’ll need to create the concatenated BINL file as well. This is

enabled by turning BINL “ON”

Syntax:

3.0 Control Definition Reference

Page | 46

BINARY ON|OFF

Example:

BINARY

ON # merged BINL will be created

BINARY OFF # Only PMFL will be created

3.0 Control Definition Reference

Page | 47

3.5.2 COMBINATION

Velocity dynamically builds a combination file base on your XMODE state. If the user want to

tell Velocity to use a specific combination file, here is the syntax. This is specific to the 93K testers.

Additionally, there are arguments to explicitly provide the MINIMUM number of combinations.

By specifying MINIMUM, the resulting timing will contain ONLY those waveforms that are

explicitly used. There will be none that are added for debug or online editing purposes.

If MAXIMUM is specified, there will be additional waveforms added that are logically similar to

the ones that are used already. That is if an edge drives 0, then it will also have a waveform to

drive 1, even if these never occurs in the source. It is logically reasonable to add both. Similarly,

if a strobe is present on a given edge, both strobes high and low as well as the X will be used as

valid combinations. MAXIMUM is the default value for this variable

If very large simulations are used, then evaluation of the results can be limited to a predefined

number of cycles. For example if you have a long scan test, you don’t necessarily need to evaluate

the entire file before concluding on which combinations are needed. By using a number for this

value, a cycle limit will be applied for evaluating the required combinations

Syntax:

COMBINATION filename|MINIMUM|MAXIMUM|number

Example:

COMBINATION /home/demo/device/ACT74.cmb

COMBINATION ACT74.cmb # This will look alongside the CFG file
COMBINATION MAXIMUM # combinations will be calculated and logically # similar states

will be inserted automatically
for debug purposes

COMBINATION MINIMUM # combinations will be calculated and logically # Only those
states that are used by each

 # pattern and pin will be used. Smallest wave # table possible will be created for

debug # purposes

3.5.3 CONTEXT

There are certain instances where different configurations of a chip require the 93K pin types to be

defined differently for different modes of operation. This cvan be accomplished by defined the

“CONTEXT” of the PINLIST block directly. If not specified, the context will be defined as

3.0 Control Definition Reference

Page | 48

default. The Velocit CFG can assign the value to any string. Once this is done, any patterns,

timing, and even levels that are created will be associated with that context only.

You can then add the extra context to the 93K pin file that you use for loading

Syntax:

CONTEXT contextName

Example:
CONTEXT inputMode

CONTEXT

 outputMode

3.5.4 CONFIGURATION (PIN FILE)

This variable allows for a pre-defined 93K pin file to be referenced in the Velocity generated

testflow instead of the auto-generated one that is used for compilation. If nothing is specified for

this variable, then the pin file used by the testflow will be auto created from the PINLIST block of

the CFG. Using this variable to reference pre-defined pins file is useful if you are applying patterns

to an existing program where you have created you want to use multi-site, have analog pins, have

relay setups defined, or certain power supply types.

There are a number of 93K pin file features that do not work when used with the pattern compiler.

Multi-Site and Analog setups are two such features. The CONFIGUTION variable allows you to

export to an existing test program directory without touching the pin file that is already in use.

It must be known that the pin list of the pre-defined CFG is compatible with the PINLIST generated

for compilation. If this is strictly maintained then any binary pattern and timing will automatically

work the pre-defined file.

CONFIGURATION

myCfgName # testflow will use pre-defined pin file

3.5.5 CTIM

This variable will control whether or not timeset switching is allowed or not for the V93K. By default, the

Virtual Timesets will be used. This means that the patterns will be created in such a way that slower ports

are expressed as multiples of the faster pots, so that the DUT sees the period switching without the ATE

having to physically change a timing resource in order to change the period. Period switching is disabled

because this will result in either very long run times due to break cycles or will result in timing that is too

large to compile. But, there are situations where this is the correct usage. So, this variable is present to

enable such actions on the system

Syntax:

3.0 Control Definition Reference

Page | 49

 CTIM ON|OFF|VIRTUAL

Examples

CTIM ON

CTIM OFF

3.5.6 DOMAIN TRACKING

Domain tracker allows you to specify the timing relationship between ports. In the following

example the device has three well defined ports: 1. CLOCK, 2. DDR and 3. SDR

Syntax:
DOMAIN

 domainName MASTER|TRACK [MasterDomainName [periodMultiple]]

where,

 domainName: matches domains defined in PINLIST block

 MASTER|TRACK: determines whether the period is defined itself or dependent on

another domain

 MasterDomainName: If specified as a TRACK, then this will refer to another port already

defined as master

 periodMultiple: defaults to 1.0, If other, then the current domain will track with the

MASTER at the given period multiplier Example:

DOMAIN

 CLOCK MASTER # PortName MASTER(Reference)

 DDR TRACK CLOCK 1.0 # PortName TRACK Port2Track Ratio

 SDR TRACK CLOCK 75 # PortName TRACK Port2Track Ratio

END DOMAIN

3.5.7 FAMILY

 Port names for Advantest 93K are defined with the DOMAIN column of the PINLISt. In ST8, each sub

group of patterns can have its own group definitions. If there are 2 different groups of patterns that have

port names that are the same, it is allowable to have the contents be different. The port/group

definitions are essentially sequestered to a namespace defined by the CFG’s PROGRAM variable. You can

3.0 Control Definition Reference

Page | 50

have different PROGRAM variable redefined the content of commonly named DOMAINs without any

issue.

In ST7, there is one and only one Pin File and the ports/Domains are all defined in that in one space. For

that reason, port names need to be unique as you go from pattern group to pattern group. The contents

of ports can’t change

To account for this in ST7, the FAMLILY variable can be applied with essentially creates a unique suffix for

the port names that will be created. The SUFFIX variable is available so that the same patterns can be

created in 2 different setups where the SUFFIX is added to the loaded pattern name. In similar fashion,

the FAMILY is applied ass a suffix to the portnames in order that the DOMAIN names can be reused from

CFG to CFG. The resulting ports will be marked uniquely.

EXAMPLE:

3.5.8 FASTMODE

This directive is used to enable or disable the use of Fastmode. Fastmode is an Advantest digital option

that uses a software programmable switch to enable faster drivers. When this mode is used, special care

will be taken in how the timing is exported. All pins that are set to toggle at a rate that is faster than

1.25ns will be set to use the FAST option. Data bit rates and all compilation and tester file options will

automatically be adjusted. If nothing is specified, then this option is assumed to be OFF.

Syntax:

FAST ON|OFF

Example:

FAST ON

3.5.9 FSPINS

This block specifically applies to the SmartScale series of cards for the Advantest V93000 tester.

These channels have a property that allows the Z edges to be handled independently from the drive

edges. This features allows for a zero turn around time setup for bi-directional pins. If any target

other than V9300 coupled with a MODEL definition of PS6800 is used, then this block will be

ignored.

Syntax:

 FSPINS

 pinName1|groupName1

pinName2|groupName2

…

 pinNameN|groupNameN

 END FSPINS

3.0 Control Definition Reference

Page | 51

This blocks serves as a container for a list of pins or groups that should be setup with timing in

such a way that the drive and Z edges are separated. Any pin left off this list will be treated as a

regular IO pin instead of a FAST IO pin.

Example:

FSPINS DQ MQ COMBINATION

3.5.10 MEMORY

Compilation to the 93K can be done using Vector Memory or Sequencer Memory. By default, vector

memory is used. If you want to only use sequencer memory you can override using this directive .

Syntax:

MEMORY SM|VM|SHMEM

Example:

MEMORY

SM # sequencer memory

MEMORY VM # vector memory

MEMORY SHMEM # shared memory enabled

3.5.11 METHOD

Specific to the Advantest 83K and 93K ports.) Specifies the type of test method to be used: Classic

(CTM) or Universal (UTM). Used for generating the appropriate format for the test flow file.

Syntax:

METHOD CTM|UTM

Example:

METHOD

CTM # Classic Testmethod

METHOD UTM # Universal Testmethod

3.0 Control Definition Reference

Page | 52

3.5.12 MODEL

Syntax:

MODEL modelType

where, modelType is a tester model type. This Control is specific to the Advantest 83K

and 93K tester ports. Valid entries are:

• F330

• C400

• P1000

• PS400

• PS800

• PS1600

• PS6800

• PS3600

• PS5000

• PSSL

Examples
MODEL PS3600 # PinScale

MODEL

P1000 # Single Density 93K

MODEL PS6800 # SmartScale

3.5.13 STATEMAP

(Specific to the Advantest 93K ports.) Specifies that the “STATEMAP” blocks should be activated in the

resulting compiled timing files. This block is required if reverse compilation from binary back to ascii is

desired. It is also required when using come forms of the SCAN_TML

Syntax:

STATEMAP ON|OFF

Examples

STATEMAP
ON

3.0 Control Definition Reference

Page | 53

STATEMAP OFF

3.6 Verilog Feedback Variables

There are set of configuration commands blocks that are intended specifically to affect the export

of

Verilog feedback files. These variables will have no effect on regular ATE output files. If “Enable

Verilog Feedback” is not checked in the GUI or enabled from the command line, then all of these

variables will simply be ignored by the Build process.

3.6.1 MAXDELTA Definition

When Verilog feedback is enabled, there may be instances where delta values for timestamps may be too

large for the compiler that will be used. By default, the maximum delta is 400us. If a delta is larger than

this it will be broken into multiple timstamps and spread.

This directive can be used to use a different value other than 400uS.

If no units are specified the number will be assumed to be in ns.

Syntax:

MAXDELTA value[ps|ns|us|ms|s]

Example:

MAXDELTA

200us # max delta of 200us

MAXDELTA 500000 # max delta of 500000ns

3.6.2 MODULE

This variable will define the moduleName that is to be used in the Verilog feedback files if that option is

chosen. If not defined at all, the default for the moduleName variable in the testbench and EVCD files

created will be “moduleName”. This allows you to tune it so that re-simsulations can happen more

seamlessly.

Syntax:

MODULE moduleName

Or

3.0 Control Definition Reference

Page | 54

MODULE moduleName.TestBenchName.DUT_InstanceName

Example:
MODULE hx_5672

MODULE

 dsp_1080.DEV1080.dut

The purpose op the two separate usage models is to provide granularity on what blocks are renamed in the

resulting testbench files. By defeault a single string entered will rename ONLY the module name that is

defined by the Verilog File.

If the 3 string setup is used the resulting testbench will use pre-defined names for all three of those

properties in the Verilog testbench. The ModuleName uses the first string. The second and third strings

of this variable will rename the TestBench and the DutInstance. The following screen shot highlights the

three updated spots in the resulting test bench for the 3 string example above…

3.6.3 VERILOG Definition

When using the Verilog feedback path, testbenches can have their timings expressed in one of two ways.

Sequential timing will express all timestamps as relative deltas from the previous stamp. On large

simualtions these numbers can end up too large for the target Verilog compiler. Parallel will express each

timestamop as its wall time clock value. This can result in very large numbers that may crash. By

default, parallel timing is used.

Syntax:

VERILOG ON|OFF|ALL|<number>|DYNAMIC

Example:

VERILOG

SEQUENTIAL # Express edges as delta from previous edge

VERILOG PARALLEL # express every edge as a unique timestamp

3.6.4 WINDOW

Verilog files are always print on change. In simulations, that means that only transitions are exported as

timestamps. For input actions this is simple. For output actions, the ATE versions of the same stimulus

will inherently insert Z-actions before each strobe. By default, these Z actions are left out of the Verilog

files. If the user wants to add these actions in the “WINDOW” variable can be used to essentially define

the length of the active strobe window. If WINDOW is OFF, as it is by default, then there will be no

closing actions added o close the strobe windows.

3.0 Control Definition Reference

Page | 55

In the end, this is a more exact representation of what the ATE is doing, however, the resulting verilog

files will be much larger.

Syntax:

WINDOW OFF|value[ps|ns|us|ms|s]

Example:

WINDOW

OFF # no windowing off output actions

WINDOW 20ps # Use 20ps strobe window

3.6.5 FEEDBACK FILTER

Verilog feedback files will export all ATE actions in all cycles and on all pins by default. In some cases,

the user may want to limit the export. This can be limited to a certain cycle range. It can be limited by

certain pins. Or, you can choose to export certain pins as running clocks instead of explicit data. All of

these actions are taken to limit the size and scope of testbench. FEEDBACK filter blocks can be created

that can tune the Verilog scope on a pattern by pattern basis

Syntax:

FEEDBACK default|patternName

 BASE baseName

 START BEGIN|timeStart|cycleStart

 STOP END|timeStop|cyceStop

 pinName1|ALL ON|OFF|CLK

 pinName2 ON|OFF|CLK

…

pinName3 ON|OFF|CLK

 pinNameN ON|OFF|CLK

END FEEDBACK

default|patternName: name of feedback block. If the name is “default”, then this filter will apply

to all patterns. If the name is something else, then the filter will only apply to patterns whose

name matches that of the FEEDBACK block.

If the desired patternName is different than the source file, you can specify the connection to a

given simulation by additionally assigning the BASE variable. If this is done, the translation will

use the base Name as the simulation hat is loaded, but will export to the name specified by

patternName,

3.0 Control Definition Reference

Page | 56

START & -STOP: This is an optional field that can assign the start and stop location for the

translations. If left off then ALL cycles will be exported. These times can be expressed in either

picoseconds or as a percentage. If the “%” is used, then you can export just the segments you like

as a percentage of time. It is important to realize that this percentage is relative to the time value

as opposed to the physical file location.

pinNameN|ALL: pin name to be added as regular pin (ON), removed from Verilog files (OFF), or

included in Verilog as a running clock (CLK)

Examples:

Export Verilog on all cycles for all pins except data[0-2].
FEEDBACK default
ALL ON data0 OFF
data1 OFF data2 OFF

END FEEDBACK

Export Verilog for patternA for the fist 25% only. Include only CLK32
expressed as running clock and data[0-2] expressed as regular data
FEEDBACK patternA START

 BEGIN
 STOP 100us CLK32

 CLK data0

ON data1 ON data2

ON END FEEDBACK

3.0 Control Definition Reference

Page | 57

3.7 General Purpose Variables
The following list of variables are ones that can be applied to any combination of Source and Target port.

In some instances these variables are meant simply to provide default states for objects in the GUI. In

other cases, these variables will have no analogous command line or GUI feature and will affect outputs

all on their own.

3.7.1 COMMENT

When using any of the serial protocol formats, this variable will optionally add comments to the patterns
That will inform you of the state of the protocol as data is transmitted. These comments will also
Be viewable on the target system in the pattern viewers

Syntax:

COMMENT ON|OFF|ALL|OPTIMIZED

where,

 ON: comments are passed in from source. Scan instances are marked

 OFF: comments are blocked

 ALL: comments are used like “ON” above, but additionally, timestamp markers

are included

 OPTIMIZED: comments are ignored when compression is used. If a comment is within

a field of cycles that can be compressed, then the comment will be swallowed and

dropped.

Example:
COMMENT ON

COMMENT

 OFF

COMMENT ALL

COMMENT
 OPTIMIZED

3.7.2 DDRMODE

3.0 Control Definition Reference

Page | 58

In many high speed situations, such as DDR, there will be simulations that have bidirectional pins that go

from input to ouput in a single cycle. The target platform may not be capable of doing this. If a pattern

requests this, the end result will be missing input or output data at the DUT. The divers may not be able

to turn on or off in time. If this is the case, you can automatically account for this turn-around issue by

applying the affected pins to the following syntax.

Syntax:

 DDRMODE pinName1 [pinName2 …pinNameN]

When DDRMODe is enabled for a given pin or group of pins, the resulting vector data will be

automatically modified to account for driver turn around s othat important data is not lost due to hardware

constraints.

Example:

DDRMODE DQ DQS MDQ MDQS # turn around issues will be adjusted

3.0 Control Definition Reference

Page | 59

3.7.3 DELAY

In certain instances it may be necessary to move data on a set of pins forward or backward by a

number of cycles to get the pattern to match how it will work on silicon. This is done because

either the simulation does not match silicon or even because the performance on one source is

different than the performance on another target. The DELAY block can be used to adjust the data.

The syntax for the block is as follows

DELAY

 pinName value
 pinName value
 ‘’
 ‘’
END DELAY

DELAY is a keyword that indicates the beginning of a DELAY block

Only one DELAY block should exist within a given test configuration. No errors will be seen

but only the last delay block listed will be inserted into the test program

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

value will define the cycle count for which data will be delayed for a given pin. Negative

numbers will move data forward. Positive values will move the data backward

The example below delays s data pins by 3 cycles, while forcing theCLK to happen 1 cycle early.

DELAY

 DATA1 3
 DATA2 3
 CLK -1 END DELAY

3.7.4 INIT

In certain instances it may be necessary to apply arbitrary sequences of data to pin that are not

defined in the source. These sequences can be made up of any valid vector state characters

INIT
 pinName defaulSequence
 pinName defaultSequence
 ‘’
 ‘’
END INIT

3.0 Control Definition Reference

Page | 60

INIT is a keyword that indicates the beginning of a INIT block

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

defaultSequence will define the state to use instead of whatever state is defined by the source

pattern. This will also assign this default state to use when no action is defined by a source

pattern. This is useful for applying states to unreferenced pins that need to be biased in a

particular way.

INIT

 DATA1 0000011111
 DATA2 1010101010

 CLK 110011001100

END INIT

3.7.5 PAGE

This directive is used to redefine the number of scan instances that will be included in a single vector file.

By default, scan patterns will be broken into separate files that cab be bursted together. The reason that

these are broken up is because it can make processing and debug easier in that you can mask certain

chunks of patterns to make loading quicker.

But, since some patterns don’t like the way that bursts are issued, this flag will allow you to make the

page size larger or smaller to increase or possibly remove entirely, the need for paging.

PAGESIZE will also be used to define the seed size to use for the paging calculation for VCD/EVCD

translation. By default a seed of 1000 cycles is used for this calculation. In some cases, you may want

to change the size of pages to address paging issues caused by staggered busses or asynchronous behavior

in simulations.

Syntax:

PAGESIZE numberPerPage [END|BURST]

Example:

PAGE

10000 # This will break file every 10,000 scan instances

PAGE

50 # This will break file every 50 scan instances

3.0 Control Definition Reference

Page | 61

PAGE

50 END # This will end the pattern after 50 scan instances

PAGE

50 BURST # This will break the pattern into multiplate smaller patterns every

50 scan instances

3.7.6 INIT

In certain instances it may be necessary to override the termination used for the drive resources

that are associated with the read on an IO pin. To drive high or drive low while reading, the

termination block is employed. Pins can be set here. If not listed in the termination bloc, a pin

will retain its regular Z termination.

INIT
 pinName|groupName defaultState
 pinName|groupName defaultState
 ‘’
 ‘’
END INIT

INIT is a keyword that indicates the beginning of a STATIC block

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

groupName must explicitly match a GROUP that as been defined prior to the PINLIST block.

The exception to this is the special cases of “ALL_IN”, “ALL_O”, and “ALL_IO” which will

apply the static state to all pins tht match one of these pin types

defaultState will define the state to use instead of whatever state is defined by the source pattern.

This will also assign this default state to use when no action is defined by a source pattern. This

is useful for applying states to unreferenced pins that need to be biased in a particular way.

INIT
 DATA1 0
 DATA2 0

CLK Z dataBus

X # default all pins in group “dataBus” to X

 ALL_IN 0

END INIT

default all inputs to 0

3.0 Control Definition Reference

Page | 62

In older releases, this block was called the STATIC block. This was changed to

INIT to reflect the fact that these are simply ways to redefine the default initial

state, rather than to override and defined STATIC data. The new syntax is more

straight forward.

3.7.7 SUBROUTINE

This variable will allow you to determine how subroutines are handled. By default, subroutines will be

treated as separate pattern files. But if you turn these off, the calls themselves will be flattened and added

directly to the calling pattern.

The default state for this is “ON”

If you want to additionally, expand subroutine calls that may have variable data to make them unique, you

can additionally use the keyword “ALL”

Syntax:

SUBROUTINE ON|OFF|ALL

Example:

SUBROUTINE
OFF

SUBROUTINE ON

SUBROUTINE ALL # expand subroutines that might have different data

3.7.7 PERPAT

This variable will instruct Velocity to generate separate timing specs for each pattern. By default, Velocity

will attempt to combine timings in such a way that patterns will the same timing can share specs. This

gives user control to where individual specs can be defined.

The default state for this is “OFF”

Specs so that each pattern calls its own SPEC then you can specify PERPAT ON

NOTE: WaveTables and Equation Sets will still be combined, but specsets where values are assigned to

spec values can be set to per pattern with this variable

3.0 Control Definition Reference

Page | 63

Syntax:

PERPAT ON|OFF

Example:

PERPAT ON

PERPAT OFF # SPECS that can be combined will be combined

3.7.7 PERPORT

This variable will can control whether Velocity will generate separate waveTables for each port/domain or

whether separate ports will be combined into one common waveTable. This is a good way to reduce

resource usage.

The default state for this is “OFF”

Equations will still be exported per port because there is no other way to control the periods of each port

differently if they are in the same equation set.

NOTE: This variable is only relevant for 93K SmarTest8. SmarTest7 uses a different mechanism because

there is a compiler. Since ST8 has no compiler, the approach to combining WaveTables is managed

differently

Syntax:

PERPORT ON|OFF

Example:

PERORT ON # single WaveTable exported

PERPORT OFF # WaveTables separated for each port

 3.7.7 BURSTMODE

This variable will explicitly define whether or not separate Testflow entries are made for each component

of BURSTS or if only the BURST is entered as a test

The default state for this is “ON”

Block the component testsuites then you can define BURSTMODEOPTIMIZED

Syntax:

BURSTMODE ON|OPTIMIZED

3.0 Control Definition Reference

Page | 64

Example:

BURSTODE ON

BURSTMODE OPTMIZED # Only define testsutie for the burst, not component patterns

3.7.8 TERMINATION

In certain instances it may be necessary to override the termination used for the drive resources

that are associated with the read on an IO pin. To drive high or drive low while reading, the

termination block is employed. Pins can be set here. If not listed in the termination bloc, a pin

will retain its regular Z termination.

TERMINATION

 pinName LOW|HIGH
 pinName LOW|HIGH
 ‘’
 ‘’
END TERM

TERM is a keyword that indicates the beginning of a DELAY block

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

LOW|HIGH will define the state to use instead of Z for the drive action. If the pins is not

specifically terminated LOW or HIGH, then it will be terminated to a Z state.

The example below terminates 2 pins low and one pin highy.

TERMINATION

 DATA1 LOW
 DATA2 LOW
 CLK HIGH
END TERM

3.7.9 TRISTATE

This directive is used to enable a and disable the tristate comparison feature. By default, tristate

comparisons will be imported as active strobe conditions. If the tristate comparison is turned off, tristate

3.0 Control Definition Reference

Page | 65

comparisons will be mapped to X’s. Turning on the tristate compare is equivalent to leaving the statement

out completely.

Syntax:

TRISTATE ON/OFF

Example:

TRISTATE
 OFF

TRISTATE ON

3.7.10 WARNINGS

This value is used to allow the user to block highly repetitive warnings that can appear in some

translations. If these warnings are deemed to be ignorable, which they are most of the time, this

will block these warnings so the log file is easier to read. By default, warnings are all ON.

Syntax:

WARNING ON/OFF

Example:

WARNING
 OFF

WARNING ON

COMMENT ALL # Include timestamps in binary comments

3.7.11 MINREPEAT

This variable is used to redefine the minimum value that is allowable for repeat blocks. The overall vector

count of the repeat is assumed. So, the block length x the loop count is the loop lenth.

MINREPEAT sets the minimum length for a loop. By default, the minimum length of this loop is 64.

Syntax:

MINREPEAT value

Example:

MINREPEAT
64 # same value as the default

MINREPEAT 8 # lower minimum repeat than the default

3.0 Control Definition Reference

Page | 66

MINREPEAT

128 # larger minimum repeat than the default

3.7.12 MAXLOOP

This variable is used to redefine the maximum number of loops that will be allowed in a given translation.

In some cases, too many loops can cause sequencer memory issues. This allows you to define a cap for

the total number of repeat or loop commands that are allowed. By default 32,768 loops can be defined.

Syntax:

MAXLOOP value

Example:

MAXLOOP
 32768 # same value as the default

MAXLOOP 4096 # lower minimum repeat than the default

MAXLOOP 65536 # larger minimum repeat than the default

3.7.13 DEBUG

This variable is used to define the percentage of the file that is used for debug mode.
By default 1% of the source file will be used. This variable can override that so that
a larger (or smaller) percentage of the file can be used.

Syntax:

 DEBUG value

where,

 value is the percentage value

Examples:

DEBUG 50.7%

DEBUG 10%

NOTE: This value can be any number >0 and less than or equal to 100

3.0 Control Definition Reference

Page | 67

3.7.14 BURST

Pattern bursts can be automatically generated using BURST/END BURST syntax shown below.

BURST burstName
 patternName1

 patternName2
 ‘’
 ‘patternNameN
END BURST

burstName This will define the name of the burst. This will automatically be compiled along

with all patterns in the list

patternName1:N patterns in the burst will be called in the order that they are defined, in the

BURST block. If multi-port is used, the burst that are created will also automatically be

multiport bursts. No additional syntax is required to convert from single to multiport burst. The

PINLIST block itself will determine if single or multiport

BURST burstPatternA setupPattern functionalPatttern1

functionalPattern2 closeAllFunction

END INIT

If defining a BURST, it must be known that ALL of the patterns in the burst list

must be present in the setup befor the burst will be activated. If a pattern is missing

you will get a warning and the BURST will not be created.

3.8 Timing Variables

The Cyclization Timing section of the Configuration File is used mainly for controlling the

conversion of VCD and EVCD patterns, where the stream of events needs to be divided into tester

cycles.

3.0 Control Definition Reference

Page | 68

BACKGROUND: For more information on VCD/EVCD patterns and cyclization,

refer to the previous chapter in this guide called “What Happens During the

Conversion Process?”, and, specifically, the section called “’Cyclized’ vs.

‘Uncyclized’ Pattern Formats”.

3.0 Control Definition Reference

Page | 69

3.8.1 CAPTUREMODE

There are different modes that capture will be interpreted from source patterns. This variable allows the

top level interpretation to be defined.

Syntax,

 CAPTUREMODE [SERIAL|PARALLEL|ENABLE|OFF]

Where,

 SERIAL: This will keep the capture data for each pin in a separate variable

 PARALLEL: This will store the capture data as a multiPin word. Each vector will be a different

index in this multibit word

 ENABLE: Captures will be OFF by default, Annotations in te SOURCE file of “BEGIN_CAPTURE”

and “END_CAPTURE” will enabled and disable capture through the pattern.

 OFF: Capture will be disabled throughout.

The default behavior is CAPTUREMODE SERIAL

3.8.2 CAPTURE

Digital capture requires a couple of things to be in place in the pattern and timing. First, there

needs to be timing waveforms available for capture. Capture uses different resources than what

would be used for normal functional strobes. Secondly, these waveforms need to be used in the

pattern with separate wave indexes for functional vs digital capture strobes.

Lastly, there needs to be digital capture variables in place that defines the bit order for MSB to LSB

The Velocity Capture block will ensure that the timing is prepared for the appropriate pins.

Additionally, this block will define the MSB and LSB order so that proper variables can be created.

Syntax,

 CAPTURE

 [frameLength] pinNameN

 . .

3.0 Control Definition Reference

Page | 70

 pinName1

 pinName0

 END CAPTURE

Where,

 The pin names for the digital capture are listed from MSB to LSB

CAPTURE 2

 Cap7

 Cap6

 Cap5

 Cap4

 Cap3

 Cap2

 Cap1

 Cap0

END CAPTURE

NOTE: The capture block shown here will is only used to define the bit order for a

digital capture variable. The actual digital capture data needs to be defined in the

source files or added to the pattern through Velocity MASK setups.

NOTE: The frame length is the number of cycles with capture to include per

captured data value. In the above example, the frame length of 2 will result in each

captuired value being 16 bits long. 2 cycles of 8 bits each.

3.8.3 DATARATE

DATARATE refers to the number of ASCII vectors that will be expressed per single tester cycle.

This variable will provide a default value that can then be overridden by the GUI. Expressing in

the CFG will provide a failsafe way of defining this so that it is always set when loading a particular

CFG.

This variable then sets the maximum data rate that will be used. By default, the same data rate will

apply to all ports if more than one port is defined. However, this is only a target. Depending on

the relative frequencies of each port, slower ports may be slowed down so that they do not use this

value. This is done so that very slow ports are no burdened with the unneeded complexity of a

high data rate.

If the optional domainName variable is used, the data rate will be applied only the single port that

is referenced. This will allow for arbitrary combinations of xModes to be used.

3.0 Control Definition Reference

Page | 71

Syntax,

DATARATE [domainName] value

Where,

 Value = some number between 1 and 8.

domainName = optional application that will assign the data rate to only the one domain.

EXAMPLE

DATARATE 3

DATARATE 6

DATARATE clocks 4

3.8.4 EDGES

EDGES refers to the number input drive edges per data strobe when cyclization of VCD/EVCD is

being done. Note that this variable is ignored when pre cyclized formats are translated.

If you want to use R0 or R1 or SBC clock data then you would set the EDGES count to “2’. This

would then set up your period so that a rise and a fall edge are present on input data for every single

output data strobe.

If you want strobe on both the riseing and falling edge of input clocks then you would set this

variable to “1”.

Syntax,

 EDGES [domainName] value

Where,

 Value = 1 or 2. This will represent number of input clock edges per strobe.

1 = DNRZ clock data

2 = R0/R1 clock data

domainName = optional application that will assign the data rate to only the one domain.

EXAMPLE

EDGES 1 #DNRZ used throughout

3.0 Control Definition Reference

Page | 72

 EDGES
2 # R0/R1 used throughout

 EDGES
clocks 2 # R0/R1 used only on clock domain

3.8.5 EQUATION

This directive is used to define whrether single or multiple equation sets will be created. SINGLE (common)

or MULTIPLE equations 1 per pattern. By default SINGLE mode is used as this produces the smallest and

cleanest timing setup. Multiple would be used if the user specifically requires tuning on each pattern to be

independent.

Syntax:

EQUATION SINGLE|MULTI

Example

EQUATION

 MULTI

EQUATION SINGLE

3.8.6 NORMALIZE

This variable is used to provide an automatic update to the normalization check box of the GUI or

command line. This value can be overridden by the GUI if the box is checked after laoding of the

CFG. This provides a default value so the user does not have to always remember to check it if

desired.

Syntax:

NORMALIZE ON|OFF

Example

NORMALIZATION

ON

NORMALIZATION OFF

3.8.7 OPTIMIZE

This variable is used to provide an automatic update to the Optimization level pulldown box of the

GUI or command line. This value can be overridden by the GUI if the box is updated after laoding

3.0 Control Definition Reference

Page | 73

of the CFG. This provides a default value so the user does not have to always remember to check

it if desired. It can also provide a way of self documenting what options are required

Syntax:

OPTIMIZE 0|1|2|3

Where,

0 = No Optimization. Additionally, existing loops in source will be

expanded

1 = Timing is optimized, but pattern compression is disbabled. Pre-

existing loops in patterns will be left alone

2 = Timing is optimized, AND pattern compression is enabled

3 = Timing is unoptimized so each pattern will retain individual timing.

Pattern Compression is enabled

Example

OPTIMIZATION

1

OPTIMIZATION 2

3.8.8 BLOCK

This variable is used to control the degree to which multiline loops are deermined. Vy default,

BLOCKS are turned off, which means that compression will only look for single line repeats.

Usually this is the most efficient way to compress.

Sometimes it is necessary to look deeper for more compression. Enabling BLOCK compression

can then cause the optimization routines to look for longer blocks for loops

You can set it ON or OFF, or you can set a minim length to look for blocks. Setting the minimum

higher or lower can give you different results.

3.0 Control Definition Reference

Page | 74

Syntax:

BLOCK ON|OFF|<number>

Where,

ON = Multiline blocks will be searched for. Starting at block length =2

OFF = No MultiLine loops will be searchd

<number> = Sets the minimum block size for multiline loops

Example

BLOCK
ON

BLOCK OFF

3.8.9 PERIOD

The PERIOD definition specifies the time period used for “cyclizing” a VCD or EVCD pattern. A

Configuration File can include one or more PERIOD definitions. In the case of multiple definitions,

each definition will apply to a different group of Pins to be defined in the subsequent PINLIST

block.

Velocity will attempt to divide the VCD/EVCD event stream into the specified period, and

determine the resulting drive, tri-state, and compare edge delays within the period.

The period that is specified by a PERIOD definition is also known in Velocity as a Clock Domain.

The term Clock Domain comes from the fact that devices with synchronous, digital functionality

typically have a group of signals whose timing is referenced to a particular clock signal. Therefore,

those signals can share the same test system period as the clock. Some devices have multiple

clocks operating at different rates, each clock having an associated group of signals synchronized

with it. Each group of signals synchronized to a different clock can be said to belong to a separate

Clock Domain.

Optionally, each Period / Clock Domain definition can take a name as a second parameter. This

name can be used within the subsequent PINLIST block to reference the Clock Domain on a Pin-

by-Pin basis.

That is, each Pin in the PINLIST can be assigned to a Clock Domain independently of other Pins.

3.0 Control Definition Reference

Page | 75

Syntax:

PERIOD cycleTime clockDomain

where,

 cycleTime ::= timeValue[timeUnit] where, timeValue is a numerical value expressed in

integer, floating point, or scientific notation timeUnit ::= [scaleFactor]s

where,

scaleFactor is one of the following scaling characters:

T means Tera, or 1E12

G means Giga, or 1E9

M means Mega, or

1E6 k means kilo, or

1E3 m means milli, or

1E-3 u means micro,

or 1E-6 n means nano,

or 1E-9 p means pico,

or 1E-12 f means

femto, or 1E-15

clockDomain is a character string

Example:

PERIOD 1608ps domain622

Note: The time value parameter can include units immediately after the number (no

whitespace in between). Units can include all the common scaling letters, such as n

(for nano), u (for micro), m (for milli), etc. Also note that the name “domain622”

has been assigned to the Clock Domain.

Note: There muse be a domain name defined for each PERIOD statement. Without the

 domain assignment the defined period it would never be assigned to any pins.

3.8.10 DRIVE Block

When EVCD or VCD files are used as inputs, strobes will be automatically placed at the end of cycles

(when snapping is enabled) or at the exact point of transition (when snapping is disabled). Often this is

not ideal. The DRIVE block here will allow the user to arbitrarily assign the drive points on a pin by pin

basis. Additionally, this will result in spec variables that will be added that can clearly control this from

the tester.

Syntax:

3.0 Control Definition Reference

Page | 76

 DRIVE

 pinName1 [driveValue]

 pinName2 [driveValue]

 …

 pinNameN [driveValue]

 END DRIVE

Strobe values can be expressed either as raw time values, which default to ns if no units are expressly

defined. Alternatively, these can be expressed as % values. In that case, the edge strobe will occur at a

particular ratio of the period. Every pin can have its own unique strobe location. Pins that are not defined

in the block will have their strobes occur at the regular default location that Velocity calculates.

If the driveValue is left out, then the spec will be assigned a value based on the value as present in the

simulation. VCD/EVCD files will calculate the edge and this value will be used for the spec value.

Example:

DRIVE
 TCK 40% # drive value for TCK at 40% of the tester period
 TDI # create a SPEC for TDI, but define value with simulation END DRIVE

3.8.11 STROBE Block

When EVCD or VCD files are used as outputs, strobes will be automatically placed at the end of cycles

(when snapping is enabled) or at the exact point of transition (when snapping is disabled). Often this is

not ideal. The STROBE block here will allow the user to arbitrarily assign the strobe points on a pin by

pin basis. Additionally, this will result in spec variables that will be added that can clearly control this

from the tester.

Syntax:

 STROBE

 pinName1 strobeValue

 pinName2 strobeValue

 …

 pinNameN strobeValue

 END STROBE

Strobe values can be expressed either as raw time values, which default to ns if no units are expressly

defined. Alternatively, these can be expressed as % values. In that case, the edge strobe will occur at a

particular ratio of the period. Every pin can have its own unique strobe location. Pins that are not defined

in the block will have their strobes occur at the regular default location that Velocity calculates.

If the driveValue is left out, then the spec will be assigned a value based on the value as present in the

simulation. VCD/EVCD files will calculate the edge and this value will be used for the spec value.

3.0 Control Definition Reference

Page | 77

Example:

STROBE
 TDO 40% # Strobe the TDO at 40% of the tester period
 TDO2 # create a SPEC for TDO2, but define value with simulation END STROBE

3.8.12 SURROUND

This directive is used to enable or disable the use of surround-by waveforms. By default, surround-by

will be enabled. But, there are instances where this is not wanted. For example, sometimes the

surround-by will introduce extra edges. Other times, the surround-by will use too many edges. This

provides a simple way of disabling the feature if it is not wanted

Syntax:

SURROUND ON|OFF

Example

SURROUND ON

3.8.13 RUNNINGCLOCKS

There are 2 modes of use for the RUNNINGCLOCKS. This block can either be used to pre-define

running clocks independent of the incoming source format. The secnd format is used to modify running

clocks as passed in from STIL FreeRun statements

Pre-defined running clocks:

Free running clocks are pins that are designated as free running and ignore the pattern data during

the conversion. Typically these are attached to clock ports (CLOCK). A clock pin will have one of

two states, pulse high, 1 or pulse low, 0.

Syntax,

 RUNNINGCLOCKS

 pinName activeDataState

 END RUNNINGCLOCKS

 Where,

 pinName: a pin previously defined in the PINLIST

 activeDataState: This will be “0” or “1”. “0” means return to one. “1” means return

to zero

3.0 Control Definition Reference

Page | 78

EXAMPLE

RUNNINGCLOCK

 CP 1

END RUNNINGCLOCK

Tuning of STIL FreeRun:

Within STIL, there exists syntax that can be used to define freerunning clocks. In some cases,

these clocks will be defined in stil as positive or negative pulses at a certain period. Withing

Velocity the RUYNNINGCLOCK statement can be configured as a single line to only allow POS

or NEG pulses. When this syntax is used all pulses will use the polarity assigned in the CFG as an

override to whatever polarity is defined by the STIL syntax

EXAMPLE

RUNNINGCLOCK POS # 1 pulses only

RUNNINGCLOCK NEG # 0 pulses only

3.8.14 GLOBALSPEC

When multiple domains are used, there will be a separate spec defined to control the PERIOD for

each domain. If these are clean multiple of one another it is possible to set this up so that a single

variable can be used to control the period. Equations would then be used to scale the period from

port to port.

Normalization must be used with this option. If GLOBALSPEC is enabled and Normalization is

disabled, a warning will be issued. The translation will continue and Normalization will be

automatically enabled anyway.

This spec is often used in combination with the Domain Tracking feature that documented in the

next section. Domain tracking can be used to assign the relative multiples of each defined time

domain.

Syntax,

 GLOBALSPEC ON/OFF

 Where,

3.0 Control Definition Reference

Page | 79

 ON = one SPEC variable will be used and equations will be used to automatically expand from

domain to domain.

 OFF = separately controlled PERIOD spec will be used for each domain

EXAMPLE

GLOBALESPEC
ON

GLOBALSPEC OFF

3.0 Control Definition Reference

Page | 80

4.0 CUSTOM LEVELS

BACKGROUND: Simulation output files, and even STIL files, do not typically

define DC levels for the signals. However, using configuration file structures,

Velocity provides you with a way to include levels information with your auto-

generated test program.

The LEVELS block allows you to define, for any pin or group of pins, power supply

levels, input drive levels, and output threshold levels.

4.0.1 To define levels for a group of pins, create the following Control definition block.

• On the first line, use the keyword LEVELS followed by a pin or group name. Optionally,

you can use the word default for the pin specification to indicate all pins.

• On the next line, use the keyword POWER followed by a voltage value. This will be the

master power supply voltage level.

• On subsequent lines, use the following keywords followed either by a voltage value or a

percentage:

VIH – Input voltage for a logic high

VIL – Input voltage for a logic low

VOH – Output threshold voltage for a logic high

VOL – Output threshold voltage for a logic low

BACKGROUND: If you specify a level as a percentage, Velocity interprets it as a

percentage of the POWER level. This provides a convenient way to scale levels with

a device power supply voltage.

• For the last line, use the keywords END LEVELS.

The following is an example of a Levels definition:

3.0 Control Definition Reference

Page | 81

LEVELS default
 POWER 3.0V
 VIL 0.8V
 VIH 2.0V
 VOL 30%
 VOH 50%
END LEVELS

4.0.2 Power Sequences

This section is used to define the power up sequence. Although this section is technically optional,

It is strongly suggested that this section be used. Otherwise, the power up will require user

intervention in multiple locations in the source files. Syntax of this block is as follows

POWER powerStateName
 SupplyName supplyVoltage clampCurrent delayAfter
 SupplyName supplyVoltage clampCurrent delayAfter
 SupplyName supplyVoltage clampCurrent delayAfter
 “” “” “” “”
 “” “” “” “”
END POWER

When used, this power sequence can be referenced in the same way that test’s (defined next) are

used. In other words, this block is treated as a special case of the tests that will allow execution

with name pass/fail queries. The power sequence will always result in a pass value and will never

log anything.

If a staged power up or power down sequence is required. This can be defined by generating

multiple power blocks with unique names for each stage. Or, it can be defined explicitly within a

single power block by defining the supply more than once in the block.

• Each entry in the power block is executed serially in the order is defined in the

configuration.

• Multiple supplies can be referenced within a single block

• At the end of execution, supplies will retain the supply value last requested

The following is an example of a Power definition:

Power up and

power down

3.0 Control Definition Reference

Page | 82

POWER nominal
 VS1 1.25V 500mA 5uS
 VS2 3.6V 500mA 0uS

 VS3 3.6V 500mA 0uS
END POWER

4.0.3 Power down sequencing

There will always be a power sequence named “off” created by the ShellConstructor. This default

sequence will do nothing more than disconnecting the power supplies. This default sequence will

be overridden in the following cases.

• Power off case 1: If only one power up sequence is defined, the power off sequence will be assumed to occur
in reverse order. Each supply will be set to 0V and then disconnected in the reverse order of the power up

• Power off case 2: If multiple power up sequences are defined, the power off will default to the reverse order
of the last power sequence. Each supply will be set to 0V and then disconnected in the reverse order of the
power up

• Power off case 3: If a special power down that is not explicitly equivalent to one of the above, a special
POWER block named “off” can be defined that will automatically override the default case. This is the
recommended method

3.0 Control Definition Reference

Page | 83

5.0 CUSTOM TIMING

BACKGROUND: Although Velocity will create appropriate Time Sets for your

program, based on the simulation or ATE files used as source for the conversion, you

can create your own custom timing to apply to tests.

To define custom timing for a group of pins, create the following Control definition block.

• On the first line, use the keyword TIMING followed by a pin or group name. Optionally,

you can use the word default for the pin specification to indicate all pins.

• On the next line, use the keyword PERIOD followed by a time value. This will be the

period of the tester’s pattern sequencer.

BACKGROUND: All TIMING blocks in a particular Configuration file must use the

same PERIOD value. This ensures that the tester will be able to use the resulting

STIL file.

TIP: In order to use TIMING blocks with different PERIOD values in your test

program, use separate Configuration files for each of the different periods and run

separate conversions with each.

• On subsequent lines, use the following keywords followed either by a time value or a

percentage:

DRIVE – Time delay of a drive edge for a pin of type I or IO

RECEIVE – Time delay of a compare edge for a pin of type O or IO

PULSE – Duration of a pulsed waveform for a pin that is not defined as a clock

pin.

OFFSET – Time delay of first edge for a pin of type CLK

RISE – Time delay of second edge for a pin of type CLK, if a rising edge

FALL – Time delay of second edge for a pin of type CLK, if a falling edge

DUTY – Duty cycle for a pin of type CLK, expressed only as a percentage

BACKGROUND: If you specify a timing parameter as a percentage, Velocity

interprets it as a percentage of the PERIOD time. This provides a convenient way to

scale edge delays with a sequencer period.

4.0 Customizing Patterns

Page | 84

• For the last line, use the keywords END TIMING.

The following is an example of a Timing definition:

Timing
These definitions will define the values of specs
values will be assigned by default. Groups and pins can
be defined to override defaults by using a pin or group
name.
TIMING

default period 100ns offset 0ns duty 50% drive 25% receive 90%
END TIMING
redefine the data pin and use “dataBus” as the spec bsae name for the
actions
TIMING dataBus d7 d6 d5 d4 d3 d2 d1 d0 drive 15%
END TIMING

5.01 TEST Definitions

This section is used to create specific test instances. Each defined test will be accessible from both

the main test program and command line execution scripts. The general syntax for the section is

as follows. Each entry is then detailed

TEST testname testnumber
 TYPE lib.family.testName
 PATTERN patternName
 TIMING timing declaration
 LEVELS levelsDeclaration PARAMETERS
 PARM1 PARM2value
 “” “”
 “”
 END PARAMETERS
 LIMITS

“”

 . <= testName1 <= . [units]
 . <=
 END LIMITS
END TEST

testName2 <= . [units]

4.0 Customizing Patterns

Page | 85

TEST: Keyword to tell the Velocity that a new test block is being created. This then requires that

a unique test name and(optionally) a unique test number to follow. The testname will be the

name as accessed by the command line execution script. Each test must have a unique name. The

test number will provide a starting testnumber for every element logged. The test numbers should

be unique and enough separated from one another so that tests will multiple events will not step

on one another.

PATTERN: Pattern Block name that is to be executed. Note: This pattern name refers to the

block name which may be different from the STIL file name that is derived from. The user must

know the exact name for this to be valid. This parameters associated value will be case sensitive.

Alternatively, “$default” can be used for the pattern’s name and the pattern will be chosen

automatically from the input pattern list.

TIMING: Optionally defines the Timing Block that should be used for a given test. This can

be left out an automation will automatically apply timing based on the patternList compilation.

This is usually left out an automatically applied based on compilation results.

LEVELS: Optionally defines the Level Block that should be used for a given test. This is

defined in terms of level set numbers in the case of single port. Or by multiport spec name if

using multiport. This block is usually left blank and auto filled from the available levels.

TYPE: The keyword should be the first subparameter of each TEST block. This will tell the

Velocity what type of generic function is to be applied. Depending on which parameter type is

received, a different set of parameters will then be required. The typeKeyword can be included

from any library as long as the library is part of the string applied in the CFG.

If no TYPE is specified at all for a TEST block, it will be assumed to be a straight functional

test.

For a complete list of automatically supported test methods consult your Advantest Test

Documentation Center. A few common examples are included here.

The format is of the form “library.class.testName”.

 where, library = the name of the test method library which is included with the test

program class = an optional sub class within the library. You may not have a multiple

classes

within a library. When this happens you can drop the class designator entirely.

 testName = The name of the test method function that is t be executed.

• ac_tml.AcTest.FunctionalTest: Functional Test executes a digital pattern

and responds with pas/fail results

4.0 Customizing Patterns

Page | 86

• dc_tml.DcTest.Continuity: Continuity Test - tests a lists of pins for

connectivity by examining voltage seen when small current is applied to

pin with no power applied

 pinlist pinNames: comma delimited list of pins or groups to be included

in the test

 testCurrent currentValue: force current applied to each of the pins in the

pinlist

 settlingTime settlingTimeValue: settling time after force current is applied

before the voltage is measured.

 measurementMode PPMUpar|ProgLoad: The is one of two options that

will determine the type of measurement that is being done. PPMUpar will

use the PMU per pin. The ProgLoad will use the programmable load and

regular measurement pin electronics and can be done in parallel.

 polarity SPOL|BPOL: This argument will choose whether single polarity

or both polarities are used for the measurement.

 prechargeToZeroVol ON|OFF: Determines whether the pinlist will be

precharged to 0 volts prior to the test applying the force current

 testName passVolt_mV: This is the name of the test as it will appear

in the datalog and how it will be connected to limits. For Advantest

supplied vesion of this test, the testName can’t change. But, this field is

provided in the CFG so in case the user wishes to modiy the default

method to change the logging.

 output None|ReportUI|ShowFailOnly: This determines the level to

which data will be senbt to the default report window. None will report

nothing. ReportUI will report everything. ShowFailOnly will display

only the failing pins.

• dc_tml.DcTest.ProductionIddq: Production IDDQ Test - tests a lists of

pins for connectivity by

• dpsPins pinList: list of DPS pins that will be included in

measurement.

• disconnectPins disconnectPinList: List of pins that need to be

disconnected during measurement. If left blank, then all pins will remain

conected

• settlingTime settlingTime: settling time before measurements will start

• stopMode ToStopVEC|ToStopCyc: determines with the test will stop at a

given vector number or at a certain cycle number

• strStopVecCycNum stopCycleNumber: stop value for test. If left blank,

this will execute to the end of the pattern specified

• samples numSamples: Number of samples per output current

measurement

4.0 Customizing Patterns

Page | 87

• checkFunctional ON|OFF : determines whether the functional tests’s

pass/fail result will be included in the result analysis or not

• controlTestNumOfFunctional ON|OFF : If the functional result is being

used as part of the pass fail, this argument will tell the method whether or

not to use a separate test number for the functional pass/fail or not

• gangedMode ON|OFF : enables or disables the ganging of supply

channels during measurement.

 testName passCurrLimit_uA: This is the name of the test as it will appear

in the datalog and how it will be connected to limits. For Advantest

supplied vesion of this test, the testName can’t change. But, this field is

provided in the CFG so in case the user wishes to modiy the default

method to change the logging.

 output None|ReportUI|SHowFailOnly: This determines the level to

which data will be senbt to the default report window. None will report

nothing. ReportUI will report everything. ShowFailOnly will display

only the failing pins.

• dc_tml.DcTest.Leakage: Prodcution IDDQ Test - tests a lists of pins for

connectivity by

• pinlist pinList: list of IO pins that will be included in measurement

• measure LOW|HIGH|BOTH : determines which polarity to measure for

each pin

• measurementMode PPMUpar|ProgSer|SPMUser: 3 options to define

whether each measurement will be made ins serial using the SPMU. In

serial using the PPMU, or in parallel using the PPMU. These three options

allow the user to choose precision vs speed of measurement.

• relaySwitchMode DEFAULT(BBM)|MBB|Parallel : 3 options for

defining the relay switching mode to use for each measurement.

• forceVoltageLow forceLowValue : optional value to apply to the pins

while measuring the low leakage.

• forceVoltageHigh forceHighValue : optional value to apply to pins while

measuring the high leakage

• spmuClampCurrentLow lowClampValue : If the SPMU measurement

mode is used, this value will be used for the low clamp value. Can be left

blank otherwise.

• spmuClampCurrentHigh highClampValue: If the SPMU

measurement mode is used, this value will be used for the high clamp

value. Can be left blank otherwise.

• ppmuPreCharge ON|OFF : determines with the pre charge value will be

applied before each measurement.

4.0 Customizing Patterns

Page | 88

• prechargeVoltageLow lowPreChargeValue : low value to be used for pre

chanrge if enabled.

• prechargeVoltageHigh highPreChargeValue : : high value to be used for

pre chanrge if enabled.

• settlingTimeLow lowSettlingTime : settling time before low value

measurement is made

• settlingTimeHigh highSettlingTime : settling time before high

measurement is made

• preFunction YES|NO : Allows a separate pre Functinal pattern to be

execxuted. If NO, then no functional test will be applied.

• controlTestNumOfFunctional YES:NO : If functional test is used, then

this allows the results of that functional test to use a separate test number

or not in the datalog.

• stopCycVecLow stopLowLocation : Optionally defined stop cycle for the

low value measurement. Will run to the end if left blank

• stopCycVecHigh stopHIghLocation : Optionally defined stop cycle for

the high value measurement. Will run to the end if left blank

• testName passCurrLimit_uA: This is the name of the test as it will appear

in the datalog and how it will be connected to limits. For Advantest

supplied vesion of this test, the testName can’t change. But,

this field is provided in the CFG so in case the user wishes to modiy the

default method to change the logging.

• output None|ReportUI|SHowFailOnly: This determines the level to

which data will be senbt to the default report window. None will report

nothing. ReportUI will report everything. ShowFailOnly will display

only the failing pins.

• dc_tml.DcTest.OperatingCurrent: Operating Current Test - tests a lists of

pins for connectivity by

• dpsPins pinList: list of DPS pins to be included as part of

measurement

• samples numSamples: number of samnples per

• delayTime delayValue: delay after connect and pattern execution

before measurement will be made

• termination OFF|ON: Flag to turn termination of IO channels on or

off

 testName passCurrLimit_uA: This is the name of the test as it will appear

in the datalog and how it will be connected to limits. For Advantest

supplied vesion of this test, the testName can’t change. But, this field is

4.0 Customizing Patterns

Page | 89

provided in the CFG so in case the user wishes to modiy the default

method to change the logging.

 output None|ReportUI|ShowFailOnly: This determines the level to which

data will be senbt to the default report window. None will report nothing.

ReportUI will report everything. ShowFailOnly will display only the

failing pins.

There are many other automatically provided methods. You can also include references to custom defined

API libraries. At run time, Velocity will assume that the library has been included with the targeted test

program. As long as the “lib”, “class”, and “testName” are properly setup, then the testflow will have

access to these functions. Note that some tets method libraries do not have multiple classes of tests. If

this is the case, then the Velocity TYPE specified will be of the form “library.testname” with no “family”

designator at all.

The following is a sample Test Blocks section that defines a number of tests. Specifically, this list

of definitions will result in 8 specifically accessible test Functions defined in TestFunctions.cpp

using the generic AC and DC test functions defined in GenericFunction.cpp. There will then be 8

script execution functions defined in user_commands.cpp. These functions are also available to

the Flow Block section of the configuration defined below which can be used to create instances

of these functions in a user defined order in the “main” program.

4.0 Customizing Patterns

Page | 90

Test Definitions

TEST shortsPositive 100
 TYPE dc_tml.DcTest.Continuity
 PARAMETERS pinlist all

 testCurrent 10[uA]

 settlingTime 1[ms]

 measurementMode PPMUpar

 polarity SPOL

 prechargeToZeroVol ON

 testName passVolt_mV output

None
 END PARAMETERS
 LIMIT
 . <= passVolt_mV <= . []
 END LIMIT

END TEST

TEST contNegative 150
 TYPE dc_tml.DcTest.Continuity
 PARAMETERS
 pinlist all testCurrent -

10[uA] settlingTime 1[ms]

 measurementMode PPMUpar

 polarity SPOL

 prechargeToZeroVol ON

 testName passVolt_mV output

None
 END PARAMETERS
 LIMIT
 . <= passVolt_mV <= . []
 END LIMIT
END TEST

TEST IDDQdouble 500
 TYPE dc_tml.DcTest.OperatingCurrent
 PATTERN juno_soc_aplpll_x5
 PARAMETERS dpsPins @ samples 4
delayTime 0[ms] termination OFF

testName passCurrLimit_uA
 output None
 END PARAMETERS
 LIMIT
 . <= passCurrLimit_uA <= . []
 END LIMIT
END TEST

4.0 Customizing Patterns

Page | 91

TEST LeakageHi 250
 TYPE dc_tml.DcTest.Leakage PARAMETERS
 pinlist GROUP_defaultInputs measure BOTH measureMode

PPMUpar relaySwitchMode DEFAULT(BBM) forceVoltageLow

400[mV] forceVoltageHigh 3800[mV] spmuClampCurrentLow 0[uA]

spmuClampCurrentHigh 0[uA] ppmuPreCharge ON

 prechargeVoltageLow 0[mV] prechargeVoltageHigh 0[mV]

settlingTimeLow 0[ms] settlingTimeHigh 0[ms]

preFunction NO controlTestNumOfFunctional NO stopCycVecLow 0

stopCycVecHigh 0 testName (passCurrentLow_uA,passCurrentHigh_uA)

output None
 END PARAMETERS
 LIMIT
 . < passCurrentLow_uA < . []
 . < passCurrentHigh_uA < . []
 END LIMIT
END TEST

TEST IDDQ 400
 TYPE dc_tml.DcTest.ProductionIddq
 PARAMETERS dpsPins @ disconnectPins

settlingTime 0[ms] stopMode ToStopVEC

strStopVecCycNum checkFunctional ON

controlTestNumOfFunctional OFF gangedMode

OFF testName passCurrLimit_uA output None
 END PARAMETERS
 LIMIT
 . < passCurrLimit_uA < . []
 END LIMIT
END TEST

5.02 FLOW Definitions

4.0 Customizing Patterns

Page | 92

The testflow will insert a predefined set of tests in a particular order into the main program of the

test. Each named test or power setting must be defined in prior to use or compilation errors will

occur. This is the syntax for the section

FLOW flowName
 TEST|POWER|DELAY testname|powerSequenceNam|delayValuee [failBinNumber]

 TEST|POWER|DELAY testname|powerSequenceNam|delayValuee [failBinNumber]
 ‘’
 ‘’
END FLOW

FLOW is a keyword that indicates the beginning of a flow block

Only one FLOW block should exist within a given test configuration. No errors will be seen but

only the last flow listed will be inserted into the test program

testname and powerSequenceName must explicitly match a TEST or POWER block defined prior

to the FLOW block

DELAY will insert delays in resulting test flow. There must be a number following the DELAY

statement

The example below assumes that the 2 tests and 1 power sequence have already been defined. The

“off” power sequence can either be explicitly defined or implied as being defined because it will

automatically be generated because as the reverse of the defined power sequence.

The following is an example of a Flow definition:

Flow Definition
The following tests will be executed in the following

order. If no flow is defined, then all the tests will
be included in the order they are defined. All will

be called inside user_main

FLOW experimentName
 TEST contNegative 10
 POWER nominal

 TEST funcSpec 5
 DELAY 15ms
 POWER off
END FLOW

4.0 Customizing Patterns

Page | 93

6.0 CUSTOMIZING PATTERNS
 Custom patterns are patterns that are created based on existing patterns but with additional

sequencing features such as loops and breaks. By default, every custom pattern will have a base

pattern that it is initially created from. After creation, the user can inject and arbitrary list of

additional loops and branches to allow for varied execution of the predefined pattern. Therefore,

this provides a simple way of automatically introducing modified execution of patterns when it is

known beforehand that such changes should occur. First, a new pattern file will be created as a

copy of the base pattern. Any labels that are used within the original will be renamed

automatically so that they are unique in the copied version.

Second, any new sequences that are requested will be added to the new STIL file. Once

compiled, they will be visible to the tester’s Pattern viewer.

Third, multi-port burst blocks will automatically be created for the new pattern if necessary.

TEST blocks can then refer to just the pattern name. The pattern burst will be implied. The

timing associated with this pattern will be identical to that of the original base pattern. Therefore,

no extra work will be required to force timing. This can always be changed later. The custom

pattern block itself, as stated in the introduction, is not meant to be the main user interface. But,

rather, it is meant to provide a quick start for new test programs.

4.0 Customizing Patterns

Page | 94

BACKGROUND: If your Velocity package includes Optimization options, Velocity

can automatically search for compression opportunities when converting patterns, and

create appropriate repeats and loops in your patterns.

However, even without Optimization, you can manually customize your pattern files

using Configuration control. You can specify explicitly not only repeats and loops,

but also selective output masking (pin-by-pin and cycle-by-cycle), pattern truncation, etc.

6.1 Pattern Syntax

The following syntax is used for the PatternBlock

PATTERN newPatternName

 BASE basePatternName

 Command commandParameterList

 Command commandParameterList

END PATTERN

PATTERN: Keyword that tells the ShellConstructor that this is the beginning of a custom pattern

block.

newPatternName: Must be a unique string to identify the name of the new pattern. This name

can be used by subsequent TEST blocks.

6.2 BASE Syntax

BASE: Keyword to indicate that the new pattern is associated with a given base pattern.

basePatternName: This base pattern must be included in each PATTERN block program. The

name of the base pattern must explicitly match the name of one of the original source files being

translated. If no base is present, then any subsequent actions will not be applied properly.

6.3 Command and Parameter List Syntax

The commands and associated parameters are an optional member of the Pattern Block.

However, there will generally be at least one command inserted. Otherwise, there is no real

reason to create the custom pattern in the first place. There is no upper limit on the number of

inserted commands that can be used. However, when using loops is important that these not be

built to interleave. Only one level of looping is defined in this syntax The following actions can

be inserted

4.0 Customizing Patterns

Page | 95

6.3.1 TYPE (optional)

This optional parameter can be used to determine whether the pattern is to be

compiled as a regular pattern or if it is to be defined as a subroutine. (This is only

available for the Advantest target port). Other ports will revert to the default type

which will compile that patterns as regular functional patterns

 TYPE MAIN|SVEC

6.3.2 DOMAIN (optional)

This optional parameter can be used to lock a set of commands to a particular

time domain. If multiple domains are used, then cycle counts that are used to

define custom start, stop or loop parameters would need adjustment. This

command assigns the reference domain to be used. For the subsequent list of

commands

 DOMAIN domainName

6.3.3 FUNC (optional)

This optional pattern allows the user to insert a predefined bits stream to

particular pin or set of pins. There are a list of predefined bit patterns that can be

applied such as PRBS patterns or you can define with a hard path to a file name.

This bit stream will be applied to a user defined cycle starting point and can be

repeated as any times as desired

 FUNC patternName|filePath pinOrGroupName startCycle

[repeatCount]

The pin or group name must be defined above in the pin or group section.

The usage of the FUNC keyword must occur after the BASE pattern has been

defined. Otherwise, there will be nothing to attach this inserted cycles to. All

pins that are not directly referenced by the FUNC statement will be treated as

repeats of the previous cycle. If the start cycle is greater than the length of the

base pattern, a warning will be thrown and the bit stream will be applied to the

end of the pattern. If a repeat count is used and the bit stream itself is not a

modulus of the data bit rate, then the pattern will be appended with continuation

bits so that it is proper modulus.

4.0 Customizing Patterns

Page | 96

6.3.4 LOOP

Loops can be added with the following syntax

 LOOP startCycle,stopCycle [loopCount]

The start and stop cycle refer to the vector number of the beginning and ending of

the inserted loop. A loop count is optional. If not defined, the loop count will be

defined as infinite. The loop will have to be stopped by pressing the “abort”

button in ITE, as the loop will be interpreted as infinite.

6.3.5 REPEAT

Single line repeats can be added with the following syntax

 REPEAT cycle,loopCount

Cycle defines the vector number for a single line repeat. LoopCount defines the

number of times that line should be executed. A loop count of 1 would be

equivalent to not having the REPAT command in the first place.

6.3.6 MATCH

Match Loops can be inserted with the following syntax:

 MATCH startCycle,stopCycle [jumpLocation]

A match loop will execute until the entire range of the loop passes on all cycles.

startCycle and stopCycle refer to the vector location of the beginning and the

ending for the loop. Optionally, a jump location can be defined with the last

argument. If used the pattern execution will jump to the given location after a

match is found. If not used, the pattern will continue at the next line

6.3.7 START

The start location for a given pattern can be redefined with this syntax:

 START newStartVector

4.0 Customizing Patterns

Page | 97

The start location for a given vector can be redefined with this command. The

new pattern will have all previous vector information removed so that the new

start location will occur at the vector defined by the parameter newStartVector.

6.3.8 STOP

The stop location for a given pattern can be redefined with this syntax:

 STOP newStopVector

The stop location for a given vector can be redefined with this command. The

new pattern will have all subsequent vector information removed so that the new

stop location will occur at the vector defined by the parameter newStopVector.

6.3.9 WAIT

The WAIT variable will allow you to insert arbitrary time delays at any point in a pattern. These

can be inserted at time values or by cycles. If no units are specified for the location it is assumed

to be a cycle number

 WAIT location[units] duration

4.0 Customizing Patterns

Page | 98

6.3.10 CUSTOM PATTERN EXAMPLES
The following is an example of a Pattern definition:

Pattern lists

The following patterns will be translated. If the pattern is # not in the list, then it will

be skipped. If the pattern is # not in the source file then a warning will be issued.

PATTERN
loopInfinite
 BASE SpecFunc
 LOOP 5,20
#END PATTERN

PATTERN loopFinite
 BASE SpecFunc
 LOOP 5,18 16
END PATTERN

PATTERN multipleLoop
 BASE SpecFunc
 LOOP 5,10 16
 LOOP 16,20 16
END PATTERN

PATTERN changeStartStop
 BASE SpecFunc
 start 5
stop 20 END PATTERN

PATTERN PRBS7
 BASE SpecFunc
 FUNC PRBS7 dataIn 800 8

END PATTERN

PATTERN delaysAdded
 BASE SpecFunc
 DELAY 100us 5ms
 DELAY 1ms 2ms
END PATTERN

4.0 Customizing Patterns

Page | 99

6.4 Logical Masking
This keyword will tell the mask loader what command is being requested. These masks are build

with a syntax that allows conditional logic to be applied to enable and disable the masking as

well as syntax to define how characters are remapping.

Masks can be turned on and off by cycle or pin by pin. Each command is terminated by a

semicolon at the end of the line. This allows complicated or long statements to be spread over

multiple lines

The mask block can also be defined by itself outside of the PATTERN block. In this case the

MASK block itself is given a name. If “default” is the name, then the contents of the MASK

block are applied to all patterns that are loaded. Any other name will apply the mask only to

patterns that match the name of the mask block

MASK default|inputPatternName

 maskCommand maskPinList [map] [conditions]

 maskCommand maskPinList [map] [conditions]

 END MASK]

It is legal to have both a default and a specifically applied mask for a single pattern. When both

are defined, the mask that is specific to the given pattern will be applied first, followed by the

default mask block. In the end both are applied. If the input pattern name does not match the

name of the mask block, then that mask block is not applied.

6.4.1 PINS
It may be desirable to handle each pins masking separately or collect all masking

conditions in a single statement. The syntax is as follows

 PINS pin1,pin2…pinN start1-stop1,start2-stop2 [condition] [map];

 PINS pin1,pin2…pinN start1-END [condition] [map];

 PINS pin1,pin2…pinN ALL [condition] [map];

In this case, all of the starts and stops for a masking scheme are expressed in a a single

comma delimited list. Start and stop pairs are separated by the “-“ (dash).

Each start and stop must be an integer that corresponds to a valid cycle number in the

loaded pattern. The only exception to the integer limitation is the use of END which all

4.0 Customizing Patterns

Page | 100

apply the active maked region all te way to the end of a pattern. The other is the use of

“ALL”, which will apply the mask to every cycle in the active pattern (Conditions

explained below)

6.4.2 MAPS
Character remapping:: By default a mask will take all L, H, and M characters and recast them as

X characters. However, the MAP keyword can be used within a mask definition to reassign the

state character mappings to any othe combination of states. The map conditions specific will

override the default. For example, you could used the MAP to turn off drive values. You might

even use the map to swap 0 and 1 characters if you want to invert a signal. The MAP is applied

with the following sequence

{MAP sourceChar|targetChar}

• sourceChar: This can be one or more state characters that might be present in the

unmasked source vector.

• targetChar: This can be one or more state characters that would be used to replace the

list of characters in the sourceChar listing. If only one character is provided, this

character will be applied as the target for all of the states in the sourceChar. If more

than one is listed, then the list MUST be the same length as the sourceChar list. The

mapping will occur in a 1 to 1 fashion in the same order.

Examples:

 {MAP HM:XX} This will turn off all compares

 {MAP 01LH:10HL} This will invert all signals, input and output.

 {MAP 01LH:ZZXX} This will turn off drives and compares.

Note that the ordering and count of the characters in the the source and target

listing for the mask mapping section follows the same convention as STIL

waveform tables. The order of the source will match the order of the target. If

there is only one target char it will apply to all source chars

4.0 Customizing Patterns

Page | 101

Note: Digital Capture can be setup using the MASK block by defining a MAP

structure that remaps the L and H characters to C. { MAP [LH:C] } When this is

done, the timing will automatically be adjusted to include the capture and don-t

capture waveforms

Note the number of “from” states in the MAP string MUST be the same as the

number of “to” states in the MAP

 Note: The curly brackets surrounding the MAP statement are required.

6.4.3 CONDITIONS

Mask conditions can be used to fine tune the regions in which a mask is applied so to match

conditions in the pattern on any pin at any state prior to the active cycle. Condition sequences

will be analyzed as a comma delimited “or” of multiple conditions. Each condition is applied

with the following sequence.

{COND refPin[relativeCycle]=pinState }

• refPin: This is should be an explicit match to a pin in the given pin list. This can be equal

to a pin the ON, OFF, or PINS state to which the condition is applied. Or, it may be equal

to any other pin in the pin list as defined by the configuration

• relativeCycle: This parameter is optional. If no relative cycle is defined, it is assumed to

be 0 and will search for the condition on the active cycle that is potentially being masked.

This can also be a range of cycles. A positive number will look later in the pattern. A

negative number will look at previous cycles.

• pinState: This will define that state for the refPin that activates the given mask sequence.

If the reference pin is not explicitly equal to the given state, then the mask will be

deactivated

4.0 Customizing Patterns

Page | 102

Note: The curly brackets surrounding the COND statement are required.

Note: The condition can ues “!=” as well as “=” to active the actions when a

condition is NOT true as well.

6.4.4 PIN DUPLICATION

In certain instances in may be necessary to provide a complete duplication of on pin’s data onto

another pin. This is accomplished by setting one pinb equation to another pin in the PINS

statement. This is MASK block required because each simulation pin can connect to one and

only one signal in the PINLIST block.

The closing semicolon is required

PINS targetPin=sourcePin;

6.4.5 EXAMPLES:

PINS clkOut 0-100,1000-END;

 This will turn on masking for the pinNamed clkOut starting at cycle 0 and

turning it off at cycle 100. After this the mask will be turn on again at

cycle 1000 and will remain active until the end of the pattern because no

OFF statement occurs

PINS clkOut 0-100,1000-END {COND RESET=0};

 This will turn on masking for the pinNamed clkOut starting at cycle 0 and

turning it off at cycle 100. After this the mask will be turn on again at

cycle 1000 and will remain active until the end of the pattern because no

OFF statement occurs. Within the active ranges, the mask will only be

active if the RESET pin is set to 0. Therefore, if RESET is at any other

state during the range, the clkOut pin will not be masked.

4.0 Customizing Patterns

Page | 103

PINS clkOut 0-100,1000-END {MAP H:X} {COND RESET[16]=0};

 This will turn on masking for the pinNamed clkOut starting at cycle 0 and

turning it off at cycle 100. After this the mask will be turn on again at

cycle 1000 and will remain active until the end of the pattern because no

OFF statement occurs. Within the active ranges, the mask will only be

active if the RESET pin is set to 0 16 cycles prior to the active cycle. In

other words, the mask will be active until the RESET pin has been set high

for at least 16 cycles. Lastly, Only the H’s in the source will be masked.

L’s will be left alone

6.5 Serial Masking

Serial masking is an alternate method for applying arbitrary remappings of character sequences

on a given pin. In general, anything that is defined as a serial mask can also be assigned with

logical mask syntax as defined above. However, sometimes it is difficult to programmatically

define the logical syntax. For that reason the serial masking block was created.

6.5.1 SYNTAX

GLOBAL MASK pinName1 [pinName2 pinName3 … pinNameN]

 “sourceString” -> “targetString”

 “sourceString” -> “targetString”

…

 “sourceString” -> “targetString”

END GLOBAL

The block is initiated and terminated with “GLOBAL MASK” and “END GLOBAL”. You can

then apply this to one or more pins or groups. These pins or groups must have been defined

already in the PINLIST or GROUP blocks.

The source and target strings will define what strings you are searching and replacing. These

sequences are searched for vertically on each pin in the listing. If the source string is found, it

will be automatically replaced with the target string.

The length of each source string must match the length of its associated target string.

Multiple source and target pairs are executed in the order they are defined inside the block

4.0 Customizing Patterns

Page | 104

There can be more than one GLOBAL MASK block per configuration. That way you can assign

different combinations of string pairs for different pins.

The serial masking blocks are ALWAYS executed before any logical masking block that has also

been created.

6.5.2 EXAMPLES

GLOBAL MASK DQ DQS DQSb MDQ MDQS MDQSb

 "MMMMMMMMMMMMMMM0" -> "XXXXXXXXXXXXNNN0"

 "MMMMMMMMMMMMMMZ0" -> "XXXXXXXXXXXXNNN0"

 "MMMMMMMMMMMMMZZ0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMZZZ0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMMMM1" -> "XXXXXXXXXXXXNNN1"

 "MMMMMMMMMMMMMMZ1" -> "XXXXXXXXXXXXNNN1"
 "MMMMMMMMMMMMMZZ1" -> "XXXXXXXXXXXXNNN1"

 "MMMMMMMMMMMMZZZ1" -> "XXXXXXXXXXXXNNN1"

END GLOBAL

 These will mask turn around for packets that are

 to close together to test

GLOBAL MASK DQ DQS DQSb MDQ MDQS MDQSb
 "LLL0" -> "NNN0"
 "LLH0" -> "NNN0" "LHL0" ->

"NNN0"
 "LHH0" -> "NNN0"

 "HLL0" -> "NNN0"
 "HLH0" -> "NNN0"

 "HHL0" -> "NNN0"

 "HHH0" -> "NNN0"

 "LLL1" -> "NNN1"

 "LLH1" -> "NNN1" "LHL1" ->

"NNN1"
 "LHH1" -> "NNN1"
 "HLL1" -> "NNN1"

 "HLH1" -> "NNN1"

 "HHL1" -> "NNN1"

 "HHH1" -> "NNN1"
END GLOBAL

