Elementary Calculus Tutorials and Examples

Contents

1	Tutorial 1	3
	1.1 Tutorial 1 Solutions	5
2	Tutorial 2	11
	2.1 Tutorial 2 Solutions	14
3	Tutorial 3	26
	3.1 Tutorial 3 Solutions	28
4	Tutorial 4	41
	4.1 Tutorial 4 Solutions	43
5	Tutorial 5	44
	5.1 Tutorial 5 Solutions	46
6	Tutorial 6	47
	6.1 Tutorial 6 Solutions	49
7	Tutorial 7	50
	7.1 Tutorial 7 Solutions	52
8	Tutorial 8	61
	8.1 Tutorial 8 Solutions	62
9	Tutorial 9	69
10	Tutorial 10 - Introduction to Differential Equations	71
11	Tutorial 11 - 1st Order Linear Differential Equations, 2nd Order Homogeneous Equation and Euler's Method	ns, 72
12	Tutorial 12 - Exercises in Complex Numbers and Second Order Differential Equations th Use Them	at 73
13	Books & Notes	75

1 Tutorial 1

The following exercises are found in Washington [2, S. 3.1, 3.2, 5.1].

- (1) Three vertices of a rectangle are (5,2), (-1,2), (-1,4). What is the fourth?
- (2) Two vertices of an equilateral triangle are (7,1) and (2,1). What is the third vertex?
- (3) Where are all the points whose *x*-coordinate is equal to their *y*-coordinates?
- (4) What is the x-coordinate of all the points on the y-axis?
- (5) What is the y-coordinate of all the points on the x-axis?
- (6) If the point (a,b) is in the second quadrant, in which quadrant is the point (a,-b)?
- (7) Join the points (-1,-2), (-4,-2), (7,2), (2,2), (-1,-2) in order with straight line segments. Find the distance between successive points and then identify the geometric figure formed.
- (8) For the function f(x) = 2x + 1, find f(1) and f(-1).
- (9) For the function f(x) = 5, find f(-2) and f(0.4).
- (10) For the function $g(t) = at^2 a^2t$, find $g\left(-\frac{1}{2}\right)$ and g(a).
- (11) For the function $F(H) = \frac{2H^2}{H + 36.85}$, find F(-84.466).
- (12) Find the slope through the points (1,0) and (3,8).
- (13) Find the slope through the points (-1,2) and (2,10).
- (14) Find the slope through the points (5, -3) and (-2, 5).
- (15) Find the slope through the points (3.2, -4.1) and (-1.5, -10.2).

- (16) For the line x + 2y = 4, find the x-intercept, the y-intercept, and sketch.
- (17) For the line 4x 3y = 12, find the *x*-intercept, the *y*-intercept, and sketch.
- (18) Calculate a few points for the function $y = x^2$ to sketch the function on the interval [-1, 10]. Take care with the scale of the y-axis.
- (19) Calculate the average slope of $y = x^2$ over the interval [1, 10], [1, 5], [1, 3], and [1, 1.1]. Draw each of the line segments on the graph.
- (20) It is not possible to calculate the average slope over the interval [1,1]. Why not?

1.1 Tutorial 1 Solutions

(1) Three vertices of a rectangle are (5,2), (-1,2), (-1,4). What is the fourth?

Sol.: The line segment from (5,2) to (-1,2) is perpendicular to the line segment from (-1,2) to (-1,4). The fourth point can only be the point (5,4).

(2) Two vertices of an equilateral triangle are (7,1) and (2,1). What is the third vertex?

Sol.: The distance between (7,1) and (2,1) is

$$\sqrt{(7-2)^2 + (1-1)^2} = 5.$$

Letting (x, y) be the coordinates of the third point, it must be equidistant from each of (7, 1) and (2, 1). That is, the square of that distance is

$$5^2 = (x-7)^2 + (1-y)^2,$$

 $5^2 = (x-2)^2 + (1-y)^2.$

Taking the difference,

$$0 = (x-7)^2 - (x-2)^2,$$

= 45 - 10x

so that x = 4.5 and y satisfies

$$(4.5-2)^2 + (1-y)^2 - 25 = 0.$$

Simplifying,

$$(y-1)^2 = 18.75 = \frac{3 \times 25}{4}$$

so that

$$y = 1 \pm \frac{5\sqrt{3}}{2}.$$

We have two possibilities for the third point: $\left(\frac{9}{2}, 1 \pm \frac{5\sqrt{3}}{2}\right)$.

(3) Where are all the points whose *x*-coordinate is equal to their *y*-coordinates?

Sol.: Let $S = \{(x,y) : y = x, x, y \text{ are real numbers } \}$. The set S consists of the line of points y = x.

(4) What is the x-coordinate of all the points on the y-axis?

Sol.: All points that are on the y-axis are the points on the line x = 0,

$$S = \{(0, y) : y \text{ is a real number } \}.$$

(5) What is the y-coordinate of all the points on the x-axis?

Sol.: All points that are on the *x*-axis are the points on the line y = 0, $S = \{(x,0) : x \text{ is a real number } \}.$

(6) If the point (a,b) is in the second quadrant, in which quadrant is the point (a,-b)?

Sol.: The point (a, -b) is a reflection of the point (a, b) about the x-axis. It follows that if (a, b) is in the second quadrant, then (a, -b) is in the third quadrant.

(7) Join the points (-1,-2), (-4,-2), (7,2), (2,2), (-1,-2) in order with straight line segments. Find the distance between successive points and then identify the geometric figure formed.

Sol.: The distances between successive points is 3,

$$\sqrt{(7-(-4))^2+(2-(-2))^2} = \sqrt{137}$$

, 5, and

$$\sqrt{(2-(-1))^2+(2-(-2))^2}=5.$$

See the image below.

(8) For the function f(x) = 2x + 1, find f(1) and f(-1).

Sol.:
$$f(1) = 2 \times 1 + 1 = 3$$
 and $f(-1) = 2 \times (-1) + 1 = -1$.

(9) For the function f(x) = 5, find f(-2) and f(0.4).

Sol.:
$$f(-2) = 5 = f(0.4)$$
.

(10) For the function $g(t) = at^2 - a^2t$, find $g\left(-\frac{1}{2}\right)$ and g(a).

Sol.:

$$g\left(-\frac{1}{2}\right) = a\left(-\frac{1}{2}\right)^{2} - a^{2}\left(-\frac{1}{2}\right),$$

$$= \frac{1}{4}a + \frac{1}{2}a^{2},$$

$$g(a) = a \cdot a^{2} - a^{2} \cdot a,$$

$$= a^{3} - a^{3},$$

= 0.

(11) For the function $F(H) = \frac{2H^2}{H + 36.85}$, find F(-84.466). **Sol. :**

$$F(-84.466) = \frac{2(-84.466)^2}{-84.466 + 36.85},$$

= -299.668395...

(12) Find the slope through the points (1,0) and (3,8).

Sol.: Let $(x_1, y_1) = (1, 0)$ and $(x_2, y_2) = (3, 8)$. The slope of the line segment between these points is

$$m = \frac{y_2 - y_1}{x_2 - x_1},$$

$$= \frac{8 - 0}{3 - 1},$$

$$= \frac{8}{2},$$

$$= 4.$$

(13) Find the slope through the points (-1,2) and (2,10).

Sol.: Let $(x_1, y_1) = (-1, 2)$ and $(x_2, y_2) = (2, 10)$. The slope of the

line segment between these points is

$$m = \frac{y_2 - y_1}{x_2 - x_1},$$

$$= \frac{10 - 2}{2 - (-1)},$$

$$= \frac{8}{3}.$$

(14) Find the slope through the points (5, -3) and (-2, 5).

Sol.: Let $(x_1, y_1) = (5, -3)$ and $(x_2, y_2) = (-2, 5)$. The slope of the line segment between these points is

$$m = \frac{y_2 - y_1}{x_2 - x_1},$$

$$= \frac{5 - (-3)}{-2 - 5},$$

$$= -\frac{8}{7}.$$

(15) Find the slope through the points (3.2, -4.1) and (-1.5, -10.2).

Sol.: Let $(x_1, y_1) = (3.2, -4.1)$ and $(x_2, y_2) = (-1.5, -10.2)$. The slope of the line segment between these points is

$$m = \frac{y_2 - y_1}{x_2 - x_1},$$

$$= \frac{-10.2 - (-4.1)}{-1.5 - 3.2},$$

$$= \frac{-6.1}{-4.7},$$

$$= \frac{61}{47},$$

$$= 1.29787234....$$

(16) For the line x + 2y = 4, find the x-intercept, the y-intercept, and sketch.

Sol.: When y = 0, x = 4 so the x-intercept is the point (4,0). When x = 0, 2y = 4 so y = 2 and the y-intercept is the point (0,2).

(17) For the line 4x - 3y = 12, find the *x*-intercept, the *y*-intercept, and sketch.

Sol.: When y = 0, 4x = 12 so x = 3 so the *x*-intercept is the point (3,0). When x = 0, -3y = 12 so y = -4 and the *y*-intercept is the point (0,-4).

2 Tutorial 2

The following exercises are found in Washington [2].

- (1) Simplify $2b^4b^2$.
- (2) Simplify $3k^5k$.
- (3) Simplify $\frac{m^5}{m^3}$.
- (4) Simplify $\frac{3s}{s^4}$.
- (5) Simplify $(x^8)^3$.
- (6) Simplify $(ax)^5$.
- (7) Simplify $\left(\frac{3}{n^3}\right)^3$.
- (8) Simplify with rational denominators $\sqrt{10}\sqrt{2}$.
- (9) Simplify with rational denominators $\sqrt{7}\sqrt{21}$.
- (10) Simplify with rational denominators $(5\sqrt{2})^2$.
- (11) Simplify with rational denominators $(2-\sqrt{5})(2+\sqrt{5})$.
- **(12)** Factor 7x 7y.
- (13) Factor 6b 24.
- **(14)** Factor $15x^2 3x$.
- (15) Factor $90p^3 15p^2$.
- **(16)** Factor 2x + 4y 8z.
- (17) Factor $x^2 9$.
- **(18)** Factor $x^4 16$.

- (19) Factor $x^2 + 6x + 5$.
- (20) Factor $s^2 s 56$.
- **(21)** Factor $x^2 + 2x + 1$.
- (22) Factor $2n^2 13n 7$.
- (23) Graph y = 2x 4.
- **(24)** Graph s = 7 2t.
- (25) Graph $y = x^2$.
- **(26)** Graph $V = s^3$.
- (27) For which values of x is f(x) = 6x 15 continuous?
- (28) For which values of x is $f(x) = \frac{2}{x^2 7x}$ continuous?
- **(29)** Evaluate $\lim_{x \to 3} (9x 16)$.
- (30) Evaluate $\lim_{x \to 5} \sqrt{x^2 9}$.
- (31) Evaluate $\lim_{x \to 0} \frac{x^2 + x}{x}$.
- (32) Evaluate $\lim_{x \longrightarrow -1} \frac{x^2-1}{3x+3}$.
- (33) Calculate y' using the limit definition for y = 5x 2.
- (34) Calculate y' using the limit definition for $y = x^2 1$.
- (35) Calculate y' using the limit definition for $y = x^3 + 4x 3\pi$.
- (36) Calculate y' for $y = 3x^2 2x$ and evaluate at the point (-1,5).
- (37) At what point on the curve of $y = 2x^2 16x$ is there a tangent line that is horizontal?
- (38) Find the derivative of $y = x^8$.
- (39) Find the derivative of $f(x) = -4x^{11}$.

- (40) Find the derivative of $y = 5x^4 3\pi$.
- (41) Find the derivative of $p = 5r^3 2r + 1$.
- (42) Find the derivative of $y = 6x^2 8x + 1$ at the point (2,9).
- (43) Find the derivative of $y = 2x^3 + 9x 7$ at the point (-2, -41).
- (44) Find the slope of the tangent of $y = 35x 2x^4$ when x = 2.
- (45) Find the derivative of $y = 6\sqrt{x}$.
- (46) Find the derivative of $v = \frac{3}{5t^3}$.
- (47) Find the derivative of $y = \frac{3}{\sqrt[3]{x}} + 4x^2$.
- (48) Find the derivative of $y = x\sqrt{x} \frac{6}{x}$.
- **(49)** Find the derivative of $f(x) = 2x^{-3} 3x^{-2}$.
- **(50)** For $y = x^3 + 7x^2$, find y' and y''.
- **(51)** For $y = x^3 6x^4$, find y' and y''.
- **(52)** For $y = 2x^7 x^6 3x$, find y''.
- **(53)** For $y = 2x + \sqrt{x}$, find y''.

2.1 Tutorial 2 Solutions

(1) Simplify $2b^4b^2$.

Sol.:
$$2b^4b^2 = 2b^{4+2} = 2b^6$$
.

(2) Simplify $3k^5k$.

Sol. :
$$3k^5k = 3k^{5+1} = 3k^6$$
.

(3) Simplify $\frac{m^5}{m^3}$.

Sol.:
$$\frac{m^5}{m^3} = m^{5-3} = m^2$$
.

(4) Simplify $\frac{3s}{s^4}$.

Sol.:
$$\frac{3s}{s^4} = 3s^{1-4} = 3s^{-3} = \frac{3}{s^3}$$
.

(5) Simplify $(x^8)^3$.

Sol.:
$$(x^8)^3 = x^{8 \times 3} = x^{24}$$
.

(6) Simplify $(ax)^5$.

Sol. :
$$(ax)^5 = a^5x^5$$
.

(7) Simplify $\left(\frac{3}{n^3}\right)^3$.

Sol.:
$$\left(\frac{3}{n^3}\right)^3 = \frac{3^3}{n^{3\times 3}} = \frac{27}{n^9}$$
.

(8) Simplify with rational denominators $\sqrt{10}\sqrt{2}$.

Sol.:
$$\sqrt{10}\sqrt{2} = \sqrt{2^2 \times 5} = 2\sqrt{5}$$
.

(9) Simplify with rational denominators $\sqrt{7}\sqrt{21}$.

Sol.:
$$\sqrt{7}\sqrt{21} = \sqrt{7^2 \times 3} = 7\sqrt{3}$$
.

(10) Simplify with rational denominators $(5\sqrt{2})^2$.

Sol.:
$$(5\sqrt{2})^2 = 5^2\sqrt{2}^2 = 25 \times 2 = 50.$$

(11) Simplify with rational denominators $\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)$.

Sol.:
$$(2-\sqrt{5})(2+\sqrt{5})=2^2-\sqrt{5}^2=4-5=-1.$$

(12) Factor 7x - 7y.

Sol. :
$$7x - 7y = 7(x - y)$$
.

(13) Factor 6b - 24.

Sol.:
$$6b - 24 = 6(b - 4)$$
.

(14) Factor $15x^2 - 3x$.

Sol.:
$$15x^2 - 3x = 3x(5x - 1)$$
.

(15) Factor $90p^3 - 15p^2$.

Sol.:
$$90p^3 - 15p^2 = 15p^2(6p - 1)$$
.

(16) Factor 2x + 4y - 8z.

Sol.:
$$2x + 4y - 8z = 2(x + 2y - 4z)$$
.

(17) Factor $x^2 - 9$.

Sol.:
$$x^2 - 9 = (x+3)(x-3)$$
.

(18) Factor $x^4 - 16$.

Sol.:
$$x^4 - 16 = (x^2 + 4)(x^2 - 4)$$
.

(19) Factor $x^2 + 6x + 5$.

Sol.:
$$x^2 + 6x + 5 = (x+1)(x+5)$$
.

(20) Factor $s^2 - s - 56$.

Sol.:
$$s^2 - s - 56 = (s+7)(s-8)$$
.

(21) Factor $x^2 + 2x + 1$.

Sol.:
$$x^2 + 2x + 1 = (x+1)^2$$
.

(22) Factor $2n^2 - 13n - 7$.

Sol.:
$$2n^2 - 13n - 7 = (2n+1)(n-7)$$
.

(23) Graph y = 2x - 4.

Sol.:

(24) Graph s = 7 - 2t.

Sol.:

(25) Graph $y = x^2$.

Sol.:

(26) Graph $V = s^3$.

Sol.:

(27) For which values of x is f(x) = 6x - 15 continuous?

Sol.: f(x) is continuous for all real numbers: $x \in (-\infty, \infty)$ or we can write f(x) is continuous for all for all $x \in \mathbb{R}$.

(28) For which values of x is $f(x) = \frac{2}{x^2 - 7x}$ continuous?

Sol.: $f(x) = \frac{2}{x(x-7)}$ is continuous at all points x that are real numbers not equal to 0 or 7 since f(x) is undefined for zero denominators. Alternatively we can write f(x) is continuous for all $x \in \mathbb{R} \setminus \{0,7\}$. The intervals over which f(x) is continuous are $(-\infty,0)$, (0,7), and $(7,\infty)$.

(29) Evaluate $\lim_{x \to 3} (9x - 16)$.

Sol.:
$$\lim_{x \to 3} (9x - 16) = 9 \times 3 - 16 = 11.$$

(30) Evaluate
$$\lim_{x \to 5} \sqrt{x^2 - 9}$$
.

Sol.:
$$\lim_{x \to 5} \sqrt{x^2 - 9} = \sqrt{25 - 9} = \sqrt{16} = 4$$
.

(31) Evaluate $\lim_{x \to 0} \frac{x^2 + x}{x}$.

Sol.:
$$\lim_{x \to 0} \frac{x^2 + x}{x} = \lim_{x \to 0} \frac{x(x+1)}{x} = \lim_{x \to 0} (x+1) = 1.$$

(32) Evaluate $\lim_{x \to -1} \frac{x^2 - 1}{3x + 3}$.

Sol.:
$$\lim_{x \to -1} \frac{x^2 - 1}{3x + 3} = \lim_{x \to -1} \frac{(x + 1)(x - 1)}{3(x + 1)} = \lim_{x \to -1} \frac{(x - 1)}{3} = -\frac{2}{3}$$
.

(33) Calculate y' using the limit definition for y = 5x - 2.

Sol.:

$$y' = \lim_{h \to 0} \frac{1}{h} (f(x+h) - f(x)),$$

$$= \lim_{h \to 0} \frac{1}{h} (5(x+h) - 2 - (5x - 2)),$$

$$= \lim_{h \to 0} \frac{1}{h} (5x + 5h - 2 - 5x + 2),$$

$$= \lim_{h \to 0} \frac{1}{h} (5h),$$

$$= \lim_{h \to 0} 5,$$

$$= 5.$$

(34) Calculate y' using the limit definition for $y = x^2 - 1$.

Sol.:

$$y' = \lim_{h \to 0} \frac{1}{h} (f(x+h) - f(x)),$$

$$= \lim_{h \to 0} \frac{1}{h} ((x+h)^2 - 1 - (x^2 - 1)),$$

$$= \lim_{h \to 0} \frac{1}{h} (x^2 + 2xh + h^2 - 1 - x^2 + 1),$$

$$= \lim_{h \to 0} \frac{1}{h} (2xh + h^2),$$

$$= \lim_{h \to 0} \frac{1}{h} h (2x + h),$$

$$= \lim_{h \to 0} (2x + h),$$

$$= 2x.$$

(35) Calculate y' using the limit definition for $y = x^3 + 4x - 3\pi$.

Sol.: Sol.:

$$y' = \lim_{h \to 0} \frac{1}{h} (f(x+h) - f(x)),$$

$$= \lim_{h \to 0} \frac{1}{h} ((x+h)^3 + 4(x+h) - 3\pi - (x^3 + 4x - 3\pi)),$$

$$= \lim_{h \to 0} \frac{1}{h} (x^3 + 3x^2h + 3xh^2 + h^3 + 4x + 4h - 3\pi - x^3 - 4x + 3\pi),$$

$$= \lim_{h \to 0} \frac{1}{h} (3x^2h + 3xh^2 + h^3 + 4h),$$

$$= \lim_{h \to 0} \frac{1}{h} h (3x^2 + 3xh + h^2 + 4),$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 + 4),$$

$$= 3x^2 + 4.$$

(36) Calculate y' for $y = 3x^2 - 2x$ and evaluate at the point (-1,5).

Sol.: $y'(x) = \frac{d}{dx}(3x^2 - 2x) = 6x - 2$. It follows that y'(-1) = 6(-1) + 5 = -1. Hence the slope of the curve $y = 3x^2 - 2x$ is -1 at the point (-1,5).

(37) At what point on the curve of $y = 2x^2 - 16x$ is there a tangent line that is horizontal?

Sol.: y'(x) = 4x - 16. When y'(x) = 0 we have 4(x - 4) = 0 so that x = 4. The tangent line that is horizontal at the point (4, -32).

(38) Find the derivative of $y = x^8$.

Sol.:
$$y'(x) = \frac{d}{dx}x^8 = 8x^{8-1} = 8x^7$$
.

(39) Find the derivative of $f(x) = -4x^{11}$.

Sol.:
$$f'(x) = -4 \times 11x^{11-1} = -44x^{10}$$
.

(40) Find the derivative of $y = 5x^4 - 3\pi$.

Sol.:
$$y'(x) = 5 \times 4x^{4-1} - 0 = 20x^3$$
.

(41) Find the derivative of $p = 5r^3 - 2r + 1$.

Sol.:
$$p'(r) = 5 \times 3r^{3-1} - 2 = 15r^2 - 2$$
.

(42) Find the derivative of $y = 6x^2 - 8x + 1$ at the point (2,9).

Sol.:
$$y'(x) = 12x - 8$$
 so $y'(2) = 12 \times 2 - 8 = 24 - 8 = 16$.

(43) Find the derivative of $y = 2x^3 + 9x - 7$ at the point (-2, -41).

Sol.:
$$y'(x) = 6x^2 + 9$$
 so $y'(-2) = 6 \times (-2)^2 + 9 = 24 + 9 = 33$.

(44) Find the slope of the tangent of $y = 35x - 2x^4$ when x = 2.

Sol.:
$$y'(x) = 35 - 8x^3$$
 so $y'(2) = 35 - 8 \times 2^3 = 35 - 64 = -29$.

(45) Find the derivative of $y = 6\sqrt{x}$.

Sol.: We first write $y = 6x^{1/2}$. Then

$$y'(x) = 6 \times \frac{1}{2}x^{\frac{1}{2}-1} = 3x^{-\frac{1}{2}} = \frac{3}{\sqrt{x}}.$$

(46) Find the derivative of $v = \frac{3}{5t^3}$.

Sol.: We have
$$v = \frac{3}{5}t^{-3}$$
 so that $v'(t) = \frac{-9}{5}t^{-4} = -\frac{9}{5t^4}$.

(47) Find the derivative of $y = \frac{3}{\sqrt[3]{x}} + 4x^2$.

Sol.:
$$y'(x) = \frac{d}{dx} \left(3x^{-\frac{1}{3}} + 4x^2 \right) = 3 \times \frac{-1}{3} x^{-\frac{4}{3}} + 4 \times 2x^1 = -x^{-\frac{4}{3}} + 8x = -\frac{1}{x^{\frac{3}{3}x}} + 8x.$$

(48) Find the derivative of $y = x\sqrt{x} - \frac{6}{x}$.

Sol.:
$$y'(x) = \frac{d}{dx} \left(x^{\frac{3}{2}} - 6x^{-1} \right) = \frac{3}{2} x^{\frac{1}{2}} + 6x^{-2} = \frac{3}{2} \sqrt{x} + \frac{6}{x^2}.$$

(49) Find the derivative of $f(x) = 2x^{-3} - 3x^{-2}$.

Sol.:
$$f'(x) = 2(-3)x^{-3-1} - 3(-2)x^{-2-1} = -6x^{-4} + 6x^{-3}$$
.

(50) For $y = x^3 + 7x^2$, find y' and y''.

Sol.:

$$y'(x) = 3x^2 + 7(2)x^1 = 3x^2 + 14x.$$

$$y''(x) = 3(2)x + 14 = 6x + 14.$$

(51) For $y = x^3 - 6x^4$, find y' and y''.

Sol.:

$$y'(x) = 3x^2 - 6(4)x^3 = 3x^2 - 24x^3$$
.

$$y''(x) = 3(2)x^1 - 24(3)x^2 = 6x - 72x^2.$$

(52) For $y = 2x^7 - x^6 - 3x$, find y''.

Sol.:

$$y'(x) = 2(7)x^6 - 6x^5 - 3 = 14x^6 - 6x^5 - 3.$$

$$y''(x) = 14(6)x^5 - 6(5)x^4 = 84x^5 - 30x^4.$$

(53) For $y = 2x + \sqrt{x}$, find y''.

Sol.:

$$y'(x) = 2 + \frac{1}{2}x^{-\frac{1}{2}}.$$

$$y''(x) = \frac{1}{2} \left(-\frac{1}{2} \right) x^{-\frac{3}{2}} = -\frac{1}{4x\sqrt{x}}.$$

3 Tutorial 3

The following exercises are found in Washington [2].

- (1) Find the remainder by long division $(x^3 + 2x + 3) \div (x + 1)$.
- (2) Find the remainder by long division $(2x^4 10x^2 + 30x 60) \div (x+4)$.
- (3) Find the remainder by long division $(x^3 + 2x x 2) \div (x 1)$.
- (4) Find the remainder by long division $(x^5 + 4x^4 8) \div (x + 1)$.
- (5) Find the derivative of $f(x) = 3x x^4$.
- (6) Find the derivative of $s = 8t^5 + 5t^4$.
- (7) Find the second derivative of $r = 3\theta^2 \frac{20}{\sqrt{\theta}}$.
- (8) Use the product rule to calculate y' for $y = 2x^3 (3x^4 + x)$.
- (9) Use the product rule to calculate f'(x) for $f(x) = (3x-2)(4x^2+3)$.
- (10) Use the product rule to calculate f'(s) for $f(s) = (11s^2 + 3)(2s^2 1)$. Then expand to compute f'(s).
- (11) Use the product rule to calculate y' for $y = (3x^2 4x + 1)(5 6x^2)$. Then expand to compute y'.
- (12) Using the product rule, find the point(s) on the curve of

$$y = (2x^2 - 1)(1 - 4x)$$

for which the tangent is y = 4x - 1.

- (13) Use the quotient rule to calculate y', where $y = \frac{x}{2x+3}$.
- (14) Use the quotient rule to calculate y', where $y = \frac{e^2}{3x^2 5x}$.
- (15) Use the quotient rule to calculate y', where $y = \frac{33x}{4x^5 3x 4}$.

- (16) Use the quotient rule to calculate y', where $y = \frac{3x^3 8x}{2x^2 5x + 4}$.
- (17) Use the chain rule to calculate y', where $y = (1 5x)^{12}$.
- (18) Use the chain rule to calculate y', where $y = 8(1 6x)^{1.5}$.
- (19) Use the chain rule to calculate y', where $y = \sqrt[4]{1 8x^2}$.
- (20) Calculate f'(x), where $f(x) = (g(x))^n$, and g(x) is a function of x.
- (21) Calculate y'(x), where $y = \frac{\pi^3}{\sqrt{1-3x}}$.
- (22) Calculate y'(x), where $y = 9\sqrt[3]{4x^6 + 2}$.
- (23) Calculate y'(x), where $y = x^7(1-3x)^{15}$.
- **(24)** Calculate R'(T), where $R = \frac{2T^2}{\sqrt[3]{1+4T}}$.

3.1 Tutorial 3 Solutions

(1) Find the remainder by long division

$$(x^3 + 2x + 3) \div (x+1).$$

Sol.:

$$\begin{array}{r}
 x^2 - x + 3 \\
 \hline
 x^3 + 0x^2 + 2x + 3 \\
 -x^3 - x^2 \\
 \hline
 -x^2 + 2x \\
 \hline
 x^2 + x \\
 \hline
 3x + 3 \\
 -3x - 3 \\
 \hline
 0
 \end{array}$$

It follows that the remainder is 0. We have

$$(x+1)(x^2-x+3) = x^3+2x+3.$$

(2) Find the remainder by long division

$$(2x^4 - 10x^2 + 30x - 60) \div (x + 4).$$

Sol.:

$$\begin{array}{r}
2x^3 - 8x^2 + 22x - 58 \\
x + 4) \overline{)2x^4 + 0x^3 - 10x^2 + 30x - 60} \\
\underline{-2x^4 - 8x^3} \\
- 8x^3 - 10x^2 \\
\underline{-8x^3 - 10x^2} \\
\underline{-8x^3 + 32x^2} \\
22x^2 + 30x \\
\underline{-22x^2 - 88x} \\
-58x - 60 \\
\underline{58x + 232} \\
172
\end{array}$$

It follows that the remainder is 172. We have

$$(x+4)\left(2x^3 - 8x^2 + 22x - 58\right) + 172 = 2x^4 - 10x^2 + 30x - 232 + 172,$$

= $\left(2x^4 - 10x^2 + 30x - 60\right)$.

(3) Find the remainder by long division $(x^3 + 2x - x - 2) \div (x - 1)$.

Sol.:

$$\begin{array}{r}
 x^2 + x + 2 \\
 x - 1) \overline{)x^3 + 0x^2 + x - 2} \\
 \underline{-x^3 + x^2} \\
 \hline
 x^2 + x \\
 \underline{-x^2 + x} \\
 2x - 2 \\
 \underline{-2x + 2} \\
 \hline
 0
 \end{array}$$

It follows that the remainder is 0. We have

$$(x-1)(x^2+x+2) = (x^3+2x-x-2).$$

(4) Find the remainder by long division $(x^5 + 4x^4 - 8) \div (x + 1)$.

Sol.:

$$\begin{array}{r}
x^4 + 3x^3 - 3x^2 + 3x - 3 \\
x^5 + 4x^4 + 0x^3 + 0x^2 + 0x - 8 \\
\underline{-x^5 - x^4} \\
3x^4 + 0x^3 \\
\underline{-3x^4 - 3x^3} \\
-3x^3 + 0x^2 \\
\underline{3x^3 + 3x^2} \\
3x^2 + 0x \\
\underline{-3x^2 - 3x} \\
-3x - 8 \\
\underline{3x + 3} \\
-5
\end{array}$$

It follows that the remainder is -5. We have

$$(x+1)(x^4+3x^3-3x^2+3x-3)-5=(x^5+4x^4-8).$$

(5) Find the derivative of $f(x) = 3x - x^4$.

Sol.:
$$f'(x) = 3 - 4x^3$$
.

(6) Find the derivative of $s = 8t^5 + 5t^4$.

Sol.:
$$s'(t) = 40t^4 + 20t^3$$
.

(7) Find the second derivative of $r = 3\theta^2 - \frac{20}{\sqrt{\theta}}$.

Sol.:
$$r'(\theta) = 6\theta + 10\theta^{-\frac{3}{2}}$$
 so
$$r''(\theta) = 6 - 15\theta^{-\frac{5}{2}}.$$

(8) Use the product rule to calculate y' for $y = 2x^3 (3x^4 + x)$.

Sol.: We let $u = x^3$ and $v = 3x^4 + x$.

$$y'(x) = \frac{d}{dx} (2x^3 (3x^4 + x)),$$

$$= 2\frac{d}{dx} (x^3 (3x^4 + x)),$$

$$= 2\left(x^3 \frac{d}{dx} (3x^4 + x) + (3x^4 + x) \frac{d}{dx}x^3\right),$$

$$= 2\left(x^3 (12x^3 + 1) + (3x^4 + x) 3x^2\right),$$

$$= 2\left(12x^6 + x^3 + 9x^6 + 3x^3\right),$$

$$= 42x^6 + 8x^3.$$

(9) Use the product rule to calculate f'(x) for $f(x) = (3x - 2)(4x^2 + 3)$.

Sol.: We let u = 3x - 2 and $v = 4x^2 + 3$.

$$y'(x) = \frac{d}{dx}(3x-2)(4x^2+3),$$

$$= (3x-2)\frac{d}{dx}(4x^2+3) + (4x^2+3)\frac{d}{dx}(3x-2),$$

$$= (3x-2)(8x) + (4x^2+3)(3),$$

$$= 36x^2 - 16x + 9.$$

(10) Use the product rule to calculate f'(s) for

$$f(s) = (11s^2 + 3)(2s^2 - 1).$$

Then expand to compute f'(s).

Sol.: We let $u = 11s^2 + 3$ and $v = 2s^2 - 1$.

$$f'(s) = \frac{d}{ds} (11s^2 + 3) (2s^2 - 1),$$

$$= (2s^2 - 1) \frac{d}{ds} (11s^2 + 3) + (11s^2 + 3) \frac{d}{ds} (2s^2 - 1),$$

$$= (2s^2 - 1) (22s) + (11s^2 + 3) (4s),$$

$$= 88s^3 - 10s.$$

Alternatively,

$$f'(s) = \frac{d}{ds} (11s^2 + 3) (2s^2 - 1),$$

= $\frac{d}{ds} (22s^4 - 5s^2 - 3),$
= $88s^3 - 10s.$

(11) Use the product rule to calculate y' for $y = (3x^2 - 4x + 1)(5 - 6x^2)$. Then expand to compute y'.

Sol.: We let $u = 3x^2 - 4x + 1$ and $v = 5 - 6x^2$.

$$y'(x) = \frac{d}{dx} (3x^2 - 4x + 1) (5 - 6x^2),$$

$$= (3x^2 - 4x + 1) \frac{d}{dx} (5 - 6x^2) + (5 - 6x^2) \frac{d}{dx} (3x^2 - 4x + 1),$$

$$= (3x^2 - 4x + 1) (-12x) + (5 - 6x^2) (6x - 4),$$

$$= -72x^3 + 72x^2 + 18x - 20.$$

Alternatively,

$$y'(x) = \frac{d}{dx} (3x^2 - 4x + 1) (5 - 6x^2),$$

= $\frac{d}{dx} (-18x^4 + 24x^3 + 9x^2 - 20x + 5),$
= $-72x^3 + 72x^2 + 18x - 20.$

(12) Using the product rule, find the point(s) on the curve of

$$y = (2x^2 - 1)(1 - 4x)$$

for which the tangent is y = 4x - 1.

Sol.: We let $u = 2x^2 - 1$ and v = 1 - 4x.

$$y'(x) = \frac{d}{dx} (2x^2 - 1) (1 - 4x),$$

$$= (2x^2 - 1) \frac{d}{dx} (1 - 4x) + (1 - 4x) \frac{d}{dx} (2x^2 - 1),$$

$$= (2x^2 - 1) (-4) + (1 - 4x) (4x),$$

$$= -8x^2 + 4 + 4x - 16x^2,$$

$$= -24x^2 + 4x + 4,$$

Since the slope of the tangent y = 4x - 1 is equal to 4, we seek x such that y'(x) = 4. That is,

$$-24x^2 + 4x + 4 = 4$$
.

Simplifying, -4x(6x-1) = 0 and we see that we must have $x = \frac{1}{6}$ or x = 0. If $x = \frac{1}{6}$, then $y\left(\frac{1}{6}\right) = \left(2\left(\frac{1}{6}\right)^2 - 1\right)\left(1 - 4\left(\frac{1}{6}\right)\right) = -\frac{17}{54}$. However, the point $\left(\frac{1}{6}, -\frac{17}{54}\right)$ is not on the tangent line y = 4x - 1 so we cannot have $x = \frac{1}{6}$. If x = 0, then y(0) = (0 - 1)(1 - 0) = -1. The point

(0,-1) is on both the curve $y = (2x^2 - 1)(1 - 4x)$ and the tangent line y = 4x - 1. Hence (0,-1) is the required point.

(13) Use the quotient rule to calculate y', where $y = \frac{x}{2x+3}$.

Sol.: We let u = x and v = 2x + 3 so that $y = \frac{u}{v}$ and $y' = \frac{1}{v^2} \left(v \frac{du}{dx} - u \frac{dv}{dx} \right)$.

$$y'(x) = \frac{d}{dx} \frac{x}{2x+3},$$

$$= \frac{1}{(2x+3)^2} \left((2x+3) \frac{d}{dx} x - x \frac{d}{dx} (2x+3) \right),$$

$$= \frac{1}{(2x+3)^2} (2x+3-2x),$$

$$= \frac{3}{(2x+3)^2}.$$

(14) Use the quotient rule to calculate y', where $y = \frac{e^2}{3x^2 - 5x}$.

Sol.: We let $u = e^2$ and $v = 3x^2 - 5x$ so that $y = \frac{u}{v}$ and $y' = \frac{1}{v^2} \left(v \frac{du}{dx} - u \frac{dv}{dx} \right)$.

$$y'(x) = \frac{d}{dx} \frac{e^2}{3x^2 - 5x},$$

$$= \frac{1}{(3x^2 - 5x)^2} \left((3x^2 - 5x) \frac{d}{dx} e^2 - e^2 \frac{d}{dx} (3x^2 - 5x) \right),$$

$$= \frac{1}{(3x^2 - 5x)^2} \left((3x^2 - 5x) 0 - e^2 (6x - 5) \right),$$

$$= \frac{-e^2 (6x - 5)}{(3x^2 - 5x)^2}.$$

(15) Use the quotient rule to calculate y', where $y = \frac{33x}{4x^5 - 3x - 4}$.

Sol.: We let u = 33x and $v = 4x^5 - 3x - 4$ so that $y = \frac{u}{v}$ and $y' = \frac{1}{v^2} \left(v \frac{du}{dx} - u \frac{dv}{dx} \right)$.

$$y'(x) = \frac{d}{dx} \frac{33x}{4x^5 - 3x - 4},$$

$$= \frac{1}{(4x^5 - 3x - 4)^2} \left(\left(4x^5 - 3x - 4 \right) \frac{d}{dx} (33x) - (33x) \frac{d}{dx} \left(4x^5 - 3x - 4 \right) \right),$$

$$= \frac{1}{(4x^5 - 3x - 4)^2} \left(33 \left(4x^5 - 3x - 4 \right) - (33x) \left(20x^4 - 3 \right) \right),$$

$$= \frac{-528x^5 - 132}{(4x^5 - 3x - 4)^2}.$$

(16) Use the quotient rule to calculate y', where $y = \frac{3x^3 - 8x}{2x^2 - 5x + 4}$.

Sol.: We let $u = 3x^3 - 8x$ and $v = 2x^2 - 5x + 4$ so that $y = \frac{u}{v}$ and $y' = \frac{1}{v^2} \left(v \frac{du}{dx} - u \frac{dv}{dx} \right)$.

$$y'(x) = \frac{d}{dx} \frac{3x^3 - 8x}{2x^2 - 5x + 4},$$

$$= \frac{1}{(2x^2 - 5x + 4)^2} \left((2x^2 - 5x + 4) \frac{d}{dx} (3x^3 - 8x) - (3x^3 - 8x) \frac{d}{dx} (2x^2 - 5x + 4) \right),$$

$$= \frac{1}{(2x^2 - 5x + 4)^2} \left((2x^2 - 5x + 4) (9x^2 - 8) - (3x^3 - 8x) (4x - 5) \right),$$

$$= \frac{(6x^4 - 30x^3 + 52x^2 - 32)}{(2x^2 - 5x + 4)^2}.$$

(17) Use the chain rule to calculate y', where $y = (1 - 5x)^{12}$.

Sol.: Let u = 1 - 5x. Then

$$y'(x) = \frac{dy}{dx},$$

$$= \frac{dy}{du} \frac{du}{dx},$$

$$= \frac{du^{12}}{du} \frac{d}{dx} (1 - 5x),$$

$$= 12u^{11} (-5),$$

$$= 60(1 - 5x)^{11}.$$

(18) Use the chain rule to calculate y', where $y = 8(1 - 6x)^{1.5}$.

Sol.: Let u = 1 - 6x. Then

$$y'(x) = \frac{d}{dx}8(1-6x)^{1.5},$$

$$= 8\frac{du^{1.5}}{du}\frac{du}{dx},$$

$$= 8(1.5)u^{\frac{1}{2}}(-6),$$

$$= -72\sqrt{1-6x}.$$

(19) Use the chain rule to calculate y', where $y = \sqrt[4]{1 - 8x^2}$.

Sol.: We can write $y = (1 - 8x^2)^{1/4}$ and let $u = 1 - 8x^2$ so that $y = u^{1/4}$. Then

$$y'(x) = \frac{dy}{dx},$$

$$= \frac{dy}{du} \frac{du}{dx},$$

$$= \frac{1}{4} u^{-\frac{3}{4}} (-16x),$$

$$= -4x (1 - 8x^{2})^{-\frac{3}{4}}.$$

(20) Calculate f'(x), where $f(x) = (g(x))^n$, and g(x) is a function of x.

Sol.:

$$f'(x) = \frac{d}{dg}(g(x))^n g'(x),$$

= $n(g(x))^{n-1} g'(x).$

(21) Calculate y'(x), where $y = \frac{\pi^3}{\sqrt{1-3x}}$.

Sol.:

$$y'(x) = \pi^{3} \frac{d}{dx} (1 - 3x)^{\frac{1}{2}},$$

$$= \pi^{3} \frac{d}{d(1 - 3x)} (1 - 3x)^{\frac{1}{2}} \frac{d}{dx} (1 - 3x),$$

$$= \pi^{3} \frac{1}{2} (1 - 3x)^{-\frac{1}{2}} (-3),$$

$$= \frac{-3\pi^{3}}{2} (1 - 3x)^{-\frac{1}{2}},$$

$$= \frac{-3\pi^{3}}{2\sqrt{1 - 3x}}.$$

(22) Calculate y'(x), where $y = 9\sqrt[3]{4x^6 + 2}$.

Sol.:

$$y'(x) = 9\frac{d}{dx} (4x^6 + 2)^{\frac{1}{3}},$$

$$= 9\frac{1}{3} (4x^6 + 2)^{-\frac{2}{3}} \frac{d}{dx} (4x^6 + 2),$$

$$= 3 (4x^6 + 2)^{-\frac{2}{3}} (24x^5),$$

$$= 72x^5 (4x^6 + 2)^{-\frac{2}{3}}.$$

(23) Calculate y'(x), where $y = x^7(1-3x)^{15}$.

Sol.: We require both the product rule and the chain rule.

$$y'(x) = x^{7} \frac{d}{dx} (1 - 3x)^{15} + (1 - 3x)^{15} \frac{d}{dx} x^{7},$$

$$= x^{7} \frac{d}{d(1 - 3x)} (1 - 3x)^{15} \frac{d}{dx} (1 - 3x) + (1 - 3x)^{15} 7x^{6},$$

$$= x^{7} 15 (1 - 3x)^{14} (-3) + (1 - 3x)^{15} 7x^{6},$$

$$= -45x^{7} (1 - 3x)^{14} + 7x^{6} (1 - 3x)^{15},$$

$$= x^{6} (1 - 3x)^{14} (-45x + 7(1 - 3x)),$$

$$= x^{6} (7 - 66x) (1 - 3x)^{14},$$

(24) Calculate R'(T), where $R = \frac{2T^2}{\sqrt{1+4T}}$.

Sol.: We require both the quotient rule and the chain rule.

$$R'(T) = 2\frac{d}{dT} \frac{T^2}{(1+4T)^{\frac{1}{2}}},$$

$$= 2\frac{1}{\left((1+4T)^{\frac{1}{2}}\right)^2} \left((1+4T)^{\frac{1}{2}} \frac{d}{dT} T^2 - T^2 \frac{d}{dT} (1+4T)^{\frac{1}{2}}\right),$$

$$= \frac{2}{1+4T} \left((1+4T)^{\frac{1}{2}} 2T - T^2 \frac{d}{d(1+4T)} (1+4T)^{\frac{1}{2}} \frac{d}{dT} (1+4T)\right),$$

$$= \frac{2}{1+4T} \left(2T(1+4T)^{\frac{1}{2}} - \frac{1}{2}T^2(1+4T)^{-\frac{1}{2}}(4)\right),$$

$$= \frac{2}{1+4T} \left(2T\sqrt{1+4T} - 2\frac{T^2}{\sqrt{1+4T}}\right),$$

$$= \frac{4T}{1+4T} \left(\frac{1+4T-T}{\sqrt{1+4T}}\right),$$

$$= \frac{4T(1+3T)}{(1+4T)\sqrt{1+4T}}.$$

4 Tutorial 4

The following exercises are found in Washington [2].

- (1) Solve the right triangle with $A = 78.7^{\circ}$, a = 7600, where c is the hypotenuse.
- (2) Solve the right triangle with $B = 32.1^{\circ}$, c = 23.8, where c is the hypotenuse.
- (3) Solve the right triangle with a = 9.908, c = 12.63, where c is the hypotenuse.
- (4) Plot points of $y = \sin(x)$ by evaluating the points $(x, \sin(x))$ for several $x^{\frac{\pi}{4}}k, k \in \mathbb{Z}$.
- (5) Plot points of $y = \cos(x)$ by evaluating the points $(x, \cos(x))$ for several x = x = 1.
- (6) Plot points of $y = 3\cos(x)$ by evaluating the points $(x, 3\cos(x))$ for several $x\frac{\pi}{4}k$, $k \in \mathbb{Z}$.
- (7) Plot points of $y = -4\sin(x)$ by evaluating the points $(x, -4\sin(x))$ for several $x\frac{\pi}{4}k$, $k \in \mathbb{Z}$.
- (8) Prove that $\frac{\sin(x)}{\tan(x)} = \cos(x)$.
- (9) Prove that sin(x) sec(x) = tan(x).
- (10) Prove that $\cos^2(x) \sin^2(x) = 1 2\sin^2(x)$.
- (11) Express the following angles in radians: 15°, 120°.
- (12) Express the following angles in radians: 210°, 99°.
- (13) Express the following angles in degrees: $\frac{3\pi}{5}$, $\frac{3\pi}{2}$.
- (14) Express the following angles in degrees: $\frac{3\pi}{10}$, $\frac{11\pi}{6}$.

- (15) Express the following angles in radians, and round to the number of significant figures given: 84.0°.
- (16) Express the following angles in radians, and round to the number of significant figures given: 478.5°.
- (17) Find the derivative of $y = 3\sin(7x)$.
- (18) Find the derivative of $y = 5\sin(7 3t)$.
- (19) Find the derivative of y = cos(1 x).
- (20) Find the derivative of $y = 4\cos(6x^2 + 5)$.
- (21) Find the derivative of $y = 3\sin^3(2x^4 + 1)$.
- (22) Find the derivative of $y = \cos^2(\sqrt{x})$.
- (23) Find the derivative of $y = 6\sin(x)\cos(4x)$.
- (24) Find the derivative of $y = (x \cos^2(x))^4$.
- (24) Find the derivative of $T = \frac{1-3z}{\sin(\pi z)}$.
- (25) Find the derivative of $y = \cos^3(4x)\sin^2(2x)$.
- (26) Find the derivative of $y = 5x\sin(5x) + \cos(5x)$.
- (27) Show that $\frac{d^4 \sin(x)}{dx^4} = \sin(x)$.
- (28) Find the derivative of $y = \tan(x)$.
- (29) Differentiate with respect to $x : 2xy^3$.
- (30) Differentiate with respect to $x : \frac{y^2}{x+1}$.
- (31) Differentiate implicitly to calculate $\frac{dy}{dx}$: 14x 7y = 112.
- (32) Differentiate implicitly to calculate $\frac{dy}{dx}$: $x^2 + 2y^2 11 = 0$.
- (33) Differentiate implicitly to calculate $\frac{dy}{dx}$: $x^{2/3} + y^{2/3} = 5$.
- (34) Find the derivative of the implicit function $x\cos(2y) + \sin(x)\cos(y) = 1$.

4.1 Tutorial 4 Solutions

(1) Solve the right triangle with $A = 78.7^{\circ}$, a = 7600, where c is the hypotenuse.

Sol.: We have $A + B + C = 180^{\circ}$ so $B = 180^{\circ} - 90^{\circ} - 78.7^{\circ} = 11.3^{\circ}$. Also, $\sin(A) = \frac{a}{c}$ so $c = \frac{a}{\sin(A)} = \frac{7600}{0.980615} = 7750.24$. Since $a^2 + b^2 = c^2$, we have $b = \sqrt{c^2 - a^2} = \sqrt{7750.24^2 - 7600^2} = 1518.62$.

5 Tutorial 5

The following exercises are found in Washington [2].

- (1) Solve for $x : 2^x = 16$.
- (2) Solve for $x: 3^x = \frac{1}{81}$.
- (3) Solve for $x : \pi^{2x} = 20$.
- **(4)** Solve for $x : e^{-3x} = 100$.
- (5) Solve for $x : 6\log_{30}(x) = -3$.
- **(6)** Solve for $x : x^{\log_{10}(x)} = 1000x^2$.
- (7) Solve for $x : \log_2(x) + \log_2(7) = \log_2(21)$.
- (8) Solve for $x : 3\log_{10}(2x 1) = 1$.
- (9) Solve for $x : \log_{10}(12x^2) \log_{10}(3x) = 3$.
- (10) Solve for $x : \log_e(4x 1) 3\log_e(9) = 2\log_e(3)$.
- (11) Differentiate $y = 4^{6x}$.
- (12) Differentiate $y = 10^{x^6}$.
- (13) Differentiate $y = 0.6 \log_e (e^{5x} + 3)$.
- (14) Differentiate $y = 5x^2e^{2x}$.
- (15) Differentiate $p = (3e^{2n} + e^2)^8$.
- (16) Differentiate $y = \log_{10}(x^4)$.
- (17) Differentiate $y = \log_2(9x)$.
- (18) Differentiate $y = \log_7(x^2 + 1)$.
- **(19)** Differentiate $y = 2\log_e (3x^2 1)$.

(20) Differentiate $s = \log_e (\sin^2(t))$.

(21) Differentiate $y = \log_e (4x - 3)^3$.

(22) Differentiate $y = 6x^2 \log_e(5x)$.

(23) Differentiate $y = \frac{8\log_e(x)}{x}$.

(24) Differentiate $y = \log_e \left(\frac{2x}{1+x} \right)$.

(25) Differentiate $y = \sqrt{x + \log_e(3x)}$.

5.1 Tutorial 5 Solutions

(1) .

Sol.: .

6 Tutorial 6

The following exercises are found in Washington [2].

- (1) Let $y = 2 + 6x 3x^2$. Find all x such that y(x) is increasing. Find all x such that y(x) is decreasing.
- (2) Let $y = 2 + 6x 3x^2$. Find any local maxima or minima.
- (3) Let $y = 2 + 6x 3x^2$. Find all values for which y(x) is concave up, concave down.
- (4) Sketch $y = 2 + 6x 3x^2$.
- (5) Let $y = x^4 6x^2$. Find all x such that y(x) is increasing. Find all x such that y(x) is decreasing.
- (6) Let $y = x^4 6x^2$. Find any local maxima or minima.
- (7) Let $y = x^4 6x^2$. Find all values for which y(x) is concave up, concave down.
- (8) Sketch $y = x^4 6x^2$.
- (9) Sketch $y = 4x^2 16x 20$.
- **(10)** Sketch $y = x^3 9x^2 + 15x + 1$.
- (11) Sketch $y = x^5 20x^2$.
- (12) Sketch a continuous curve that satisfies f(1) = 0, f'(x) > 0 for all x, f''(x) < 0 for all x.
- (13) Sketch a continuous curve such that f(0) = 2, f'(x) > 0, f''(x) < 0 for all x, and $f(x) \longrightarrow 4$ as $x \longrightarrow \infty$.
- (14) A rectangular corral is to be enclosed with 2400 m of fencing. Find the maximum possible area of the corral.

- (15) A small oil refinery estimates that its daily profit P (in dollars) from refining x barrels of oil is $P = 8x 0.02x^2$. How many barrels should be refined for maximum daily profit, and what is the maximum profit?
- (16) The sum of the length l and width w of a rectangular table top is to be 280 cm. Determine l and w if the area of the table top is to be a maximum.
- (17) The rectangular animal display area in a zoo is enclosed by chain-link fencing and divided into two areas by internal fencing parallel to one of the sides. What dimensions will give the maximum area for the display if a total of 120 m of fencing are used?
- (18) What is the minimum slope of the curve $y = x^5 10x^2$?

6.1 Tutorial 6 Solutions

(1) .

Sol.: .

7 Tutorial 7

The following exercises are found in Washington [2].

- (1) Calculate $\int 2x dx$.
- (2) Calculate $\int 5x^4 dx$.
- (3) Calculate $\int 0.6y^5 dy$.
- (4) Calculate $\int \frac{4}{\sqrt{x}} dx$.
- (5) Calculate $\int (1-3x) dx$.
- (6) Calculate $\int x(x-2)^2 dx$.
- (7) Calculate $\int (x^{1/3} + x^{1/5} + x^{-1/7}) dx$.
- (8) Find y in terms of x, where $\frac{dy}{dx} = 8x + 1$, curve passes through (-1,4).
- **(9)** Is $\int 3x^2 dx = x^3$? Explain.
- (10) Find the approximate area under the curve of the equation y = 2x + 1 by dividing the indicated intervals into n subintervals and then adding up the areas of the inscribed rectangles. There are two values of n for each exercise and therefore two approximations for each area. The height of each rectangle may be found by evaluating the function for the proper value of x. Interval: between x = 0 and x = 2 for:
 - (a) $n = 4, \Delta x = 0.5$.
 - (b) $n = 10, \Delta x = 0.2$.
- (11) Find the exact area under the curve y = 2x + 1 between x = 0 and x = 3.
- (12) Find the approximate area under the curve of the equation $y = 9 x^2$ by dividing the indicated intervals into n subintervals and then adding up the areas of the inscribed rectangles. There are two values of n

for each exercise and therefore two approximations for each area. The height of each rectangle may be found by evaluating the function for the proper value of x. Interval: between x = 2 and x = 3 for:

- (a) $n = 5, \Delta x = 0.2$.
- (b) $n = 10, \Delta x = 0.1.$
- (13) Find the exact area under the curve $y = 9 x^2$ between x = 2 and x = 3.
- (14) Calculate the definite integral $\int_0^3 6x \, dx$.
- (15) Calculate the definite integral $\int_0^2 4x^3 dx$.
- (16) Calculate the definite integral $\int_4^9 (p^{3/2} 3) dp$.
- (17) Calculate the definite integral $\int_{1.2}^{1.6} \left(5 + \frac{6}{x^4}\right) dx$.
- (18) Calculate the definite integral $\int_{1}^{2} (3x^{5} 2x^{3}) dx$.
- (19) Approximate the value of the integral $\int_0^1 (1-x^2) dx$ by use of the trapezoidal $\int_a^b f(x) dx \approx (\Delta x) \sum_{i=1}^{n} (f(x_i) + f(x_{j+1}))$ rule with n = 3, and then check by direct integration.
- (20) Approximate the value of the integral $\int_3^8 \sqrt{1+x} \, dx$ by use of the trapezoidal rule with n=5, and then check by direct integration.
- (21) Approximate the value of the integral $\int_0^8 x^{1/3} dx$ by use of Simpson's rule,

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right),$$

with n = 2, and then check by direct integration. Round to three significant digits.

7.1 Tutorial 7 Solutions

(1) Calculate $\int 2x dx$.

Sol.
$$\int 2x \, dx = x^2 + C.$$

(2) Calculate $\int 5x^4 dx$.

Sol.
$$\int 5x^4 dx = x^5 + C$$
.

(3) Calculate $\int 0.6y^5 dy$.

Sol.
$$\int 0.6y^5 dy = 0.1y^6 + C$$
.

(4) Calculate $\int \frac{4}{\sqrt{x}} dx$.

Sol.
$$\int \frac{4}{\sqrt{x}} dx = \int 4x^{-1/2} dx = \frac{4}{1-1/2}x^{1-1/2} + C = 8x^{1/2} + C.$$

(5) Calculate $\int (1-3x) dx$.

Sol.
$$\int (1-3x) dx = x - \frac{3}{2}x^2 + C$$
.

(6) Calculate $\int x(x-2)^2 dx$.

Sol.
$$\int x(x-2)^2 dx = \int x^3 - 4x^2 + 4x dx = \frac{1}{4}x^4 - \frac{4}{3}x^3 + 2x^2 + C$$
.

(7) Calculate $\int (x^{1/3} + x^{1/5} + x^{-1/7}) dx$.

Sol.
$$\int (x^{1/3} + x^{1/5} + x^{-1/7}) dx = \frac{3}{4}x^{4/3} + \frac{5}{6}x^{6/5} + \frac{7}{6}x^{6/7} + C.$$

(8) Find y in terms of x, where $\frac{dy}{dx} = 8x + 1$, curve passes through (-1,4).

Sol. $y = \int \frac{dy}{dx} dx = \int 8x + 1 dx = 4x^2 + x + C$. Since the curve $y = 4x^2 + x + C$ passes through (-1,4), we have $4 = 4(-1)^2 + (-1) + C$ so that C = 1 and we get $y = 4x^2 + x + 1$.

(9) Is $\int 3x^2 dx = x^3$? Explain.

Sol. No, this is only one of infinitely many solutions. We have $\int 3x^2 dx = x^3 + C$ in general, where C is a constant.

- (10) Find the approximate area under the curve of the equation y = 2x + 1 by dividing the indicated intervals into n subintervals and then adding up the areas of the inscribed rectangles. There are two values of n for each exercise and therefore two approximations for each area. The height of each rectangle may be found by evaluating the function for the proper value of x. Interval: between x = 0 and x = 2 for:
 - (a) $n = 4, \Delta x = 0.5$.
 - (b) $n = 10, \Delta x = 0.2$.

Sol. (a)

With n = 4 and inscribed rectangles of width 0.5, the area A under the curve is approximated by

$$A \approx (2 \times 0 + 1) \times 0.5 + (2 \times 0.5 + 1) \times 0.5 + (2 \times 1 + 1) \times 0.5 + (2 \times 1.5 + 1) \times 0.5,$$

= $(1 + 2 + 3 + 4) \times 0.5,$
= 5.

With n = 10 and inscribed rectangles of width 0.2, the area A under the curve is approximated by

$$A \approx (2 \times 0 + 1) \times 0.2 + (2 \times 0.2 + 1) \times 0.2 + (2 \times 0.2 \times 2 + 1) \times 0.2$$

$$(2 \times 0.2 \times 3 + 1) \times 0.2 + (2 \times 0.2 \times 4 + 1) \times 0.2 + (2 \times 0.2 \times 5 + 1) \times 0.2$$

$$+(2 \times 0.2 \times 6 + 1) \times 0.2 + (2 \times 0.2 \times 7 + 1) \times 0.2 + (2 \times 0.2 \times 8 + 1) \times 0.2$$

$$+(2 \times 0.2 \times 9 + 1) \times 0.2$$

$$= (1.0 + 1.4 + 1.8 + 2.2 + 2.6 + 3.0 + 3.4 + 3.8 + 4.2 + 4.6) \times 0.2,$$

$$= 5.6.$$

The actual area is given by the definite integral:

$$A = \int_0^2 2x + 1 \, dx = \left[x^2 + x \right]_0^2 = 2^2 + 2 - \left(0^2 + 0 \right) = 6.$$

(11) Find the exact area under the curve y = 2x + 1 between x = 0 and x = 3.

Sol.
$$\int_0^3 2x + 1 \, dx = \left[x^2 + x \right]_0^3 = 3^2 + 3 - \left(0^2 + 0 \right) = 12.$$

(12) Find the approximate area under the curve of the equation $y = 9 - x^2$ by dividing the indicated intervals into n subintervals and then adding up the areas of the inscribed rectangles. There are two values of n for each exercise and therefore two approximations for each area. The height of each rectangle may be found by evaluating the function for the proper value of x. Interval: between x = 2 and x = 3 for:

(a)
$$n = 5, \Delta x = 0.2$$
.

(b)
$$n = 10, \Delta x = 0.1.$$

Sol. (a)

With n = 5, $\Delta x = 0.2$,

$$\int_{2}^{3} 9 - x^{2} dx \approx \sum_{j=1}^{5} (9 - (2 + 0.2 \times j)^{2}) \times 0.2,$$

$$\approx 2.16$$

(b)

With n = 10, $\Delta x = 0.1$,

$$\int_{2}^{3} 9 - x^{2} dx \approx \sum_{j=1}^{10} (9 - (2 + 0.1 \times j)^{2}) \times 0.1,$$

$$\approx 2.415$$

(13) Find the exact area under the curve $y = 9 - x^2$ between x = 2 and x = 3.

$$\int_{2}^{3} 9 - x^{2} dx = \left[9x - \frac{1}{3}x^{3} \right]_{2}^{3},$$

$$= 9(3) - \frac{1}{3}(3)^{3} - \left(9(2) - \frac{1}{3}(2)^{3} \right),$$

$$= 2.6666....$$

(14) Calculate the definite integral $\int_0^3 6x \, dx$.

Sol.

$$\int_0^3 6x \, dx = \left[3x^2\right]_0^3 = 3(3)^2 - 3(0)^2 = 27.$$

(15) Calculate the definite integral $\int_0^2 4x^3 dx$.

Sol.

$$\int_0^2 4x^3 dx = \left[x^4\right]_0^2 = (2)^4 - (0)^4 = 16.$$

(16) Calculate the definite integral $\int_4^9 (p^{3/2} - 3) dp$.

Sol.

$$\int_{4}^{9} \left(p^{3/2} - 3 \right) dp = \left[\frac{2}{5} p^{5/2} - 3p \right]_{4}^{9},$$

$$= \frac{2}{5} (9)^{5/2} - 3(9) - \left(\frac{2}{5} (4)^{5/2} - 3(4) \right),$$

$$= \frac{2}{5} 3^{5} - 27 - \frac{2}{5} 2^{5} + 12 = \frac{347}{5}.$$

(17) Calculate the definite integral $\int_{1.2}^{1.6} \left(5 + \frac{6}{x^4}\right) dx$.

Sol.

$$\int_{1.2}^{1.6} \left(5 + \frac{6}{x^4} \right) dx = \left[5x - 2x^{-3} \right]_{1.2}^{1.6},$$

$$= 5(1.6) - 2(1.6)^{-3} - \left(5(1.2) - 2(1.2)^{-3} \right),$$

$$= 2.66913....$$

(18) Calculate the definite integral $\int_{1}^{2} (3x^{5} - 2x^{3}) dx$.

Sol.

$$\int_{1}^{2} (3x^{5} - 2x^{3}) dx = \left[\frac{1}{2}x^{6} - \frac{1}{2}x^{4} \right]_{1}^{2},$$

$$= \frac{1}{2}(2)^{6} - \frac{1}{2}(2)^{4} - \left(\frac{1}{2}(2)^{6} - \frac{1}{2}(2)^{4} \right),$$

$$= 24.$$

(19) Approximate the value of the integral $\int_0^1 (1-x^2) dx$ by use of the trapezoidal

$$\int_{a}^{b} f(x) dx \approx (\Delta x) \sum_{i=1}^{b} \frac{1}{2} (f(x_j) + f(x_{j+1}))$$

rule with n = 3, and then check by direct integration.

Sol. Let $f(x) = 1 - x^2$. With n = 3, we have $\Delta x = \frac{1}{3}(1 - 0) = \frac{1}{3}$ and $x_0 = 0$, $x_1 = \frac{1}{3}$, $x_2 = \frac{2}{3}$, $x_3 = 1$.

$$\int_{0}^{1} (1 - x^{2}) \approx \frac{1}{3} \sum_{j=0}^{j=2} \frac{1}{2} (f(x_{j}) + f(x_{j+1})),$$

$$\approx \frac{1}{3} \sum_{j=0}^{j=2} \frac{1}{2} (2 - x_{j}^{2} - x_{j+1}^{2}),$$

$$\approx \frac{1}{6} (2 - x_{0}^{2} - x_{1}^{2} + 2 - x_{1}^{2} - x_{2}^{2} + 2 - x_{2}^{2} - x_{3}^{2}),$$

$$\approx \frac{1}{6} (6 - x_{0}^{2} - 2x_{1}^{2} - 2x_{2}^{2} - x_{3}^{2}),$$

$$\approx \frac{1}{6} (6 - 0^{2} - \frac{2}{9} - \frac{8}{9} - 1),$$

$$\approx \frac{35}{54},$$

$$\approx 0.648148....$$

The actual definite integral is

$$\int_0^1 (1 - x^2) = \left[x - \frac{1}{3} x^3 \right]_0^1,$$

$$= 1 - \frac{1}{3} (1)^3 - \left((0) - \frac{1}{3} (0)^3 \right),$$

$$= \frac{2}{3}.$$

(20) Approximate the value of the integral $\int_3^8 \sqrt{1+x} dx$ by use of the trapezoidal rule with n=5, and then check by direct integration.

Sol. Let $f(x) = \sqrt{1+x}$. With n = 5, we have $\Delta x = \frac{1}{5}(8-3) = 1$ and $x_0 = 3$, $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$, $x_5 = 8$. The trapezoidal rule gives

$$\int_{3}^{8} \sqrt{1+x} dx \approx 1 \sum_{j=0}^{j=4} \frac{1}{2} (f(x_{j}) + f(x_{j+1})),$$

$$\approx \frac{1}{2} (f(x_{0}) + f(x_{5})) + \sum_{j=1}^{4} f(x_{j}),$$

$$\approx \frac{1}{2} (f(3) + f(8)) + f(4) + f(5) + f(6) + f(7),$$

$$\approx \frac{1}{2} (\sqrt{4} + \sqrt{9}) + \sqrt{5} + \sqrt{6} + \sqrt{7} + \sqrt{8},$$

$$\approx \frac{5}{2} + \sqrt{5} + \sqrt{6} + \sqrt{7} + \sqrt{8},$$

$$\approx 12.6597....$$

Direct integration gives

$$\int_{3}^{8} \sqrt{1+x} dx = \left[\frac{2}{3} (x+1)^{3/2} \right]_{3}^{8},$$

$$= \frac{2}{3} (8+1)^{3/2} - \frac{2}{3} (3+1)^{3/2},$$

$$= 38/3,$$

$$= 12.6666....$$

(21) Approximate the value of the integral $\int_0^8 x^{1/3} dx$ by use of Simpson's rule,

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right),$$

with n = 2, and then check by direct integration. Round to three significant digits.

Sol. Let $f(x) = x^{1/3}$. With n = 2, Simpson's rule gives:

$$\int_{0}^{8} x^{1/3} dx \approx \frac{2}{3} (f(0) + 4f(2) + f(4)) + \frac{2}{3} (f(4) + 4f(6) + f(8)),$$

$$\approx \frac{2}{3} (f(0) + 4f(2) + 2f(4) + 4f(6) + f(8)),$$

$$\approx \frac{2}{3} (0 + 4 \cdot 2^{1/3} + 2 \cdot 4^{1/3} + 4 \cdot 6^{1/3} + 2),$$

$$\approx 11.6553...,$$

$$\approx 11.7.$$

Direct integration gives

$$\int_0^8 x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_0^8 = \frac{3}{4} 8^{4/3} - 0 = 12.$$

8 Tutorial 8

The following exercises are found in Washington [2].

- (1) Calculate $\int 3x^2 (x^3 2)^6 dx$.
- (2) Calculate $\int 8\sin^{1/3}(x) \cos(x) dx$.
- (3) Calculate $\int \frac{1}{4-9x} dx$.
- (4) Calculate $\int_{-1}^{3} \frac{8x^3}{x^4+1} dx$
- (5) Calculate $\int \frac{3v^2-2v}{v^2} dv$.
- (6) Calculate $\int xe^{-x^2} dx$.
- (7) Calculate $\int_{1}^{3} 3e^{2x} (e^{-2x} 1) dx$.
- (8) Calculate $\int 4\sin(2-x) dx$.
- (9) Calculate $\int_{0.5}^{1} x^2 \cot(x^3) dx$.
- (10) Calculate $\int \sin(x) \cos^5(x) dx$.
- (11) Calculate $\int x \sin(2x) dx$.
- (12) Calculate $\int 3xe^x dx$.
- (13) Calculate $\int \log_e(s) ds$.
- (14) Calculate $\int x\sqrt{x+1} dx$.
- (15) Calculate $\int \cos(\log_e(x)) dx$.

8.1 Tutorial 8 Solutions

(1) Calculate $\int 3x^2 (x^3 - 2)^6 dx$.

Sol. Let
$$u = x^3$$
. Then $\frac{du}{dx} = 3x^2$ so that $dx \longrightarrow \frac{du}{3x^2}$ and
$$\int 3x^2 (x^3 - 2)^6 dx = \int 3x^2 (u - 2)^6 \frac{du}{3x^2},$$
$$= \int (u - 2)^6 du,$$
$$= \frac{1}{7} (u - 2)^7 + C,$$
$$= \frac{1}{7} (x^3 - 2)^7 + C.$$

(2) Calculate $\int 8\sin^{1/3}(x) \cos(x) dx$.

Sol. Let $u = \sin(x)$. Then $\frac{du}{dx} = \cos(x)$ so that $dx \longrightarrow \frac{du}{\cos(x)}$ and

$$\int 8\sin^{1/3}(x) \cos(x) dx = \int 8u^{1/3} \cos(x) \frac{du}{\cos(x)},$$

$$= \int 8u^{1/3} du,$$

$$= \frac{8}{4/3}u^{4/3} + C,$$

$$= 6\sin^{4/3}(x) + C.$$

(3) Calculate $\int \frac{1}{4-9x} dx$.

Sol. Let u = 4 - 9x. Then $\frac{du}{dx} = -9$ so that $dx \longrightarrow \frac{du}{-9}$ and

$$\int \frac{1}{4 - 9x} dx = \int u^{-1} \frac{du}{-9},$$

$$= -\frac{1}{9} \log_e(u) + C,$$

$$= -\frac{1}{9} \log_e(4 - 9x) + C.$$

(4) Calculate $\int_{-1}^{3} \frac{8x^3}{x^4+1} dx$

Sol. Let $u = x^4 + 1$. Then $\frac{du}{dx} = 4x^3$ so that $dx \longrightarrow \frac{du}{4x^3}$ and

$$\int_{-1}^{3} \frac{8x^{3}}{x^{4} + 1} dx = \int_{2}^{81} \frac{8x^{3}}{u} \frac{du}{4x^{3}},$$

$$= 2 \int_{2}^{81} u^{-1} du,$$

$$= [\log_{e}(u)]_{2}^{82},$$

$$= \log_{e}(82/2),$$

$$= \log_{e}(41).$$

(5) Calculate $\int \frac{3v^2-2v}{v^2} dx$.

Sol.

$$\int \frac{3v^2 - 2v}{v^2} dv = \int 3 - 2v^{-1} dv,$$

= $3v - 2\log_e(v) + C.$

(6) Calculate $\int xe^{-x^2} dx$.

Sol. Let $u = -x^2$. Then $\frac{du}{dx} = -2x$ so that $dx \longrightarrow \frac{du}{-2x}$ and

$$\int xe^{-x^2} dx = \int xe^u \frac{du}{-2x},$$

$$= -\frac{1}{2} \int e^u du,$$

$$= -\frac{1}{2}e^u + C,$$

$$= -\frac{1}{2}e^{-x^2} + C.$$

(7) Calculate $\int_{1}^{3} 3e^{2x} \left(e^{-2x} - 1\right) dx$.

Sol.

$$\int_{1}^{3} 3e^{2x} (e^{-2x} - 1) dx = \int_{1}^{3} 3 - 3e^{2x} dx,$$

$$= \left[3x - \frac{3}{2}e^{2x} \right]_{1}^{3},$$

$$= 3 \times 3 - \frac{3}{2}e^{2 \times 3} - \left(3 \times 1 - \frac{3}{2}e^{2 \times 1} \right),$$

$$= 6 - \frac{3}{2}e^{6} + \frac{3}{2}e^{2}.$$

(8) Calculate $\int 4\sin(2-x) dx$.

Sol. Let
$$u = 2 - x$$
. Then $\frac{du}{dx} = -1$ so that $dx \longrightarrow -du$ and
$$\int 4\sin(2-x) dx = -4 \int \sin(u) du,$$
$$= 4\cos(u) + C,$$
$$= 4\cos(2-x) + C.$$

(9) Calculate $\int_{0.5}^{1} x^2 \cot(x^3) dx$.

Sol. Let
$$u = x^3$$
. Then $\frac{du}{dx} = 3x^2$. Then $dx \longrightarrow \frac{du}{3x^2}$ and
$$\int_{0.5}^{1} x^2 \cot(x^3) dx = \int_{0.5}^{1} x^2 \cot(u) \frac{du}{3x^2},$$
$$= \frac{1}{3} \int_{0.5}^{1} \cot(u) du,$$
$$= \left[\frac{1}{3} \log_e(\sin(u)) \right]_{0.5}^{1},$$
$$= \frac{1}{3} \log_e(\sin(1)) - \frac{1}{3} \log_e(\sin(0.5)),$$
$$= \frac{1}{3} \log_e\left(\frac{\sin(1)}{\sin(0.5)}\right).$$

(10) Calculate $\int \sin(x) \cos^5(x) dx$.

Let $u = \cos(x)$. Then $\frac{du}{dx} = -\sin(x)$ so that $dx \longrightarrow \frac{du}{-\sin(x)}$ and $\int \sin(x) \cos^5(x) dx = \int \sin(x) u^5 \frac{du}{-\sin(x)},$ $= -\int u^5 du,$ $= -\frac{1}{6}u^6 + C,$ $= -\frac{1}{6}\cos^6(x) + C.$

(11) Calculate $\int x \sin(2x) dx$.

Sol.

$$\int x \sin(2x) dx = \int \frac{-1}{2} x \frac{d}{dx} \cos(2x) dx,$$

$$= \frac{-1}{2} x \cos(2x) - \frac{-1}{2} \int \cos(2x) \frac{d}{dx} x dx,$$

$$= -\frac{1}{2} x \cos(2x) + \frac{1}{2} \int \cos(2x) dx,$$

$$= -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) + C.$$

(12) Calculate $\int 3xe^x dx$.

$$\int 3xe^x dx = 3 \int x \frac{d}{dx} e^x dx,$$

$$= 3xe^x - \int e^x \frac{d}{dx} x dx,$$

$$= 3xe^x - \int e^x dx,$$

$$= 3xe^x - e^x + C.$$

(13) Calculate $\int \log_e(s) ds$.

$$\int \log_{e}(s) ds = \int \log_{e}(s) \frac{ds}{ds} ds,$$

$$= s \log_{e}(s) - \int s \frac{d}{ds} \log_{e}(s) ds,$$

$$= s \log_{e}(s) - \int s \frac{1}{s} ds,$$

$$= s \log_{e}(s) - \int 1 ds,$$

$$= s \log_{e}(s) - s + C.$$

(14) Calculate $\int x\sqrt{x+1} dx$.

$$\int x\sqrt{x+1} dx = \frac{2}{3} \int x \frac{d}{dx} (x+1)^{3/2} dx,$$

$$= \frac{2}{3} x(x+1)^{3/2} - \frac{2}{3} \int (x+1)^{3/2} \frac{dx}{dx} dx,$$

$$= \frac{2}{3} x(x+1)^{3/2} - \frac{2}{3} \int (x+1)^{3/2} dx,$$

$$= \frac{2}{3} x(x+1)^{3/2} - \frac{22}{35} (x+1)^{5/2} + C,$$

$$= \frac{2}{3} (x+1)^{3/2} \left(x - \frac{2}{5} (x+1) \right) + C,$$

$$= \frac{2}{15} (x+1)^{3/2} (5x - 2x - 2) + C,$$

$$= \frac{2}{15} (x+1)^{3/2} (3x-2) + C,$$

(15) Calculate $\int \cos(\log_e(x)) dx$.

$$\begin{split} \int \cos\left(\log_e(x)\right) dx &= \int \cos\left(\log_e(x)\right) \frac{dx}{dx} dx, \\ &= x \cos\left(\log_e(x)\right) - \int x \frac{d}{dx} \cos\left(\log_e(x)\right) dx, \\ &= x \cos\left(\log_e(x)\right) - \int x \frac{-\sin\left(\log_e(x)\right)}{x} dx, \\ &= x \cos\left(\log_e(x)\right) + \int \sin\left(\log_e(x)\right) dx, \\ &= x \cos\left(\log_e(x)\right) + \int \sin\left(\log_e(x)\right) \frac{dx}{dx} dx, \\ &= x \cos\left(\log_e(x)\right) + x \sin\left(\log_e(x)\right) - \int x \frac{d}{dx} \sin\left(\log_e(x)\right) dx, \\ &= x \cos\left(\log_e(x)\right) + x \sin\left(\log_e(x)\right) - \int x \frac{\cos\left(\log_e(x)\right)}{x} dx, \\ &= x \cos\left(\log_e(x)\right) + x \sin\left(\log_e(x)\right) - \int \cos\left(\log_e(x)\right) dx. \end{split}$$

It follows that

$$2\int \cos(\log_e(x)) dx = x\cos(\log_e(x)) + x\sin(\log_e(x)) + C.$$

Hence

$$\int \cos\left(\log_e(x)\right) dx = \frac{1}{2}x\left(\cos\left(\log_e(x)\right) + \sin\left(\log_e(x)\right)\right) + C.$$

$$A_{\text{between two functions}} = \int_a^b f(x) - g(x) \, dx, \qquad Vol._{rot.,x} = \pi \int_a^b \left[f(x) \right]^2 dx,$$

$$\text{Arc length} = \int_a^b \sqrt{1 + \left[f'(x) \right]^2} \, dx, \qquad \text{Mean Val.} = \overline{y} = \frac{1}{b-a} \int_a^b f(x) \, dx,$$

$$Vol._{rot.,y} = \pi \int_a^b \left[f(y) \right]^2 dy, \qquad \text{Surf. Area}_{rot.,x} = 2\pi \int_a^b f(x) \sqrt{1 + \left[f'(x) \right]^2} \, dx.$$

(1) Mean values

Calculate the mean value of the following functions over the specified interval. Make a rough sketch of each function and indicate the mean value.

(a)
$$y = x$$
 over $\{x \in \mathbb{R} : 0 \le x \le 10\}$.

(b)
$$y = x^2$$
 over $\{x \in \mathbb{R} : 0 \le x \le 10\}.$

(c)
$$y = x^3$$
 over $\{x \in \mathbb{R} : 0 \le x \le 10\}$.

(d)
$$y = \sin(x)$$
 over $\{x \in \mathbb{R} : 0 \le x \le \frac{\pi}{2}\}.$

(e)
$$y = \sin(x)$$
 over $\{x \in \mathbb{R} : 0 \le x \le \pi\}$.

(2) A simple application of infinitesimals

Use the method of infinitesimals to show that the formula for the area of a circle is $A = \pi r^2$, by stating with the definition of π :

$$\pi = \frac{\text{circumference}, c}{\text{diameter}, d}$$

so that $c = \pi d = 2\pi r$.

Hint: Imagine adding infinite circumferences of infinitesimal thickness and infinitesimal area, starting at the centre of a circle out to the outer-edge of the circle.

(3) Area bounded by two functions

Calculate the total area bounded by the following curves (check for intersections; try to draw them first)

(a)
$$y = x^2 - 6$$
 and $y = x$.

- **(b)** $y = \sin(x)$ and $y = \sin(x) + 3$ over the interval $\{x \in \mathbb{R} : 0 \le x \le 7\}$ (can you explain the "nice", "neat" result?)
- (c) $y = \sin(x)$ and $y = \cos(x)$ over the interval $\{x \in \mathbb{R} : 0 \le x \le 1.5\}$.
- (d) $y = \cos(x)$ and y = x over the interval $\{x \in \mathbb{R} : 0 \le x \le \frac{\pi}{2}\}$ (your tutor will assist after you have tried to find the intersection).
- (e) $y = \sqrt{x}$ and x = 0 over the interval $\{x \in \mathbb{R} : 0 \le x \le 3\}$ (this is asking for the area between the curve and the y-axis).

10 Tutorial 10 - Introduction to Differential Equations

- (1) Determine whether $y = e^{-x^2}$ is the general solution to $\frac{dy}{dx} + 2xy = 0$ or a particular solution.
- (2) Determine whether $y = c \ln(x)$ is the general solution to $y' \ln(x) \frac{y}{x} = 0$ or a particular solution.
- (3) Solve the differential equation $\frac{dp}{dx} = \sqrt{\frac{p}{x}}$.
- (4) Solve the differential equation $y^2 \frac{dy}{dx} + x^3 = 0$.
- (5) Solve the differential equation $y + t \frac{dy}{dt} = 3ty$.
- (6) Solve the differential equation $e^{2x}\frac{dy}{dx} + e^x = 4$.
- (7) Solve the initial value problem $\frac{ds}{dt} = \sec(s)$, t = 0 when s = 0.
- (8) Solve the initial value problem $2x\frac{dy}{dx} = y \ln(y)$, x = 2 when y = e.
- (9) Solve the initial value problem $y^2 e^x + e^{-x} \frac{dy}{dx} = y^2$, x = 0 when y = 2.
- (10) Solve the initial value problem $(2y\cos(y) \sin(y))\frac{dy}{dx} = y\sin(y), x = 0$ when $y = \frac{\pi}{2}$.

11 Tutorial 11 - 1st Order Linear Differential Equations, 2nd Order Homogeneous Equations, and Euler's Method

- (1) Solve the differential equation $\frac{dy}{dx} + y = e^{-x}$.
- (2) Solve the differential equation $\frac{dy}{dx} + 3y = e^{-3x}$.
- (3) Solve the differential equation $2\frac{dy}{dx} = 5 6y$.
- (4) Solve the differential equation $\frac{dy}{dx} = 3x^2(2-y)$.
- (5) Solve the differential equation $3x\frac{dy}{dx} y = 9x$.
- (6) Solve the differential equation $y' = x^2y + 3x^2$.
- (7) Solve the differential equation $y' + 2y = \sin(x)$.
- (8) Solve the differential equation 3y'' + 4y' + y = 0.
- (9) Solve the differential equation y'' y' 6y = 0.
- (10) Solve the differential equation y'' + y' = 0.
- (11) Solve the differential equation y'' 2y' 8y = 0.
- (12) Solve the initial value problem 4y'' y' = 0, y(0) = 4, y'(0) = 2.
- (13) Use Euler's method:

$$y_{n+1} = y_n + f(x_n, y_n) \Delta x,$$
 $(x_0, y_0) = (x_0, y(x_0)),$

with $\Delta x = 0.3$ to solve the initial value problem $\frac{dy}{dx} = \sqrt{2x+1}$, y(0) = 2.

(14) Use Euler's method with $\Delta x = 0.1$ to solve the initial value problem $\frac{dy}{dx} = y(0.4x+1), y(-0.2) = 2.$

12 Tutorial 12 - Exercises in Complex Numbers and Second Order Differential Equations that Use Them

- (1) Express $\sqrt{-121}$ in terms of $i = \sqrt{-1}$.
- (2) Express $-\sqrt{-49}$ in terms of *i*.
- (3) Express $3\sqrt{-48}$ in terms of *i*.
- (4) Simplify $\sqrt{(-15)^2}$ by expanding the brackets first.
- (5) Simplify $\sqrt{-9}\sqrt{-16}$.
- (6) Simplify $-26 + \sqrt{-64}$.
- (7) Simplify $5 2\sqrt{25i^2}$.
- (8) Solve $x^2 2x + 2 = 0$.
- (9) Solve $3x^2 6x + 4 = 0$.
- (10) Evaluate $\sum_{n=1}^{8} i^n$.
- (11) Simplify (3-7i)+(2-i).
- (12) Simplify (5.4 3.4i) (2.9i + 5.5).
- (13) Simplify (-2.2i)(1.5i-4.0).
- (14) Simplify $\sqrt{-6}\sqrt{-12}\sqrt{30}$.
- (15) Simplify (8+3i)(8-3i).
- (16) Simplify $\frac{12+10i}{6-8i}$.
- (17) Show that $1 + i\sqrt{3}$ satisfies $x^2 + 4 = 2x$.
- (18) Add graphically: 2i + (-2 + 3i).
- (19) Add graphically: (-6-3i)+(2-7i).

- (20) Show a + bi, 3(a + bi), and -3(a + bi) on the same plot, where a = -10, b = -30.
- (21) Show graphically and give the polar form of -8 15i.
- (22) Show graphically and give the polar form of -5 + 12i.
- (23) Show graphically and give the polar form of $\sqrt{2} \sqrt{2}i$.
- (24) Give the rectangular form of the complex number with modulus 6 and argument 180°.
- (25) Give the rectangular form of the complex number with modulus 2.5 and argument 315°.
- (26) Give the rectangular form of the complex number with modulus 15 and argument 0° .
- (27) Give the exponential form of the complex number $576 (\cos (135^{\circ}) + i \sin (135^{\circ}))$.
- (28) Give the exponential form of the complex number $2.1(\cos(588.7^{\circ}) + i\sin(588.7^{\circ}))$.
- (29) Give the exponential form of the complex number $16.7(\cos(-7.14^{\circ}) + i\sin(-7.14^{\circ}))$.
- (30) Give both the polar and the rectangular forms of $20.0e^{1.0i}$.
- (31) Give both the polar and the rectangular forms of $2.5e^{3.84i}$.
- (32) Give both the polar and the rectangular forms of $0.8e^{3.0i}$.
- (33) Find the general solution to the differential equation y'' + y' + y = 0.
- (34) Find the general solution to the differential equation y'' y' + 3y = 0.

13 Books & Notes

References

- [1] James Stewart, Calculus, 8th Ed.
- [2] A. J., Washington. Basic Technical Mathematics with Calculus, SI Version.