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1 Introduction and Equilibrium Solutions

An ordinary differential equation (ODE) is an equation involving rates of
change with ordinary derivatives e.g. dy

dt rather than partial derivatives e.g.
∂y
∂ t . Often, problems in Mathematics, Science or Engineering are described
by a differential equation such as

R
dQ
dt

+
Q
C

= E(t),

which describes the rate at which the charge Q in a circuit changes with
respect to time dQ

dt and how that is related to the resistance R, charge Q,
capacitance C, and voltage E(t). To model the relationship between these
variables, we must solve the differential equation to give an equation re-
lating the variable in the equation. If R = 5 ohms, C = 0.05 farads, and
E(t) = 60 volts, then solving the ODE would give the equation

Q(t) = 3−3e−4t,

showing that the charge approaches 3 with time, see Figure 1.

1 2 3 4 5

2.80

2.85

2.90

2.95

3.00

Figure 1: A plot of Q(t) = 3−3e−4t .

The differential equation above is an example of a 1st order linear ODE.
In this course you will learn how to solve these differential equations and
several other varieties of differential equations.
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1.1 Constant absolute rate of change

dy
dt

= a or y′(t) = a,

where a is constant and represents the absolute rate of change.

When a > 0, y(t) is increasing (growth).
When a < 0, y(t) is decreasing (decay).

The general solution to the differential equation y′(t) = a is

y(t) = at +b,

where b is an arbitrary constant.

1.2 Constant relative rate of change

1
y

dy
dt

= k or y′(t) = ky(t),

where k is a constant and represents the relative rate of change.

When k > 0, y(t) is increasing (k is the relative growth rate).
When k < 0, y(t) is decreasing (|k| is the relative decay rate).

The general solution to the differential equation y′(t) = ky(t) is

y(t) = Aekt.
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To find the doubling time when k > 0, we seek the time t such that

y(t) = 2y(0).

To find the half life when k < 0, we seek the time t such that

y(t) =
1
2

y(0).

For example, it has been said that after drinking a cup of coffee, it takes
approximately 2 to 3 hours for your body to eliminate half of the caffeine
from your system.
We have
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• Most drug concentrations decay exponentially (nicotine half life ≈ 2
hours, caffeine ≈ 2 to 3 hours, cannabis ≈ 1 to 3 days)

• blood alcohol concentration decays linearly (health note ≈ 10 g/hour
- 1 standard drink)

1.3 Equilibrium

Let P(t) be a concentration at time t of a poisonous toxin in a river. Let’s
assume that sunlight breaks down according to

dP
dt

=−cP, c > 0,

but a nearby activity adds toxin to the river at a constant rate a (> 0) so
that we have

dP
dt

=−cP+a.

We can consider the equation qualitatively by consideration of the equilib-
rium or steady state solution(s). In other words, what solution is obtained
when dP

dt = 0 and not dependent on t i.e. not locally 0. For the equation
dP
dt =−cP+a, is there an equilibrium solution?

Putting dP
dt = 0, we have

−cPeq.+a = 0

so that the equilibrium solution is given by

Peq. =
a
c
.

If, for example, c = 1 and a = 2, then the ODE P′(t) = −P+ 2 has the
unique equilibrium solution P = 2, which is a solution to the ODE and tells
us the behaviour of various other trajectories in relation to this solution, see
Figure 2. Without solving the equation, we can see that all solutions tend
towards the trajectory P(t) = 2. This is an example of a stable equilibrium.
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Figure 2: A plot of various trajectories satisfying P′(t) = −P+ 2. This shows an example of a stable
equilibrium at P = 2.

A vertically balanced pencil on the other hand is an example of an unstable
equilibrium.

0 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 3: A vertically balanced pencil will fall due to air molecules and the impossibility of placing it
exactly vertical. Right: An example of trajectories satisfying an ODE with an unstable equilibrium at y = 0.
Solutions will lead away from the equilibrium solution as t increases.

1.4 Stability of equilibrium

What happens if the toxin is above or below equilibrium level?

For any differential equation which can be written in the form

dP
dt

= F(P),
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Figure 4: Concentration of toxin is always changing in a direction towards equilibrium. Therefore stable.

where F(P) is a function of P, the stability of the solution can be deter-
mined from a sketch or by checking the sign of the slope F ′ (Peq). If
F ′ (Peq) > 0, then the equilibrium is unstable. If F ′ (Peq) < 0, then the
equilibrium is stable. Alternatively, we can check the sign of two trajecto-
ries with an initial condition above the equilibrium solution and below the
equilibrium solution.
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Example 1.1 Consider the equilibrium solutions to the logistic equation
for population growth

dP
dt

= kP
(

1− P
a

)
,

where k,a are constants. Setting dP
dt = 0, we have
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Alternatively, if we let

F(P) = kP
(

1− P
a

)
,

and differentiate, the product rule of differentiation gives

Again, P = 0 is an unstable equilibrium and P = a is a stable equilibrium.

0 1 2 3 4 5 6
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Figure 5: A plot of various trajectories P′(t) = kP
(
1− P

a

)
, where a = k = 1. In black we see equilibrium

solutions (horizontal lines) and some particular trajectories with initial values with P < 0, 0 < P < a, and
P > a respectively.
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Incidentally, the general solution to this logistic equation is

P(t) =
aAekt

Aekt −1
,

where A is a constant that depends on the initial condition P(0), see Exam-
ple 2.3. Recall that e is Euler’s number or the base of the Napier logarithm,

e = 2.718281828459045 . . .

Not all solutions to y′ = 0 are equilibrium solutions. We must instead have
y′ = 0 for all t.

Example 1.2 Consider the ODE

y′ = y(y+2)
(
y− t2) .

Solving y′ = 0, we have y = 0, y = −2, and y = t2. y = 0 and y = −2
are equilibrium solutions however y = t2 is not since it gives y′ = 0 only
temporarily in trajectories. See Figure 8.

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

Figure 6: A plot of various trajectories y′ = y(y+ 2)
(
y− t2). y = 0 and y = −2 are equilibrium solutions

but y = t2 is not. The equation y = t2 is shown in red (not a trajectory), along which we see trajectories with
turning points where y′ = 0.
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1.5 Existence and uniqueness

• (Existence and Uniqueness) The initial value problem dy
dt = f (t,y),

y(t0) = y0 with point (t0,y0), where f is a function, has a unique solu-
tion near the point (t0,y0) if f , and the partial derivatives ft(t,y) and
fy(t,y) are continuous and f is differentiable.

Figure 7: The Existence and Uniqueness Theorem.

• Solution curves do not cross (themselves or each other), including that
they do not cross equilibrium solutions. This provides a way to give a
qualitative assessment of the behaviour of solutions to ODEs without
obtaining their actual solutions.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 8: The folium of Descartes, x3 + y3 − 3xy = 0 cannot be a solution to an initial value problem
y′ = f (x,y), y(x0) = y0 since if it were, a trajectory crosses itself, a contradiction. Remember that the
derivatives need to exist, and they are ambiguous at the point (0,0).
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Example 1.3 As an example of how qualitative analysis can be useful,
consider the initial value problem

y′(t) = 5(y−2), y(1) = 1.

Do we have y(t)< 2 for all t > 1 ?

0 1 2 3 4 5 6

0

1

2

3

Figure 9: The solution to the IVP y′(t) = 5(y− 2), y(0) = 1 does not cross the line y = 2 since it is a
trajectory.
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So far we have seen that equilibrium solutions to ODEs can be stable or
unstable. However, it is also possible for an equilibrium solution to be nei-
ther stable nor unstable. If on one side of an equilibrium trajectories tend
towards it but on the other side they tend away from it, then the equilibrium
is not stable nor unstable. We call such an example semi-stable.

Example 1.4 Consider the ODE y′= 2y2. We have an equilibrium solution
y = 0. Setting F(y) = 2y2,

0 1 2 3 4 5 6

-0.6
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-0.2

0.0

0.2

0.4

0.6

Figure 10: The the ODE y′ = 2y2 has a semi-stable equilibrium solution y = 0.
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2 Separable Equations

2.1 Separable equations

If an ODE is of the form
dx
dt

= F(x)G(t),

then we are able to separate the variables on the left and right hands sides
of the equation (again in aide to memory) so that

dx
F(x)

= G(t)dt,

and ∫ dx
F(x)

=
∫

G(t)dt.

Example 2.1 Consider the equation

dP
dt

= kP+a.

Recall that we have the equilibrium solution Peq. =
−a
k for k ̸= 0. This equi-

librium is stable if k < 0 and unstable if k > 0. To find the general solution,
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This is equivalent to
kP+a =±Aekt

Example 2.2 Solve the equation y′ = 2xy + x. See Example 4.1 for an
alternative approach. We are able to separate the equation as
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2.2 Logistic equations

An example of a simple epidemic model in the logistic equation. Several
systems modeled by such an equation include:

• Spread of infection in a population.

• Spread of cancer in an organ.

• Adoption of new technologies.

• Spread of a rumour.

Consider the spread of a rumour in more detail. Let ρ be the probability
that a random person has heard the rumour and 1− ρ be the probability
that they have not heard it. The rumour spreads at a rate proportional to
ρ(1−ρ), so we have the ODE

dρ

dt
= kρ(1−ρ).

On the right of Figure 11 we see two equilibrium solutions at ρ = 0 and
ρ = 1, respectively unstable and stable by consideration of the sign of the
slopes of dρ

dt at 0 and 1. Since 0 ≤ ρ ≤ 1, the solution curve look like the
right hand side of Figure 11.

dρ/dt

ρ

0 1

Figure 11: Left: A plot of y = ρ(1−ρ), where y = dρ

dt . Right: An example solution curve for 0 ≤ ρ ≤ 1.
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Example 2.3 Next we solve the logistic equation for population growth

dP
dt

= kP
(

1− P
a

)
, (1)

where k,a are positive constants. This equation is separable since we can
separate it in the following way:
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We can use these to integrate∫ dP
P(a−P)

= . .

Finally we are able to solve for P to give the general solution to the ODE.

P(t) =
aAekt

Aekt −1
.
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2.3 Newton’s law of cooling

Newton’s law of cooling states that the rate of change of the temperature
of a body is directly proportional to the difference in the temperatures be-
tween the body and its environment. We can model this mathematically
using the ODE

dT
dt

=−k (T −Tamb.) , k > 0,

where Tamb. is the ambient or surrounding temperature of the body’s envi-
ronment, T is the temperature of the body in degrees C, and t is time (we
can select hours, minutes, seconds for the unit), and k is a constant that
depends on the material of the body.

Example 2.4 Suppose you spoon some instant coffee into a mug, tip cool
tap water in the mug, and then place it in the microwave. You press a preset
button for 3 minutes, walk away and then get distracted by the television.
You come back after some time to find your coffee is boiling (100◦ C). Since
it is undrinkable, you must wait until it is 70◦ C. The temperature in your
kitchen is 25◦ C. After 10 seconds, the coffee has cooled to 95◦ C. How
long must you wait to drink the coffee?

We must solve the IVP
dT
dt

=−k (T −25) , T (0) = 100, T (10) = 95.
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and simplifying yields the general solution

T = 25+Ae−kt.

It follows that you must wait approximately 74 seconds to drink the coffee.
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2.4 Existence uniqueness example for a separable IVP

Example 2.5 Show that the initial value problem y′ = ty1/3, y(0) = 0 does
not have a unique solution.

so the solution is not unique.
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3 Homogeneous Equations and Integration Techniques

3.1 Homogeneous 1st order ODEs

A first order ODE y′ = f (t,y) is said to be homogeneous if for all real
non-zero s,

f (st,sy) = f (t,y).

ODEs of this form can be solving using techniques of separable equations
using the substitution

y = tv.

Differentiating using the product rule, we have

y′(t) =
d
dt
(tv),

= v
dt
dt

+ t
dv
dt

,

= v+ t
dv
dt

.

We claim that the resulting differential equation

v+ t
dv
dt

= f (t, tv)

is separable.

To see this, notice that since the ODE is homogeneous, we can put s = 1
t

and let y = tv. Observe that

f (1,v) = . .

25



It follows that the ODE can be separated as follows:∫ dv
f (1,v)− v

=
∫

t−1 dt. (2)

Example 3.1 Consider the ODE dy
dt =

2y4+t4

ty3 . Letting f (t,y) = 2y4+t4

ty3 , we
see that

f (st,sy) = .

Since d
dv

(
v4+1

)
= 4v3, we are able to substitute dv −→ 1

4v3d
(
v4+1

)
.
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Integrating the left hand side,

If we have an initial value such as y(1) = 1, then we would obtain the
particular solution curves y4 = 2t8 − t4. By the existence and uniqueness
theorem, the solutions to this IVP are not unique. See Figure 12.
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Figure 12: A plot of various trajectories satisfying y′(t) = 2y4+t4

ty3 . In black we have a solution y4 = 2t8 − t4

to the IVP y′(t) = 2y4+t4

ty3 , y(1) = 1.

Example 3.2 Consider the ODE ty′(t) = t + y. To see that this equation is
homogeneous, let f (t,y) = t+y

t .

f (st,sy) = . .

Since the ODE is homogeneous, we let y = tv and invoke (2). We first
compute

f (1,v)− v = . .
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We have∫ dv
f (1,v)− v

= . .

.

-3 -2 -1 0 1 2 3
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0
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4

Figure 13: A plot of various trajectories satisfying ty′(t) = t + y. In black we have a solution
y(t) = t log(t)+ t to the IVP ty′(t) = t + y, y(1) = 1.
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3.2 Integration by partial fractions

In this section we will digress somewhat to further reinforce our integration
skills. Solving ODEs can involve functions that require skill to integrate.
We will begin with integration by partial fractions since we have already
used this technique to solve the logistic equation.

Suppose we must integrate
∫ dx

(x−a1)(x−a2)...(x−an)
, where a1,a2, . . .an are known

constants. In this case we would integrate via partial fractions. To do so,
we set

1
(x−a1)(x−a2) . . .(x−an)

=
b1

x−a1
+

b2

x−a2
+ . . .

bn

x−an

and we seek constants b1,b2, . . . ,bn such that this holds. The reason we do
this is because it is easy to integrate each∫ b j

x−a j
dx = b j log(x−a j)+C,

for j = 1,2, . . . ,n.

Example 3.3 To compute the integral
∫ dx

(x+2)(x−2)(x+1), we set out

1
(x+2)(x−2)(x+1)

=
b1

x+2
+

b2

x−2
+

b3

x+1
.

We must first recombine the right hand side by multiplying each term to
obtain a common denominator (x+2)(x−2)(x+1). We have

b1

x+2
+

b2

x−2
+

b3

x+1
=

b1

x+2
+

b2(x+1)+b3(x−2)
(x−2)(x+1)

,

=
b1(x−2)(x+1)+(x+2)(b2(x+1)+b3(x−2))

(x+2)(x−2)(x+1)
,

=
b1(x−2)(x+1)+b2(x+1)(x+2)+b3(x−2)(x+2)

(x+2)(x−2)(x+1)
,

=
(b1 +b2 +b3)x2 +(3b2 −b1)x−2b1 +2b2 −4b3

(x+2)(x−2)(x+1)
.

To find b1,b2,b3, we can choose a method. Either we observe that we must
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have

b1+b2+b3 = 0,

3b2−b1 = 0,

−2b1+2b2−4b3 = 1

in order for the numerator to be equal to 1. We then solve the system to
obtain b1 =

1
4, b2 =

1
12, b3 =−1

3. This is often more work than necessary.

Alternatively, we have

b1(x−2)(x+1)+b2(x+1)(x+2)+b3(x−2)(x+2) = 1.

We choose to look at this equation when x = 2, −2, and −1. When x = 2,
we have 12b2 = 1. When x =−2, we have 4b1 = 1. When x =−1, we have
−3b3 = 1. Again b1 =

1
4, b2 =

1
12, b3 =−1

3. It follows that
∫ dx

(x+2)(x−2)(x+1)
= . .

Other forms require different partial fraction expansions. For example, we
set out

1

(x−a1)
2 (x−a2)

=
b1

x−a1
+

b2

(x−a1)
2 +

b3

x−a2
,

and with a1 > 0,

1
(x2+a1)(x−a2)

=
b1x+b2

x2+a1
+

b3

x−a2
.
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3.3 Integration by parts

This method of integration is useful when integrating a product of two
functions in which the derivative of one of the multiplicands is related to
itself. In aide to memory of the rule, we can begin with the product rule of
differentiation:

d(uv)
dx

= v
du
dx

+u
dv
dx

.

Rearranging,

u
dv
dx

=
d(uv)

dx
− v

du
dx

,

and we have the substitution∫
udv =

∫
d(uv)−

∫
vdu,

= uv−
∫

vdu.

Example 3.4 To solve the ODE y′ = x2e−x, we integrate to obtain the fol-
lowing integral to which we apply integration by parts two times:

y =
∫

x2e−x dx, .
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Hence we have the general solution

y =−e−x (x2+2x+2
)
+C.

3.4 Integration by substitution

Example 3.5 To solve the ODE
√

9− x2 y′ = 1, we see that it is separable
and we integrate using a substitution.

y =
∫ dx√

9− x2
.

We let x = 3sin(θ) and differentiate to obtain dx
dθ

= 3cos(θ). This suggests
the substitution dx −→ 3cos(θ)dθ .

y =
∫ dx√

9− x2
, .

Example 3.6 Simplify the integral
∫ xdx√

1+x4
. First we let u = x2 and dif-

ferentiate to obtain du
dx = 2x so that we should perform the substitution

dx −→ du
2x . This gives the simpler integral∫ xdx√

1+ x4
=

1
2

∫ 1du√
1+u2
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Next we recall the definitions of the hyperbolic functions

cosh(x) =
1
2
(
ex + e−x) , (3)

sinh(x) =
1
2
(
ex − e−x) , (4)

and set out the substitution u = sinh(v). Differentiating,

1+ sinh2(v) = . .

Now we are ready to simplify the integral:∫ xdx√
1+ x4

= . .

The following example shows that these techniques can be useful in solv-
ing some second order ODES.
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Example 3.7 Solve the non-linear second order ODE

d2y
dx2 = 1−

(
dy
dx

)2

,

with |y′|< 1.

We discard the solutions u =±1 since |y′|< 1.
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4 Linear First Order ODEs and Bernoulli Equations

4.1 Integrating factors

A first order linear differential equation is an ODE of the form

y′+ p(x)y = q(x), (5)

where y′ = dy
dx, p(x) and q(x) are functions of x. We solve linear first order

ODEs by multiplying by an integrating factor I(x) so that the resulting
equation can be integrated directly using the product rule of differentiation.
Let

I(x) = e
∫

p(x)dx. (6)

Multiplying the equation (5) by I(x) gives

It follows that the resulting ODE is now separable. We have

yI =
∫

I(x)q(x)dx

so that
y(x) = I−1

∫
I(x)q(x)dx. (7)

It is apparent that some of the difficulty of solving a linear ODE is in the
computation of the two integrals

∫
p(x)dx and

∫
I(x)q(x)dx, which often

require the techniques of integration discussed in Chapter 3.
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Example 4.1 Solve the first order linear equation y′ = 2xy+ x using an
integrating factor. Notice that this equation is both linear and separable.
See Example 2.2 for the separable approach. First we verify that the ODE
is given in the same form as (5), and if not, we must rearrange so that it is.
We put

y′−2xy = x

and identify that p(x) =−2x and q(x) = x. To form the integrating factor
I, we must first integrate p(x) to obtain

∫
p(x)dx =−x2, noting that we do

not require the constant of integration here at this point in the procedure.
Next we multiply the ODE by I(x) = e−x2

or simply use (7) directly. We
have

Example 4.2 Solve the initial value problem y′ = x2 + y, y(0) = 0. We
can see that this equation is linear since we can put y′− y = x2, where
p(x) = −1 and q(x) = x2. Calculation of the integrating factor is easy
since we have I(x) = e

∫
−1dx = e−x. Using (7) and integration by parts as

performed in Example 3.4,
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4.2 Applications

We will first consider an example from Engineering and Physics involving
an electric circuit containing a resistor, inductor, battery and switch. See
Figure 14.

Figure 14: An electrical circuit with a resistor, inductor, battery and switch.

Example 4.3 Consider the diagram in Figure 14. Model the current over
time as the switch is turned on. Let J(t) denote the current in Amps, R the
resistance in Ohms, V1 the voltage drop across the resistor, V2 the voltage
drop due to the inductor, let L denote the inductance in Henries, and let
E(t) denote the supplied voltage due to the battery. We have

V1 = JR, V2 = LJ′(t).

Kirchoff’s law tells us that

E(t) =V1+V2,

and it follows that we can substitute to obtain

E(t) = JR+LJ′(t),

and dividing by L we obtain the linear first order equation

J′(t)+
R
L

J =
1
L

E(t). (8)
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Now suppose that initially the current is 0 Amps, the battery supplies a
constant voltage of 60 Volts, the resistance is 12 Ohms, and the inductance
is 4 Henries. We now have an initial value problem

J′(t)+3J = 15, J(0) = 0.

We have a unique stable equilibrium solution at J = 5 Amps so we see
already that the current will approach 5 Amps as t −→ ∞. This equation is
linear with p(t) = 3 and q(t) = 15. We have I = e3t so that

Our next example comes from Physics.

Example 4.4 Model the velocity of a skydiver falling from a plane taking
air resistance into consideration and give an expression for terminal ve-
locity. See [11, pp. 12 & pp. 44]. Newton’s second law of motion states
that the resulting force is given by F = ma, where m is the mass of the sky-
diver, and a = v′(t) is the acceleration of the skydiver, or rate at which the
velocity is changing with respect to time. The force acting on the skydiver
due to gravity is mg, where g = 9.8 metres per second squared, and the
force due to air resistance is proportional to the velocity of the skydiver to
the power of a constant c, kvc, where k is the coefficient of friction due to
air resistance. Since this force acts in the opposite direction to gravity, we
have

mv′(t) = mg− kvc.
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If c = 1, then we have a linear ODE

v′(t)+
k
m

v = g.

If c ̸= 1, then the equation is non-linear, however it will be separable in any
case. We can see that there is a stable equilibrium solution when vc = mg

k ,
which we can interpret as the terminal velocity of the skydiver,

vterm. =
(mg

k

)1/c
. (9)

If c = 1, then clearly the integrating factor is I(t) = e
k
mt and we have the

solution

v(t) = . .

If c ̸= 1, suppose that c = 2. Then we take the separable approach since
the equation is non-linear. We have

dv
dt

= g− k
m

v2.

Separating the equation gives∫ dv
α − v2 =

∫ k
m

dt =
k
m

t +A,

where α = mg
k . To complete the integral on the left hand side, we observe

that ∫ dv
α − v2 =

1√
α

∫ d
(

v√
α

)
1−
(

v√
α

)2 =
1√
α

∫ du
1−u2 ,
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where u = v√
α

. Next we let u = tanh(θ) = sinh(θ)
cosh(θ) since we have the identity

cosh2(θ)− sinh2(θ) = 1.

Recall the definitions in (3) and (4). Differentiation gives

It follows that∫ du
1−u2 = . .

We obtain

arctanh
(

v√
α

)
=

k
m

t +A,

and rearranging, we have

Next let us consider an example on fish keeping that is much like many
chemistry problems.
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Example 4.5 An aquarium initially contains 150 L of water with 20 grams
of salt dissolved in it. In order to accommodate a new fish, the concentra-
tion of salt must be increased from 20 g

150 L to 1 g
L . This new concentration is

to be achieved by releasing water into the tank with a salt concentration of
3 g
L at a rate of 2 litres per minute. At the same time, mixed water runs out

of the tank at a rate of 2 litres per minute. Model the amount of salt x(t) at
time t in minutes.
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To solve for when x(t) = 1 gram per litre, we have

4.3 Bernoulli equations

An ODE of the form

y′(x)+ p(x)y(x) = q(x)yn, (10)

where n is a real number, is called a Bernoulli equation.

When n = 0, (10) is linear. When n = 1, we have

y′(x)+(p(x)−q(x))y(x) = 0,

which is also linear.

When n ̸= 1, the substitution z = y1−n makes the resulting equation linear.
We have

z′(x) =
dz
dy

dy
dx

,
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By substitution,

Multiplication by (1−n)y−n gives

z′(x)+(1−n)p(x)z(x) = (1−n)q(x). (11)

which is now linear.

Example 4.6 Find the general solution to the ODE y′+ xy = xy2. This is
a Bernoulli equation with p(x) = x = q(x) and n = 2. We let z = y−1 and
(11) becomes

Example 4.7 Recall the logistic equation (1) for population growth given
in Example 2.3.

dP
dt

= kP
(

1− P
a

)
.

We used the fact that this equation is separable together with integration
by partial fractions to find the general solution. We show how this can also
be done via linear methods of Bernoulli equations.

dP
dt

− kP =−k
a

P2.

44



We have a Bernoulli equation with
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5 Exact Equations

5.1 Testing whether an equation is exact

Suppose
z = f (x,y)

is differentiable, where x = g(t) and y = h(t) are differentiable functions
of t. Recall the chain rule:

dz
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

. (12)

Now if f (x,y) =C, a constant and t = x, then (12) becomes

∂ f
∂x

dx
dx

+
∂ f
∂y

dy
dx

= 0,

which we can write as
fx + fyy′(x) = 0. (13)

Conversely, if we have a differential equation of the form (13), then

f (x,y) =C

is the general solution. We say that an ODE

P(x,y)+Q(x,y)y′(x) = 0. (14)

is exact if there exists a function f (x,y) satisfying

P(x,y) = fx, Q(x,y) = fy

so that there exists f satisfying (13). We can test whether an ODE is exact
as follows:
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Proposition 5.1 Suppose P(x,y), Q(x,y), Py(x,y), Qx(x,y) are continuous
over a region D. The ODE

P(x,y)+Q(x,y)y′(x) = 0.

is exact if and only if for all x,y in D,

Py(x,y) = Qx(x,y).

The proof of this result uses Clairaut’s theorem, see [2], [11, pp. 51], [14,
pp. 22].

5.2 Solving exact equations

If we have an exact equation, our next step is to solve for the function
f (x,y). This is done by solving

P = fx,

Q = fy.

We integrate setting

f =
∫

fx dx,

where the constant of integration G(y) is a function of y rather than C. We
then compute the partial derivative fy and compare with Q to determine
G(y). See [2] for similar problems.
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Example 5.1 Show that the following ODE is exact and then solve the IVP.

y′(x) =−3x2+ y3

3xy2 , y(1) = 1.
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Differentiating partially with respect to y,

We do not always have G′(y) = 0 as the following example shows.
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Example 5.2 Solve the IVP

y′ =
−2xy

1+ x2+3y2 , y(0) = 1.
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5.3 Integrating factors to make an equation exact

Occasionally an ODE can be made into an exact ODE by multiplying by
some function I(x,y). In general it is not always easy to find I(x,y).

Example 5.3 Solve y2 − y+ xy′(x) = 0 using the method for exact equa-
tions. We have P = y2−y, Q = x. Now Py = 2y−1 and Qx = 1 so the ODE
is not exact. Without knowing what I(x,y) is, we multiply by it:

I
(
y2− y

)
+ Ixy′(x) = 0

We want this equation to be exact, so we seek I(x,y) such that

∂

∂y

(
I
(
y2− y

))
=

∂

∂x
(Ix).

Using the product rule,
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We seek f (x,y) such that

fx = p = 1− y−1,

fy = q = xy−2.

Integrating the first equation,

Note that since the original ODE is also separable, we can use integration
by partial fractions to obtain the same result.
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6 Second and Higher Order ODEs

6.1 Second order linear equations

A second order ODE is said to be linear if we can write it as

d2y
dt2 + p(t)

dy
dt

+q(t)y = r(t). (15)

If we have r(t) = 0, then the equation is homogeneous:

y′′(t)+ p(t)y′(t)+q(t)y(t) = 0. (16)

To make sense of the application of the term linear here, let z(t) = y′(t).
Then (15) becomes

y′(t) = . ,

z′(t) = . ,

which can be written as

Y ′(t) = , (17)

where Y (t) =

(
y(t)
z(t)

)
. If we let

A =

(
0 1

−q(t) −p(t)

)
, b =

(
0

r(t)

)
,

then (17) becomes
Y ′(t) = AY (t)+b,

which is linear. If we now suppose that p,q are constants, then the eigen-
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values of the matrix A are given by the equation

det(A−λ I) = 0. (18)

Simplifying,

det(A−λ I) = . .

Equation (18) is therefore equivalent to

λ
2+ pλ +q = 0, (19)

which we call the characteristic equation of (15). To solve a second order
linear ODE with constant coefficients, like (16) with p,q constants, we
would first solve the characteristic equation (19).

Proposition 6.1 Suppose that y1(t) and y2(t) are two linearly independent
solutions to the homogeneous ODE

y′′(t)+ p(t)y′(t)+q(t)y(t) = 0,

meaning y1 ̸= cy2. Then the general solution is given by

y(t) = c1y1(t)+ c2y2(t),

where c1,c2 are constants.

To see this, assume that we have

y′′1(t)+ p(t)y′1(t)+q(t)y1(t) = 0,

y′′2(t)+ p(t)y′2(t)+q(t)y2(t) = 0.
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Then c1 times the first equation plus c2 times the second equation gives

which can be written

Letting y3(t) = c1y1(t)+ c2y2(t), we see that y3(t) satisfies

y′′(t)+ p(t)y′(t)+q(t)y(t) = 0.

6.2 Second order linear homogeneous equations with constant coefficients

A second order homogeneous ODE with constant coefficients a (̸= 0),b,c
is an equation of the form

ay′′(t)+by′(t)+ cy(t) = 0. (20)

To see the form of the general solution, we first try y = eλ t , where λ satis-
fies the characteristic equation (19) with p = b

a, q = c
a.

0 = . .

Since aeλ t ̸= 0, we must have λ 2 + pλ + q = 0. It follows that y = eλ t is
a solution to the ODE, where λ is an eigenvalue of the matrix A or a root
of the characteristic equation. For the general solution, we use Proposition
6.1. When the characteristic equation has two distinct roots, the general
solution to (20) is given by

y(t) = c1eλ1t + c2eλ2t, (21)
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where λ1 ̸= λ2 are the roots of

aλ
2+bλ + c = 0.

When λ1 = λ2, the general solution is given by

y(t) = c1eλ1t + c2teλ2t. (22)

We know however, that the roots of the characteristic equation are not al-
ways real numbers even when a,b,c are all real numbers. In the case that
the eigenvalues are complex numbers

λ = α +β i,

where α,β are real numbers, we use Euler’s identity

eθ i = cos(θ)+ isin(θ). (23)

Let

λ1 = α +β i, λ2 = α −β i.

Note that the complex roots of the characteristic equation are in this form.
Then

c1eλ1t + c2eλ2t = . .

We now define new constants

A = c1+ c2, B = (c1− c2) i,

and obtain
y(t) = eαt (Acos(β t)+Bsin(β t)) ,
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where α is the real part of λ and β is the imaginary part of λ .

We have now demonstrated much of the following result:

Proposition 6.2 The ODE ay′′+by′+ cy = 0, where a (̸= 0), b,c are con-
stants and ∆ = b2−4ac has general solution given by:

1. if ∆ > 0, then y = Aeλ1t +Beλ2t ,

2. if ∆ = 0, then y = (A+Bt)eλ t ,

3. if ∆ < 0, then y = eαt (Acos(β t)+Bsin(β t)), α = ℜ(λ ), β = ℑ(λ ),

where the λ are the roots of aλ 2+bλ + c = 0.

In the case that ∆ = 0, the quadratic formula gives repeated roots of the
characteristic equation λ = − b

2a. We know that y1 = e−
b

2at is one solution
to the ODE. To find the other solution, we let y2 = uy1. Substitution gives

0 = a(uy1)
′′+b(uy1)

′+ c(uy1) ,

= a
(
u′′y1+2λu′y1+λ

2uy1
)
+b(u′y1+λuy1)+ cuy1, .

=
(
au′′+(2aλ +b)u′+

(
aλ

2+bλ + c
)

u
)

e−
b

2at.

Since aλ 2+bλ + c = 0 and λ =− b
2a, this is just

u′′ = 0,

and integration gives
u = A+Bt,

which completes the verification of Proposition 6.2.
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Example 6.1 Solve the second order ODE y′′+2y′+ y = 0.
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6.3 Second order homogeneous applications

The following example from physics illustrates the importance of these
methods.

Example 6.2 Consider a spring-mass system as shown in Figure 15. Use
the laws of Physics to model the motion of the mass at the end of the spring.
We let y(t) be the vertical displacement of the mass at time t from the

Figure 15: A spring attached to a mass.

equilibrium position hanging under gravity. The restoring force towards
equilibrium is given by Hooke’s law

Fr =−kd,

where d is the displacement from equilibrium and k is the spring constant
particular to the spring. This displacement d is given by d = s+y(t), where
s is the difference in equilibria of the spring horizontally and vertically
under gravity. The force due to gravity is

Fg = mg,

where g = 9.8m/s2.
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Hence the sum of these forces on the mass is

F = .

Newton’s law of motion states that force is mass times acceleration,
F = ma, so we have

Now initially we have F = 0 when y = 0 so −k (s+0)+mg = 0, which
gives ks = mg. Therefore we obtain the equation

and since m ̸= 0, we have

where ω =
√

k
m. This is a second order linear homogeneous ODE with

constant coefficients so we solve using the characteristic equation

λ
2+ω

2 = 0.

This equation has the roots λ1 = ωi and λ2 =−ωi. Using Proposition 6.2,
we obtain the general solution

y(t) = Acos(ωt)+Bsin(ωt).

We can use the angle addition formula

cos(a+b) = cos(a)cos(b)− sin(a)sin(b)

to write this in a different way. We have

C cos(ωt −φ) = . .
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Now we can let

A =C cos(−φ), B =C sin(−φ),

so that

y(t) =C cos(ωt −φ), ω =

√
k
m
. (24)

Now assume that the mass is m = 2 kg and the spring constant is k = 6
Newtons per metre. If the spring is pulled 1 metre from equilibrium, and
the initial speed is −1 metre per second, then we have

ω =
√

3, y(0) = 1, y′(0) =−1.

We have
y(t) =C cos(

√
3t −φ).

When t = 0, y = 1, so
C cos(φ) = 1 (25)

Differentiating, we have

y′(t) =−
√

3C sin(
√

3t −φ),

and since y′(0) =−1, we get
√

3C sin(φ) =−1. (26)

Dividing (26) by (25) eliminates C. We have
√

3tan(φ) =−1.

We have two solutions φ satisfying 0 < φ < 2π . φ = π − π

6 = 5π

6 or

φ = 2π − π

6 = 11π

6 . This gives (C,φ) =
(
− 2√

3
, 5π

6

)
or (C,φ) =

(
2√
3
, 11π

6

)
.

However, these solutions coincide.

y(t) =
2√
3

cos
(√

3t − 11π

6

)
.
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Figure 16: The motion of a spring attached to a mass under gravity in Example 6.2, where
y(t) = 2√

3
cos
(√

3t − 11π

6

)
is the vertical axis and t is the horizontal axis.

The previous example is not entirely realistic since we have no considered
air resistance. Realistically, we have a damping force that is proportional
to the speed of the mass to include in our model:

Fdamp. =−βy′(t).

Letting β

m = 2ρ , the resulting ODE is then

y′′(t)+2ρy′(t)+ω
2y(t) = 0.

The general solution is given by

y(t) = Ae−ρt cos
(√

ω2−ρ2t −φ

)
.

The component of exponential decay makes the mass tend back to equilib-
rium over time.
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6.4 Second order non-homogeneous equations

Next we consider second order linear ODEs of the form

y′′(t)+ py′(t)+qy(t) = r(t),

where p and q are constants. This equation is not homogeneous, how-
ever we use the techniques of homogeneous equations to find a part of the
general solution. The procedure is as follows:

1. Solve the homogeneous equation y′′(t)+ py′(t)+ qy(t) = 0, denoting
the result by yH .

2. Guess a particular solution yP to y′′(t)+ py′(t)+qy(t) = r(t).

3. Write the general solution as

y(t) = yH + yP.

We will exhibit this technique on an example involving a forced pendulum.
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Example 6.3 Consider a pendulum oscillating under gravity. In the ab-
sence of air resistance, we have F = ma = md2(rθ)

dt2 =−mgsin(θ). This can
be written as

θ
′′(t)+

g
r

sin(θ) = 0,

which is a non-linear ODE. However, for small θ , the Taylor series gives
the convenient approximation sin(θ)≈ θ and so we consider the ODE

θ
′′(t)+

g
r

θ = 0.

We now wish to include air resistance and a forcing function r(t) = 2t +1
and hence we instead have

θ
′′(t)+ pθ

′(t)+
g
r

θ(t) = 2t +1.

Assume that g = 9.8, r = 4.9 metres, and p = 1. Initially θ(0) = π

4 ,
θ ′(0) =−1. Thus we have the initial value problem

θ
′′(t)+θ

′(t)+2θ(t) = 2t +1, θ(0) =
π

4
, θ

′(0) =−1.

We begin by solving the homogeneous equation

θ
′′(t)+θ

′(t)+2θ(t) = 0.

The characteristic equation is
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For the particular solution, we guess θP = at2 + bt + c and differentiate
twice to obtain
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6.5 n-th order homogeneous equations with constant coefficients

To solve an n-th order homogeneous equations with constant coefficients,
we follow the same procedure as for second order homogeneous equations
with constant coefficients. Consider the following example.

Example 6.4 Solve the 4-th order ODE y(4)(t)− y(2)(t)−6y(t) = 0.

66



7 Systems of ODEs

7.1 How systems of ODEs arise

Consider the Predator-Prey Population Model.

dr(t)
dt

= ar(t)−br(t) f (t),

d f (t)
dt

= cr(t) f (t)−d f (t),

where r(t) is the number of rabbits and f (t) is the number of foxes and
a, b, c and d are constants.

We say that these equations are coupled, meaning that we cannot solve
either one independently.

A chemical reaction where reactant P is converted to a product C through
two intermediates.

P → A → B → C

If p is the concentration of P and
a the concentration of A
b the concentration of B
c the concentration of C,
then a simple kinetic model would be

d p
dt

= −k0p,

da
dt

= k0p− k1a,

db
dt

= k1a− k2b,

where ki are reaction rates, which are assumed to be constant.

67



A Mixing Problem
Two tanks, one with water, the other

syrup are connected by two flow pipes.

In one pipe fluid flows from Tank 1 to

Tank 2 with flow rate r1.

In the other fluid flows

in the opposite direction with rate r2.

If y1 is the amount of syrup in Tank 1

y2 is the amount of syrup in Tank 2

and V1 is the volume in Tank 1

and V2 is the volume in Tank 2.

.

We can write this as a system of ODEs:

dy1(t)
dt

= r2
y2

V2
− r1

y1

V1
,

dy2(t)
dt

= r1
y1

V1
− r2

y2

V2
,

dy1

dt
= −dy2

dt
.

We have seen earlier that we can write this system as a matrix equation.
Let

Y =

(
y1

y2

)
, Y ′ =

(
y′1
y′2

)
, A =

(
− r1

V1

r2
V2

r1
V1

− r2
V2

)
.

Then Y ′ = AY , which we may solve by taking eigenvalues and eigenvectors
of the matrix A.
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7.2 An example of a second order linear ODE via a coupled system

Recall Example 6.2 on the spring-mass system. We found that

y′′(t)+ω
2y(t) = 0.

If we let z(t) = y′(t), then z′(t) = y′′(t) so that

To calculate the eigenvectors of A, we seek eigenvectors x1 and x2 corre-
sponding to the eigenvalues λ1 and λ2 such that Ax1 = λ1x1 and Ax2 = λ2x2.
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We can write these equations as

(A−λ1I)x1 = 0, (A−λ2I)x2 = 0.

We solve for x1 and x2 independently. In the case that λ1 = ωi, we seek x1

such that

The general solution to the ODE can be expressed using these eigenvalues
and eigenvectors as

Y (t) = c1eλ1tx1+ c2eλ2tx2.

Notice that the first row is

y(t) = Acos(ωt)+Bsin(ωt),

and the second row is

y′(t) = Bω cos(ωt)−Aω sin(ωt),

where

A = c1+ c2, B = (c1− c2) I.

Obtaining an expression for y′(t) also in the general solution can be useful
in solving initial value problems because we are given y′(0). Recall that in
Example 6.2, we had

ω =
√

3, y(0) = 1, y′(0) =−1.
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t
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y(t)
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Figure 17: Left: A plot of the solution y(t) = cos
(√

3t
)
− 1√

3
sin
(√

3t
)

to the IVP. Right: A plot of the

derivative y′(t) =−
√

3sin
(√

3t
)
−cos

(√
3t
)

of the solution to the IVP. Bottom: A plot of the phase portrait
for y′′(t)+ω2y(t) = 0 showing the critical point (0,0) and the solution to the IVP in black.

.
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7.3 Phase portraits

The blue arrows shown in Figure 17 are called trajectories that correspond
to a particular initial condition. A collection of all of the trajectories corre-
sponding to each initial condition is called the phase portrait. Remember,
Trajectories do not cross one another as it would violate existence and
uniqueness. A system of the form

Y ′ = AY, Y =

(
y
z

)
,

where A is a 2× 2 matrix with scalar entries has a single point trajectory
(y,z) = (0,0) since y = 0, z = 0 is a solution to the system. We call such a
point trajectory a critical point. We aim to classify critical points into six
types.

When the eigenvalues λ1,λ2 of the matrix A are real and distinct, we have
general solution

Y = c1x1eλ1t + c2x2eλ2t

and the eigenvectors x1 and x2 of A have real entries that can be interpreted
as straight line trajectories.
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Example 7.1 Consider the initial value problem

Y ′ =

(
2 1
−1 −2

)
Y, Y (0) =

(
−1
1

)
. (27)

The vectors x1 and x2 can be interpreted as direction vectors of lines pass-
ing through the critical point (0,0). These are given by the parametric
equations
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See Figure 18.
y'(t)

y(t)
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-3

-2

-1

0
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3

Figure 18: A plot of the phase portrait for the system given in (27) showing the two straight line trajectories
obtained from the two eigenvectors of A.

The general solution to the ODE is given by

Y = c1e
√

3t

(
1

−2+
√

3

)
+ c2e−

√
3t

(
1

−2−
√

3

)
.

If c1 = 0, then the trajectory Y = c2e−
√

3t

(
1

−2−
√

3

)
points towards

the critical point (0,0) indicating a stable equilibrium. If c2 = 0, then the

trajectory Y = c1e
√

3t

(
1

−2+
√

3

)
points away from the critical point

(0,0) indicating an unstable equilibrium. In this case, the critical point
(0,0) is said to be a saddle.

If the system Y ′ = AY has two equal eigenvalues and linearly independent
eigenvectors, then we have a proper node. If λ > 0, then it is unstable. If
λ < 0, then it is stable.
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Example 7.2 Consider the system

Y ′ =

(
2 0
0 2

)
Y. (28)

We have λ1 = λ2 = 2 and despite equal eigenvalues we still have two lin-

early independent eigenvectors x1 =

(
1
0

)
and x2 =

(
1
0

)
. See the phase

portrait in Figure 19.

y'(t)

y(t)
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0
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3

Figure 19: A plot of the phase portrait for the system given in (28) showing the two straight line trajectories
obtained from the two eigenvectors of A.
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7.4 The six classifications of critical points of linear systems

We classify the six types of phase portraits for the system Y ′ = AY below.

1. Saddle. λ1,λ2 are real, λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0.
y'(t)

y(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2. Improper node. λ1,λ2 are real, λ1 > 0, λ2 > 0 (unstable) or λ1 < 0,
λ2 < 0 (stable).

y'(t)

y(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

3. Proper node. λ1 = λ2 and linearly independent eigenvectors.
y'(t)

y(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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4. Inflected node. λ1 = λ2 and only one linearly independent eigenvector.
y'(t)

y(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

5. Spiral. λ1 = a+bi, λ2 = a−bi, a ̸= 0, b ̸= 0.
y'(t)

y(t)
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-3

-2

-1

0
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3

6. Center. λ1 = bi, λ2 =−bi.
y'(t)

y(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Let

A =

(
a b
c d

)
.

77



The trace of A and the determinant of A are given by

tr(A) = a+d, det(A) = ad −bc.

Recall that the characteristic equation can be expressed in terms of the
trace and determinant of the matrix A.

det(A−λ I) = . .

Using the quadratic formula we have

λ =
1
2

(
tr(A)±

√
tr(A)2−4det(A)

)
.

We can use this formula to classify the type and stability of the six kinds
of critical points of systems. See Figure 22.

Figure 20: A stability chart.
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7.5 An applied example

The following example comes from [15, pp. 323].

Example 7.3 Let x(t) and y(t) denote the populations of two interacting
species of fish living in a small lake. Suppose we have determined that a
good model for how these populations evolve is given by the linear system

x′(t) = 2x− y,

y′(t) = 6x−3y.

A negative population is not meaningful - if it gets to zero, we say it is
extinct. If x(0) = 200 and y(0) = 300, what happens to the populations as
t increases?

.
y'(t)

y(t)
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Figure 21: The stability of the critical point in Example 7.3.
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8 Qualitative understanding of non-linear systems

8.1 Non-homogeneous linear systems

We can also classify the type and stability of critical points of
non-homogeneous linear systems

Example 8.1 Consider the linear system

x′(t) = 2x(t)+4y(t)−3,

y′(t) = −x(t)−3y(t)+4.

This is an example of a non-homogeneous linear system. We can write this
as

Critical points of the system occur when Y ′ = 0. Hence we must solve for
Y ∗ the linear system

This is the unique critical point of the system.
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We classify this point in the same way as we did for homogeneous linear
systems. We have

tr(A) = , det(A) = .

Using the stability chart, we have a saddle at Y ∗ hence an unstable equi-

librium.

y(t)

x(t)

-6 -4 -2 0 2

-2

0

2

4

6

Figure 22: A saddle at (−7/2,5/2).

8.2 Solving systems via differential operators

Let Dn denote the n-th differential operator dn

dtn . In this section we illustrate
a method of solving linear systems by transforming them into n-th order
ODES. This provides a second way of solving systems of linear differential
equations.

81



Example 8.2 Consider the system

x′+ y′+2y = 0,

x′−3x−2y = 0.

Using the differential operator D, we have
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Alternatively, the system can be rearranged as

x′ = 3x+2y,

y′ = −3x−4y,

.
y(t)

x(t)

-3 -2 -1 0 1 2 3
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-2

-1

0

1

2

3

Figure 23: Left: The phase portrait for the system. Right: Trajectories shown in three variables.
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8.3 Linearization of non-linear systems and applications

To understand the behaviour of a non-linear system

x′ = f (x,y),

y′ = g(x,y)

near a critical point (x∗,y∗), we linearize the system by taking a Jacobian

matrix. Letting F(x,y) =

(
f
g

)
, the Jacobian is given by

JF (x∗,y∗) =

(
fx (x∗,y∗) fy (x∗,y∗)
gx (x∗,y∗) gy (x∗,y∗)

)
. (29)

We then analyze the type and stability of the linearized systems for each
critical point of the non-linear system

Y ′ = JF (x∗,y∗)Y +b, (30)

where b depends on the critical point (x∗,y∗).

In what follows we will revisit some of the examples considered in the
introduction of Chapter 7.
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Example 8.3 Consider the predator-prey model

x′(t) = ax−bxy,

y′(t) = cxy−dy,

where x(t) is the number of rabbits and y(t) is the number of wolves. Sup-
pose we have a = 6, b = 1, c = 2, d = 4. Then we have the non-linear
system

Next we linearize the system taking the Jacobian matrix

JF (x∗,y∗) =

(
fx (x∗,y∗) fy (x∗,y∗)
gx (x∗,y∗) gy (x∗,y∗)

)
,

=

Substituting values of the critical points,
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Near the critical points the system behaves like the linear systems

.

y(t)

x(t)

-3 -2 -1 0 1 2 3

-2

0

2
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8

Figure 24: The phase portrait for the system. Note that x(t)> 0 and y(t)> 0.
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Example 8.4 See [15, pp. 360, Q. 5, 6]. Consider the system

x′(t) = −x,

y′(t) = −4x3+ y.

1. Show that (0,0) is the only equilibrium point (critical point).

2. Find the linearized system near (0,0).
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3. Classify the linearized system and sketch it.

4. Find the general solution to x′(t) =−x.

5. Use the general solution to x′(t) = −x to find the general solution to
the system.
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Example 8.5 See [15, pp. 362, Q. 22]. When a non-linear system depends
on a parameter, then as the parameter changes, the equilibrium points
can change. That is, as the parameter changes, a bifurcation can occur.
Consider the one-parameter system

dx
dt

= x2−a,

dy
dt

= −y
(
x2+1

)
,

where a is a parameter.

1. Show that for a < 0 the system has no equilibrium points.

2. Show that for a > 0 the system has two equilibrium points.
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3. Show that for a = 0 the system has exactly one equilibrium point.

4. Find a linearisation of the equilibrium point when a = 0 and compute
the eigenvalues for this point.
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9 Solving ODEs with Laplace transforms

9.1 A summary of the main tools of Laplace transforms

• Laplace transform definition:

L ( f ) =
∫

∞

t=0
e−st f (t)dt,

• Heaviside step function:

u(t) =

{
0 if t < 0
1 if t ≥ 0

• Gamma function:

Γ(x) =
∫

∞

0
e−ttx−1 dt x! = Γ(x+1), for x ∈ Z.

• L (k) = k
s .

• L (u(t −a)) = e−sa

s .

• L (tn) = n!
sn+1 .

• L (eat) =

{
1

s−a if s > a
diverges if s ≤ a

• If Y (s) = L (y), then

L (y′) = sY (s)− y(0), L (y′′) = s2Y (s)− sy(0)− y′(0).

Example 9.1 Solve the following IVP using the Laplace transform:

y′′− y′−2y = 0, y(0) = 1, y′(0) = 0.

For comparison, first let’s solve the IVP using the characteristic equation:

λ
2−λ −2 = 0.
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Factorizing, we have (λ + 1)(λ − 2) = 0 and we then write the general
solution to the ODE as

y(t) = Ae−t +Be2t.

Next we use the initial values y(0) = 1 and y′(0) = 0 to obtain the constants
A and B. Beginning with y(0) = 1, we see that y(0) = 1 = Ae0 +Be0 so
A+B = 1. Using y′(0) = 0 requires differentiating:

y′(t) =−Ae−t +2Be2t.

Finally, y′(0) = 0 = −Ae0 + 2Be0 so −A+ 2B = 0. Hence we must solve
the simultaneous system

A+B = 1,

−A+2B = 0.

Adding gives 3B = 1 so that B = 1
3 and A = 1−B = 2

3. Hence we have the
solution

y(t) =
2
3

e−t +
1
3

e2t. (31)

to the IVP.

Now we solve the same IVP using the Laplace transform. Apply L , we
have

L (y′′− y′−2y) = L (0) = 0,

L (y′′)−L (y′)−2L (y) = 0.

Letting Y (s) = L (y) and using the rules for L (y′′) and L (y′),(
s2Y (s)− sy(0)− y′(0)

)
− (sY (s)− y(0))−2Y (s) = 0.
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Collecting like terms and replacing y(0) = 1 and y′(0) = 0,(
s2− s−2

)
Y (s)− s+1 = 0.

Now it is easy to solve for Y (s).

Y (s) =
s−1

s2− s−2
=

s−1
(s+1)(s−2)

.

Reflecting on those Laplace transforms we already know, namely

L (eat) =

{
1

s−a if s > a,
diverges if s ≤ a,

it is clear that we must split the right hand side

s−1
(s+1)(s−2)

=
u

s+1
+

v
s−2

using partial fractions. Recombining by cross-multiplying,

s−1
(s+1)(s−2)

=
u(s−2)+ v(s+1)
(s+1)(s−2)

=
(u+ v)s−2u+ v
(s+1)(s−2)

.

Matching coefficients gives the simultaneous system

u+ v = 1,

−2u+ v = −1.

Subtracting equations gives 3u = 2 so u = 2
3 and v = 1

3. It follows that

Y (s) =
2
3

1
s− (−1)

+
1
3

1
s−2

.

Hence applying the inverse Laplace transform,

y(t) = L −1 (Y (s)) =
2
3
L −1

(
1

s− (−1)

)
+

1
3
L −1

(
1

s−2

)
,

=
2
3

e−t +
1
3

e2t,
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which agrees with equation (31).

Example 9.2 Derive the Laplace transform of f (t) = k.

L (k) =
∫

∞

t=0
e−stk dt,

= k
∫

∞

t=0
e−st dt,

= k
[

1
−s

e−st
]∞

0
,

=
k
−s

(
lim

t−→∞

(
e−st)− e0

)
,

=
k
−s

(0−1) ,

=
k
s
.

Example 9.3 Derive the Laplace transform of f (t) = tn.

Let Fn(s) = L (tn). Using integration by parts,

Fn(s) =
∫

∞

t=0
e−sttn dt,

=
∫

∞

t=0
tn d

dt
1
−s

e−st dt,

=

[
tn

−s
e−st
]∞

0
−
∫

∞

t=0

1
−s

e−st d
dt

tn dt,

= lim
t−→∞

(
tn

−sest

)
−0−

∫
∞

t=0

n
−s

e−sttn−1 dt,

=
n
s

∫
∞

t=0
e−sttn−1 dt,

=
n
s

Fn−1(s).
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We have used L’Hopital’s rule to evaluate the limit as 0. It is easy to show
that F1(s) = 1

s2 . A simple induction argument shows that

Fn(s) =
n!

sn+1 .

Example 9.4 Derive the Laplace transform of f (t) = eat .

L (eat) =
∫

∞

t=0
e−steat dt,

=
∫

∞

t=0
e(a−s)t dt,

=

[
1

a− s
e(a−s)t

]∞

0
,

= lim
t−→∞

(
1

a− s
e(a−s)t

)
− 1

a− s
,

If ℜ(a− s) < 0, then limt−→∞

( 1
a−se

(a−s)t
)
= 0. Otherwise, the limit di-

verges. Hence if a < s, then L (eat) = 1
s−a.

Example 9.5 Derive the Laplace transform of sin(t) and cos(t) using that
of eat .

Let f (t) = eiαt . We are motivated by Euler’s formula

eiαt = cos(αt)+ isin(αt).

Taking the Laplace transform,

L
(
eiαt) =

1
s− iα

,

=
s+ iα

(s− iα)(s+ iα)
,

=
s+ iα
s2+α2 ,

=
s

s2+α2 + i
α

s2+α2 .
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Using Euler’s result,

L
(
eiαt) = L (cos(αt)+ isin(αt)) ,

= L (cos(αt))+ iL (sin(αt)) ,

=
s

s2+α2 + i
α

s2+α2 .

Matching real and imaginary parts, we obtain

L (cos(αt)) =
s

s2+α2 , L (sin(αt)) =
α

s2+α2 .

Example 9.6 Solve the following IVP using the Laplace transform:

x′′(t)−5x′(t)+6x(t) = 2, x(0) = 0, x′(0) = 0.

Taking the Laplace transform of both sides of the ODE,

L (x′′(t))−5L (x′(t))+6L (x(t)) = L (2) ,

s2X(s)− sx(0)− x′(0)−5(sX(s)− x(0))+6X(s) =
2
s
,

(
s2−5s+6

)
X(s) =

2
s
,

It follows that

X(s) =
2

s(s−2)(s−3)
,

=
A
s
+

B
s−2

+
C

s−3
,

=
A(s−2)(s−3)+Bs(s−3)+Cs(s−2)

s(s−2)(s−3)
,

=
s2(A+B+C)+ s(−5A−3B−2C)+6A

s(s−2)(s−3)
.
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So we have the system

A+B+C = 0,

−5A−3B−2C = 0,

6A = 2.

This has solution A = 1
3, B =−1, C = 2

3. Alternatively, we can evaluate at
s = 0, s = 2, s = 3 to obtain the same result. Hence we have

X(s) =
1
3

1
s
− 1

s−2
+

2
3

1
s−3

.

Applying the inverse Laplace transform now gives

x(t) =
1
3
− e2t +

2
3

e3t.

Example 9.7 Solve the following IVP using the Laplace transform:

y′′(t)+ y′(t)+ y(t) = cos(t), y(0) = 1, y′(0) =−1.

Taking the Laplace transform gives

s2Y (s)− sy(0)− y′(0)+ sY (s)− y(0)+Y (s) =
s

s2+1
,

(
s2+ s+1

)
Y (s)− s =

s
s2+1

,

Hence

Y (s) =
s
(
s2+2

)
(s2+1)(s2+ s+1)

,

=
As+B
s2+1

+
Cs+D

s2+ s+1
.
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We find that A = 0, B =C = 1, D =−1. So

Y (s) =
1

s2+1
+

s−1
s2+ s+1

,

=
1

s2+1
+

s+ 1
2(

s+ 1
2

)2
+
(√

3
2

)2 −
√

3

√
3

2(
s+ 1

2

)2
+
(√

3
2

)2 ,

Using a table of Laplace transforms (see the next page), taking the inverse
Laplace transform gives

y(t) = sin(t)+ e−
1
2t cos

(√
3

2
t

)
−
√

3e−
1
2t sin

(√
3

2
t

)
.

9.2 Laplace transform theorems

The following results are useful when the table of Laplace transforms is
insufficient to construct a Laplace transform or the inverse.

• First Shifting: L (eat f (t)) = F(s−a), where F(s) = L ( f (t)).

• Times −t : L (−t f (t)) = d
dsL ( f (t)).

• Convolution: L −1 (F(s)G(s)) =
∫

τ=t
τ=0 f (τ)g(t − τ)dτ .

• Second Shifting: L ( f (t − k)u(t − k)) = e−skL ( f (t)),
L −1

(
e−ksF(s)

)
= f (t − k)u(t − k), where L −1 (F(s)) = f (t).

• If f (t) is periodic with period T , then L ( f (t)) = 1
1−e−sT

∫ T
0 e−st f (t)dt.

98



9.3 Table of Laplace transforms

L ( f ) =
∫

∞

t=0
e−st f (t)dt

L
(
y′
)
= sL (y)− y(0)

L
(
y′′
)
= s2L (y)− sy(0)− y′(0)

L
(

y(n)
)
= snL (y)− sn−1y(0)−·· ·− yn−1(0)

L (k) =
k
s

L −1
(

1
s

)
= 1

L (tn) =
n!

sn+1 L −1
(

1
sn

)
=

tn−1

(n−1)!

L
(
eat)= 1

s−a
L −1

(
1

s−a

)
= eat

L (cos(αt)) =
s

s2 +α2 L −1
(

s
s2 +α2

)
= cos(αt)

L (sin(αt)) =
α

s2 +α2 L −1
(

1
s2 +α2

)
=

1
α

sin(αt)

L (u(t − k)) =
e−ks

s
L −1

(
e−ks

)
= u(t − k)

L
(
tneat)= n!

(s−a)n+1 L −1
(

1
(s−a)n

)
=

tn−1

(n−1)!
eat

L
(
eat cos(αt)

)
=

s−a
(s−a)2 +α2 L −1

(
s−a

(s−a)2 +α2

)
= eat cos(αt)

L
(
eat sin(αt)

)
=

α

(s−a)2 +α2 L −1
(

α

(s−a)2 +α2

)
= eat sin(αt)

L
(
eatu(t − k)

)
=

e−k(s−a)

s−a
L −1

(
e−k(s−a)

s−a

)
= eatu(t − k)

L (t cos(αt)) =
1

s2 +α2 −
2

(s2 +α2)
2 L −1

(
s2 +α2 −2

(s2 +α2)
2

)
= t cos(αt)

L (t sin(αt)) =
2αs

(s2 +α2)
2 L −1

(
s

(s2 +α2)
2

)
=

1
2α

t sin(αt)

L −1

(
s2

(s2 +α2)
2

)
=

1
2α

t sin(αt)+
1
2

t cos(αt)

L −1

(
1

(s2 +α2)
2

)
=

1
2α3 t sin(αt)− 1

2α2 t cos(αt)
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9.4 Solving equations with step functions

Recall the Heaviside step function:

u(t) =

{
0 if t < 0
1 if t ≥ 0

-1.0 -0.5 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

We can translate the position of the step

u(t − c) =

{
0 if t < c
1 if t ≥ c

In this plot we have u(t −2).

-1 1 2 3

0.2

0.4

0.6

0.8

1.0

Here is the step down function 1−u(t − c):

Using the step down function 1−u(t − c), we have
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-1 1 2 3 4

-5

5

10

which shows

t2u(t −2)−3t(1−u(t −2)) =
(
t2+3t

)
u(t −2)−3t.

Taking the Laplace transform of the step function u(t − c) gives

L (u(t − c)) =
∫

∞

0
e−stu(t − c)dt,

=

Example 9.8 Calculate L (1−u(t − c)).

Theorem 1 Second Shifting theorem.
L ( f (t − c)u(t − c)) = e−scL ( f (t)),
L −1 (e−csF(s)) = f (t − c)u(t − c), where L −1 (F(s)) = f (t).

Example 9.9 Calculate L ( f (t)u(t)), where f (t) = t2.
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Example 9.10 Let

g(t) = t2u(t −2)−3t(1−u(t −2)),

=
(
t2+3t

)
u(t −2)−3t.

Show that f (t) = t2 + 7t + 10 satisfies f (t − 2) = t2 + 3t and then use the
second shifting theorem to calculate L (g(t)).
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Example 9.11 Consider the RC circuit modeled by the equation

2
dv
dt

+ v = 3u(t −2),

with v(0) = 4. See [4]. Use the second shifting theorem to solve this
equation.
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9.5 The convolution theorem

In this section we will consider the interesting and usefull result know as
the convolution theorem.

Theorem 2 Convolution theorem.
L −1 (F(s)G(s)) =

∫
τ=t

τ=0 f (τ)g(t − τ)dτ , where f (t) = L −1 (F(s)) and
g(t) = L −1 (G(s)).

This allows use to avoid partial fractions for example when we calculate
the inverse Laplace transform of a product of two rational functions of s.

Example 9.12 Calculate L −1 (F(s)G(s)), where F(s) = 1
s−1 and

G(s) = 1
s+2 using the convolution theorem:

L −1 (F(s)G(s)) =
∫

τ=t

τ=0
eτe−2(t−τ)dτ.
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Example 9.13 Use the convolution theorem to calculate L −1
(

3
(s−3)2

)
.
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Example 9.14 Verify that L −1
(

s
(s−3)2

)
= e3t(3t +1) by writing

s
(s−3)2 =

(s−3)+3
(s−3)2 and using the table of Laplace transforms or Example 9.13.
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Example 9.15 Use the convolution theorem to calculate L −1
(

1
s2(s+2)

)
.
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Example 9.16 Use the convolution theorem to calculate L −1
(

3
s2(s−2)

)
,

letting F(s) = 3
s2 and G(s) = 1

s−2.
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10 Laplace transforms for solving systems

10.1 Revisiting Example 6.3

In this section we will solve a linear system of ODEs using the Laplace
transform. This chapter does not contain very much new information.
We use use the time this week to reinforce your understanding of Laplace
transforms and to strengthen your skills in partial fractions.

Example 10.1 Consider the IVP linear system

X ′ =

(
0 1
−2 −1

)
X +

(
0

2t +1

)
, X(0) =

(
π/4
−1

)
.

This is a linearized version of the second order ODE on the forced and

damped pendulum of Example 6.3, where X =

(
θ

θ ′

)
=

(
θ

x

)
. Recall

that we obtained the solution

θ(t) = e
−1
2 t
(

π

4
cos
(

1
2

√
7t
)
+

π −16
4
√

7
sin
(

1
2

√
7t
))

+ t. (32)

We will use this solution to compare with the solution obtained by Laplace
transforms. Our first step is to set out the components

θ
′ = x, (33)

x′ = −2θ − x+2t +1. (34)

We let

Y1(s) = L (θ), Y2(s) = L (x).

We have L (2t +1) = 2
s2 +

1
s . Applying the Laplace transform to equations

(33) and (34) gives

L (θ ′) = L (x),

L (x′) = −2L (θ)−L (x)+2L (t)+L (1).
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Simplifying,

sY1(s)−
π

4
= Y2(s),

sY2(s)+1 = −2Y1(s)−Y2(s)+
2
s2 +

1
s
.

Now we have an algebraic system to solve for Y1(s) and Y2(s). Rearranging
gives

sY1(s)−Y2(s) =
π

4
,

2Y1(s)+(s+1)Y2(s) =
2
s2 +

1
s
−1.

Solving for Y1(s) and Y2(s), we have

Y1(s) =
πs3+(π −4)s2+4s+8

4s2 (s2+ s+2)
,

Y2(s) =
−2s2+(2−π)s+4

2s(s2+ s+2)
.

Now all that remains is to take the inverse Laplace transform. However,
this is easier said than done! We first express the right hand sides us-
ing partial fractions. Beginning with the first equation, we seek constants
a1,a2,b1,b2 satisfying

πs3+(π −4)s2+4s+8
4s2 (s2+ s+2)

=
a1s+a2

4s2 +
b1s+b2

s2+ s+2
.

Recombining by cross multiplying, the numerator of the right hand side is

s3 (a1 +4b1)+ s2 (a1 +a2 +4b2)+(2a1 +a2)s+2a2 = πs3 +(π −4)s2 +4s+8.

Solving gives

a1 = 0, a2 = 4, b1 =
π

4
, b2 =

1
4
(π −8),
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so that

Y1(s) =
1
s2 +

π

4 s+ 1
4(π −8)

s2+ s+2
,

It is clear from the table of Laplace transforms in Section 9.3 how to com-
pute L −1

( 1
s2

)
= t. However, to use the table for the inverse Laplace

transform of
π
4 s+1

4(π−8)
s2+s+2 , we must express the denominator s2 + s + 2 as

(s−a)2+α2. Expanding this and solving for a and α shows that

s2+ s+2 =

(
s−
(
−1

2

))2

+

(√
7

2

)2

.

We seek p and q such that

π

4 s+ 1
4(π −8)

s2+ s+2
= p

s−
(
−1

2

)
(
s−
(
−1

2

))2
+
(√

7
2

)2 +q

√
7

2(
s−
(
−1

2

))2
+
(√

7
2

)2

Clearly p = π

4 and π

8 +q
√

7
2 = 1

4(π −8). Solving for q,

q =
π −16
4
√

7
,

and we have

Y1(s) =
1
s2 +

π

4
s−
(
−1

2

)
(
s−
(
−1

2

))2
+
(√

7
2

)2 +
π −16
4
√

7

√
7

2(
s−
(
−1

2

))2
+
(√

7
2

)2 ,

Finally we are able to use the table of Laplace transforms to calculate the
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inverse Laplace transform of Y1(s).

θ(t) = L −1
(

1
s2

)
+

π

4
L −1

 s−
(
−1

2

)
(
s−
(
−1

2

))2
+
(√

7
2

)2


+

π −16
4
√

7
L −1

 √
7

2(
s−
(
−1

2

))2
+
(√

7
2

)2

 ,

= t +
π

4
e−

1
2t cos

(√
7

2
t

)
+

π −16
4
√

7
e−

1
2t sin

(√
7

2
t

)
.

Notice that this agrees with (32). The computation of L −1 (Ys(s)) is done
in the just same way. We obtain

x(t) = 1− e−
1
2t

(
2cos

(√
7

2
t

)
+
(π −2)√

7
sin

(√
7

2
t

))
,

which is θ ′(t) since this system represents a second order equation.
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11 Partial Differential Equations (PDEs) by analytic methods

11.1 Introduction to PDEs

A partial differential equation (PDE) is an equation involving a function
and its partial derivatives. The function depends on two or more indepen-
dent variables. The order of the PDE is the order of the highest derivative.

Consider the heat equation,

∂T
∂ t

= k∇
2T,

where

∇
2T =

∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

in 3 spacial dimensions (fewer letters for fewer dimensions). We can also
write this as Tt(t,x,y,z) = k (Txx(t,x,y,z)+Tyy(t,x,y,z)+Tzz(t,x,y,z)).

The heat equation
Heat travels through a metal rod with

a heat source at one end.
∂T
∂ t

= k
∂ 2T
∂x2 .

Heat passing through a 2-D plate.
∂T
∂ t

= k
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)
.

A 3-dimensional metal
∂T
∂ t

= k
(

∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

)
.

.
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Notation

∂ 2u
∂x2 =

∂

∂x

(
∂u
∂x

)
= uxx,

∂ 2u
∂x∂ t

=
∂

∂x

(
∂u
∂ t

)
= (ut)x = utx.

Recall Clairaut’s Theorem from MTH201:

Theorem 3 (Clairaut) If f and it’s 1st and 2nd partial derivatives are de-
fined and continuous, then

fxy = fyx.

The wave equation is given by

∂ 2u
∂ t2 = c2

∇
2u,

where in 1 dimension this is simply

∂ 2u
∂ t2 = c2∂ 2u

∂x2 ,

which we can write as
utt = c2uxx.

Laplace’s equation,
∇

2u = 0 (35)

is a time independent PDE. It arises in problems of steady-state heat trans-
fer in a metal plate, e.g. a barbecue plate that is insulated on all sides so
that no heat leaves or enters the system. We have the heat equation with
∂T
∂ t = 0, hence we obtain (35).

The Schrödinger equation

∂ 2ψ

∂x2 +
8π2m

h2 (E −V )ψ = 0,
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is used to find the allowed energy levels of a quantum mechanical system.
ψ is the Schrödinger wave function, E is energy, V is potential energy, x is
position.

Most PDEs do not have simple algebraic solutions but rather numerical
approximations to the exact solution.

Example 11.1 Let u(x, t) = sin(x)cos(ct). To show that this u satisfies the
wave equation,

ut(x, t) = , utt(x, t) = ,

ux(x, t) = , uxx(x, t) = .

Example 11.2 Let u(x,y) = e−x sin(y). Show that this u satisfies Laplace’s
equation.

11.2 Solving PDEs by integration

The techniques of this section are much like that of Chapter 5 so you may
wish to review that chapter at this point. We solve simple PDE bound-
ary value problems (BVP) by integrating directly. The integrals are taken
partially, where we treat all other variables as constants. Consider the fol-
lowing examples:
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Example 11.3 Solve the BVP

ux = x, u(0,y) = 3.

Here we are able to immediately integrate with respect to x.

Example 11.4 Solve the BVP

uxy = y2, ux(x,0) = 7x, u(0,y) = 4.
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11.3 D’Alembert’s solution to the wave equation

Next we will consider a more involved problem, that of solving the one
dimensional wave equation

∂ 2u
∂ t2 = c2∂ 2u

∂x2 . (36)

The solution is due to D’Alembert. We introduce

y = x+ ct,

z = x− ct.

By the chain rule we have

∂u
∂ t

= . .

and

∂u
∂x

= . .
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It follows that since ∂

∂ t = c
(

∂

∂y −
∂

∂ z

)
and ∂

∂x =
(

∂

∂y +
∂

∂ z

)
, we have

∂ 2u
∂ t2 = . .

∂ 2u
∂x2 = . .

Expanding and simplifying,

∂ 2u
∂y∂ z

= 0. (37)

Integrating (37),

u(x, t) = f (z)+g(y) = f (x− ct)+g(x+ ct). (38)

We interpret that there are two waves moving at speed c in opposite direc-
tions.
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Next, we let u(x,0) = h(x) and ut(x,0) = k(x) so that

h(x) = . ,

k(x) = . ,

by the chain rule. Integrating and using f (x)+g(x) = h(x),

cg(x)− c f (x) = . ,

cg(x)+ c f (x) = . ,

Adding and subtracting respectively give

Dividing by 2c,

f (x) = . , g(x) = . .

Finally we have the solution
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Example 11.5 A wave of speed 3 metres per second travels through a
spring with initial conditions

u(x,0) = x3+ x2−5x+4+ cos(x)+5sin(x),

ut(x,0) = −9x3+6x−27−15cos(x)−3sin(x).

Calculate the wave function u(x, t).

11.4 Separation of variables

Assume the solution is a product of two functions of x and t respectively.

u(x, t) = X(x)T (t).

Then taking derivatives,

ux = X ′(x)T (t),

uxx = X ′′(x)T (t),

ut = X(x)T ′(t).

We use familiar methods for separable ODEs. Consider the following ex-
ample:
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Example 11.6 A metal rod of length L has fixed temperature 0 at each end.
Initially the temperature is dependent on the position

u(x,0) = 6sin
(

π

L
x
)
.

We have the following BVP

ut = kuxx, u(0, t) = 0, u(L, t) = 0, u(x,0) = 6sin
(

π

L
x
)
,

where k > 0. Assuming that u(x, t) = X(x)T (t), uxx = X ′′(x)T (t),
ut = X(x)T ′(t), then the heat equation gives
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If c < 0, then the general solution to X ′′+ c
kX is
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(continued)
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12 PDEs with finite differences

12.1 Some physics

We will begin with some definitions from multivariate calculus.

Definition 1 Let f be a function of x,y,z. Then ∇ f (grad f ) is the vector

∇ f =


∂ f
∂x
∂ f
∂y
∂ f
∂ z

=

 fx

fy

fz


and

∇ =


∂

∂x
∂

∂y
∂

∂ z


is the del operator.

Definition 2 Heat flux is the quantity of energy that flows through a surface
per unit area per unit time.

Theorem 4 (Fourier’s Law of Conduction) Let φ be the heat flux pass-
ing through an area A. Then

φ =−k∇T

where k is the conductivity constant of the material and the area A is per-
pendicular to ∇T . If Q is the energy passing through the area A in time,
then

dQ
dt

= φA.

Definition 3 The Laplacian operator is the dot product

∇
2 = ∇ ·∇ =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2
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so that

∇
2 f =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .

If we have only 2 position variables x,y then we may drop z:

∇
2 f =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 .

Definition 4 Let T be the temperature of a point (x,y,z) on an object in
time so that T (x,y,z, t) is a function of x,y,z, t. The heat equation is

∂T

∂ t
= k
(
∇

2T
)
,

where k is a constant.

Definition 5 Let T be the temperature of a point (x,y,z) on an object in
time so that T (x,y,z, t) is a function of x,y,z, t. An object is in thermal
equilibrium if for all points (x,y,z) inside the object, the temperature at
the point is not changing with respect to time. That is

∂T

∂ t
= 0.

It follows from the definitions that if a body is in thermal equilibrium then
the temperature T (x,y,z) satisfies Laplace’s equation

∇
2T = 0.

If the object is a flat 2 dimensional surface then we have

∂ 2T

∂x2 +
∂ 2T

∂y2 = 0.

Definition 6 A function f is a harmonic function if f is twice continuously
differentiable on an open subset of Rn and f satisfies Laplace’s equation.
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Theorem 5 A linear combination of harmonic functions is a harmonic
function.

Let { fi} be a set of harmonic functions. Then for each fi, ▽2 fi = 0. That
is

∂ 2 fi

∂x2 +
∂ 2 fi

∂y2 +
∂ 2 fi

∂ z2 + · · ·= 0.

Let g = ∑
n
i=0 mi fi.

Example 12.1 Let f (x,y) = x2− y2 and g(x,y) = ln(x2+ y2). Show that f
and g are harmonic functions.

Example 12.2 Imagine a thin flat 1 m. × 1 m. plate. The faces are in-
sulated so that no heat flow occurs across the faces, only across the edges.
The plate is at thermal equilibrium. If we know the temperature along the
edges, can we work out the temperature on the inside?

The function
T (x,y) = 100x(1− y2)

satisfies the boundary conditions but not Laplace’s equation since
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.

Alternatively, the function

T (x,y) = x2− y2

satisfies Laplace’s equation but not the boundary conditions since

Only numerical methods can compute a function to satisfy both Laplace’s
equation and the boundary conditions. This makes sense with example
12.1 in mind.
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12.2 Finite differences

Consider the central difference approximation of a second derivative. Let
h = xi+1− xi = xi− xi−1. Then

f (1)(xi)≈
1

2h

(
f (xi+1)− f (xi−1)

)
(39)

f (2)(xi)≈
1
h2

(
f (xi+1)−2 f (xi)+ f (xi−1)

)
(40)

We do something similar for partial derivatives.

∂ f (xi,yi)

∂x
≈ 1

2h

(
f (xi+1,yi)− f (xi−1,yi)

)
(41)

∂ f (xi,yi)

∂y
≈ 1

2h

(
f (xi,yi+1)− f (xi,yi−1)

)
(42)

∂ 2 f (xi,yi)

∂x2 ≈ 1
h2

(
f (xi+1,yi)−2 f (xi,yi)+ f (xi−1,yi)

)
(43)

∂ 2 f (xi,yi)

∂y2 ≈ 1
h2

(
f (xi,yi+1)−2 f (xi,yi)+ f (xi,yi−1)

)
(44)

Then we approximate Laplace’s equation

∂ 2 f
∂x2 +

∂ 2 f
∂y2 ≈ . .

This simplifies to
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We may think of this as applying the ‘template’

1
1 −4 1

1

to the grid points on the metal plate

Let T1,T2, . . .T16 be the temperatures at the grid points from left to right
and top to bottom respectively.

First we need the temperatures on the boundary in line with the grid points.

T (0.2,0) = , T (0.4,0) = , T (0.6,0) = , T (0.8,0) = ,

T (1,0.2) = , T (1,0.4) = , T (1,0.6) = , T (1,0.8) = .
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(continued)

We now get the 16×16 matrix equation

4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
−1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0 0
−1 0 0 0 4 −1 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 −1 4 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 4 −1 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0
0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1
0 0 0 0 0 0 0 0 −1 0 0 0 4 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4



·



T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16



=



0
0
0
36
0
0
0
64
0
0
0
84
20
40
60

176



.
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We may solve for the Ti using , Python, Mathematica, Matlab, etc. In ,
Python,

>>> A=array([[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0],

[-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0],

[0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0],

[0,0,-1,4,0,0,0,-1,0,0,0,0,0,0,0,0],

[-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0],

[0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0],

[0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0],

[0,0,0,-1,0,0,-1,4,0,0,0,-1,0,0,0,0],

[0,0,0,0,-1,0,0,0,4,-1,0,0,-1,0,0,0],

[0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0],

[0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0],

[0,0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1],

[0,0,0,0,0,0,0,0,-1,0,0,0,4,-1,0,0],

[0,0,0,0,0,0,0,0,0,-1,0,0,-1,4,-1,0],

[0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,4,-1],

[0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,4]])

>>> b=array([[0],[0],[0],[36],[0],[0],[0],[64],[0],[0],[0],[84],[20],[40],

[60],[176]])

>>> solve(A,b)

We obtain 

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16



=



5.1322721
10.65424518
17.05500613
25.04816126
9.87484322

20.42970247
32.5176181

47.13763889
13.93739829
28.6721034

45.44812489
66.98477621
17.20264656
34.87318795
53.61800184
74.15069451


Here we have a plot of the temperature at the position (x,y) in cm.
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An array of the temperatures by positions is

0 0 0 0 0 0
0 5.13 10.65 17.05 25.05 36
0 9.87 20.43 32.52 47.14 64
0 13.93 28.67 45.45 66.98 84
0 17.20 34.87 53.61 74.15 96
0 20 40 60 80 100

12.3 Is this physically reasonable?

Now take our metal slab and place cells of width h around each grid point

but centre our template above a particular point T (xi,y j).
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Consider the heat flow on the top face of the centre cell flowing into the cell
above it. We with denote this heat flow as HN = dQ

dt according to Theorem
4 (The rate at which energy is traveling through the North face of the cell)

We can compute this heat flow as

HN =(− conductivity constant )×( width of cell )×( thickness if metal )×
∂T (xi,y j +

1
2h)

∂y

ignoring the vector part of this. That is

HN =−khw
∂T (xi,y j +

1
2h)

∂y

We may do the same for the South, East, and West faces of the cell centered
at (xi,y j)

HN =−khw
∂T (xi,y j +

1
2h)

∂y
≈−khw(

1
h
(T (xi,y j+1)−T (xi,y j))) =−kw(T (xi,y j+1)−T (xi,y j))

HS =−khw
∂T (xi,y j − 1

2h)
∂y

≈−khw(
1
h
(T (xi,y j−1)−T (xi,y j))) =−kw(T (xi,y j−1)−T (xi,y j))

HE =−khw
∂T (xi +

1
2h,y j)

∂x
≈−khw(

1
h
(T (xi+1,y j)−T (xi,y j))) =−kw(T (xi+1,y j)−T (xi,y j))

HW =−khw
∂T (xi − 1

2h,y j)

∂x
≈−khw(

1
h
(T (xi−1,y j)−T (xi,y j))) =−kw(T (xi−1,y j)−T (xi,y j))
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Heat flows across the faces of each cell but since each cell is in thermal
equilibrium, The total heat flow into the cell is equal to the total heat flow
out of the cell (the rate at which energy enters and leaves the cell in time is
0). That is

HN +HS +HE +HW = 0

so that

−kw(T (xi,y j+1)−T (xi,y j))− kw(T (xi,y j−1)−T (xi,y j))

−kw(T (xi+1,y j)−T (xi,y j))− kw(T (xi−1,y j)−T (xi,y j)) = 0

Simplifying,

−T (xi,y j+1)−T (xi,y j−1)−T (xi+1,y j)−T (xi−1,y j)+4T (xi,y j) = 0

but this is precisely what we obtain from Laplace’s equation!
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12.4 Neumann boundary conditions

Carl Neumann (Boundary conditions on the edge of the domain)

Now suppose the boundary x = 1 is insulated so that no heat may flow
across this boundary. The temperature gradient across this edge is 0. That
is we replace the boundary condition T (1,y) = 100(1− y2) with
∂T (x,y)

∂x = 0.

Definition 7 For any point (x,y) on any edge, the outward normal vector
is denoted ν(x,y) and the derivative in the direction of ν(x,y) is called the
normal derivative and denoted Tν(x,y) given by

Tν(x,y) = ∇T (x,y) · ν(x,y)
||ν ||

= (
∂T (x,y)

∂x
î+

∂T (x,y)
∂y

ĵ) · ν(x,y)
||ν ||

Note: Tν(x,y) is a directional derivative in which ν is a normal vector.

In our problem, î is the normal vector to the East face (the insulated face)
so

Tν(1,y) =▽T (1,y) · î = (
∂T (1,y)

∂x
î+

∂T (1,y)
∂y

ĵ) · î = ∂T (1,y)
∂x

= 0
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So the new boundary condition is also written as

Tν(1,y) =
∂T (1,y)

∂x
= 0

This is a Neumann boundary condition. With Neumann boundary con-
ditions, temperatures at the grid points along the insulated face are now
unknown. Equations are derived by imagining a (potentially curved de-
pending on the geometry) column of fictitious points outside the plate.

The boundary condition ∂T (1,y)
∂x = 0 is approximated by

∂T (1,y)
∂x

≈
T (1+h,y j)−T (1−h,y j)

2h
= 0

so that
T (1+h,y j)≈ T (1−h,y j)

We then place our template over the insulated boundary approximating the
temperature at the fictitious points by T (1+h,y j)≈ T (1−h,y j).

Using the template along the insulated face we have

−2T (xi−1,y j)−T (xi,y j+1)−T (xi,y j−1)+4T (xi,y j) = 0
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and of course this will change the shape of our matrix equation Ax = b and
A will now be a 20 by 20 matrix!

12.5 Another Neumann boundary condition

A thin triangular metal plate is insulated on both faces and heat can flow
only across the edges. In appropriate 2D coordinates the plate occupies the
area

{(x,y) : 0 ≤ x ≤ 1, and 0 ≤ y ≤ x}

and the temperature at (x,y) is T (x,y). The plate is in thermal equilibrium
∂ 2T
∂x2 + ∂ 2T

∂y2 = 0 The boundary conditions are T (x,0) = 0, T (x,x) = 100x,
Tν(1,y) =−3(T (1,y)−100), (h = 1

3 m.)
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Place the grid points

Using the template we have

Simplifying,

The Neumann boundary condition is Tν(1,y) =−3(T (1,y)−100) so

Simplifying the boundary condition,
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Replacing T3 and T5 in the three equations obtained from the template,

Solving this matrix equation,(
T1
T2
T4

)
=
(

40.1041
60.4166
82.2911

)
.
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12.6 Directional Derivatives

Consider the plane x+ y+ z = 1. What is the slope of the plane in the
direction of the vector (1,1) ?

Starting from the point (0,1,0) on the plane, stepping off the plane in the
direction of the vector (1,1) brings us to the point
(0,1,0)+ (1,1,0) = (1,2,0), which is not on the plane x+ y+ z = 1. In
order to return to the plane from (1,2,0) along a vertical path, we compute
the point
(1,2,z(1,2)) = (1,2,−2) since z(1,2) = 1−1−2 =−2. Stepping off the
plane in the direction of the vector (1,1) gives us the run of our slope,
equal to

√
2, the length of the vector (1,1). Returning to the plane gives us

the rise of our slope, −2−0 =−2. The slope in the direction of the vector
(1,1) is given by

rise
run

=
−2√

2
=−

√
2.

Now suppose we have a surface S : z= f (x,y) and we wish to calculate the
slope of the surface at the point (a,b, f (a,b)) in the direction of the vector
u = (u1,u2). The tangent plane to the surface at the point (a,b, f (a,b)) is
given by

P : Z = f (a,b)+ fx(a,b)(X −a)+ fy(a,b)(Y −b), (45)

where we have used uppercase X ,Y,Z for the plane to distinguish from the
points (x,y,z) lying on the surface S . Like previously, we step off the
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surface at the point (a,b, f (a,b)) in the direction of the vector
u = (u1,u2), the norm of this gives us run = ||u||. Now we are at the
position (a+u1,b+u2, f (a,b)). We return to the plane via a vertical path,
bringing us to the point

(a+u1,b+u2,Z(a+u1,b+u2)) = (a+u1,b+u2, f (a,b)+ fx(a,b)(a+u1 −a)+ fy(a,b)(b+u2 −b)),

= (a+u1,b+u2, f (a,b)+ fx(a,b)u1 + fy(a,b)u2),

on the tangent plane P . The difference in the z values of this point and the
point (a+u1,b+u2, f (a,b)) give us the rise = fx(a,b)u1 + fy(a,b)u2. Fi-
nally, the slope of the surface S at the point (a,b, f (a,b)) in the direction
of the vector u = (u1,u2) is given by

rise
run

=
fx(a,b)u1+ fy(a,b)u2

||u||
,

=
( fx(a,b), fy(a,b)) ·u

||u||
,

fu(a,b) =
∇ f (a,b) ·u

||u||
.
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Example 12.3 Find the directional derivative of f (x,y) = 4− x2 − 4y2 at
(a,b, f (a,b)) in the direction of the vector (1,1).

12.7 Thermal equilibrium with various Neumann boundary conditions

Example 12.4 Consider the steady state heat distribution in a thin trian-
gular metal plate with the diagonal side insulated:

Use finite differences to approximate the temperature at the points (1,1),
(2,1), (2,2).
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Along the boundaries y = 0 and x = 3, we have T (x,0) = 9x2 − 1 and
T (3,y) = y2+80. We have

T1,0 = , T2,0 = ,

= , = ,

T3,1 = , T3,2 = ,

= , = .

Since the diagonal side of the plate is insulated, we have

Tν(x,x) = T(−1,1)(x,x) = 0.

This directional derivative is

Therefore along the insulated face y = x we have ∂T
∂y = ∂T

∂x .

Moving the template over each of the points (1,1), (2,1), (2,2), we find
the equations

The fictitious points are the points (0,1), (1,2), and (2,3). We deduced
that ∂T

∂y (x,x) =
∂T
∂x (x,x) since the diagonal face is insulated. Approximating

this,

∂T
∂x

(x,x)≈ T (x+h,x)−T (x−h,x)
2h

≈ T (x,x+h)−T (x,x−h)
2h
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This gives us

Finally, we have the matrix equation(−4 2 0
1 −4 1
0 2 −4

)(T1,1
T2,1
T2,2

)
=
( −16

−116
−168

)
,

and solving gives T1,1 ≈ 31, T2,1 ≈ 54, T2,2 ≈ 69.
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13 Exam Practice

13.1 Exam 1

1. A population P of koalas is observed to grow at a rate proportional
to its size when the population is small, but if the population is large
in comparison with available resources, then the population will de-
crease. The rate of change of the population is consistent with the
logistic population model,

dP
dt

= k
(

1− P
N

)
P, (46)

where t is measured in years.

(a) Suppose that P
N ≈ 0. Use techniques for solving separable equa-

tions to find the general solution to Equation 46 when P
N ≈ 0.

. (5 Marks)

(b) Suppose that P
N ≈ 0. Use techniques for solving first order linear

equations to find the general solution to Equation 46 when P
N ≈ 0.

. (5 Marks)

(c) Now suppose that 0 < P
N < 1 and P

N is not close to 0. Find the gen-
eral solution to Equation 46 using techniques for Bernoulli equa-
tions.
. (5 Marks)

(d) Using the general solution to Equation 46 obtained in Part (c), if
the carrying capacity is N = 1000 koalas, and initially the popula-
tion is 1245 koalas and after 1 year the population is 1100, deter-
mine the population after 5 years.
. (5 Marks)
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(Space for working)

146



(Space for working)

147



(Space for working)

148



2. Consider the spring-mass system in which a mass of 2 kg is suspended
from the ceiling by a spring so that gravity pulls the mass vertically
downwards. The spring is known to have spring constant 4 N/m and
the force due to air resistance is −4 y′ N. Assume that there is a forcing
factor f (t) = 6 so that the motion of the mass is modeled by

ay′′+by′+ cy = f (t), (47)

where a,b,c are real constants. Initially we have y(0) = 2, y′(0) = 2.

(a) Determine the constants a,b,c. (5 marks)

(b) Find the solution y(t) by adding a homogeneous solution yH to a
particular solution yP. (10 marks)

(c) By letting z = y′ and Y =

(
y
z

)
, find matrices A and b such that

Y ′ = AY +b is the coupled first order linear system corresponding
to Equation (49).
. (5 marks)

(d) For the matrix A found in Part (c), find the eigenvalues and eigen-
vectors of A.
. (5 marks)

(e) For the matrix A found in Part (d), calculate the trace and determi-
nant of A, and use the stability chart to classify the stability of the
equilibrium point (critical point). (5 marks)
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3. Consider the second order linear initial value problem (IVP):

y′′+5y′+4y = 0, y(0) = 0, y′(0) =−1.

(a) Use the Laplace transform to solve the IVP. Incorporate the method
of partial fractions in your solution. (6 marks)

(b) Use the convolution theorem to find the inverse Laplace transform
of the function

H(s) =
−1

s2+5s+4
.

(8 marks)
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4. A tall-fenced paddock is home to two competing species goats and
kangaroos. Letting x(t) denote the number of goats and y(t) the num-
ber of kangaroos, the competing species model

x′(t) = x(165− x−2y),

y′(t) = y(195−3x− y)

governs the rate of change of the populations of each species.

(a) Find all equilibrium solutions (critical points) of the system.
. (4 marks)

(b) Calculate the Jacobian matrix of the linearized system and use this
to classify the stability of the critical point(s) found in Part (a).
. (8 marks)

(c) If x(0) = 50 and y(0) = 20, see the phase portrait below with crit-
ical points shown in black, determine which species goes extinct
first after a considerable amount of time has elapsed (as t −→ ∞).
. (4 marks)

y(t)

x(t)
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5. Let u(x,y) represent the vertical displacement of a string of length π ,
which is placed on the interval [0,π], at position x and time t. As-
suming proper units for length, times, and the constant k, the wave-
equation models the displacement u(x, t):

utt = c2uxx.

The boundary conditions are given by

u(0, t) = u(π, t) = 2cos(4ct)

for t ≥ 0, with initial displacement

u(x,0) = 2cos(4x),

and initial velocity
ut(x,0) = 0

for 0≤ x≤ π . Solve the solve the equation for u(x, t) using D’Alembert’s
method. (10 marks)
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6. Consider the problem of determining the steady-state heat distribution
in a thin triangular metal plate with width and height 4 metres. The
temperature u(x,y)◦ C along the three boundaries of the plate are given
by the equations

u(x,0) = 2x2−15x+68,

u(4,y) = y2−2y+40,

u(x,x) = 68+3x−2x2.

The plate is in thermal equilibrium so that the temperature inside the
plate satisfies Laplace’s equation. Use the method of finite differences
to write a system of equations for which the solution approximates the
temperature at the coordinates (2,1), (3,1), (3,2). See the figure be-
low. (10 marks)

u21 u31

u32
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13.2 Exam 2

1. A population P = P(t) of wild boar are living in the forest. The popu-
lation is changing according to the harvested logistic model,

dP
dt

= 0.4
(

1− P
100

)
P−H, (48)

where t is measured in years and H is a harvesting parameter which
depends on how often hunters kill the boar.

(a) First suppose that P
100 ≈ 0,H ≈ 0 ( P

100 and H are is approximately
zero). Use techniques for solving separable equations to find the
general solution to Equation 48 in this case. (5 Marks)

(b) If H = 6, find all equillibrium solutions to Equation (48), sketch the
slope field of P(t) (equilibrium solutions and several trajectories)
and determine the approximate population of boar after very many
years have passed if P(0) = 40.
. (10 Marks)

(c) By considering equilibrium solutions to Equation (48), find all real
parameters H such that the population of boar is destined to die out
irrespective of the initial population P(0). (5 Marks)
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2. Consider the second order differential equation

y′′+ y′− y = f (y, t), (49)

where y is a function of t and f (y, t) is a function of y and t.

(a) If f (y, t) = 2t +1, find the general solution to Equation (49).
. (10 marks)

(b) Now assume that f (y, t) = y3. Write a system of coupled first order
differential equations corresponding to Equation (49) by letting
z = y′. (5 marks)

(c) Find all critical (equillibrium) points of the system and classify
their stability, where f (y, t) = y3. (5 marks)
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3. Consider the second order linear initial value problem (IVP):

y′′+3y′+2y = 0, y(0) = 1, y′(0) =−1.

(a) Solve the IVP without use the Laplace transform. (5 marks)

(b) Use the Laplace transform to solve the IVP. (10 marks)

(c) Recall that the hyperbolic sine function is given by

sinh(x) =
1
2
(
ex − e−x) .

Use the definition of the Laplace transform to show that

L (sinh(t)) =
1

s2−1

for all real s > 1. (5 marks)

172



(Space for working)

173



4. Two species of mammals share a small island. Letting x(t) denote
the population of Species X in thousands, and y(t) the population of
Species Y in thousands. It is observed that the populations of the two
species are related by the following system:

x′(t) = x(3x+2y−24),

y′(t) = y(−9x+2y−8).

governs the rate of change of the populations of each species.

(a) Find all equilibrium solutions (critical points) of the system.
. (4 marks)

(b) Calculate the Jacobian matrix of the linearized system about each
critical point and use this to classify the stability of the critical
point(s) found in Part (a).
. (12 marks)

(c) If x(0) = 9 (meaning 9000) and y(0) = 6 (meaning 6000), see the
phase portrait below with critical points shown in black and x(t)
being the horizontal axis, determine which species goes extinct
first after a considerable amount of time has elapsed (as t −→ ∞).
. (4 marks)

0 2 4 6 8 10

0

5

10

15
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5. Let u(x,y) represent the vertical displacement of a string of length π ,
which is placed on the interval [0,π], at position x and time t. As-
suming proper units for length, times, and the constant k, the wave-
equation models the displacement u(x, t):

utt = c2uxx.

The boundary conditions are given by

u(0, t) = u(π, t) = 0

for t ≥ 0, with initial displacement

u(x,0) = 2sin(2x),

and initial velocity
ut(x,0) = 0

for 0 ≤ x ≤ π .

(a) Solve the solve the equation for u(x, t) using separation of vari-
ables.
. (15 marks)

(b) Solve the solve the equation for u(x, t) using D’Alembert’s method.
. (5 marks)
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6. Consider the problem of determining the steady-state heat distribution
in a thin rectangular metal plate with width 2 metres and height 1 me-
tre. The temperature u(x,y)◦ C along the boundaries of the plate are
given by the equations

u(x,0) = 5x+2,

u(2,y) = 12−2y+2y3,

u(x,1) = 3x2− x+2,

u(0,y) = 2.

The plate is in thermal equilibrium so that the temperature inside the
plate satisfies Laplace’s equation. Use the method of finite differences
to write a system of equations for which the solution approximates
the temperature u1,u2,u3 at the three interior coordinates (0.5,0.5),
(1.0,0.5), (1.5,0.5). Express the system as Ax = b, where A is a diag-
onally dominant symmetric matrix. (20 marks)
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14 Exercises

14.1 Problem Set 1

(1) Give the general solution to each of the following ODEs.

(a) 2x′+3 = 0.

(b) 2x′+3x = 0.

(c) 3P′ = P.

(2) Solve each of the following IVPs.

(a) 2x′+3 = 0, x(0) = 1.

(b) 2x′+3x = 0, x(4) = 2.

(c) 3P′ = P, P(0)+P(6) = 2.

(3) State the order of each of the following ODEs and whether they are linear or non-
linear.

(a) x′′′(t)+5x′(t) = 7x′′(t).

(b) d2P
dt2 +5

(
dP
dt

)2
= 2.

(c) sin(y′) = cos(y′′)+ log(y).

(4) Radioactive carbon-14 is present in small quantities in all living matter, and is con-
stantly replenished from the atmosphere. When an organism dies, the carbon-14
decays to stable carbon-12. Suppose that C(t) is the mass of carbon-14 (measured
in grams) present in a sample of bone at time t (measured in years). The radioactive
decay is described by the differential equation

dC
dt

=−kC.

(a) If the half-life of the decay is 5730 years, calculate the relative rate of decay k
to 3 significant figures.

(b) In January this year, a team of scientists found a human bone fragment which
contained 89% of the amount of carbon-14 contained in living human bone.
How old is the bone fragment?
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(5) Two researchers are investigating the metabolism of a new drug. Let D(t) represent
the amount of drug in the patient at time t. The initial amount of drug is 100 g. After
1 hour the amount is 75 g.

(a) Researcher A believes the drug behaves like alcohol and decays linearly. Write
down an ODE that describes this behaviour, give its general solution and use the
information given to determine the rate of decay.

(b) Researcher B believes the drug behaves like caffeine and decays exponentially.
Write down an ODE that describes this behaviour, give its general solution and
use the information given to determine D(t). Also, convert the decay rate into a
half-life.

(6) Find the particular solution of dx
dt = x2 cos(t), x(0) = 1.

(7) An organism of length L has a surface area proportional to L2. If we assume that its
growth rate is also proportional to its surface area, we can model this as dL

dt = kL2,
where k is a constant of proportionality. If L(0) = 1, how does the length vary with
time?

(8) Find the general solution of dy
dx = x2y3.

(9) Find the general solution of the following IVPs.

(a) P′ = 2P−5, P(0) = 3.

(b) y′ = 2−3y, y(1) = 0.

(10) Find the equilibrium solution of the following ODEs if possible:

(a) P′ = 3P−5.

(b) y′ = 1.2y+12.

(c) dA
dt = 2.

(d) dx
dt = 3x2 −2.

(e) dP
dt = cos(P).

(f) dQ
dt = e−Q −Q.

(11) Find the equilibrium solution of the equation dQ
dt = 0.6Q− 3.0 and determine its

stability.

(12) Analyze the equilibrium solution(s) of the equations:

(a) 2dy
dt − (y−1)(y−5) = 0.
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(b) dP
dt = cos(P).

(c) dP
dt = P3 −3P2 +3.

(d) dP
dt = P2 − cos(P).
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14.2 Problem Set 2

(1) An epidemic spreads from 20% of the population to affecting 70% of the population
in just 12 days. Use the logistic equation d p

dt = rp(1− p).

(a) Estimate the value of the intrinsic growth rate r.

(b) After how many days was exactly half the population infected?

(c) What proportion of the population is infected after 20 days?

(2) Solve the initial value problem (IVP)

dx
dt

= 0.1x(4− x), x(0) = 1

and calculate t when x = 2 and x(10).

(3) Five mice in a stable population of 500 are intentionally infected with a contagious
disease to test a theory of epidemic spread that postulates the rate of change of the
infected population is proportional to the product of the number of mice who have
the disease and the number who are disease free. Assuming the theory is correct,
how long will it take half the population to contract the disease?

(4) A population of bacteria grows according to the differential equation

dP
dt

= 0.03P
(

1− P
2000

)
.

When t = 0, the population is 200 g. Find the population P at time t.

(5) Solve the ODE y′ = y
x+

√
xy .

(6) Solve the ODE y′ = 2xy
y2−x2 .

(7) Solve the ODE
(

d2y
dx2

)2
−
(

dy
dx

)2
+4 = 0, where

∣∣∣dy
dx

∣∣∣> 2 for all x ̸= 0.

(8) Recall that the imaginary number i is equal to
√
−1 and that the Taylor series of

ex,sin(x),cos(x) about x = 0 are respectively given by

ex = 1+ x+
1
2

x2 +
1
3!

x3 +
1
4!

x4 + . . . ,

sin(x) = x− 1
3!

x3 +
1
5!

x5 + . . . ,

cos(x) = 1− 1
2

x2 +
1
4!

x4 + . . . .
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(a) Verify Euler’s identity eix = cos(x)+ isin(x).

(b) Show that sinh(2x) = 2sinh(x)cosh(x).

(c) Use the above identity to show that sin(2x) = 2sin(x)cos(x).

(9) Find the general solution to the ODE y′ = xysin(x).
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14.3 Problem Set 3

(1) Find the general solution to the ODE y′ = 2xy
x2−y2 .

(2) Solve the IVP

y′ =
x2 + y2

xy
, y(1) =−2.

(3) Solve the IVP

y′ =
x2y− y
y+1

, y(3) =−1.

(4) Find the general solution to the ODE y′ = x4+3x2y2+y4

x3y .

(5) Show that
∫

cos2(x)dx = 1
2x+ 1

4 sin(2x)+C.

(6) Calculate
∫

x5
√

1+ x2 dx by substitution.

(7) Calculate
∫

x2 cos(x)dx by parts.

(8) Calculate
∫ xdx

x2−5x+6 dx by partial fractions.

(9) Calculate
∫ 1dx

(x2+2)(x+3) dx by partial fractions.

(10) Show that ex = cosh(x)+ sinh(x), e−x = cosh(x)− sinh(x), and hence

cosh2(x)− sinh2(x) = 1.

(11) Calculate
∫

arsinh(x)dx by integration by parts.

188



14.4 Problem Set 4

(1) Find the general solution to the ODE y′+ y = y2 using methods for linear 1st order
ODEs.

(2) Find the general solution to the ODE y′+ xy = 6x
√

y using methods for linear 1st
order ODEs.

(3) Find the general solution to the ODE y′+y = y−2 using methods for linear 1st order
ODEs.

(4) What constant interest rate is required if an initial deposit placed into an account that
accrues interest compounded continuously is to double in value in six years?

(5) A yeast grows at a rate proportional to its present size. If the original amount doubles
in two hours, in how many hours will it triple?

(6) A depositor places $10,000 in a certificate of deposit which pays 6 percent interest
per annum, compounded continuously. How much will be in the account at the end
of seven years, assuming no additional deposits or withdrawals?

(7) Determine the interest rate required to double an investment in eight years under
continuous compounding.

(8) A body of unknown temperature is placed in a refrigerator at a constant temperature
of 0◦ F. If after 20 minutes the temperature of the body is 40◦ F and after 40 minutes
the temperature of the body is 20◦ F, find the initial temperature of the body.

(9) A tank initially holds 10 gal of fresh water. At t = 0, a brine solution containing 1
2 lb

of salt per gallon is poured into the tank at a rate of 2 gal/min, while the well stirred
mixture leaves the tank at the same rate. Find the amount and concentration of salt
in the tank at time t.

(10) An RC circuit has an emf of 5 volts, a resistance of 10 ohms, a capacitance of 10−2

farads, and an initial charge of 5 coulombs on the capacitor. Find the transient current
and the steady state current.

(11) Solve the IVP y′ =−2y+ ety3, y(0) = 1.

189



14.5 Problem Set 5

(1) Find the general solution to the ODE

y′ =
2+ yexy

2y− xexy

using methods for exact equations.

(2) Find the general solution to the ODE x+ sin(y)+(xcos(y)−2y)y′ = 0.

(3) Solve y− xy′ = 0 using methods for exact equations.

(4) Convert y′ = 2xy− x into an exact ODE and find the general solution.

(5) Solve t2 − x− tx′ = 0 using methods for exact equations.

(6) Solve y′′− y = 0.

(7) Find the general solution to y′′+2y′+2y = 0.

(8) Solve the IVP y′′−3y′−5y = 0, y(0) = 1, y′(0) =−1.

(9) Find the general solution to x′′−3x′+ x = 0.

(10) Find the general solution to x′′+25x = 0.

(11) Find the general solution to x′′+ x′+2x = 0.

(12) Solve y′′−36y = 0.
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14.6 Problem Set 6

(1) Find the general solution to y′′−5y′+6y = 2x−7.

(2) Find the general solution to y′′−5y′+6y = 132x2 −388x+1077.

(3) Find the general solution to y′′−5y′+6y = 13e5x.

(4) Find the general solution to y′− y = ex using a sum consisting of a solution to
y′− y = 0 and a particular solution to y′− y = ex.

(5) Solve y′− y = ex using methods for exact equations.

(6) Find the general solution to y′′−2y′+ y = x2 −1.

(7) Find the general solution to y′′−2y′+ y = 3e2x.

(8) Find the general solution to y′′−2y′+ y = 4cos(x).

(9) Find the general solution to y′′−2y′+ y = 3ex.

(10) Find the general solution to y′′−2y′+ y = xex.

(11) Find the general solution to y(3)−3y(2)+3y′− y = ex +1.

(12) Solve the IVP x′′+3x′+2x = 1−2t2, x(0) = 0, x′(0) =−4.

(13) Solve the IVP x′′+4x′+4x = 2e−2t , x(0) = 1, x′(0) = 1.

(14) Consider a spring-mass system with spring constant k = 6 N/m and damping co-
efficient b = 5 kg/sec. The 1 kg mass is lifted up one metre and given a down-
ward velocity of 8 m/sec. Without forcing, we have the homogeneous equation
x′′+ 5x′+ 6x = 0. With a periodic force, we instead have x′′+ 5x′+ 6x = 4sin(t).
Model the motion of the mass in the forced system.

(15) The vertical motion of a car along a bumpy road is modeled by the equation

2x′′+bx′+3x = 4sin
( t

2

)
.

How large would the damping coefficient b have to be so that the long term oscil-
latory up-and-down motion of the car would have a vertical amplitude less than 0.2
m?
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14.7 Problem Set 7

From Schuam’s Outlines, Chapter 14:

(1) A mass of 0.4 g is hung onto a spring and stretches it 3 cm from its natural length.
Find the spring constant.

(2) A 20 g mass is suspended from the end of a vertical spring having spring constant
of 2880 dynes/cm and is allowed to reach equilibrium. It is then set into motion by
stretching the spring 3 cm from its equilibrium position and releasing the mass with
an initial velocity of 10 cm/sec in the downward direction. Find the position of the
mass at any time t if there is no external force and no air resistance.

(3) For Question (2) above, determine:

(a) the circular frequency,

(b) the natural frequency,

(c) the period.

(4) An RCL circuit connected in series with R = 6 ohms, C = 0.02 farad, and L = 0.1
henry has an applied voltage E(t) = 6 volts. Assuming no initial current and no
initial charge at t = 0 when the voltage is first applied, find the subsequent charge on
the capacitor and the current in the circuit.

(5) An RCL circuit connected in series with R = 6 ohms, C = 0.02 farad, and L = 0.1
henry has no applied voltage. Find the subsequent current in the circuit if the initial
charge on the capacitor is 1

10 coulomb and the initial current is zero.

(6) An RCL circuit connected in series with a resistance of 16 ohms, a capacitor of
0.02 farad, and an inductance of 2 henries has an applied voltage E(t) = 100sin(3t).
Assuming no initial current and no initial charge on the capacitor, find an expression
for the current flowing through the circuit at any time t.

(7) For Question (6) above, determine the steady-state current in the circuit and express
this in the form ±Acos(ωt −φ).
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14.8 Problem Set 8

(1) Consider the homogeneous ODE y′′+ 3y′+ 2y = 0, which has the general solution

y(t) = Ae−t +Be−2t . Let z = y′ and Y =

(
y
z

)
.

(a) Write the ODE as a coupled first order system Y ′ = AY , where A is a 2× 2
matrix.

(b) Find the eigenvalues λ1 and λ2 of the matrix A.

(c) Find the eigenvectors x1 and x2 of the matrix A.

(d) Simplify the general solution Y (t) = c1eλ1tx1 + c2eλ2tx2.

(2) Consider the homogeneous ODE y′′+2y′+2y = 0, which has the general solution

y(t) = e−t (Acos(t)+Bsin(t)) , y(t) =−e−t ((A−B)cos(t)+(A+B)sin(t)) .

Let z = y′ and Y =

(
y
z

)
.

(a) Write the ODE as a coupled first order system Y ′ = AY , where A is a 2× 2
matrix.

(b) Find the eigenvalues λ1 and λ2 of the matrix A.

(c) Find the eigenvectors x1 and x2 of the matrix A.

(d) Simplify the general solution Y (t) = c1eλ1tx1 + c2eλ2tx2 using Euler’s formula.

(3) Consider the homogeneous ODE y′′+2y′+ y = 0, which has the general solution

y(t) = (A+Bt)e−t , y′(t) =−(A−B+Bt)e−t .

Let z = y′ and Y =

(
y
z

)
.

(a) Write the ODE as a coupled first order system Y ′ = AY , where A is a 2× 2
matrix.

(b) Find the eigenvalues λ1 and λ2 of the matrix A.

(c) Find the eigenvectors x1 and x2 of the matrix A.

(d) Write an expression for the general solution Y (t).
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(4) Sketch the phase portrait for y′′+3y′+2y = 0, where y corresponds to the horizontal
axis and z = y′ corresponds to the vertical axis. Use the stability chart to classify the

system Y ′ = AY , where Y =

(
y
z

)
.

(5) Sketch the phase portrait for y′′+2y′+2y = 0, where y corresponds to the horizontal
axis and z = y′ corresponds to the vertical axis. Use the stability chart to classify the

system Y ′ = AY , where Y =

(
y
z

)
.

(6) Sketch the phase portrait for y′′+2y′+ y = 0, where y corresponds to the horizontal
axis and z = y′ corresponds to the vertical axis. Use the stability chart to classify the

system Y ′ = AY , where Y =

(
y
z

)
.
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14.9 Problem Set 9

(1) Consider the non-homogeneous linear system of first order differential equations

x′(t) = x(t)+2y(t)+3,

y′(t) = 4x(t)+5y(t)+6.

(a) Find the critical point of the system.

(b) Classify its stability.

(2) Consider the non-homogeneous linear system of first order differential equations

x′(t) = x(t)+2y(t)+3,

y′(t) = 4x(t)+5y(t)+6.

Use differential operators to solve the system.

(3) A pond initially contains x = 3 carnivorous piranha fish and y = 12 electric yellow
cichlids, known to give birth from their mouth - dozens per female every few months.
The system is governed by the equations

x′(t) = 3x−4xy,

y′(t) = xy−9y.

(a) Determine critical points of the system.

(b) Calculate the Jacobian matrix at the critical points.

(c) Classify the stability of the linearized system.

(d) Determine the long term behaviour of the system.

(4) Consider the non-linear second order differential equation

x′′+µ

(
x2 −1

)
x′+ x = 0,

which models the Van der Pol oscillator circuits for radios, where µ > 0. See [11,
pp. 200]. This system exhibits a limit cycle, a periodic solution.

(a) Determine critical points of the system.

(b) Calculate the Jacobian matrix at the critical points.

(c) Determine the type and stability of any critical point that is inside this limit
cycle.
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(5) In a competing species model the growth rates of both populations are negatively
affected by their interaction. Suppose the two populations are cooperating, instead
of competing. The following equations represent such a model:

x′ = 0.2x
(

1− x
N

)
+0.1xy,

y′ = 0.6y
(

1− y
3

)
+0.05xy,

where N > 0. See [11, pp. 200].

(a) What do you expect to happen to the populations x and y over the long term?

(b) Let the carrying capacity N of the population x be equal to 4. Find all equi-
librium points for the system. Is there an equilibrium where the populations
coexist?

(c) Evaluate the Jacobian matrix at each equilibrium and determine its type. If the
initial conditions x(0) and y(0) are both positive, what must happen to a solution
as t −→ ∞ ?

(c) Let N = 10, and again find an equilibrium where the two populations coexist.
What happens now to a solution starting in the positive quadrant?
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14.10 Problem Set 10

Summary

• Laplace transform definition:

L ( f ) =
∫

∞

t=0
e−st f (t)dt,

• Heaviside step function:

u(x) =

{
0 if t < 0
1 if t ≥ 0

• Gamma function:

Γ(x) =
∫

∞

0
e−ttx−1 dt x! = Γ(x+1), for x ∈ Z.

• L (k) = k
s .

• L (u(t −a)) = e−sa

s .

• L (tn) = n!
sn+1 .

• L (eat) =

{
1

s−a if s > a
diverges if s ≤ a

• If Y (s) = L (y), then

L
(
y′
)
= sY (s)− y(0), L

(
y′′
)
= s2Y (s)− sy(0)− y′(0).

(1) Solve the following IVP using the Laplace transform:

y′′− y′−2y = 0, y(0) = 1, y′(0) = 0.

(2) Derive the Laplace transform of f (t) = k.

(3) Derive the Laplace transform of f (t) = tn.

(4) Derive the Laplace transform of f (t) = eat .

(5) Derive the Laplace transform of sin(t) and cos(t) using that of eat .

(6) Solve the following IVP using the Laplace transform:

x′′(t)−5x′(t)+6x(t) = 2, x(0) = 0, x′(0) = 0.
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(7) Solve the following IVP using the Laplace transform:

y′′(t)+2y′(t)+ y(t) = e−t , y(0) = y0, y′(0) = y1.

(8) Solve the following IVP using the Laplace transform:

y′′(t)+ y′(t)+ y(t) = cos(t), y(0) = 1, y′(0) =−1.
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14.11 Problem Set 11

The problems are found in Schuam’s Outlines.

Y (s) = L ( f (x)) =
∫

∞

0 e−sx f (x)dx.

(1) Show that L
(
x2)= 2

s3 using integration by parts.

(2) Show that L (eax) = 1
s−a for s > a using the definition of the Laplace transform.

(3) Calculate L ( f (x)), using the definition of the Laplace transform, where

f (x) =

{
ex if x ≤ 2,
3 if x > 2.

(4) Calculate L
(
2x2 −3x+4

)
.

(5) Calculate L
(
xe4x) using the definition of the Laplace transform.

(6) Calculate L
(
e2x) using the definition of the Laplace transform.

(7) Calculate L (x) using the definition of the Laplace transform.

(8) Calculate L
(
xe−8x) using the definition of the Laplace transform.

(9) Calculate L −1 ( 1
s−8

)
.

(10) Calculate L −1
(

1√
s

)
.

(11) Calculate L −1
(

s
(s−2)2+9

)
.

(12) Calculate L −1 ( −2
s−2

)
.

(13) Calculate L −1
(

s
(s+1)2+5

)
.

(14) Calculate L −1
(

2s2

(s−1)(s2+1)

)
.

(15) Solve the IVP y′−5y = 0, y(0) = 2 using the Laplace transform.

(16) Solve the IVP y′+ y = sin(x), y(0) = 1 using the Laplace transform.

(17) Solve the IVP dN
dt = 0.05N, N(0) = 20000 using the Laplace transform.

(18) Solve the IVP y′+5y = 0, y(1) = 0 using the Laplace transform.

(19) Solve the IVP y′′+ y′+ y = 0, y(0) = 4, y′(0) =−3 using the Laplace transform.

(20) Solve the IVP y′+ y = 4cos(2x), y(0) = 0 using the Laplace transform.
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14.12 Problem Set 12

(1) Solve the system

u′−2v = 3,

v′+ v−u = −x2, u(0) = 0, v(0) =−1.

(2) Solve the system

u′+5u−12v = 0,

v′+2u−5v = 0, u(0) = 8, v(0) = 3.

(3) Solve the system

y′− z = 0,

y− z′ = 0, y(0) = 1, z(0) = 1.

(4) Solve the system

u′+4u−6v = 0,

v′+3u−5v = 0, u(0) = 3, v(0) = 2.

(5) Solve the system

y′+ z = x,

z′− y = 0, y(0) = 1, z(0) = 0.

(6) Solve the system

x′(t) = x(t)+2y(t)+3,

y′(t) = 4x(t)+5y(t)+6

that we solved in a previous tutorial but using Laplace transforms. Assume x(0) = 1,
y(0) =−1.

(7) Solve the system

x′(t) = 3x(t)+ y(t)+4t −1,

y′(t) = 2x(t)− y(t)+ t +2
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using Laplace transforms. Assume x(0) = 0, y(0) = 1.

(8) Use Laplace transforms to solve the system

y′+ z = x,

z′+4y = 0,

y(0) = 1, z′(0) =−1. See [3, pp. 250].

(9) Use Laplace transforms to solve the system

z′′+ y′ = cos(x),

y′′− z = sin(x),

z(0) =−1, z′(0) =−1, y(0) = 1, y′(0) = 0. See [3, pp. 251].

(5) Use the convolution theorem to find the inverse Laplace transform of H(s) = 1
s2(s+1) .

(6) Use the convolution theorem to find the inverse Laplace transform of H(s) = 1
(s2+1)2 .

(10) Find the Laplace transform of u(t −1)
(
t2 +2

)
. See [11, pp. 239].

(8) A harmonic oscillator with natural frequency ω0 = 2, initially at rest, is forced by
the ramp function

f (t) =

{
t if 0 < t < 1,
0 if t > 1.

Solve the IVP

x′′+4x = f (t), x(0) = 0, x′(0) = 0.

See [11, pp. 240].
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14.13 Problem Set 13

Exercises 1 to 9 are found in [3].

(1) Verify that u(x, t) =
(
55+22x6 + x12)sin(2t) satisfies the PDE

12x4utt − x5uxtt =−4uxx.

(2) A function is called harmonic if it satisfies Laplace’s equation; that is, uxx+uyy = 0.
Which of the following functions are harmonic:

(a) 3x+4y+1,

(b) e3x cos(3y),

(c) e3x cos(4y),

(d) log
(
x2 + y2),

(e) sin(ex)cos(ey).

(3) Find the general solution to ux = cos(y) if u(x,y) is a function of x and y.

(4) Find the general solution to uy = cos(y) if u(x,y) is a function of x and y.

(5) Find the general solution to uy = 3 if u(x,y) is a function of x and y, and u(x,0) =
4x+1.

(6) Find the general solution to ux = 2xy + 1 if u(x,y) is a function of x and y, and
u(0,y) = cosh(y).

(7) Find the general solution to uxx = 3 if u(x,y) is a function of x and y.

(8) Find the general solution to uxy = 8xy3 if u(x,y) is a function of x and y.

(9) Find the general solution to uxyx =−2 if u(x,y) is a function of x and y.

(10) Let u(x,y) represent the vertical displacement of a string of length π , which is placed
on the interval [0,π], at position x and time t. Assuming proper units for length,
times, and the constant k, the wave-equation models the displacement u(x, t):

utt = c2uxx.

Using the method of separation of variables, solve the equation for u(x, t) if the
boundary conditions

u(0, t) = u(π, t) = 0
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for t ≥ 0 are imposed, with initial displacement

u(x,0) = 5sin(3x),

and initial velocity
ut(x,0) = 0

for 0 ≤ x ≤ π .

(11) Solve the problem given in Question 10 via D’Alembert’s method.
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14.14 Problem Set 14

(1) Consider the steady state heat problem and the grid shown below.

(a) On the diagram, fill in the known temperatures at the grid points on the bound-
ary.

(b) Write down the equations that must be satisfied at the points u11, u23, and u41.

(c) The unknown temperatures are ordered by rows from left to right starting from
the bottom; i.e. u = (u11,u21, . . . ,u23)

T . Write the system of equations in the
form Au = b by filling in the following diagram.
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(2) Consider the problem of determining the steady-state heat distribution in a thin rect-
angular metal plate with dimensions 0.3 m. wide by 0.5 m. high. The temperature
T (x,y)◦ C along the boundaries of the plate are given by the equations

T (x,0) = x2 +15x+39, T (0,y) = 39−18y,

T (x,0.5) = 30, T (0.4,y) =−40y2 −7.18y+43.59.

The plate is in thermal equilibrium so that the temperature inside the plate satisfies

Txx(x,y)+Tyy(x,y) = 0.

Write a matrix equation whose solution approximates the temperature at the eight
interior coordinates (0.1a,0.1b), where a ∈ {1,2}, b ∈ {1,2,3,4}.

(3) Consider the problem of determining the steady-state heat distribution in a thin trian-
gular metal plate with width and height 4 metres. The temperature u(x,y)◦ C along
the three boundaries of the plate are given by the equations

u(x,0) = x2 +40,

u(4,y) = 56− y2 −8y,

u(x,x) = 40−3x2 +4x.

The plate is in thermal equilibrium so that the temperature inside the plate satisfies
Laplace’s equation. Write a system of equations for which the solution approximates
the temperature at the coordinates (2,1), (2,2), (2,3).
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14.15 Problem Set 15

Summary: To solve y′ = f (xn,yn), numerically, where h = ∆x,

• Euler’s Method:

xn+1 = xn +h,

yn+1 = yn +h f (xn,yn) .

• Modified Euler’s Method:

xn+1 = xn +h,

yn+1 = yn +
h
2
( f (xn,yn)+ f (xn +h,yn +h f (xn,yn))) .

• RK2:

xn+1 = xn +h,

k1 (h,xy,yn) = f (xn,yn) ,

k2 (h,xy,yn) = f
(

xn +
h
2
,yn +

h
2

k1 (h,xy,yn)

)
,

yn+1 = yn +hk2 (h,xy,yn) .

• RK4:

xn+1 = xn +h,

k1 (h,xy,yn) = f (xn,yn) ,

k2 (h,xy,yn) = f
(

xn +
h
2
,yn +

h
2

k1 (h,xy,yn)

)
,

k3 (h,xy,yn) = f
(

xn +
h
2
,yn +

h
2

k2 (h,xy,yn)

)
,

k4 (h,xy,yn) = f (xn +h,yn +hk3 (h,xy,yn)) ,

yn+1 = yn +
h
6
(k1 (h,xy,yn)+2k2 (h,xy,yn)+2k3 (h,xy,yn)+ k4 (h,xy,yn)) .
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(1) Solve the initial value problem y′ = y2 +1, y(0) = 0 analytically.

(2) Use Euler’s method to solve y′ = y2 +1, y(0) = 0 with h = 0.1 for x ∈ [0,1].

(3) Use RK4 to solve y′ = y2 +1, y(0) = 0 with h = 0.1 for x ∈ [0,1].

(4) Use RK4 to solve y′ = y2 + 1, y(0) = 0 with h = 0.1 for y(1) without entering all
previous values of y(x) into memory.

(5) Solve the initial value problem y′ =−y, y(0) = 0 analytically.

(6) Use Euler’s method to solve y′ =−y, y(0) = 0 with h = 0.1 for x ∈ [0,1].

(7) Solve the initial value problem y′ = 5x4, y(0) = 0 analytically.

(8) Use RK4 to solve y′ = 5x4, y(0) = 0 with h = 0.1 for x ∈ [0,1].
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14.16 Problem Set 16

(1) An epidemic spreads from 20% of the population to affecting 70% of the population
in just 12 days. Use the logistic equation d p

dt = rp(1− p).

(a) Estimate the value of the intrinsic growth rate r.

(b) After how many days was exactly half the population infected?

(c) What proportion of the population is infected after 20 days?

(2) Solve the IVP

y′ =
x2 + y2

xy
, y(1) =−2.

(3) Find the general solution to the ODE y′+ xy = 6x
√

y using methods for linear 1st
order ODEs.

(4) Solve t2 − x− tx′ = 0 using methods for exact equations.

(5) Solve the IVP y′′−3y′−5y = 0, y(0) = 1, y′(0) =−1.

(6) Find the general solution to y′′−2y′+ y = 4cos(x).

(7) Consider the homogeneous ODE y′′+ 3y′+ 2y = 0, which has the general solution

y(t) = Ae−t +Be−2t . Let z = y′ and Y =

(
y
z

)
.

(a) Write the ODE as a coupled first order system Y ′ = AY , where A is a 2× 2
matrix.

(b) Find the eigenvalues λ1 and λ2 of the matrix A.

(c) Find the eigenvectors x1 and x2 of the matrix A.

(d) Simplify the general solution Y (t) = c1eλ1tx1 + c2eλ2tx2

(8) Consider the homogeneous ODE y′′+2y′+ y = 0, which has the general solution

y(t) = (A+Bt)e−t , y′(t) =−(A−B+Bt)e−t .
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Let z = y′ and Y =

(
y
z

)
.

(a) Write the ODE as a coupled first order system Y ′ = AY , where A is a 2× 2
matrix.

(b) Find the eigenvalues λ1 and λ2 of the matrix A.

(c) Find the eigenvectors x1 and x2 of the matrix A.

(d) Write an expression for the general solution Y (t).

(9) A pond initially contains x = 3 carnivorous piranha fish and y = 12 electric yellow
cichlids, known to give birth from their mouth - dozens per female every few months.
The system is governed by the equations

x′(t) = 3x−4xy,

y′(t) = xy−9y.

(a) Determine critical points of the system.

(b) Calculate the Jacobian matrix at the critical points.

(c) Classify the stability of the linearized system(s).

(d) Determine the long term behaviour of the system.

(10) Solve the following IVP using the Laplace transform:

x′′(t)−5x′(t)+6x(t) = 2, x(0) = 0, x′(0) = 0.

(11) Use the convolution theorem to find the inverse Laplace transform of H(s) = 1
s2(s+1) .

(12) Find the Laplace transform of u(t −1)
(
t2 +2

)
.

(13) A metal rod of length L has fixed temperature 0 at each end. Initially the temperature
is dependent on the position

u(x,0) = 6sin
(

π

L
x
)
.

Solve the following BVP

ut = kuxx, u(0, t) = 0, u(L, t) = 0, u(x,0) = 6sin
(

π

L
x
)
,

where k > 0.
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(14) A wave of speed 3 metres per second travels through a spring with initial conditions

u(x,0) = x3 + x2 −5x+4+ cos(x)+5sin(x),

ut(x,0) = −9x3 +6x−27−15cos(x)−3sin(x).

Calculate the wave function u(x, t).

(15) Consider the problem of determining the steady-state heat distribution in a thin rect-
angular metal plate with dimensions 0.3 m. wide by 0.5 m. high. The temperature
T (x,y)◦ C along the boundaries of the plate are given by the equations

T (x,0) = x2 +15x+39, T (0,y) = 39−18y,

T (x,0.5) = 30, T (0.3,y) =−40y2 −7.18y+43.59.

The plate is in thermal equilibrium so that the temperature inside the plate satisfies

Txx(x,y)+Tyy(x,y) = 0.

Write a matrix equation whose solution approximates the temperature at the eight
interior coordinates (0.1a,0.1b), where a ∈ {1,2}, b ∈ {1,2,3,4}.
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