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Instructions

1. Imperative: Print this pdf document or be prepared to annotate the
pdf with a tablet. Some blank spaces for writing are a little small
for large writing. If you cannot do either of these annotation options,
then write notes on blank paper, noting the relevant position within the
typed course notes. As you watch the lecture videos, write notes in the
blank spaces. This step is very important.

2. Optional but highly recommended: Purchase and use Mathematica
or obtain it through your institution. We will occasionally use this to
display various graphics and verify calculations. All graphics shown in
this document was produced with Mathematica. You will most likely
find it very helpful with your studies. It is a symbolic computation tool
which has full programming capabilities. E.g. Try writing

Expand[(x+y)ˆ3]

then press Shift+Enter or

s = 0;

For[i = 0, i < 6, i++, s = s + i; Print[s]]

You can call on Wolfram alpha from with in it by beginning a cell with
= =.
If your university has a license, to install this on your machine, visit:
wolfram.com/siteinfo/

Get Mathematica Desktop.
Create a Wolfram ID, and download and install the software.
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1 Vector Spaces

1.1 Introduction and definitions

Recall that R is the set of all real numbers and

C=
{

a+bi : a,b ∈ R, i =
√
−1
}

is the set of complex numbers. These sets have algebraic structures with
addition and multiplication that make them fields, so we call R the field of
scalars when we discuss the real numbers in the context of vector spaces.
Likewise we may sometimes refer to the field C.

In this section we will study vector spaces. Consider the following exam-
ple.

Example 1.1 Suppose we have the weights of 8 students in kg. The weights
are listed as follows

w = (156,125,145,134,178,145,162,193) = (w1,w2, . . . ,w8) .

The order of the entries is important. We can attribute to w a magnitude
and direction. Hence w is a vector in an 8-dimensional vector space R8

over the real numbers.

Temperature and speed are scalar quantities since they have magnitude
only. Force, velocity, momentum, etc are examples of vectors since they
have magnitude and direction.

Vectors in 2-space R2, for example v = (2,−5) = 2i− 5j, have two com-
ponents. Vectors in 3-space R3, for example v = (0,4,2) = 4j+ 2k, have
three components. We also consider n-space over the real numbers, Rn.

Recall vector addition: Let

u = (u1,u2, . . . ,un) ,

v = (v1,v2, . . . ,vn)
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be vectors in Rn. Then the sum of u and v is defined

u+v = (u1+ v1,u2+ v2, . . . ,un+ vn) .

To add two vectors, they must have the same number of components.

Recall that the dot product or scalar product of u and v is given by

u ·v = u1v1+u2v2+ . . .unvn =
n

∑
i=1

uivi = uvT ,

where uvT denotes matrix multiplication of the matrix u with the transpose
of matrix v.

Let k ∈ R and let
u = (u1,u2, . . . ,un) ∈ Rn.

The scalar multiple ku is given by

ku = (ku1,ku2, . . . ,kun) .

Let A = [ai j], B = [bi j] be m×n matrices and let p,q ∈ R. A linear combi-
nation of A and B is of the form

pA+qB = p [ai j]+q [bi j] ,

= [pai j]+ [qbi j] ,

= [pai j +qbi j] .

Note that the matrices A,B ∈ Rmn are mn-dimensional vectors.

Recall the following vector definitions:

• Let u,v ∈ Rn with u = [ui]1×n, v = [vi]1×n. Then:

1. u and v are orthogonal if u ·v = 0.

2. The norm of u is given by ∥u∥=
√

∑
n
i=1 u2

i .

3. ∥u∥ ≥ 0 and ∥u∥= 0 if and only if u = 0.
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4. If u ̸= 0, then the unit vector û = 1
∥u∥u is a vector of norm 1 is the

direction of the vector u.

5. If u,v ̸= 0, then u ·v= ∥u∥ ∥v∥cosθ , where θ is the angle between
u and v.

6. If u,v ∈ R3, (n = 3), the cross product of u and v is given by

u×v = det

 i j k
u1 u2 u3

v1 v2 v3

 ,

= det

(
u2 u3

v2 v3

)
i−det

(
u1 u3

v1 v3

)
j+det

(
u1 u2

v1 v2

)
k,

= (u2v3−u3v2,u3v1−u1v3,u1v2−u2v1) .

u× v is orthogonal to both u and v. ∥u× v∥ = ∥u∥ ∥v∥sin(θ),
where θ is the angle bewteen u and v. Hence if u and v are parallel,
then u×v = 0.

We have the following important inequalities for vector norms:

Theorem 1 (Cauchy-Schwartz) For any u,v ∈ Rn,

|u ·v| ≤ ∥u∥ ∥v∥.

Theorem 2 (Minkowski or triangle inequality) For any u,v ∈ Rn,

∥u+v∥ ≤ ∥u∥+∥v∥.

Recall that the distance between two vectors is given by D = ∥u−v∥.

For proofs, see [6], pp. 17 or [5], pp. 220, 259-260.
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Example 1.2 Find the equation of the plane that passes through the points
(1,1,2), (2,3,3), and (3,−3,3).

Example 1.3 Find the distance from the point (2,0,0) to the plane

x+2y+2z = 0.

Example 1.4 Let u and v ∈R3 be parallel to the sides of a parallelogram.
Show that the area of the parallelogram is ∥u×v∥.
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1.2 Vector space definition

A vector space V (a non-empty set of vectors) over a field K (K is usu-
ally R) of scalars (with 0,1) is a set of vectors that satisfies the following
axioms:

1. Addition is associative: (u+v)+w = u+(v+w).

2. 0 ∈V is neutral.

3. For all u ∈V , −u ∈V .

4. u+v = v+u.
1-4: In other words ⟨V,+⟩ is an abelian group.

5. For k ∈K, u,v ∈V , k(u+v) = ku+ kv.

6. For a,b ∈K, u ∈V , (a+b)u = au+bu.

7. For a,b ∈K, u ∈V , (ab)u = a(bu).

8. 1u = u.

Theorem 3 Let V be a vector space over the field K.

1. For any k ∈K and 0 ∈V , then k0 = 0.

2. For 0 ∈K and u ∈V , 0u = 0.

3. If for some k ∈K, ku = 0, then k = 0 or u = 0.

4. For any scalar k ∈K and u ∈V , then (−k)u = k(−u).
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Examples of Vector Spaces

1. Kn over the field K, e.g. R, R2, R3, Rn.

2. P(t), the set of all univariate polynomials

p(t) = a0+a1t +a2t2+ . . .antn

with coefficients in K. To be a polynomial, p(t) must have finite de-
gree n. There is a correspondence: p(t)←→ (a0,a1, . . . ,an).

3. The space of all m×n matrices with entries in K.

4. Let F(x) = { f (x)} be the set of all functions f : X −→K.

1.3 Subspaces of a vector space

Let V be a vector space over the field K and let W be a subset of V . Then
W is a subspace of V is W is a vector space over K.

Theorem 4 Let W be a subset of V . Then W is a subspace of V if the
following conditions hold:

1. 0 ∈W.

2. W is closed under addition and scalar multiplication.

Every vector space contains at least two subspaces, {0}, and V itself.

Example 1.5 Let V be the vector space R3. Let U = {(a,b,c) : a= b= c}.
Show that U is a subspace of V .
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Example 1.6 Let V be the vector space consisting of all 2× 2 matrices
with entries in R. Let

U =

{(
a b
0 c

)
: a,b,c ∈ R

}
.

Show that U is a subspace of V .
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1.4 Inner product spaces

An inner product on a vector space V over the field K is a binary operation
on V such that for each u,v ∈ V , the inner product ⟨u,v⟩ is a scalar in K
satisfying:

1. ⟨v,v⟩ ≥ 0 with ⟨v,v⟩= 0 if and only if v = 0.

2. ⟨u,v⟩= ⟨v,u⟩ for all u,v ∈V .

3. For all u,v,w ∈V , and all k1,k2 ∈K,

⟨k1u+ k2v,w⟩= k1⟨u,w⟩+ k2⟨v,w⟩.

If a vector space has an inner product, then it is an inner product space.

Example 1.7 Let V = Rn. Show that ⟨u,v⟩ = u · v is an inner product on
V .
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Example 1.8 Let F [a,b] = { f (x)} be the set of all functions

f : [a,b]−→ R,

where [a,b] = {x ∈ R : a≤ x≤ b}. Show that

⟨ f ,g⟩=
∫ b

a
f (x)g(x)dx

is an inner product on F [a,b].
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1.5 Appendix on fields

Let F be a set and let + and × be binary operations on F . ⟨F,+,×⟩ is a
field if it satisfies the following conditions:

1. + is associative: For all a,b,c ∈ F , (a+b)+ c = a+(b+ c).

2. 0 is neutral: 0+a = a = a+0 for all a ∈ F .

3. For all a ∈ F , −a ∈ F .

4. For all a,b ∈ F , a+b = b+a.

5. × is associative: For all a,b,c ∈ F , (a×b)× c = a× (b× c).

6. 1 is neutral: 1×a = a = a×1 for all a ∈ F∗, where F∗ = F−{0}.

7. For all a ∈ F∗, a−1 ∈ F .

8. For all a,b ∈ F , a×b = b×a.

9. × distributes over +: For all a,b,c ∈ F , a× (b+ c) = a×b+a× c.

14



1.6 Practice exercises

1. Show that the set of rationals with addition and multiplication ⟨Q,+,×⟩
is a field.

2. Let Q(
√

2) =
{

a+b
√

2 : a,b ∈Q
}

.

(a) Show that Q(
√

2) is a vector space over the field Q.

(b) Show that Q(
√

2) is a field.

3. Let A = (2,9,8), B = (6,4,−2), C = (7,15,7). Show that the vectors
−→
AB and

−→
AC are perpendicular and find the point D such that ABCD

forms a rectangle. See pp. 160, [7].

4. Show that the planes x+ y− 2z = 1 and x+ 3y− z = 4 intersect in a
line and find the distance from the point C = (1,0,1) to this line. See
pp. 173, [7].

5. Find an equation for the plane through P0 =(1,0,1) and passing through
the line of intersection of the planes x+ y−2z = 1 and x+3y− z = 4.
See pp. 175, [7].

6. Show that the triangle with vertices (−3,0,2), (6,1,4), (−5,1,0) has
area 1

2

√
333. See pp. 179, [7].

7. Let V be the vector space consisting of n×n matrices with real entries
and let W be the subset of V consisting of diagnonal matrices (if i ̸= j,
then ai j = 0). Show that W is a subspace of V .

8. Let V be the vector space consisting of n× n matrices with real en-
tries and let W be the subset of V consisting of symmetric (MT = M)
matrices. Show that W is a subspace of V .

9. Let V be the vector space of polynomials with real coefficients. Let
W be the subset of V consisting of polynomials of degree less than or
equal to n. Show that W is a subspace of V .
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10. Show that the intersection W1∩W2 of subspaces W1 and W2 of a vector
space V is a subspace of V . See pp. 17, [3].

11. Let V be the vector space of all 2× 2 matrices over the real field R.
Show that W is not a subspace of V where:

(a) W consists of all matrices with determinant 0;

(b) W consists of all matrices A such that A2 = A.

See [6].

12. Let V be the vector space of all functions from the real field R in R.
Show that W is a subspace of V where:

(a) W = { f : f (3) = 0},
(b) W = { f : f (7) = f (1)},
(c) W = { f : f (−x) =− f (x) (odd functions)}.

See [6].

13. Let V denote the vector space of m× n matrices over R. Show that
⟨A,B⟩ = tr

(
BT A

)
is an inner product in V , where tr(A) denotes the

trace of the matrix A, the sum of the diagonal elements of A.

14. Let F [−π,π] be the vector space of functions f : [−π,π] −→ R. We
have an inner product ⟨ f ,g⟩ = 1

π

∫
π

−π
f (x)g(x)dx. Calculate the inner

products:

(a) ⟨cos(x),sin(x)⟩,
(b) ⟨cos(x),cos(x)⟩,
(c) ⟨sin(x),sin(x)⟩.

15. Let V be the vector space of complex continuous functions on the real
interval a≤ t ≤ b, and let p+qi = p−qi. Show that
⟨ f ,g⟩=

∫ b
a f (t)g(t)dt is an inner product on V .

16



2 Linear Combinations, Spanning Sets, Orthogonality

In this section we will consider linear combinations, spanning sets, and
orthogonality.

2.1 Linear combinations

A linear combination of n vectors in a vector space V is a sum of scalar
multiples of those n vectors. Let U = {u1,u2, . . . ,un} be a collection of
vectors in the vector space V of a field K and let k1,k2, . . . ,kn ∈K. Then

k1u1+ k2u2+ · · ·+ knun ∈V

is a linear combination of the vectors in U .

Example 2.1 Consider the vector u =

(
1
−2

)
. Show that the vector

v =

(
−3
6

)
is a linear combination of u.

Example 2.2 Let u =

(
1
−2

)
and v =

(
−3
1

)
be vectors. Show that the

vector w =

(
5
6

)
is a linear combination of u and v.
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Example 2.3 Let u=

 2
4
−5

, v=

 1
−6
9

∈R3. Then u+v=

 3
−2
4


is a linear combination of u and v, 7u+ 0v =

 14
28
−35

 is a linear com-

bination of u and v, 0u−1v =

 −1
6
−9

 is a linear combination of u and

v, 3u−5v =

 1
42
−60

 is a linear combination of u and v.

Example 2.4 Let

v =

 5
−10
25

 , u1 =

 2
2
2

 , u2 =

 3
6
9

 , u3 =

 4
−2
2

 .

Write v as a linear combination of u1,u2,u3.
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Continuing,
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Example 2.5 Determine whether the vector w = (8,3,1) is a linear com-
bination of the vectors u = (2,3,−1) and v = (3,0,4).

Theorem 5 Let u1,u2, . . . ,un be column vectors in Rn. Then the column
vector v ∈ Rn is a linear combination of the vectors u1,u2, . . . ,un if and
only if there is a solution X in Rn to the matrix equation AX = v, where
A = (u1 | u2 | . . . | un), if and only if

rre f (u1 | u2 | . . . | un | v)

does not have a row with (0,0, . . . ,0,1), where rre f (B) means the row
reduced echelon form of B.

Example 2.6 Let V be the vector space consisting of polynomials with real
coefficients. Determine whether f (t) = 3t2+5t−5 is a linear combination
of the polynomials

p1 = t2+2t +1, p2 = 2t2+5t +4, p3 = t2+3t +6.

20



Continuing,
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2.2 Spanning sets

We are now able to define the subspace of V consisting of all linear com-
binations of the n vectors, the span.

Let U = {u1,u2, . . . ,un} be a collection of vectors in the vector space V of
a field K. The span of U or span of the vectors in U , denoted

span(U) = span(u1,u2, . . . ,un) ,

is the set of all linear combinations of the vectors in U :

span(U) =

{
v ∈V : v =

n

∑
j=1

a ju j, where a j ∈K

}
.

Theorem 6 Let U be a subset of the vector space V . Then:

1. U ⊆ span(U)⊆V and span(U) is a subspace of V .

2. If W is a subspace of V and U ⊆W, then span(U)⊆W.

Remark 2.1 Suppose span(u1,u2, . . . ,un) =V . Then for any w ∈V ,

span(u1,u2, . . . ,un,w) =V.

Remark 2.2 Let U = {u1,u2, . . . ,un−1,un}, un ∈U. Suppose span(U)=V
and un is a linear combination of u1,u2, . . . ,un−1 or un = 0. Then

span(u1,u2, . . . ,un−1) =V.

Note that 0 is a linear combination of the other vectors in U.
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Example 2.7 Let e1 = (1,0,0) = i, e2 = (0,1,0) = j, e3 = (0,0,1) = k be
vectors in R3. Show that span(e1,e2,e3) = R3.

Example 2.8 Consider the vectors u =

 2
1
−3

, v =

 4
−3
−4

 in the vec-

tor space R3 over R. By taking the cross product u×v=

 −13
−4
−10

, we see

that this vector is normal to the plane −13x−4y−10z = 0 so this plane is
parallel to both u and v. See Figure 2. In fact it is easy to show that any
linear combination w of u and v, so w = au+bv, with a,b ∈ R, must also
be parallel to the plane −13x−4y−10z = 0 and all linear combinations
of u and v are parallel to this plane. It is easy to see then that we cannot
obtain any vector in R3 by a linear combination of u and v since not all
vectors in R3 are parallel to the plane −13x−4y−10z = 0. For example,

the vector

 0
0
1

 is not a linear combination of u and v. We may think

of span(u,v) geometrically as the set of all vectors that are parallel to the
plane −13x−4y−10z = 0. It is clear that this is a proper subspace of R3

and not equal to R4.
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Figure 1: Example

Remark 2.3 A spanning set is not unique. For example

span(i, j,k) = span((1,1,1),(1,1,0),(1,0,0)) = R3.

Remark 2.4 The span of two non-zero vectors in R3 that are not parallel
is a plane passing through the origin.

Example 2.9 Show that (2,7,8) ̸∈ span((1,2,3),(1,3,5),(1,5,9)) by com-
puting

rre f

 1 1 1 2
2 3 5 7
3 5 9 8

 .

Hence span((1,2,3),(1,3,5),(1,5,9)) ̸= R3.
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Example 2.10 Let M2,2 be the vector space of all 2×2 matrices with real
entries and let

U =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

Then span(U) = M2,2.

Theorem 7 Let u1,u2,u3 be three column vectors in R3. Then

span(u1,u2,u3) = R3

if and only if
rre f (u1 | u2 | u3) = I,

if and only if
det(u1 | u2 | u3) ̸= 0.

Example 2.11 Show that span((3,3,3),(2,4,6),(−2,−10,−16)) = R3

25



Let A = [ai j]m×n with ai j ∈K, where K is a field. Let

Ri = [ai j]1×n = (ai1,ai2, . . . ,ain) .

The row space of A, denoted RS(A), is given by

RS(A) = span(R1,R2, . . . ,Rm) .

If B is the row reduced echelon form of A, then

RS(A) = RS(B).

Example 2.12 Describe the space span(u1,u2) with as few vectors as pos-
sible using the row space of a matrix, where u1 = (1,1), u2 = (3,3).
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Example 2.13 Describe the space span(u1,u2,u3,u4) with as few vectors

as possible using the row space of the 4×3 matrix A =


uT

1

uT
2

uT
3

uT
4

, where

u1 =

 1
2
−3

 , u2 =

 −2
0
4

 , u3 =

 0
4
−2

 , u4 =

 −2
−4
6

 .
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2.3 Orthogonality

We refer to [4, pp. 263] for the following definitions and example.

Let v1,v2, . . . ,vn be non-zero vectors in an inner product space V . If ⟨vi,v j⟩=
0 if and only if i ̸= j, then {v1,v2, . . . ,vn} is an orthogonal set of vectors.

Let v1,v2, . . . ,vn be non-zero unit vectors in an inner product space V . If
⟨vi,v j⟩ = 0 if and only if i ̸= j, then {v1,v2, . . . ,vn} is an orthonormal set
of vectors.

Example 2.14 Let v1 = (1,1,1), v2 = (2,1,−3), v3 = (4,−5,1). Show
that {v1,v2,v3} is an orthogonal set of vectors.
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Example 2.15 Let F [−π,π] be an inner product space of functions with
inner product

⟨ f ,g⟩= 1
π

∫
π

−π

f (x)g(x)dx.

Show that the set {1,cos(x),cos(2x), . . . ,cos(nx)} is an orthogonal set of
vectors, and find an orthonormal set of vectors.
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The square matrix Q is orthogonal if the column vectors of Q form an
orthonormal set.

Theorem 8 An n×n matrix Q is orthogonal if and only if QT = Q−1.

Example 2.16 For any θ ∈ R, the rotation matrix

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
is orthogonal.

Theorem 9 Let Q be an n×n orthogonal matrix. Then

1. The column vectors of Q form an orthonormal basis for Rn.

2. QT Q = I.

3. QT = Q−1.

4. ⟨Qu,Qv⟩= ⟨u,v⟩.

5. ∥Qv∥= ∥v∥, where ∥v∥=
√
⟨v,v⟩.
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2.4 Orthogonal matrices and QR decomposition

Now we will consider the QR decomposition of a matrix.

Recall that the square matrix Q is orthogonal if QT = Q−1.

QR decomposition involves writing the original matrix A in the form

A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix.

This is a very useful technique, which can be used to solve linear systems,
invert matrices, calculate eigenvalues, and more.

QR decompositions are defined for non-square matrices too. If A is an
m×n matrix with m≥ n, then Q is m×m and R is m×n.

For our purposes, we stick to square matrices.

Furthermore, if A is invertible, then the QR decomposition is unique if we
require that the diagonal elements of R are positive.

Applications of QR decomposition

The QR decomposition is useful in many elementary tasks in linear alge-
bra.

Suppose we want to solve the linear system AX = b. If we calculate the
QR factorisation of A, then we can write this as

QRX = b,

RX = QT b,

and then we can easily solve for X using back substitution. This does
not involve finding the inverse of a matrix or using Gaussian elimination
directly.

Likewise, if we want to invert A, we calculate its QR decomposition and
immediately have A−1 = R−1QT .
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Again, because R is upper triangular, it is much easier to invert than a
general matrix.

We can use QR decomposition to calculate eigenvalues.

A popular way of computing the QR decomposition is to use a Gram-
Schmidt process, which you should know from computing an orthonormal
basis.

We will use this process to compute an orthonormal basis of the column
space of A. It is well known that a concatenation of orthonormal vectors
forms an orthogonal matrix (this will be Q).

By this construction, the kth column of Q depends only on the first k
columns of A. This gives R the required upper triangular structure.
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Gram-Schmidt algorithm

In: An n×n matrix A.

Out: n× n matrices Q,R, where A = QR, Q is orthogonal, and R is upper
triangular.

1. For i = 1,2, . . .n :

(a) Let ai be the ith column of A.

(b) Set

ui = ai−
i−1

∑
k=1

(ai ·Vk)Vk.

(c) Set

Vi =
Ui

||Ui||
.

2. Set
Q = [V1 V2 . . . Vn],

and

R =


a1 ·V1 a2 ·V1 . . . an ·V1

0 a2 ·V2 . . . an ·V2
... ... . . . ...
0 0 . . . an ·Vn

 .

To see that this works, firstly it is easy to see that Vi all have unit norm.
By construction, they are all orthogonal – suppose that V1,V2, . . .Vi−1 are
mutually orthogonal. Then for j < i,

Ui ·Vj =

(
ai−

i−1

∑
k=1

(ai ·Vk)Vk

)
·Vj,

= ai ·Vj− (ai ·Vj)Vj ·Vj,

= 0.

Thus Q is indeed an orthogonal matrix.
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By construction, ai can be expressed as a linear combination of the Vks for
k = 1,2, . . . i :

ai =
i

∑
k=1

ckVk.

Multiplying by Vj for j ≤ i and using the orthonormality of the V s gives

ai ·Vj = c jVj ·Vj = c j,

which shows that A = QR.
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An alternative way to computing the QR decomposition is to use a tech-
nique we have seen earlier: Householder transformations.

Recall that for any two vectors X and Y of equal norm, there exists a House-
holder matrix (which is orthogonal) H such that HX = Y .

Therefore we take successive matrices which transform each of the columns
of A (starting from the diagonal element) into multiples of e1.

Example Find the QR decomposition of the matrix

A =
(

1 1 0
1 0 1
0 1 1

)
.
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Continuing,
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Continuing,
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3 Linear Independence and Bases

3.1 Linear independence

Definition 1 Let U = {u1,u2, . . .un} be a collection of vectors in the vector
space V over the field K. Then the vectors u j ∈U are linearly dependent
if there exist a1,a2, . . . ,an ∈K (not all zero) such that

a1u1+a2u2+ · · ·+anun = 0.

If U is not linearly dependent, then U is linearly independent.

Definition 2 Let U = {u1,u2, . . .un} be a collection of vectors in the vector
space V over the field K. Then the vectors u j ∈U are linearly independent
if whenever

a1u1+a2u2+ · · ·+anun = 0,

then we must have a1 = a2 = · · ·= an = 0.

Remark 3.1 Let S = {v1,v2, . . . ,vm} be a set of vectors in the vector space
V . If 0 ∈ S, then S is linearly dependent.

This holds since 0v1 + 0v2 · · ·+ 1v j + . . .0vm = 0 but not all of the scalar
coefficients are zero, where v j = 0 for some j: 1≤ j ≤ m.

Remark 3.2 Let S = {v} be a set of vectors in the vector space V consist-
ing of one non-zero vector v. Then S is linearly independent.

Clearly kv = 0 if and only if k = 0 since v ̸= 0.

Remark 3.3 Let S = {v1,v2, . . . ,vm} be a set of vectors in the vector space
V and suppose that vi = kv j for some i ̸= j and k ∈ K. Then S is linearly
dependent.

38



Remark 3.4 Let S = {v1,v2} be a set of non-zero vectors in the vector
space V . Then S is linearly dependent if and only if there exists a non-zero
scalar k such that v1 = kv2.

Example 3.1 Let S1 =

{(
1
1

)
,

(
2
2

)}
and S2 =

{(
1
1

)
,

(
2
3

)}
. Show

that S1 is linearly dependent while S2 is linearly independent.

Remark 3.5 Let S = {v1,v2, . . . ,vm} be a set of linear independent vectors
in the vector space V and suppose that W is a subset of S. Then W is
linearly independent.
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Example 3.2 Let u =

 1
1
0

, v =

 1
3
2

, w =

 4
9
5

 be vectors in R3.

Show that u,v,w are linearly dependent.

Example 3.3 Let u =

 1
2
3

, v =

 2
5
7

, w =

 1
3
5

 be vectors in R3.

Show that S = {u,v,w} is linearly independent.
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Remark 3.6 Any two vectors in R3 are linearly dependent if and only if
they lie on the same line through the origin.

Remark 3.7 Any three vectors in R3 are linearly dependent if and only if
they lie on the same plane through the origin. (Remember we can move
vectors without changing their magnitude and direction.)

3.2 Basis of a vector space

See [4, pp. 12] for the following:

Definition 3 A matrix is in row reduced echelon form if the following four
conditions hold:

1. All rows (if any) consisting entirely of zeros appear at the bottom of
the matrix.

2. The first non-zero number starting from the left in any row not consist-
ing entirely of zeros is 1.

3. If two successive rows do not consist entirely of zeros, then the first 1
in the lower row occurs farther to the right than the first 1 in the higher
row.

4. Any colum containing the first 1 in a row has zeros everywhere else.

Definition 4 If only Conditions 1,2, and 3 hold, then the matrix is in row
echelon form.
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For example, the matrices

I,

 1 0 0 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

 1 0 0 3
0 1 0 2
0 0 1 2


are in r.r.e.f. The matrix  1 2 1

0 1 4
0 0 1


is only in row echelon form because the leading 1s or pivots do not have
0s above them.

Theorem 10 The non-zero rows of a matrix that is in row reduced echelon
form are linearly independent.

Definition 5 Let B = {u1,u2, . . . ,un} be a set of vectors in a vector space
V over K. Then B is a basis of V if both:

1. span(B) =V ,

2. The vectors in B are linearly independent.

Remark 3.8 A basis of a vector space V is not unique in general (there
may be exceptions for unusual fields of scalars like K= {0,1 (mod 2)}.)

Theorem 11 Suppose B = {u1,u2, . . . ,un} is a basis for the vector space
V . Then for all v ∈V , there is a unique ordered n-tuple of scalars
(a1,a2, . . . ,an) such that ∑

n
j=1 a ju j = v. (Write can write v as a unique

linear combination of the vectors in B.)
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Theorem 12 If B1 and B2 are bases for a vector space V , then they have
the same number of elements.

Definition 6 The dimension of a vector space V , denoted dim(V ), is the
number of elements in any basis of V if this number is finite.

Remark 3.9 The trivial vector space {0} is defined to have dimension 0.

Definition 7 If B = {u1,u2, . . . ,un} is a basis of a vector space V , then B
is an orthogonal basis of V if for all ui,u j ∈ B with i ̸= j, then ui ·u j = 0.

Definition 8 If B= {u1,u2, . . . ,un} is an orthogonal basis of a vector space
V , then B is orthonormal if all ui ∈ B satisfy ∥ui∥= 1.

Example 3.4 Let i =

 1
0
0

, j =

 0
1
0

, k =

 0
0
1

. B = {i, j,k} is an

orthonormal basis for R3 and dim
(
R3
)
= 3.

Remark 3.10 Orthonormal bases are not unique.

Definition 9 Let e j be the n×1 matrix whose entries ai1 are 0 if i ̸= j and
0 if i = j. Then B = {e1,e2, . . . ,en} is an orthonormal basis for Rn. B is
called the standard basis for Rn. dim(Rn) = n.

Example 3.5 Let M2,3 be the vector space of all 2× 3 matrices wth real
entries. Let

B =

{(
1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)}
.

Then B is a basis for M2,3. The dimension of M2,3 is equal to 6.

Example 3.6 Let Pn(t) be the vector space consisting of all polynomials
of degree ≤ n. Let S =

{
1, t, t2, . . . , tn

}
. Then S is a basis for Pn(t) and

dim(Pn(t)) = n.
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Example 3.7 Let u =

 1
2
3

, v =

 2
5
7

, w =

 1
3
5

 be vectors in R3.

Show that S = {u,v,w} is a basis for R3.

Theorem 13 Let V be a vector space of dimension n and let S be a subset
of V of m vectors, where m > n. Then S is linearly dependent.

Theorem 14 Let V be a vector space of dimension n and let S be a subset
of V of n linearly independent vectors. Then S is a basis of V .

Theorem 15 Let V be a vector space of dimension n. If

span(v1,v2, . . . ,vn) =V,

then {v1,v2, . . . ,vn} is a basis of V .

Theorem 16 Let V be a vector space of finite dimension n and S= {u1,u2, . . . ,um}
be a set of linearly independent vectors in V . Then S can be extendend to
a basis B of V so that S⊆ B.
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Theorem 17 Let W be a subspace of an n-dimensional vector space V .
Then dim(W )≤ n.

Example 3.8 Let W be a subspace of R3. If dim(W ) = 0, then W = {0}. If
dim(W ) = 1, then W is a line through the origin. If dim(W ) = 2, then W is
a plane through the origin. If dim(W ) = 3, then W = R3.

3.3 The rank and nullspace of a matrix

Definition 10 The rank of a matrix A, denoted rank(A), is the dimension
of the vector space spanned by the columns of A, the number of non-zero
rows in the row-reduced echelon form of A.

Definition 11 The null-space of an m× n matrix A with entries in K, de-
noted NS(A) is the vector space consisting of the vectors

NS(A) = {X ∈V : AX = 0} .

Theorem 18 NS(A) is a sub-space of V .
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3.4 The Wronskian matrix

For what follows in this section, see pp. 155, [5].

Definition 12 Let F [a,b] be the vector space of function defined on the
interval [a,b]. Define the Wronskian function

W ( f1, f2, . . . , fn)(x) = det


f1 f2 . . . fn

f ′1 f ′2 . . . f ′n
... ... . . . ...

f (n−1)
1 f (n−1)

2 . . . f (n−1)
n

 ,

where f (m)(x) denotes the m-th derivative of the function f (x) with respect
to x.

Theorem 19 Let f1, f2, . . . , fn ∈ F [a,b]. If there exists a point x0 ∈ [a,b]
such that W ( f1, f2, . . . , fn)(x0) ̸= 0, then f1, f2, . . . , fn are linearly indepen-
dent.

Example 3.9 Show that ex and e−x are linearly independent in F [−∞,∞].
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4 Linear Transformations

4.1 Definitions

Definition 13 A map or mapping is an unambiguous rule f for sending
the elements of the non-empty set X to the elements of the non-empty set Y ,
denoted f : X −→ Y .

Also see Definition ??.

Example 4.1 Let f : Z−→R given by f (x) = x2 is a map or function that
sends an integer to it’s square.

Definition 14 The domain of the map f : X −→ Y is X and the codomain
of f is Y or the target set.

In Example 4.1 above, the domain of f is Z, the codomain is R and the
image of the map f , denoted f [X ], here it is f [Z], is the set of all elements
of R that are of the form f (x), here f [X ] =Z2, where Z2 is the set of integer
squares. In another context, Z2 might be used to refer to the Cartesian
product Z×Z but we don’t mean that here.

Definition 15 Let f : X −→ Y be a map. The preimage of a subset W of
Y , f−1(W ) is the set of all elements x of the domain X such that f (x) ∈W.

Example 4.2 Define a map f : R −→ R by f (x) = x2. Find the image of
f , f [R]. Find the preimage of {1,2,3}.
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Example 4.3 Let V = R[x] be the vector space of all polynomials with
real coefficients. Define a map D : V −→ V by D(p(t)) = p′(t), the first
derivative of p(t) w.r.t. t. This is an example of a map. Consider the
preimage of some polynomial q(t).

Example 4.4 Let V = R[x] be the vector space of polynomials with real
coefficients. Define a map F : V −→ R by F(p(t)) =

∫ 1
0 p(t)dt.

Definition 16 A map f : X −→ Y is said to be a linear map if:

1. X and Y are vector spaces over a field K.

2. For all u,v ∈ X, f (u+ v) = f (u) + f (v) (we can say f is a vector
space homomorphism).

3. For all k ∈K and u ∈ X, f (ku) = k f (u).

This is also called a linear transformation.

Clearly if f is a linear map, then f (0v) = 0.

Example 4.5 Let F : R3 −→ R3 by F(x,y,z) = (x,y,0), where we under-
stand R3 to be the vector space R3. This map F projects the vector (x,y,z)
onto the x,y plane. F is a linear map.
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Example 4.6 Let G : R2 −→ R2 by G(x,y) = (x+1,y+2), where we un-
derstand R2 to be the vector space R2. Determine whether G is a linear
map.

Example 4.7 Let V = R[t] be the vector space of polynomials with real
coefficients. The derivative D : V −→ R is a linear map.

The map f of Example 4.4 is also a linear map.

Theorem 20 Let A be an m× n matrix with entries in K. Let X and Y be
vector spaces of dimension n and m respectively. Define a map fA : X −→Y
by fA(x) = Ax. Then matrix multiplication, fA, is a linear map:

1. fA (x1+x1) = A(x1+x2) = Ax1+Ax2 = fA (x1)+ fA (x2).

2. For all k ∈K and x ∈ X, fA(kx) = A(kx) = kAx = k fA(x).
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Change of basis theorem:

Theorem 21 Let X and Y be vector spaces over K of dimension n. Let
{x1,x2, . . . ,xn} and {y1,y2, . . . ,yn} be respective bases of X and Y . Then:

1. There exists a unique linear mapping fA : X −→ Y satisfying

fA (x1) = y1, fA (x2) = y2, . . . , fA (xn) = yn.

2. There exists an n×n matrix A such that fA(x) = Ax and

A(x1 | x2 | . . . | xn) = (y1 | y2 | . . . | yn) .

proof:
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Definition 17 Let X and Y be vector spaces over K. The X and Y are
isomorphic if there is a linear map f : X −→ Y such that f is a bijection,
meaning injective (if f (x) = f (y), then x= y) and surjective (For all y∈Y ,
there exists x ∈ X such that y = f (x)).

Theorem 22 Let X be the set of all polynomials of the form ax+b, where
a,b ∈ R. Then there is a vector space isomorphism X ∼= R2 given by

f (ax+b) = (a,b).

Theorem 23 Let C= R(i) be the vector space of complex numbers ai+b
over the field R. There is a vector space isomorphism C∼= R2.
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4.2 Fundamental subspaces, rank and nullity

Theorem 24 Let X and Y be vector spaces over K and let F : X −→ Y be
a linear map. If span(x1,x2, . . . ,xn) = X, then

span(F(x1),F(x2), . . . ,F(xn)) = F [X ].

Kernel and Image:

Definition 18 Let f : X −→Y be a linear map. Then the kernel of the map
f is given by

ker( f ) = {x ∈ X : f (x) = 0} .

Theorem 25 If f (x) = Ax for some matrix A, then ker( f ) = NS(A), the
nullspace of A. Hence ker( f ) is a subspace of X.

Definition 19

im( f ) = {x ∈ X : exists y ∈ Y satisfying f (x) = y} .

Theorem 26 If f (x) = Ax for some matrix A, then im( f ) = CS(A). Hence
the image of f is a subspace of Y .
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Definition 20 The rank of a linear map f : X −→ Y is the dimension of
the image of f , dim(im( f )). The nullity of f is the dimension of the kernel
of f , nullity = dim(ker( f )) If f (x) = Ax for some matrix A, then nullity =
dim(NS(A)) and rank = dim(CS(A)).

Theorem 27 Let X and Y be finite dimensional vector spaces over K with
dim(X) = n and let f : X −→ Y be a linear map. Then

rank( f )+nullity( f ) = n.

In other words, the sum of the dimensions of the kernel of f and the image
of f is equal to the dimension of X.

Example 4.8 Let A =

 2 −1 3
4 −2 6
−6 3 −9

. The map fA : R3 −→ R3 given

by fA(x) = Ax is a linear map. Find a basis for each of NS(A) and CS(A).
Calculate the rank and nullity of the matrix A and verify that they add to 3.
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Example 4.9 Let F : R4 −→ R3 be the linear map given by

F(x,y,z, t) = (x− y+ z+ t,2x−2y+3z+4t,3x−3y+4z+5t).

1. Find a basis and dimension of im(F).

2. Find a basis and dimension of ker(F).
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Continuing,
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Theorem 28 Let fA : X −→ Y be a linear map with fA(x) = Ax for some
square matrix A. Then fA is injective (or one to one) if and only if det(A) ̸=
0, if and only if NS(A) = {0} (or equivalently ker( fA) is trivial).
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5 Eigenvalues and Eigenvectors

5.1 Definitions

Eigenvalues and eigenvectors are very useful in Mathematics and Engi-
neering - ODEs, PDEs, matrix algebra, data science, and much more.

Let A be a square n×n matrix with real entries. Then the eigenvalues λ and
eigenvectors x(̸= 0) are the scalars and vectors satisfying the eigenvalue-
eigenvector equation

Ax = λx. (1)

Any vector x satisfying (1) is called an eigenvector of A corresponding to
the eigenvalue λ . It is easy to show that the eigenvalues λ1, . . .λn of A are
complex numbers satisfying det(A−λ I) = 0. Since this is a polynomial
of degree n, we will have n solutions λi ∈ C up to multiplicity (possible
repeated roots) according to the fundamental theorem of algebra. It is clear
then that an n×n matrix A has at most n distinct eigenvalues.

The eigenvalue-eigenvector equation can be written as (A− λ I)X = 0,
where I is the n× n identity matrix and we assume the ai j ∈ R. We want
non-trivial solutions X ̸= 0. For this to occur, (A−λ I) must be singular
(not-invertible). This means that

det(A−λ I) = 0,

and we obtain a polynomial

bnλ
n+bn−1λ

n−1+ · · ·+b0 = 0.

The solution gives real values λi or complex values that occur in complex
conjugate pairs.
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Example 5.1 Find the eigenvalues of the matrix

A =


3 5 −2 5 8
2 1 1 0 12
6 0 4 3 −7
−3 −4 1 0 8
0 9 1 0 6

 .

We have

det(A−λ I) =−λ
5+14λ

4+20λ
3−304λ

2+4817λ −17530.

The roots of this equation are

λ1 =−7.87362, λ2 = 3.87177,

λ3 = 15.0574, λ4,λ5 = 1.47222±6.00186i.

Since the eigenvalues of a matrix may not be real numbers, the same is true
for the eigenvectors of A. Clearly, the set of all linear combinations of the
eigenvectors of real-valued A forms a subspace of Cn.

Example 5.2 Let A =

(
3 1
2 2

)
, let x1 =

(
1
−2

)
, and x2 =

(
1
1

)
. Since

Ax1 =

(
3 1
2 2

)(
1
−2

)
=

(
1
−2

)
,

it is easy to see that x1 is an eigenvector of A with corresponding eigenvalue
λ1 = 1. Since

Ax2 =

(
3 1
2 2

)(
1
1

)
=

(
4
4

)
= 4

(
1
1

)
,

x2 is an eigenvector of A with corresponding eigenvalue λ2 = 4.
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To find these given the matrix A, we seek the roots of the characteristic
equation

det(A−λ ) = det

(
3−λ 1

2 2−λ

)
= λ

2−5λ +4 = 0.

Since we have the following factorisation of the left hand side of the char-
acteristic equation

(λ −1)(λ −4) = 0,

the eigenvalues of A are λ1 = 1 and λ2 = 4. To find the eigenvector x1

corresponding to λ1 = 1, we have (A−1I)x1 = 0, so bvx1 ∈ NS(A− I).

A−1I =

(
3−1 1

2 2−1

)
,

=

(
2 1
2 1

)
,

∼

(
2 1
0 0

)
.

It follows that x1 =

(
1
−2

)
. To find the eigenvector x2 corresponding to

λ2 = 4, we have (A−4I)x2 = 0, so bvx2 ∈ NS(A−4I).

A−4I =

(
3−4 1

2 2−4

)
,

=

(
−1 1
2 −2

)
,

∼

(
1 −1
0 0

)
.

It follows that x2 =

(
1
1

)
.
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Theorem 29 If x is an eigenvector of A and k is a scalar, then kx is an
eigenvector of A.

Theorem 30 If A is a 2×2 matrix, then the charcterisic equation is

λ
2− tr(A)λ +det(A) = 0.

Theorem 31 Let A be a square matrix. The following are logically equiv-
alent:

1. λ is an eigenvalue of A.

2. NS(A−λ I) is non-trivial.

3. The row-reduced echelon form of A−λ I has a row of zeros.

4. det(A−λ I) = 0.
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5.2 Examples

Example 5.3 Find all of the eigenvalues and eigenvectors of the matrix

A =

(
5 3
2 10

)
.
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Example 5.4 Find all of the eigenvalues and eigenvectors of the matrix

A =

(
3 −4
2 −6

)
.
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Example 5.5 Find all of the eigenvalues and eigenvectors of the matrix

A =

(
1 1
−3 −1

)
.
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Example 5.6 Find all of the eigenvalues and eigenvectors of the matrix

A =

 1 2 1
3 −1 0
1 0 1

.

64



Example 5.7 Couple the ODE y′′(x)+ y′(x)+ y(x) = 0 and write the cor-
responding characteristic equation using eigenvalues.
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5.3 Diagonalization of matrices

Definition 21 A square matrix A is diagonalizable if there exists an in-
vertible matrix P such that D = P−1AP is a diagonal matrix, equivalently
A = PDP−1.

Theorem 32 An n×n matrix A is diagonalizable if and only if there are n
linearly independent eigenvectors of A. If A is diagonalizable, let x1,x2, . . . ,xn

be the linearly independent eigenvectors of A and let

P = (x1 | x2 | . . . | xn) .

Then
D = P−1AP

with the diagonal entries of D being aii = λi.

Example 5.8 Diagonalize the matrix A =

(
5 3
2 10

)
.

5.4 Singular value decomposition

Singular value decomposition is a decomposition of a (not necessarily
square) matrix A, of dimension m×n, into the matrices

A =USV T ,

where U is an m×m orthogonal matrix, V is an n× n orthogonal matrix,
and S is an m×n diagonal matrix.

Note that since S is not (necessarily) square, it’s not a ‘proper’ diagonal
matrix; all of its non-zero values must lie on the main diagonal. These
values are called the singular values of A.
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.

If there exists a number σ and vectors u, and v such that

Av = σu,

AT u = σv,

then σ is a singular value of A, with corresponding left and right singular
vectors u and v.

We can also calculate the SVD using diagonalisation. Write

AT A = V STUTUSV T ,

= V ST SV T ,

AAT = USV TV STUT ,

= USSTUT .

Since S is diagonal, so is ST S and SST .

We now see that these are diagonalisations of AT A and AAT .

So to find the singular value decomposition of A, we diagonalise these two
(symmetric) matrices. The right singular vectors of A are the eigenvectors
of AT A and the left singular vectors are the eigenvectors of AAT .

Furthermore, the singular values of A are the square roots of the eigenval-
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ues of AT A and AAT (which are identical).
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6 Linear Algebra Exercises

6.1 Practice Problems

1. Determine whether the vectors u =

(
1
1

)
, v =

(
2
3

)
, w =

(
−1
1

)
span the vector space R2.
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2. Let P2 be the vector space consisting of all polynomials of degree less
than or equal to 2.

(a) Show that if f (x),g(x) ∈ P2, then span({ f (x),g(x)}) ̸= P2.

(b) Show that span({ f (x),g(x)}) is a proper subspace of P2.
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3. Let

u =


1
2
0
4

 , v =


−2
1
3
1

 , w =


3
1
1
−1


be vectors in R4.

(a) Show that u,v,w are linearly independent.

(b) What is the dimension of span({u,v,w})?
(c) Let p=(0,5,−1,13)T ,q=(5,0,2,−6)T ∈R4. Show that span(p,q)

is a 2-dimensional subspace of span({u,v,w}).
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4. Define f : R3 −→ R2 by f (x,y,z) = (x+3y−2,y+ z−2). Show that
f is a function but f is not a linear map.
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5. Consider the vectors u =

(
3
1

)
, v =

(
1
−2

)
, w =

(
2
4

)
.

(a) Show that w is a linear combination of u and v.

(b) Write w as a linear combination of u and v.

(c) Find real numbers α,β ,γ such that αu+βv+ γw = 0.
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6. Let A =

(
2 −6
−1 3

)
.

(a) Calculate the eigenvalues and eigenvectors of the matrix A.

(b) Diagonalize A.

(c) Show that for any positive integer n, An = 5nA.
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7. Define a map f : R3 −→ R4 by

f (x,y,z) = (3x+7y+ z,4x+8y+2z,−3x−9y,x+ y+ z).

(a) Show that f is a linear map.

(b) Find a basis for the image of f .

(c) Find a basis for the kernel of f .
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8. The trace tr(z) of a complex number z = a+bi is the sum of the conju-
gates. The norm nm(z)) of a complex number z = a+bi is the product
of the conjugates.

(a) Define f : C−→ R2 by f (z) = (tr(z),nm(z)). Show that f is not a
linear map.

(b) Define g : C−→ R by g(z) = ℜ(z)+ℑ(z). Show that g is a linear
map.

(c) Give a basis for the image and the kernel of g.
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6.2 A Linear Algebra Exam

This is intended to be completed in 90 Minutes

This is an open-book, open-notes, and open-tutorial-solutions exam.

Full working must be shown on the pages provided.

Permitted materials: A pocket calculator or graphics calculator.

Mobile phones and laptops are not permitted. Please switch phones off.

Name:
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1. Consider the vectors

u =

(
−2
−3

)
, v =

(
1
4

)
in the vector space R2.

(a) Calculate w = 2u−3v. (3 Marks)

(b) Explain whether w is an element of span(u,v). (2 Marks)

(c) Determine whether u and v are orthogonal. (2 Marks)
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2. Consider the vectors

u =

(
1
1

)
, v =

(
2
−1

)
, w =

(
−5
1

)
in the vector space R2.

(a) Write the vector w as a linear combination of u and v. (4 Marks)

(b) Are the vectors u, v, and w linearly independent?
Explain why or why not. (2 Marks)

(c) Show that span({u,v,w}) = R2. (7 Marks)

(d) What is the dimension of the vector space span({u,v,w})?
. (2 Marks)
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3. Let V be the vector space over R consisting of all polynomials in the
variable x with real coefficients. Determine whether the polynomials

f (x) = x2+3, g(x) =−x2+ x+2, h(x) = x2−2x−7

are linearly independent. (10 Marks)

80



4. Let

A =

 1 −1 1
0 1 −2
3 2 −7

 .

(a) Calculate a basis for the nullspace of A and a basis for the column
space of A.
. (6 Marks)

(b) What is the rank of A and the nullity of A? (2 Marks)

(c) Consider the linear map F : R3 −→ R3 given by

F


 x

y
z


= A

 x
y
z

 .

Calculate the dimension of the image of F and the dimension of
the kernel of F . (2 Marks)

(d) Show that the image of F is a subspace of R3. (8 Marks)
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Space for working.
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5. Let A =

(
−7 4
−12 7

)
.

(a) Calculate the eigenvalues and eigenvectors of A. (12 Marks)

(b) Express the matrix A as A = PDP−1, where P is a 2×2 invertible
matrix and D is a diagonal matrix. (4 Marks)

(c) Use Part (b) to calculate A4 = AAAA, and hence A100. Explain your
reasoning.
. (4 Marks)
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7 Tutorial Problems

7.1 Problem Set 1

Summary.

• Let A = [ai j], B = [bi j] be m× n matrices and let p,q ∈ R. A linear
combination of A and B is of the form

pA+qB = p [ai j]+q [bi j] ,

= [pai j]+ [qbi j] ,

= [pai j +qbi j] .

• Let u,v ∈ Rn with u = [ui]1×n, v = [vi]1×n. Then:

1. The dot product of u and v is given by

u ·v = u1v1+u2v2+ . . .unvn =
n

∑
i=1

uivi.

2. u and v are orthogonal if u ·v = 0.

3. The norm of u is given by ∥u∥=
√

∑
n
i=1 u2

i .

4. ∥u∥= 0 if and only if u = 0.

5. If u ̸= 0, then the unit vector û = 1
∥u∥u is a vector of norm 1 is the

direction of the vector u.

6. If u,v ̸= 0, then u ·v= ∥u∥ ∥v∥cosθ , where θ is the angle between
u and v.

84



7. If u,v ∈ R3, (n = 3), the cross product of u and v is given by

u×v = det

 i j k
u1 u2 u3

v1 v2 v3

 ,

= det

(
u2 u3

v2 v3

)
i−det

(
u1 u3

v1 v3

)
j+det

(
u1 u2

v1 v2

)
k,

= (u2v3−u3v2,u3v1−u1v3,u1v2−u2v1) .
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• A vector space V over a field K of scalars (with 0,1) is a set of vectors
that satisfies the following axioms:

1. Addition is associative: (u+v)+w = u+(v+w).

2. 0 ∈V is neutral.

3. For all u ∈V , −u ∈V .

4. u+v = v+u.
In other words ⟨V,+⟩ is an abelian group.

5. For k ∈K, u,v ∈V , k(u+v) = ku+ kv.

6. For a,b ∈K, u ∈V , (a+b)u = au+bu.

7. For a,b ∈K, u ∈V , (ab)u = a(bu).

8. 1u = u.

The following problems are found in Lipschutz and Lipson [6].

(1) Let

u =

 5
3
−4

 , v =

 −1
5
2

 , w =

 3
−1
2

 .

Find

(a) 5u−2v,

(b) −2u+4v−3w.

(2) Write the vector v = (1,−2,5) as a linear combination of the vectors

u1 = (1,1,1), u2 = (1,2,3), u3 = (2,−1,1).

(3) Find u ·v where:

(a) u = (2,−5,6), v = (8,2,−3).

(b) u = (4,2,−3,5,−1), v = (2,6,−1,−4,8).
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(4) Let

u = (5,4,1), v = (3,−4,1), w = (1,−2,3).

Which pair of vectors, if any, are orthogonal?

(5) Find k such that u and v are orthogonal, where:

(a) u = (1,k,−3), v = (2,−5,4).

(b) u = (2,3k,−4,1,5), v = (6,−1,3,7,2k).

(6) Find ∥u∥, where

(a) u = (3,−12,−4),

(b) u = (2,−3,8,−7).

(7) Let

u = (3,−4), v = (4,−2,−3,8), w =

(
1
2
,
2
3
,−1

4

)
.

Calculate û, v̂, and ŵ.

(8) Let

u = 2i−3j+4k, v = 3i+ j−2k, w = i+5j+3k.

Calculate:

(a) u×v,

(b) u×w.

(9) Find u×v, where:

(a) u = (1,2,3), v = (4,5,6).

(b) u = (−4,7,3), v = (6,−5,2).

(10) Let u = (1,2,−2), v = (3,−12,4), k =−3.
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(a) Calculate ∥u∥, ∥v∥, ∥u+v∥, ∥ku∥.
(b) Verify that ∥ku∥= |k| ∥u∥ and ∥u+v∥ ≤ ∥u∥+∥v∥.

(11) Find k such that u and v are orthogonal, where:

(a) u = (3,k,−2), v = (6,−4,−3).

(b) u = (5,k,−4,2), v = (1,−3,2,2k).

(c) u = (1,7,k+2,−2), v = (3,k,−3,k).

(12) Given

u = 3i−4j+2k, v = 2i+5j−3k, w = 4i+7j+2k,

calculate:

(a) 2u−3v.

(b) 3u+4v−2w

(c) u ·v, u ·w, v ·w.

(d) ∥u∥, ∥v∥, ∥w∥.

(13) Given

u = 3i−4j+2k, v = 2i+5j−3k, w = 4i+7j+2k,

calculate:

(a) u×v.

(b) u×w.

(c) v×w.

(14) Find a unit vector û orthogonal to:

(a) v = (1,2,3), w = (1,−1,2).

(b) v = 3i− j+2k, w = 4i−2j−k.

(15) Consider the following theorem: W is a subspace of a vector space V
if the following two conditions hold:
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– 0 ∈W ,

– If u,v ∈W and k ∈K, then u+v ∈W and ku ∈W .

Now for the following W , show that W is not a subset of V = R3 and
that the theorem does not hold.

(a) W = {(a,b,c) : a≥ 0}.
(b) W =

{
(a,b,c) : a2+b2+ c2 = 1

}
.
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(16) Let V = P(x), the vector space consisting of polynomials qn(x) =
∑

n
j=0 a jx j where a j ∈ R and n is a non-negative integer. Determine

whether W is a subspace of V , where:

(a) W consists of all polynomials with integer coefficients.

(b) W consists of all polynomials with degree ≥ 6 and the zero poly-
nomial.

(c) W consists of all polynomials with only even powers of x.

(17) Let V be the vector space of functions f : R −→ R. Show that W is a
subspace of V , where:

(a) W = { f (x) : f (1) = 0}.
(b) W = { f (x) : f (1) = f (3)}
(c) W = { f (x) : f (−t) =− f (t)}, odd functions.

(18) Suppose u,v ∈V . Simplify 4(5u−6v)+2(3u+v).

(19) Show that the axiom u+ v = v+u of a vector space can be derived
from the other axioms.

(20) Let V be the set of ordered pairs (a,b) of real numbers. Show that V
is not a vector space over R, where addition and scalar multiplication
are defined by:

(a) (a,b)+(c,d) = (a+d,b+ c) and k(a,b) = (ka,kb).

(b) (a,b)+(c,d) = (a+ c,b+d) and k(a,b) = (a,b).

(c) (a,b)+(c,d) = (0,0) and k(a,b) = (ka,kb).

(d) (a,b)+(c,d) = (ac,bd) and k(a,b) = (ka,kb).
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7.2 Problem Set 2

Summary.

• Let U = {u1,u2, . . . ,un} be a collection of vectors in the vector space
V of a field K. The span of U or span of the vectors in U , denoted

span(U) = span(u1,u2, . . . ,un) ,

is the set of all linear combinations of the vectors in U :

span(U) =

{
v ∈V : v =

n

∑
j=1

a ju j, where a j ∈K

}
.

• Let U be a subset of the vector space V . Then:

1. U ⊆ span(U)⊆V and span(U) is a subspace of V .

2. If W is a subspace of V and U ⊆W , then span(U)⊆W .

• Let A = [ai j]m×n with ai j ∈K, where K is a field. Let

Ri = [ai j]1×n = (ai1,ai2, . . . ,ain) .

The row space of A, denoted RS(A), is given by

RS(A) = span(R1,R2, . . . ,Rm) .

If B is the row reduced echelon form of A, then

RS(A) = RS(B).

• Let U = {u1,u2, . . .un} be a collection of vectors in the vector space
V over the field K. Then the vectors u j ∈U are linearly dependent if
there exist a1,a2, . . . ,an ∈K, (not all zero), such that

a1u1+a2u2+ · · ·+anun = 0.
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If U is not linearly dependent, then U is linearly independent.

• The non-zero rows of a matrix that is in row reduced echelon form are
linearly independent.

Example 7.1 Consider the vectors u =

 2
1
−3

, v =

 4
−3
−4

 in the vec-

tor space R3 over R. By taking the cross product u×v=

 −13
−4
−10

, we see

that this vector is normal to the plane −13x−4y−10z = 0 so this plane is
parallel to both u and v. See Figure 2. In fact it is easy to show that any
linear combination w of u and v, so w = au+bv, with a,b ∈ R, must also
be parallel to the plane −13x−4y−10z = 0 and all linear combinations
of u and v are parallel to this plane. It is easy to see then that we cannot
obtain any vector in R3 by a linear combination of u and v since not all
vectors in R3 are parallel to the plane −13x−4y−10z = 0. For example,

the vector

 0
0
1

 is not a linear combination of u and v. We may think

of span(u,v) geometrically as the set of all vectors that are parallel to the
plane −13x−4y−10z = 0. It is clear that this is a proper subspace of R3

and not equal to R4.

See Lipschutz and Lipson [6] for some of the following problems.

(1) Let u1,u2,u3,v ∈ R3. Write v =

 9
−3
16

 as a linear combination of
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Figure 2: Example

the vectors

u1 =

 1
2
3

 , u2 =

 2
5
−1

 , u3 =

 4
−2
3

 .

(2) Consider the following vectors in V = R3:

u1 =

 1
1
1

 , u2 =

 1
2
3

 , u3 =

 1
5
8

 .

Show that span(u1,u2,u3) =V .

(3)

u1 =


1
0
3
4

 , u2 =


2
1
0
8

 , u3 =


1
1
1
0

 , u4 =


2
−1
0

20

 .

Show that span(u1,u2,u3,u4) is not equal to R4. Are the vectors
u1,u2,u3,u4 linearly dependent or linearly independent?
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(4) Suppose that the vectors u,v,w are linearly independent. Show that
the vectors u+v,u−v,u−2v+w are also linearly independent.

(5) Show that the vector space V = P(t) of polynomials with real coeffi-
cients cannot be spanned by a finite number of polynomials.

(6) Consider the vectors u = (1,2,3),v = (2,3,1) ∈ R3.

1. Write w = (1,3,8) as a linear combination of u and v.

2. Write w = (2,4,5) as a linear combination of u and v.

3. Find k such that w = (1,k,4) is a linear combination of u and v.

4. Find conditions on a,b,c such that w = (a,b,c) is a linear combi-
nation of u and v.

(7) Determine whether the polynomials

u = t3−4t2+3t +3, v = t3+2t2+4t−1, w = 2t3− t2−3t +5

are linearly dependent or linearly independent.

(8) Consider the following three subspaces of R3:

U1 = span{(1,1,−1),(2,3,−1),(3,1,−5)} ,
U2 = span{(1,−1,−3),(3,−2,−8),(2,1,−3)} ,
U3 = span{(1,1,1),(1,−1,3),(3,−1,7)} .

Which of U1, U2, U3 are equal?
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7.3 Problem Set 3

Summary.

• Let U = {u1,u2, . . .un} be a collection of vectors in the vector space
V over the field K. Then the vectors u j ∈U are linearly dependent if
there exist a1,a2, . . . ,an ∈K (not all zero) such that

a1u1+a2u2+ · · ·+anun = 0.

If U is not linearly dependent, then U is linearly independent.

• Let U = {u1,u2, . . .un} be a collection of vectors in the vector space
V over the field K. Then the vectors u j ∈U are linearly independent
if whenever

a1u1+a2u2+ · · ·+anun = 0,

then we must have a1 = a2 = · · ·= an = 0.

• The non-zero rows of a matrix that is in row reduced echelon form are
linearly independent.

• Let B = {u1,u2, . . . ,un} be a collection of vectors in a vector space V
over K. Then B is a basis of V if both:

1. span(B) =V ,

2. The vectors in B are linearly independent.

• A basis of a vector space V is not unique in general (there may be
exceptions for unusual fields of scalars like K= {0,1 (mod 2)}).

• If B1 and B2 are bases for a vector space V , then they have the same
number of elements.

• The dimension of a vector space V , denoted dim(V ), is the number of
elements in any basis of V .
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• If B = {u1,u2, . . . ,un} is a basis of a vector space V , then B is an
orthogonal basis of V if for all ui,u j ∈ B with i ̸= j, then ui ·u j = 0.

• If B = {u1,u2, . . . ,un} is an orthogonal basis of a vector space V , then
B is orthonormal if all ui ∈ B satisfy ∥ui∥= 1.

• Let i=

 1
0
0

, j=

 0
1
0

, k=

 0
0
1

. B= {i, j,k} is an orthonormal

basis for R3 and dim
(
R3
)
= 3.

• Orthonormal bases are not unique.

• Let e j be the n×1 matrix whose entries ai1 are 0 if i ̸= j and 0 if i = j.
Then B = {e1,e2, . . . ,en} is an orthonormal basis for Rn.

• The rank of a matrix A, denoted rank(A), is the dimension of the vector
space spanned by the columns of A, the number of non-zero rows in
the row-reduced echelon form of A.

• Let U = {u1,u2, . . . ,un} be n vectors in a vector space V of dimension
m. If n > m, then the vectors in U are linearly dependent.

• The null-space of an m×n matrix A with entries in K, denoted NS(A)
is the vector space consisting of the vectors NS(A)= {X ∈V : AX = 0}.
NS(A) is a sub-space of V .
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See Lipschutz and Lipson [6] for some of the following problems.

(1) Determine whether or not u and v are linearly dependent, where:

(a) u = (1,2), v = (3,−5).

(b) u = (1,2,−3), v = (4,5,−6).

(c) u = (1,−3), v = (−2,6).

(d) u = (2,4,−8), v = (3,6,−12).

(2) Determine whether or not u and v are linearly dependent, where:

(a) u(t) = 2t2+4t−3, v(t) = 4t2+8t−6.

(b) u(t) = 2t2−3t +4, v(t) = 4t2−3t +2.

(c) u =

(
1 3 −4
5 0 −1

)
, v =

(
−4 −12 16
−20 0 4

)
.

(d) u =

(
1 1 1
2 2 2

)
, v =

(
2 2 2
3 3 3

)
.

(3) Determine whether or not the vectors u = (1,1,2), v = (2,3,1), w =

(4,5,5) ∈ R3 are linearly dependent.

(4) Determine whether or not each of the following list of vectors in R3 is
linearly dependent:

(a) u1 = (1,2,5), u2 = (1,3,1), u3 = (2,5,7), u4 = (3,1,4).

(b) u = (1,2,5), v = (2,5,1), w = (1,5,2).

(c) u = (1,2,3), v = (0,0,0), w = (1,5,6).

(5) Determine whether or not each of the following form a basis of R3:

(a) (1,1,1),(1,0,1).

(b) (1,1,1),(1,2,3),(2,−1,1).

(c) (1,2,3),(1,3,5),(1,0,1),(2,3,0).
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(d) (1,1,2),(1,2,5),(5,3,4).

(6) Determine whether (1,1,1,1), (1,2,3,2), (2,5,6,4), (2,6,8,5) form a
basis of R4. If not, find the dimension of the subspace they span.

(7) Extend
{u1 = (1,1,1,1),u2 = (2,2,3,4)}

to a basis of R4.

(8) Determine whether the following vectors in R4 are linearly dependent
or independent:

(a) (1,2,−3,1), (3,7,1,−2), (1,3,7,−4).

(b) (1,3,1,−2), (2,5,−1,3), (1,3,7,−2).

(9) Determine whether the following polynomials u,v,w ∈ P(t) are lin-
early dependent or independent:

(a) u(t) = t3−4t2 +3t +3, v(t) = t3 +2t2 +4t−1, w(t) = 2t3− t2−
3t +5.

(b) u(t) = t3−5t2−2t+3, v(t) = t3−4t2−3t+4, w(t) = 2t3−17t2−
7t +9.

(10) True or False: If false, give a counter-example.

(a) If u1,u2,u3 span V , then dim(V ) = 3.

(b) If A is a 4×8 matrix, then any six columns are linearly dependent.

(c) If u1,u2,u3 are linearly independent, then u1,u2,u3 are linearly
dependent.

(d) If u1,u2,u3,u4 are linearly dependent, then dim(V )≥ 4.

(e) If u1,u2,u3 span V , then w,u1,u2,u3 span V .

(f) If u1,u2,u3,u4 are linearly independent, then u1,u2,u3 are linearly
independent.
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7.4 Problem Set 4

Summary.

• A map or mapping is an unambiguous rule f for sending the elements
of the set X to the elements of the set Y , denoted f : X −→ Y .

• For example f : Z−→ R given by f (x) = x2 is a map or function that
send an integer to it’s square. The domain of f is X and the codomain
of f is Y . In the example above, the domain is Z, the codomain is R
and the image of the map f , denoted f [X ], here it is f [Z], is the set of
all elements of R that are of the form f (x), here f [X ] = Z2, where Z2

is the set of integer squares. In another context, Z2 might be used to
refer to the Cartesian product Z×Z but we don’t mean that here.

• A map f : X −→ Y is said to be a linear map if:

1. X and Y are vector spaces over a field K.

2. For all u,v ∈ X , f (u+v) = f (u)+ f (v) (we can say f is a vector
space homomorphism).

3. For all k ∈K and u ∈ X , f (ku) = k f (u).

• Let A be an m× n matrix with entries in K. Let X and Y be vector
spaces of dimension n and m respectively. Define a map fA : X −→ Y
by fA(x) = Ax. Then:

1. fA (x1+x1) = A(x1+x2) = Ax1+Ax2 = fA (x1)+ fA (x2).

2. For all k ∈K and x ∈ X , fA(kx) = A(kx) = kAx = k fA(x).

3. In other words, matrix multiplication is a linear map.

• Let X and Y be vector spaces over K of dimension n. Let {x1,x2, . . . ,xn}
and {y1,y2, . . . ,yn} be respective bases of X and Y . Then:
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1. There exists a unique linear mapping fA : X −→ Y satisfying

fA (x1) = y1, fA (x2) = y2, . . . , fA (xn) = yn.

2. There exists an n×n matrix A such that fA(x) = Ax and

A(x1 | x2 | . . . | xn) = (y1 | y2 | . . . | yn) .

• Let X and Y be vector spaces over K. The X and Y are isomorphic if
there is a linear map f : X −→ Y such that f is a bijection, meaning
injective (if f (x) = f (y), then x = y) and surjective (For all y ∈ Y ,
there exists x ∈ X such that y = f (x)).

• Let X be the set of all polynomials of the form ax+b, where a,b ∈ R.
Then there is a vector space isomorphism X ∼=R given by f (ax+b) =
(a,b).

• Kernel and Image. Let f : X −→ Y be a linear map. Then

ker( f ) = {x ∈ X : f (x) = 0} .

If f (x) = Ax for some matrix A, then ker( f ) = NS(A), the nullspace
of A. Hence ker( f ) is a subspace of X .

im( f ) = {x ∈ X : exists y ∈ Y satisfying f (x) = y} .

If f (x)=Ax for some matrix A, then im( f )=CS(A). Hence the image
of f is a subspace of Y .

• Let X and Y be vector spaces over K with dim(X) = n and let f : X −→
Y be a linear map. Then

rank( f )+nullity( f ) = n.

In other words, the sum of the dimensions of the kernel of f and the
image of f is equal to the dimension of X .

• Let fA : X −→ Y be a linear map with fA(x) = Ax for some square
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matrix A. Then fA is injective (or one to one) if and only if det(A) ̸= 0,
if and only if NS(A) = {0} (or equivalently ker( fA) is trivial).

See Lipschutz and Lipson [6] for some of the following problems.

(1) Define f : A−→ B, where their rules are respectively given below and
A = {a,b,c}, B = {x,y,z}. State whether each rule defines a mapping.

(a) f (a) = y, f (c) = x.

(b) f (a) = y, f (b) = z, f (c) = x, f (c) = z.

(c) f (a) = x, f (b) = z, f (c) = x.

(2) Consider the map f : R3 −→ R2 given by f (x,y,z) = (yz,x2). Find:

(a) f (2,3,4),

(b) f (5,−2,7),

(c) The pre-image of {(0,0)}.

(3) Define the map f : R2 −→ R2 by f (x,y) = (x+ y,y). Show that f is a
linear map.

(4) Show that the following maps are not linear:

(a) f : R2 −→ R2 by f (x,y) = (xy,x).

(b) f : R2 −→ R3 by f (x,y) = (x+3,2y,x+ y).

(c) f : R3 −→ R2 by f (x,y,z) = (| x |,y+ z).

(5) Let f : R4 −→ R3 be the linear map given by

f (x,y,z, t) = (x− y+ z+ t,x+2z− t,x+ y+3z−3t).

Find a basis and the dimension of:

(a) im( f ).

(b) ker( f ).
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(6) Let f : R3 −→ R3 be the linear map given by

f (x,y,z) = (x+2y− z,y+ z,x+ y−2z).

Find a basis and the dimension of:

(a) im( f ).

(b) ker( f ).

(7) Show that the following maps are linear:

(a) f : R3 −→ R2 by f (x,y,z) = (x+2y−3z,4x−5y+6z).

(b) f : R2 −→ R2 by f (x,y) = (ax+by,cx+dy), where a,b,c,d ∈ R.

(8) Show that the following maps are not linear:

(a) f : R2 −→ R2 by f (x,y) =
(
x2,y2

)
.

(b) f : R3 −→ R2 by f (x,y,z) = (x+1,y+ z).

(c) f : R2 −→ R2 by f (x,y) = (xy,y).

(9) For each linear map f find a basis and the dimension of the kernel and
the image of f .

(a) f : R3−→R3 by f (x,y,z) = (x+2y−3z,2x+5y−4z,x+4y+ z).

(b) f :R4−→R3 by f (x,y,z) = (x+2y+3z+2t,2x+4y+7z+5t,x+
2y+6z+5t).

(10) For each linear map g, find a basis and the dimension of the kernel and
the image of g:

(a) g : R3 −→ R2 by g(x,y,z) = (x+ y+ z,2x+2y+2z).

(b) g : R3 −→ R2 by g(x,y,z) = (x+ y,y+ z).

(c) g : R5 −→ R3 by

g(x,y,z,s, t)= (x+2y+2z+s+t,x+2y+3z+2s−t,3x+6y+8z+5s−t).
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7.5 Problem Set 5

Summary.

• Let A be a square matrix. Then the eigenvalues λ and eigenvectors
x(̸= 0) are the scalars and vectors satisfying the equation

Ax = λx.

• If x is an eigenvector of A and k is a scalar, then kx is an eigenvector
of A.

• Let A be a square matrix. The following are logically equivalent:

1. λ is an eigenvalue of A.

2. NS(A−λ I) is non-trivial.

3. The row-reduced echelon form of A−λ I has a row of zeros.

4. det(A−λ I) = 0.

• The characteristic polynomial of A is ∆(λ ) = det(A− λ I) and the
eigenvalues of A are the roots of the characteristic polynomial.

• A square matrix A is diagonalizable if there exists an invertible matrix
P such that D = P−1AP is a diagonal matrix, equivalently A = PDP−1.

• An n× n matrix A is diagonalizable if and only if there are n linearly
independent eigenvectors of A.

• If A is diagonalizable, let x1,x2, . . . ,xn be the linearly independent
eigenvectors of A and let

P = (x1 | x2 | . . . | xn) .

Then
D = P−1AP
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with the diagonal entries of D being aii = λi.
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See Lipschutz and Lipson [6] for some of the following problems.

(1) Find the characteristic polynomial of each of the following matrices:

(a) A =

(
2 5
4 1

)
.

(b) B =

(
7 −3
5 −2

)
.

(c) C =

(
3 −2
9 −3

)
.

(2) Find the characteristic polynomial of each of the following matrices:

(a) A =

 1 2 3
3 0 4
6 4 5

.

(b) B =

 1 6 −2
−3 2 0
0 3 −4

.

(3) Let A =

(
3 −4
2 −6

)
.

(a) Find all eigenvalues and corresponding eigenvectors.

(b) Find matrices P and D such that P is nonsingular and D = P−1AP
is diagonal.

(4) Let A =

(
2 2
1 3

)
. Find all eigenvalues and corresponding eigenvec-

tors.

(5) For each of the following matrices, find all eigenvectors and corre-
sponding linearly independent eigenvectors. When possible, find the
nonsingular matrix P that diagonalizes the matrix:
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(a) A =

(
2 −3
2 −5

)
.

(b) B =

(
2 4
−1 6

)
.

(c) C =

(
1 −4
3 −7

)
.

(6) Let A =

(
2 −1
−2 3

)
. Find eigenvalues and corresponding eigenvec-

tors.

(7) Let A =

(
5 6
−2 −2

)
. Find eigenvalues and corresponding eigenvec-

tors.
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