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iiInstructions

1. Imperative: Print this pdf document or be prepared to annotate the
pdf with a tablet. Some blank spaces for writing are a little small
for large writing. If you cannot do either of these annotation options,
then write notes on blank paper, noting the relevant position within the
typed course notes. As you watch the intructional videos, write notes
in the blank spaces. This step is very important.

2. The instructor should write exercises from an appropriate textbook
where the text says Exercises/Homework.

3. Optional but highly recommended: Purchase and use Mathematica
or obtain it through your institution. We will occasionally use this to
display various graphics and verify calculations. All graphics shown in
this document were produced with Mathematica. You will most likely
find it very helpful with your studies. It is a symbolic computation tool
which has full programming capabilities. E.g. Try writing

Expand[(x+y)ˆ3]

then press Shift+Enter or

s = 0;

For[i = 0, i < 6, i++, s = s + i; Print[s]]

You can call on Wolfram alpha from with in it by beginning a cell with
= =.
If your school has a license, to install this on your machine, visit:
wolfram.com/siteinfo/

Get Mathematica Desktop.
Create a Wolfram ID, and download and install the software.



11 Year 10 Mathematical Methods

1.1 Term 1

1.1.1 Surds and Index Laws

The decimal expansion of
√

2 does not terminate, nor repeat.
√

2 = 1.41421356237309504880168872420969807856967187537695 . . .

There are no whole numbers a,b with b ̸= 0 and
√

2 = a
b. We say

√
2 is

irrational, meaning not rational.

Next we identify several important sets of numbers and notation for them.

Z Integers This is the set of all whole numbers · · ·−3,−3,−1,0,1,2, . . . .

R Real Numbers (All numbers on the number line.)

.
-3 -2 -1 0 1 2 3

2
4

Q Rational Numbers
{

a
b : a,b ∈ Z,b ̸= 0

}
, meaning the set of all frac-

tions a/b, where a and b are elements of (∈) the set of integers (Z) and b
is non-zero. Note: Integers are also rational numbers (Z⊂Q).

R−Q or R \Q Real Irrational Numbers (Real numbers that are not ra-
tional. e.g. π and

√
2 are real numbers but not rational numbers.)

Note: A real number is rational if and only if it has a repeating decimal
expansion or a terminating decimal expansion.



2A surd is a sum of expressions of the form a n
√

b.

Example 1.1 Which of the following real numbers are surds?

√
36

√
19

√
1

25
3
√

21 4π
3
√

1728

Example 1.2 Simplify the following using the multiplicative property of
square roots

√
ab =

√
a
√

b.

√
12 3

√
30

√
1

36
2
√

75
3
√

125
4

√
15
81

Exercises/Homework:



31.1.2 Arithmetic of Surds

We begin this section with rationalizing the denominator of surds. We use
the properties

x
√

y
=

x
√

y
√

y
√

y
=

x
√

y
y

,

(√
a+

√
b
)(√

a−
√

b
)

= a−b.

Example 1.3 Rationalize the denominator for the following expres-
sions.

(a) 5√
3

(b) 6
√

5√
8

(c) 3
√

6
2
√

10

(d) 4−
√

3√
15

(e) 1
5−

√
3

(f) 6−
√

5
2+

√
8

Exercises/Homework:



41.1.3 Index Laws

We have the following index laws for real numbers a,b,c :

abac = ab+c, ab/ac = ab−c, for a ̸= 0(
ab)c

= abc,

(ab)c = acbc, (a/b)c = ac/bc = acb−c, for b ̸= 0

a−1 =
1
a
, for a ̸= 0

a0 = 1, 00 = 1 ( defined to be 1, but contraversial)
1

a−b = ab, for a ̸= 0, a−b =
1
ab for a ̸= 0.

Example 1.4 Express the following with positive indices

(a) a−3

(b) 2x−3y4

(c) 4
y−2

(d) (a−3b)
2

3a−1b2 × b−1

a

(e) (5a2b−1)
3

2a4b−2 ÷ b−5

2a−2

Exercises/Homework:



51.1.4 Fractional Indices

We can write
√

3 = 31/2 and(√
3
)2

= 31/2×31/2 = 3
1
2+

1
2 = 31 = 3.

This allows us to use index laws to simplify surds. We have the following
index laws for real number a and integers m,n:

am/n = n
√

m,

a1/2 =
√

a,

a1/3 = 3
√

a,

a1/n = n
√

a.

Example 1.5 Express the following in index form:

(a)
√

11

(b)
√

3x7

(c) 2 4
√

x9

(d) 11
√

7



6.

Example 1.6 Write the following in simplest surd form:

(a) 121/2

(b) 63/2

Example 1.7 Simplify:

(a) a1/5a3/5

(b)
(
b2b3

)1
4

(c)
(

x1/3

y1/6

)1/4

Exercises/Homework:



71.1.5 Solving Simple Equations in One Variable

In this section we will learn how to solve equations with one variable.

Example 1.8 Solve the following equations for x:

(a) 2x+9 = 12

(b) 3(2x+4) = 3x

(c) x−1
3 = 2

(d) 3− x
3 = 8

(e) 3−x
4 = x−4

Exercises/Homework:



81.1.6 Substitution

In this section we learn how to rearrange formulas and substitute values
into equations.

Example 1.9 The volume of a sphere of radius r is given by V = 4
3πr3.

(a) Solve the equation V = 4
3πr3 for r, where r is a real number.

(b) If the volume of the sphere is 42.8 m3, find the radius of the sphere.

Example 1.10 The area of a rectangular region adjoining a two semi-
circle regions on each end of the rectangle is given by A = xy+π

(
x
2

)2.

(a) Solve the equation A = xy+π
(

x
2

)2 for y in terms of x and A.

(b) If x = 36 m and y = 24 m, calculate A.

Exercises/Homework:



91.1.7 Solving Inequalities

Symbols:
x > 3 means x is greater than 3.
x < 3 means x is less than 3.
x ≥ 3 means x is greater than or equal to 3.
x ≤ 3 means x is less than or equal to 3.

Example 1.11 Sketch the region on the number line corresponding to:

(a) {x ∈ R : x > 3}= (3,∞).
-3 -2 -1 0 1 2 3 4

(b) {x ∈ R : x < 3}= (−∞,3).
-3 -2 -1 0 1 2 3 4

(c) {x ∈ R : x ≥ 3}= [3,∞).
-3 -2 -1 0 1 2 3 4

(d) {x ∈ R : x ≤ 3}= (−∞,3].
-3 -2 -1 0 1 2 3 4



10Rules:

• When multiplying an inequality by a negative number, turn the symbol
around. (> becomes <, < becomes >, ≤ becomes ≥, ≥ becomes ≤.)

• When inverting both sides of an inequality, turn the symbol around.

• Otherwise, treat solving an inequality like solving an equation.

Example 1.12 4 > 3 but −4 −3 and 1
4

1
3.

Example 1.13 Solve the inequality 3x−6 ≥ 8 for x.

Example 1.14 Solve the inequality −(4−6x)< 2(5− x) for x.



11.

Example 1.15 Solve the inequality x
4 −

2x
3 >−7 for x.

Example 1.16 Solve the inequality 5
3x > 2 for x.

Exercises/Homework:



121.1.8 Linear Equations Involving Fractions

The greatest common divisor of two integers a and b is written gcd(a,b).
This is the greatest positive integer c such that c divides a and c divides b.

The least common multiple of two integers a and b is written lcm(a,b).
This is the least positive integer c such that a divides c and b divides c.

Theorem 1 For any two positive integers a and b,

ab = gcd(a,b)lcm(a,b).

The greatest common divisor and least common multiple can be calculated
efficiently using the Euclidean algorithm.

Example 1.17 Calculate:

(a) 4×6

(b) gcd(4,6)

(c) 4×6
gcd(4,6)

(c) lcm(4,6)

(d) 1
4 +

1
6



13.

Example 1.18 Calculate lcm(12,18) and use it to simplify x+4
12 + x−6

18 .

Example 1.19 Calculate lcm(24,6) and use it to simplify x−3
6 + 5x−6

24 .

Exercises/Homework:



141.1.9 Parallel Lines and Perpendicular Lines

Two lines y = m1x+ c1 and y = m2x+ c2 are parallel if m1 = m2.

Two lines y = m1x+c1 and y = m2x+c2 are perpendicular if m1m2 =−1
(or equivalently, m2 =− 1

m1
).

Theorem 2 In Euclidean space:

• Two lines intersect in one point if and only if they are not parallel.

• Lines have either one intersection or infinitely many intersections (they
are the same line).

• There is a unique line passing through two points.

Example 1.20 Decide whether the two lines y =−9x−3 and y = 1
9x+2

are parallel, perpendicular, or neither.
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Example 1.21 Decide whether the two lines y =−1
3x+1 and 3y+x = 2

are parallel, perpendicular, or neither.

Example 1.22 Decide whether the two lines y = 1
6x+4 and 6y+ x = 3

are parallel, perpendicular, or neither.
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Example 1.23 Find the equation of the line that is parallel to
y =−5x+8 and passes through the point (2,−3).

Example 1.24 Find the equation of the line that is perpendicular to
y =−5x+8 and passes through the point (−4,−2).

To decide whether two lines are parallel, perpendicular, or neither:

Step 1 Put both lines in standard form y = mx+ c and hence identify slopes
m1 and m2.

Step 2 If m1 = m2, then the lines are parallel;

Step 3 Otherwise: if m1m2 =−1, then the lines are perpendicular;

Step 4 Otherwise: the lines are neither parallel nor perpendicular.

Exercises/Homework:



171.1.10 Distances Between Points and Midpoints of Line Segments

Consider the points P1 = (x1,y1) and P2 = (x2,y2). The distance between
P1 and P2 is obtained by Pythagoras’ theorem a2+b2 = c2, where
a = |x1− x2|, b = |y1− y2|, and c is the distance between P1 and P2.

P1

P2

The formula for the distance between P1 = (x1,y1) and P2 = (x2,y2) is

c = D(P1,P2) =

√
(x1− x2)

2+(y1− y2)
2.

Example 1.25 Find the distance between the points (0,4) and (−2,6).

The midpoint of the line segment connecting



18the points P1 = (x1,y1) and P2 = (x2,y2) is given by

M =

(
x1+ x2

2
,
y1+ y2

2

)
.

Example 1.26 Find the midpoint of the line segment connecting the
points (0,4) and (−2,6).

Example 1.27 Find real numbers a and b such that the midpoint of
(2a,a) and (3,b) is (4,−4).
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Example 1.28 The distance between the points (−4,1) and (6,a) is
4
√

21. Find a.

Exercises/Homework:



201.1.11 Simultaneous Equations by Substitution

Given two simultaneous linear equations that do not represent parallel
lines, we learn to find the point of their intersection by substitution. That
is, we solve one equation for a variable, say y, and then substitute that into
the other equation and solve for the other letter, say x.

Example 1.29 Solve the simultaneous system of linear equations

2x−4y = −6,

y = 3x+4.

. -4 -2 0 2 4

-4

-2

0

2

4
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Example 1.30 Solve the simultaneous system of linear equations

y = 8x−1,

y = 8x+2

if possible.

Example 1.31 For which real value of k does the simultaneous system
of linear equations

y = −3x−2,

y = kx+6

(a) have no solution?

(b) have one solution?

(c) have infinitely many solutions?

Exercises/Homework:



221.1.12 Simultaneous Equations by Elimination

Given a system of simultaneous linear equations, solving the system by
elimination applies the following procedure. We multiply each equation by
a number such that the coefficients of one of the variables (the coefficient
of the same letter) becomes the same or of opposite sign. We then add or
subtract equations so that that variable vanishes. Finally, we solve for the
other variable.

Example 1.32 Solve the system of equations

2x−6y = 8,

3x+4y = 10

by elimination.
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Example 1.33 Solve the system of equations

x+2y = 4,

2x+9y = 12

by elimination.

Exercises/Homework:



241.1.13 Applications of Simultaneous Equations

Next we consider applications of simultaneous equations.

Example 1.34 The sum of the ages of two children Kara and Ben is 17
and the difference in their ages is 5. If Kara is older than Ben, determine
their ages.

Exercises/Homework:



251.2 Term 2

1.2.1 Introduction to Trigonometry

We learn about the relationship between the angles in a right triangle and
the trigonometric ratios sine, cosine and tangent (sin, cos, tan).

B

A

C

c

a

b
The trigonometric ratios sine,
cosine and tangent are defined

sin(B) =
opp
hyp

,

cos(B) =
adj
hyp

,

tan(B) =
opp
adj

.

We have the useful acronym SOHCAHTOA for remembering these trig.
ratios.

Recall Pythagoras’ theorem:

Theorem 3 (Pythagoras) Let a,b,c be the lengths of the sides of a right
triangle, where c > a,b (c is the hypotenuse). Then a2+b2 = c2.

Example 1.35 Show that:

(a) sin(B)
cos(B) = tan(B),

(b) sin(B) = cos(A),

(c) cos(B) = sin(A),

(d) tan(B) = 1
tan(A),
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(e) cos2(B)+ sin2(B) = 1 by Pythagoras’ theorem.

Example 1.36 Find the side length x opposite an angle of 30◦ in a right
triangle with hypotenuse 8.

Example 1.37 Find the hypotenuse x in a right triangle if the triangle
has side length 4 adjacent to an angle of 44◦.

Exercises/Homework:



271.2.2 Finding Angles in Right Triangles

To solve a right triangle for an interior angle we use the inverse functions
of sine, cosine and tangent, (sin−1,cos−1, tan−1).

B

A

C

c

a

b

.

Since sin(B) = b
c , we have B = sin−1 (b

c

)
. This is also called arcsin.

Similarly, cos(B) = a
c so B = cos−1

(
a
c

)
. This is also called arccos.

tan(B) = b
a so B = tan−1

(
b
a

)
. This is also called arctan.
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-400 -200 200 400

-6

-4

-2

2

4

6

-6 -4 -2 2 4 6

-50

50

Example 1.38 A right triangle has hypotenuse of length 2 and sides of
length 1 and x. Solve for the angle adjacent to the side of length x, and
then solve for x.

Exercises/Homework:



291.2.3 Applications of Trigonometry

We consider some applications of trigonometry.

Example 1.39 A tower stands x metres high in elevation above the
ground. A man standing on the top of a 250 metre tall building looks up
to the tower with an elevation angle of 30◦ to the horizontal. The hori-
zontal distance between the man and the tower is 420 metres. Calculate
the elevation x of the tower.

Exercises/Homework:



301.2.4 Directions and Bearings

True Bearings (◦T ) are measured clockwise from North.

.

Recall that the mathematical convention is to measure angles from the pos-
itive end of the x-axis counter-clockwise.

Example 1.40 Consider the points O,A,B show below. If the line seg-
ment OA makes an angle of 40◦ South of West, what is the true bearing
of the point A from O?

.

40∘
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Example 1.41 Consider the points O,A,B show below. If the line seg-
ment OA makes an angle of 40◦ South of West, what is the true bearing
of the point O from A?

.

40∘

Example 1.42 A boat travels North-East for 5 km followed by a true
bearing of 20◦ for 10 km. Find the true bearing of the boat from the
original position.

Exercises/Homework:



321.2.5 The Unit Circle

(x,y)

Y

X
x

y
1

θ

A

Quadrant 1

S

Quadrant 2

T

Quadrant 3

C

Quadrant 4

x
2+y2=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Recall

sin(θ) =
opp
hyp

=
y
1
,

cos(θ) =
adj
hyp

=
x
1
,

tan(θ) =
opp
adj

=
y
x
.

For any point (x,y) on the unit circle x2 + y2 = 1, there is an angle θ such
that (x,y) = (cos(θ),sin(θ)). Since x2+ y2 = 1 we again have
cos2(θ)+ sin2(θ) = 1.

The acronym ASTC refers to the following:

For an angle θ in Quadrant 1, All sin(θ),cos(θ), tan(θ)> 0.

For an angle θ in Quadrant 2, Only Sine, sin(θ)> 0.

For an angle θ in Quadrant 3, Only Tan, tan(θ)> 0.

For an angle θ in Quadrant 4, Only Cos, cos(θ)> 0.
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A reference angle is an angle α with 0 ≤ α < 90◦ such that θ = 180◦±α ,
θ = 360◦−α , or θ = α . For example, if θ = 290◦, then the reference
angle α = 70◦ so that θ = 360◦−α .

Let α be the reference angle.

• If θ is in Quadrant 1, then θ = α .

• If θ is in Quadrant 2, then θ = 180◦−α .

• If θ is in Quadrant 3, then θ = 180◦+α .

• If θ is in Quadrant 4, then θ = 360◦−α .

Example 1.43 Calculate cos(320◦) and sin(320◦) by considering the
reference angle.

Exercises/Homework:



341.2.6 Exact Surd Values for Trigonometric ratios

Memorize the following useful triangles:

45∘

45∘

90∘

1

1

2

90∘

60∘

30∘

1

3

2

These two triangles give exact surd values for the trigonometric ratios of
angles 45◦, 30◦, and 60◦.

We have

cos(45◦) = , cos(30◦) = , cos(60◦) = ,

sin(45◦) = , sin(30◦) = , sin(60◦) = ,

tan(45◦) = , tan(30◦) = , tan(60◦) = .

The angle addition formulas:

sin(α +β ) = sin(α)cos(β )+ cos(α)sin(β ),

cos(α +β ) = cos(α)cos(β )− sin(α)sin(β ),

give additional exact values.
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Example 1.44 Calculate cos(15◦) and sin(15◦) using the above trian-
gles and the angle addition formulas.

Example 1.45 Calculate the exact surd value of cos(150◦).

Example 1.46 Find all angles θ with 0 ≤ θ < 360◦ such that
cos(θ) =−

√
3

2 .

Exercises/Homework:



361.2.7 Expanding Algebraic Expressions

Like terms are terms of a polynomial with the same letters to the same
powers.
Example: 4xy2 and −3xy2 ARE like terms.
Example: 4x2y and −3xy2 are NOT like terms.
Example: x2 and x are NOT like terms.
Example: x and 12 are NOT like terms.

We use the distributive law to expand brackets. This means multiplication
distributes over addition:

x(y+ z) = xy+ xz, (x+ y)z = xz+ yz.

Notice that 2(3+5) = 2×8 = 16.
Also 2(3+5) = 2×3+2×5 = 6+10 = 16.

The following are all consequences of the distributive law:

a(b+ c) =

a(b− c) =

(a+b)(c+d) =

=

=
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(a+b+ c)(d + e+ f ) =

(a+b)2 =

=

=

=

(a+b)(c+d)(e+ f ) =

=

=

Example 1.47 Expand (x−4)(x+8)

Example 1.48 Expand (2x−6)(3x+7)

Exercises/Homework:



381.2.8 Factorizing Polynomials

Factorizing a polynomial is the process of expressing the polynomial as a
product of polynomials.

For example, x2−25 = (x+5)(x−5) since a2−b2 = (a+b)(a−b).
Similarly, x2−12 = x2−

√
12

2
=
(

x+
√

12
)(

x−
√

12
)

.

Example 1.49 Factorize 3x2−18x.

Example 1.50 Factorize x2+8x+15.

Example 1.51 Factorize x(x+3)−12(x−3).

Exercises/Homework:



391.2.9 Factorizing Monic Quadratic Polynomials

A monic polynomial in one variable has leading coefficient equal to 1.
That is, a polynomial in the variable x has coefficient of xn, where n is
greatest, being 1.

x2+3x+8 is monic. 3x2−4x+12 is not monic.

A quadratic polynomial in one variable is a polynomial of the form

ax2+bx+ c,

where a,b,c are specific numbers. Quadratic refers to the greatest exponent
being equal to 2.

To factorize x2 + bx+ c, where b,c are specific integers, we seek to find
integers p,q such that

(x+ p)(x+q) = x2+(p+q)x+ pq = x2+bx+ c

so that

c = pq, b = p+q.

Step 1 If c = 0, put x2+bx+ c = x(x+b). Otherwise:

Step 2 If b = 0, x2+bx+ c = (x+
√

c)(x−
√

c). Otherwise:

Step 3 List all of the divisor pairs (s, t) of the absolute value of c up to their
order: (1, |c|), . . . .

Step 4 If c > 0, determine which pair (s, t) satisfies s+ t = |b|. If b > 0, put
x2+bx+ c = (x+ s)(x+ t). If b < 0, put x2+bx+ c = (x− s)(x− t).

Step 5 If c < 0, determine which pair (s, t) satisfies s− t =±b.
If b > 0, put x2 + bx+ c = (x+ s)(x− t), where s > t. If b < 0, put
x2+bx+ c = (x− s)(x+ t), where s > t.
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Example 1.52 Factorize the monic quadratic polynomial x2− x−20.

Example 1.53 Factorize the monic quadratic polynomial x2+9x+18.

Example 1.54 Factorize the monic quadratic polynomial x2+5x−84.

Exercises/Homework:



411.2.10 Factorizing Non-monic Quadratics

We learn how to factorize expressions of the form ax2 + bx + c, where
a ̸= 0 and a,b,c ∈ Z (are integers). We demonstrate the procedure with an
example.

Example 1.55 Factorize 10x2−13x−3.
We first list the divisor pairs of |−3|= 3. We only have (1,3).
We list the divisor pairs of the absolute value of the leading coefficient
|10|= 10. We only have (1,10) and (2,5). Next we form a multiplication
table where we multiply divisors:

× 1 10 2 5
1
3

Since −3 < 0, we seek a pair of products with a difference of −13,
examining the differences within diagonals of the table.

We use these to form the required factors
10x2−13x−3 = ( )( ).

We can expand to check our work.
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Example 1.56 Factorize 6x2−13x−28.

.

× 1 28 2 14 4 7
1
6
2
3

Exercises/Homework:



431.2.11 Completing the Square with Quadratics

We show how to factorize a quadratic polynomial in one variable by com-
pleting the square. The factors we obtain do not always have integer coef-
ficients.

Example 1.57 Factorize 3x2+19x+20 by completing the square.

In our first step, we write ax2 + bx+ c as a
(
x2+ b

ax+ c
a

)
since a ̸= 0.

In other words, we factor out the leading coefficient of the polynomial
so that inside the brackets we have a monic quadratic polynomial. We
have:

3x2+19x+20 = 3
(
x2+ 19

3 x+ 20
3

)
.

Next we calculate 1
2 of the coefficient of x in the monic quadratic inside

the brackets.

1
2

19
3 = 19

6 .

We place this inside a square:
(
x+ 19

6

)2. Since the expansion of(
x+ 19

6

)2 contains
(19

6

)2 which is not in the original quadratic
3x2 +19x+20, we must subtract

(19
6

)2 from our new expression so that
we get an equal expression.
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3x2+19x+20 = 3
(

x2+
19
3

x+
20
3

)
,

= 3

((
x+

19
6

)2

−
(

19
6

)2

+
20
3

)
.

Now we tidy the remaining terms. Since −
(19

6

)2
+ 20

3 =−121
36 , we have

3x2+19x+20 = 3

((
x+

19
6

)2

− 121
36

)
,

= 3

((
x+

19
6

)2

−
(

11
6

)2
)
.

We have completed the square but it remains to use the property
a2−b2 = (a+b)(a−b) to factorize the quadratic polynomial.

3x2+19x+20 = 3
(

x+
19
6
+

11
6

)(
x+

19
6
− 11

6

)
,

= 3(x+5)
(

x+
8
6

)
,

= (x+5)(3x+4) .
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Example 1.58 Factorize 6x2+5x−56 by completing the square.

Exercises/Homework:



461.2.12 Solving Quadratics by Factorization

We aim to solve equations of the form ax2 +bx+ c = 0 for x, where a,b,c
are specific numbers, by first factorizing the quadratic expression.

Assuming there are real numbers p,q,r,s such that

ax2+bx+ c = (px+q)(rx+ s) = 0,

then we get px+q = 0 or rx+ s = 0 so that x =−q
p or x =−−s

r .

Notice that since a = pr and a ̸= 0, we have p,r ̸= 0.

We can find real numbers p,q,r,s such that ax2+bx+c = (px+q)(rx+ s)
when b2−4ac ≥ 0.

Example 1.59 Solve the equation 2x2+3x−27 = 0 by factorization.

Exercises/Homework:



471.2.13 Solving Quadratics by Completing the Square

To solve a quadratic equation by completing the square, we first complete
the square, writing ax2 +bx+ c = P2 −Q2, where P = p1x+ p2 is a linear
polynomial in x and Q is a number.

Since P2−Q2 = (P+Q)(P−Q) = 0, we have P+Q = 0 or P−Q = 0 and
hence solve these equations for x.

Example 1.60 Solve the equation 2x2 + 3x− 27 = 0 by completing the
square.
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Example 1.61 Solve the equation 15x2 + 28x− 32 = 0 by completing
the square.

Exercises/Homework:



491.2.14 Solving Quadratics with a Formula

Assume that ax2+bx+c= 0, where a ̸= 0. Factoring a from the expression
on the left, we have

a
(

x2+
b
a

x+
c
a

)
= 0.

Half of b
a is b

2a so that

Simplifying,

Simplifying again,

.

We call ∆ = b2−4ac the discriminant.

Solving the equation for x,



50We have the quadratic formula:

x =
−b±

√
b2−4ac

2a
.

Example 1.62 Solve the equation 15x2 + 28x − 32 = 0 by using the
quadratic formula.

Exercises/Homework:



511.2.15 Applications of Quadratics

We learn to translate a word problem into a quadratic equation, solve the
equation, and write the solution.

Example 1.63 Mike is 5 years younger than Nina. The product of their
ages is 266. How old are Mike and Nina?
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Example 1.64 Margaret wants to fence an area of her yard adjacent to
the house for a dog yard with three sides of a rectangle consisting of
fencing and one side of the rectangle being the side of the house. Mar-
garet has only 128 metres of fencing material. What are the dimension
of the rectangle that give maximum area to the dog yard?

Exercises/Homework:



531.3 Term 3

1.3.1 Time Series

A time-series is a sequence of points in which the consecutive differences
in the independent variable is constant, and the independent variable rep-
resents time. When plotted, line segments connect consecutive points of a
time-series.

Example 1.65 S = {tn,sn}= {(1.2,−7.8),(1.4,−6.4),(1.6,−4.1),
(1.8,−5.3)} is an example of a time-series. If

sn+1− sn

tn+1− tn
= m

is constant for all n, then the time-series is linear. Since tn+1 − tn is
constant for all n in a time-series, a linear time-series has sn+1− sn = k
(a constant) for all n.

Example 1.66 Plot the data S = {(1.2,−7.8),(1.4,−6.4),(1.6,−4.1),
(1.8,−5.3)}, where the dependent variable represents a percentage
change in share price over that time interval.

Exercises/Homework:



541.3.2 Two-variable Data and Scatter Plots

A bivariate data set is a set of points (xn,yn) relating the dependent vari-
able Y to the independent variable X .

A scatter plot is a plot of points in a bivariate data set, where the indepen-
dent variable is shown on the horizontal axis and the dependent variable is
shown on the vertical axis.

An outlier is a point of a bivariate data set which is deemed to be isolated
from other points of the data set.

A bivariate data set has correlation if the points closely fit a line. Correla-
tions are described as strong correlation or weak correlation depending
on how well they fit a line. The data has positive correlation if the slope
of the line of best fit is positive. The data has negative correlation if the
slope of the line of best fit is negative.

Example 1.67 Consider the bivariate data set S = {(1,3),(4,2),(5,1),
(6,0),(9.− 2)}. Draw a scatter plot and describe any correlation ob-
served.

Exercises/Homework:



551.3.3 Guessing a Line of Best Fit

Given a bivariate data set S, we can guess a line of best fit by choosing two
points (x1,y1) and (x2,y2) and hence a line connecting them such that half
of the points in the data set S are above the line and half of the points in the
data set S are below the line. The points (x1,y1) and (x2,y2) do not need to
be in S.

Recall that the slope of the line passing through two points (x1,y1) and
(x2,y2) is given by Y = mX + c, where m = y2−y1

x2−x1
and c = y1 − mx1 or

c = y2−mx2. These c values are the same.

The construction of points in the data range with a line of best fit is called
interpolation. The construction of points outside the data range with a
line of best fit is called extrapolation.

Example 1.68 Consider the bivariate data set S = {(1,4),(2,6),(3,5),
(4,8),(5,12),(6,11)}. Draw a scatter plot, guess a line of best fit, and
describe any correlation observed.
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Guessing the points (0,1) and (6,13) to find the equation of a line of
best fit,

1 2 3 4 5 6

2

4

6

8

10

12

Exercises/Homework:



571.3.4 Introduction to Parabolas

We study parabolas with an equation of the form y = (x− k)2+ c or
y =−(x− k)2+ c, where c and k are particular real numbers.

Note that we can use these techniques more generally since

y = (x− k)2+ c = x2−2kx+
(
k2+ c

)
.

Since (x − k)2 ≥ 0 and (x − k)2 = 0 precisely when x = k, we see that
y = (x− k)2 + c ≥ c and y = c precisely when x = k. This means that the
point (k,c) is the minimum turning point of the parabola y = (x−k)2+c.

Similarly, (k,c) is the maximum turning point of the parabola
y =−(x− k)2+ c.

(k, c) X

Y

Features of y = (x− k)2+ c:

x− k = 0 or x = k is the axis of symmetry.
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When x = 0, we have y = k2+ c so the point
(
0,k2+ c

)
is the y-intercept,

which is the intersection with the y-axis.

When y= 0, (x−k)2+c= 0 so (x−k)2 =−c. If c≤ 0, then −c≥ 0 so that
x− k =±

√
−c and we have x = k±

√
−c so that the points

(
k−

√
−c,0

)
and

(
k+

√
−c,0

)
are the x-intercepts, the points of intersection with the

x-axis.

Example 1.69 Consider the parabola shown below. Find the minimum
turning point, x-intercepts, the y-intercept, and the axis of symmetry.

.
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Example 1.70 Sketch the parabola y = −(x+ 4)2 − 6, identifying the
maximum turning point, x-intercepts (if real), the y-intercept, and the
axis of symmetry.

.

Exercises/Homework:



601.3.5 Sketching Parabolas using Transformations of y = x2

We discuss sketching parabolas of the form y= a(x−h)2+k from the point
of view of transformations of the parabola y = x2.

Consider up/down and left/right translations of the parabola y = x2.

X

Y

X

Y

y = ax2 is a dilation of y = x2 by a.

If a > 0, then the parabola y = ax2 has a minimum at (0,0) and we say the

parabola is concave up.

X

Y

If a < 0, then the parabola y = ax2 has a maximum at (0,0) and we say the

parabola is concave down.

X

Y
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If the dilation has a > 1, then y = x2 is stretched upwards to become
y = ax2. If the dilation has 1 > a > 0, then y = x2 is compressed down-

wards to become y = ax2.

Y

y = (x−h)2 is a right translation of y = x2, h units right.

y = (x+h)2 is a left translation of y = x2, h units left.

y = x2+ k is an upwards translation of y = x2, k units upwards.

y = x2− k is an downwards translation of y = x2, k units downwards.

y = a(x+h)2 + k is a combination of translations and a dilation of y = x2.
Note that y = a(x+h)2+ k = ax2+2ahx+

(
ah2+ k

)
.

X

Y
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Example 1.71 Describe the transformations that transform y = x2 into
y =−2(x−3)2+4 and sketch the parabola y =−2(x−3)2+4.

X

Y

Exercises/Homework:



631.3.6 Sketching Parabolas using Factorization

To sketch y = ax2+bx+c, with a ̸= 0, suppose we are able to factorize the
right hand side as

y = ax2+bx+ c = (px+q)(rx+ s).

When y = 0 we get the x-intercepts by solving px+ q = 0 and rx+ s = 0
so that x = −q

p, x = −s
r . We have the two x-intercept points

(
−q

p,0
)

and(
−s

r ,0
)
. When x = 0 we have y = c so we have the y-intercept point (0,c).

Example 1.72 Sketch the parabola y = x2+4x−21 by factorization.

X

Y

Exercises/Homework:



641.3.7 Sketching Parabolas by Completing the Square

If we have y = a(x−h)2+ k, then expanding,

y = a(x−h)2+ k,

=

=

If given y = ax2 +bx+ c, then to complete the square is to find h and k
such that

y = ax2+bx+ c = a(x−h)2+ k.

We have

h = , k = .

Example 1.73 Let y = 2x2 + 10x− 48. Complete the square using the
formulas for h and k above.

X

Y

-10 -5 5

-60

-40

-20

20

40

60

80
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Example 1.74 Let y = 2x2 + 10x − 48. Complete the square without
using formulas.

Example 1.75 Use the completed square
y = 2x2+10x−48 = 2

(
x+ 5

2

)2− 121
2 to sketch the parabola.

X

Y

Exercises/Homework:



661.3.8 Sketching Parabolas using Formulas

Let y = ax2+bx+ c.

Completing the square,

y = a( ) ,

=

=

=

=

If y = 0, then

. This is called the quadratic formula.
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Let ∆ = b2−4ac. This is called the discriminant of the quadratic polyno-
mial ax2+bx+ c.

Theorem 4 Let ∆ be the discriminant of f (x) = ax2+bx+ c.

• If ∆> 0, then f (x) has two distinct real roots; the sketch of the parabola
crosses the x-axis.

• If ∆ = 0, then f (x) has one distinct real root; it is repeated and the
quadratic is of the form f (x) = a(x−h)2. The sketch of the parabola
touches the x-axis at a tangent.

• If ∆ < 0, then f (x) has no real roots; there are two non-real roots. The
sketch of the parabola is above or below the x-axis entirely.

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

∆ > 0, ∆ = 0, ∆ < 0.
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The vertical line x = −b
2a is the axis of symmetry.

X

Y

The point
(−b

2a ,
−∆

4a

)
is the turning point; if a > 0, then minimum and the

parabola is concave up, if a < 0, then maximum and the parabola is con-
cave down.

The y-intercept point is (0,c).

If ∆ ≥ 0, then the x-intercept point(s) is/are
(
−b−

√
∆

2a ,0
)

,
(
−b+

√
∆

2a ,0
)

.

Example 1.76 Sketch y = 3x3−18x−48 using the above formulas.

X

Y

Exercises/Homework:



691.3.9 Applications of Parabolas

Example 1.77 A stone is tossed vertically upwards at 15 m/ s and ac-
celerates downwards due to gravity at 10 m/ s2 so that u = 15 and
a =−10. Let y be the height of the stone after t seconds. If the height y
is given by

y = ut +
1
2

at2,

find the maximum height of the stone and sketch the parabola relating y
to t.
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Example 1.78 A gardener wants to erect a rectangular fenced area
using 50 m of fencing. Determine the dimensions that give maximum
area to the fenced region.

Exercises/Homework:



711.3.10 Introduction to Functions

A function f is a rule for sending (assigning) elements of a set X to el-
ements of a set Y , and we put y = f (x) or equivalently say (x,y) is in f ,
such that:

• For all elements x in X , there is a y in Y with y = f (x), meaning f
sends x to y.

• If y1 and y2 are in Y with f (x) = y1 and f (x) = y2, then we must have
y1 = y2. This means that f is unambiguous and x is never sent to two
different elements of Y . Rephrased, this is known as the vertical line
test: If a vertical line intersects with the graph of a function in the
x,y-plane, then it intersects exactly once.

If f is a function sending elements of X to elements of Y , we write
f : X −→ Y and state the rule for sending elements x to y; e.g. f (x) = y2.
The set X is called the domain of the function f and Y is called the co-
domain of the function f . The range of a function f is the subset of Y of
elements that we sent to Y , the outputs of f .

Example 1.79 Let X = {1,2,3} and Y = {4,5,−2,0}. We define the
function f : X −→ Y by f (1) = 5, f (2) = 4, f (3) = −2. f is an
example of a function with domain {1,2,3}, co-domain {4,5,−2,0},
and range {−2,4,5}. Notice that the range is a subset of the co-domain.

Example 1.80 Let X be the set of all real numbers x satisfying
−1 ≤ x ≤ 1 and let Y be the set of all real numbers. Does the relation
x2+ y2 = 1 correspond to a function?
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Example 1.81 [−1,1] refers to the set all real numbers satisfying
−1 ≤ x ≤ 1. R refers to the set of real numbers. Define f : [−1,1]−→R
by f (x) =−

√
1− x2. Is f a function? Sketch the relation f .

Example 1.82 Show that f : R−→ R given by f (x) = x2 is a function.

Example 1.83 Let f : R −→ R be given by f (x) = 3x2 − 2x+ 4 be a
function. Calculate f (1), f (0), and f (5).

Exercises/Homework:



731.3.11 Introduction to Polynomial Functions

A polynomial in one variable x with real coefficients is an expression of
the form

anxn+an−1xn−1+ · · ·+a2x2+a1x+a0,

where:

• n is a non-negative whole number.

• a0,a1,a2, . . . ,an are real numbers called coefficients.

The coefficient of xn is the real number multiplying by xn in an expression.

In this section we will refer to polynomials in one variable x with real
coefficients simply as polynomials.

Note: A polynomial is a function f : R−→ R given by

f (x) = anxn+an−1xn−1+ · · ·+a2x2+a1x+a0.

The degree of a polynomial f (x) is the greatest exponent n among all of
the terms of the polynomial. We write deg( f ) = n.

an is called the leading coefficient of f , where deg( f ) = n and an is the
coefficient of anxn.

a0 is called the constant coefficient or constant term of f . a0 is the only
term of f that is a real number.

Theorem 5 If f (x) and g(x) are polynomials and k1,k2 are real numbers,
then k1 f (x), k2g(x), k1 f (x)+k2g(x), k1 f (x)g(x), k1 f (g(x)), and k1g( f (x))
are also polynomials.

Exercises/Homework:



741.3.12 Expanding Polynomials

Example 1.84 Expand the polynomial f (x) = (x + 2)(x − 3) in two
ways.

Example 1.85 Expand the polynomial
f (x) =

(
x2+2x−5

)(
x2+6x−2

)
.

Example 1.86 Expand the polynomial f (x) = (x+1)(x−3)(x−1).

Exercises/Homework:



751.3.13 Polynomial Long Division

Let f (x) and g(x) be polynomials, where deg( f )≥ deg(g). We learn how
to find polynomials q(x) and r(x) such that

f (x) = g(x)q(x)+ r(x),

where deg(q),deg(r) ≤ deg( f ). The polynomial q(x) is called the quo-
tient and r(x) is called the remainder.

Note: If f (x) = g(x)q(x)+ r(x), then f (x)
g(x) = q(x)+ r(x)

g(x).

Example 1.87 Let f (x) = x3 − 2x2 − 2x− 3 and let g(x) = x2 + x+ 1.
Use long division to calculate f (x)

g(x) .
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Example 1.88 Let f (x) = 2x3−9x2+20x−7 and let g(x) = x2−3x+4.
Use long division to find polynomials q(x) and r(x) such that
f (x) = g(x)q(x)+ r(x).

Example 1.89 Given that x− 1 is a factor of f (x) = x3 − 2x2 − 5x+ 6,
factorize f (x) as a product of 3 linear factors.

Exercises/Homework:



771.3.14 Quotients and Remainders for Polynomials

In this section we will introduce some important results for polynomial
quotients and remainders.

Theorem 6 Let f (x) be a polynomial. If f (a) = 0, then x−a is a factor of
f (x).

If g(x) is a factor of f (x), then we say g(x) divides f (x) and equivalently,
the remainder r(x) = 0 in f (x) = g(x)q(x)+ r(x).

Theorem 7 Let f (x) and g(x) be polynomials with g(x) ̸= 0 and
deg( f ) ≥ deg(g). There exist unique polynomials q(x) and r(x) such that
f (x) = g(x)q(x)+ r(x), where r(x) = 0 or deg(r)< deg(g).

Corollary 1.1 (Bézout) Let f (x) and x− a be polynomials, where a is a
real number. Then the quotient and remainder polynomials satisfy
r(x) = f (a) and

f (x) = (x−a)q(x)+ f (a).

Example 1.90 Let f (x) = 3x3+ x2−10x−8. Factorize f (x) as a prod-
uct of 3 linear factors by calculating f (−2), f (−1), f (0), f (1), f (2)
and using long division.
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Example 1.91 Show that x2+2 divides x4+ x3+6x2+2x+8.

Example 1.92 Let f (x) = x4 + x3 + 6x2 + 2x + 8, g(x) = x + 1. Use
Corollary 1.1 to find a polynomial q(x) such that
f (x) = (x+1)q(x)+ f (−1).

Exercises/Homework:



791.3.15 Roots of Polynomials

Theorem 8 (Null Factor Law) Let f (x) be a polynomial.
If f (x) = p1(x)p2(x) . . . pn(x) = 0, where the p(x) are polynomials, then
p1(x) = 0 or p2(x) = 0 or . . . pn(x) = 0.

Theorem 9 (Fundamental Theorem of Algebra) Let f (x) be a polyno-
mial of degree n. Then there are exactly n complex numbers
α = a+ b

√
−1, where a and b are real numbers, and it is possible that

b = 0 so the α may include real numbers, such that

f (x) = k (x−α1)(x−α2) . . .(x−αn) ,

and it is possible that the α coincide. Any non-real roots of f (x) occur in
conjugate pairs, meaning if f (a+b

√
−1) = 0, then f (a−b

√
−1) = 0.

Example 1.93 Find all roots α of f (x) = 2x3 + x2 − 4x− 3 and reflect
on the fundamental theorem of algebra.
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Example 1.94 Find all roots α of f (x) = x3 + x2 + x+1 and reflect on
the fundamental theorem of algebra.

Exercises/Homework:



811.4 Term 4

1.4.1 Logarithms

ax = b, and x = loga(b)

are different rearrangements of the same equation.

If x = loga(b), then ax = b. Conversely, if ax = b, then x = loga(b).

Example 1.95 Write x = log10(1000) in exponential form and simplify
x numerically.

Example 1.96 Evaluate log3(81).

Example 1.97 Evaluate log2(8).
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Example 1.98 Use a calculator to evaluate log10(6).

Example 1.99 Evaluate log5(125).

Example 1.100 Evaluate log6(216).

Exercises/Homework:



831.4.2 Log Scale

Data which shows exponential growth can be understood and modelled by
taking the logarithm of the y-coordinate of the data points, plotting x on
the horizontal axis and log(y) on the vertical axis.

Example 1.101 Consider the data set consisting of points (x,y):

S = {(1,2),(2,4),(3,8),(4,16),(5,32),(6,64)}.

Let Y = log2(y). Then {(x,Y )}=

In similar examples we can find a line of best fit to model such data sets.
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Example 1.102 The following table shows the population P of rabbits
in a paddock over t years.

t 0 1 2 3 4 5
P 4 32 256 2048 16384 131072

(a) Calculate log10(P) for the five P values in the table.

(b) Plot t versus log10(P).

(c) Find the relationship between t and log10(P).

(d) Use Part (c) to find the relationship between P and t.

Exercises/Homework:



851.4.3 Log Rules

The exponent rule abac = ab+c is equivalent to the log rule
loga(x)+ loga(y) = loga(xy).

Let x = ab so
Let y = ac so

abac =

Hence
loga(xy) = loga(x)+ loga(y).

Similarly we have the following log rules:

loga(xy) = loga(x)+ loga(y), from abac = ab+c,

loga(x/y) = loga(x)− loga(y), from ab/ac = ab−c,

loga (x
n) = n loga(x), from

(
ab)c

= abc,

loga(b) =
logc (b)
logc (a)

, from (cy)x = cxy,

loga(1/b) =− loga(b), from
1
b
= b−1, loga (x

n) = n loga(x),

b = aloga(b), by letting x = loga(b),

loga(a) = 1,(a ̸= 1) from a1 = a,

loga(1) = 0, from a0 = 1.

Example 1.103 Simplify loga(3)+ loga(5).
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Example 1.104 Simplify 3loga(2).

Example 1.105 Calculate log2(1/8).

Example 1.106 Calculate log6(36)− log6(4).

Example 1.107 Prove that loga(b) =
logc(b)
logc(a)

using (cy)x = cxy, where
x = loga(b), y = logc(a), z = logc(b).

Exercises/Homework:



871.4.4 Solving Exponential Equations

Recall that if ax = b, then x = loga(b). In this section we use this fact to
solve exponential equations.

Example 1.108 Solve 3x = 9 for x using logarithms.

Example 1.109 Solve 5x = 35 for x using logarithms.

Example 1.110 Solve 12×2x = 4 for x using logarithms.

Example 1.111 Solve 32x+5 = 18 for x using logarithms.

Exercises/Homework:



881.4.5 Probability

A trial is a probability experiment such as tossing a coin or rolling a die or
a pair of dice.

The set of all possible outcomes of a probability experiment is called the
sample space.

An outcome of a probability experiment is a possible result such as ob-
taining a 5 on rolling a die.

A collection of specific outcomes of a probability experiment is called an
event.

The probability of an event x is a real number P (or P(x)) with 0 ≤ P ≤ 1
that represents and measures the chance or likelihood of the event occur-
ring.

If P = 0, then the event cannot occur.

If P = 1, then the event must occur.

For example, the probability of obtaining heads when tossing a fair coin is
1
2 = 0.5.

If two events have the same probability (chance of occurring), then we say
that the events are equally likely.



89The probability of the event A occurring is

P(A) =
|A|
n
,

where n is the number of elements in the sample space and |A| is the num-
ber of elements in the event space A.

Example 1.112 A card is randomly selected from a 52-card pack of
playing cards. What is the probability that the card is a spade?

Example 1.113 A 6-sided die is rolled. What is the probability that the
outcome is greater than 1 and odd?

Example 1.114 A letter is randomly chosen from the word
INDOOROOPILLY. What is the probability that O is chosen?

Exercises/Homework:



901.4.6 Sets, Venn Diagrams, and Two-way Tables

A set is a collection of objects (usually numbers) such that there are no
repeated elements and there is no order of elements.

The universal set U is the set of all elements we could possibly be refer-
ring to. In probability this is the set of all possible outcomes, the sample
space.

A Venn diagram is an illustration with intersecting circles used for dis-
playing sets and their elements, common elements, and the universal set.
We often list the elements of sets within the drawn circles. However, some-
times the number of elements are instead written in the circles.

Example 1.115 Let

A = {1,2,−5,8,6,0},
B = {9,3,7,1,5,−4,2,8}.

Display the elements of the sets A and B in the circles shown in the Venn
diagram below. Where the two circles meet, put the elements that are in
both A and B.

A B
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The Cardinality of a finite set A is the number of elements in the set, writ-
ten |A| or sometimes n(A). For example, with A, B as in Example 1.115,
|A|= 6 and |B|= 8.

If the set A has |A|= 0, then we say A is the empty set or null set and we
write A = /0.

The intersection of two sets A and B is the set consisting of those elements
that are in both A and B, denoted A∩B.

The union of two sets A and B is the set consisting of those elements that
are in A or in B, denoted A∪B.

When discussing probability we will use sets and events interchangeably.

Two events A and B are mutually exclusive if A∩B = /0 or equivalently
|A∩B|= 0.

The complement of an event A, denoted A′, is the opposite event to A:
A′ = U −A, meaning the sample space without those elements belonging
to A. We have P(A′) = 1−P(A).

Example 1.116 A six-sided die is rolled. Compare the probability of
getting a number greater than 2 to the probability of getting a number
less than or equal to 2.
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A two-way table is a table that displays the number of elements in the sets
A∩B, A′∩B, A∩B′, and A′∩B′ in the following form:

A A′

B |A∩B| |A′∩B| |A∩B|+ |A′∩B|
B′ |A∩B′| |A′∩B′| |A∩B′|+ |A′∩B′|

|A∩B|+ |A∩B′| |A′∩B|+ |A′∩B′| n

where n = |A∩B|+ |A∩B′|+ |A∩B′|+ |A′∩B′|.

Example 1.117 For breakfast a class of 25 students eat apples or ba-
nanas or nothing. Let A be the set of students who eat apples and B be
the set of students who eat bananas. 10 students eat apples, 18 students
eat bananas, 8 students eat apples and bananas, 5 students eat neither
apples nor bananas, 10 students eat bananas but not apples. Construct
a two-way table representing this information and find the probability
that a student eats apples but not bananas.

Exercises/Homework:



931.4.7 Probabilities Corresponding to the Union and Intersection of Sets

Theorem 10 (Addition rule) Let A and B be two events. Then

|A∩B|+ |A∪B| = |A|+ |B|,
P(A∩B)+P(A∪B) = P(A)+P(B).

Example 1.118 A card is randomly chosen from a 52-card deck of
cards.

(a) What is |U |, the cardinality of the sample space?

(b) Let A be the event ‘the card is a number 2 through 10 inclusive’ and
B be the event ‘the card is a spade’. What is |A|, |B|, |A∩B|, |A∪B|
?

(c) Let A be the event ‘the card is a number 2 through 10 inclusive’ and
B be the event ‘the card is a spade’. What is P(A), P(B), P(A∩B),
P(A∪B) ?

(d) Verify that the addition rule holds.
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Example 1.119 Let A and B be two events with P(A) = 0.25,
P(B) = 0.9, P(A∩B) = 0.2.

(a) Calculate P(A∪B).

(b) Calculate P(A′∩B).

Example 1.120 Let A and B be two events with P(A) = 0.4,
P(B) = 0.8, P(A∪B) = 0.98.

(a) Calculate P(A∩B).

(b) Calculate P(A∩B′).

Exercises/Homework:



951.4.8 Conditional Probability

Conditional probability is the probability of an event A given that another
event B has already occurred. This is denoted P(A|B) and we have

Theorem 11 (Multiplication rule of conditional probability)

P(A∩B) = P(A|B)P(B),
= P(B|A)P(A).

Example 1.121 20 people attend a house-warming party. 12 attendees
brought flowers, 9 attendees brought chocolate cake, and 4 attendees
brought both flowers and chocolate cake.

(a) Calculate the probability that an attendee brought flowers or choco-
late cake.

(b) Calculate the probability that an attendee brought chocolate cake
given that they brought flowers.

(c) Represent the information in a two-way table.
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Example 1.122 A bag of marbles contains 3 red marbles and 2 blue
marbles. Calculate the probability that a second chosen marble is red
given that the first chosen marble was red and not replaced in the bag
before drawing the second marble.

Exercises/Homework:



971.4.9 Two-step Experiments

A two-step experiment is a probability experiment with two trials in which
the sample space is a set of pairs (x,y), where x is the outcome of the first
trial and y is the outcome of the second trial. A two-step experiment can
have x ∈ X , y ∈ Y , where it is possible that X = Y but not necessarily so.

Assuming X =Y , if the two-step experiment occurs with replacement, then
(x,x) is an element of the sample space. If the two step experiment occurs
without replacement, then (x,x) is not an element of the sample space.

A sample-space table is a table containing elements of the sample space
arranged so that the pair (x,y) is in the i-th row and j-th column of the
table, where x is the first outcome of the event and y is the second outcome
of the event. Furthermore, all elements in the j-th column contain the same
first event and all elements in the i-th row contain the same second event.

Example 1.123 Two letters are chosen randomly from the letters of the
word CAR in a two-step experiment. Construct a sample-space table:

(a) with replacement.

(b) without replacement.

C A R

C
A
R

C A R

C
A
R

Exercises/Homework:



981.4.10 Tree Diagrams

In mathematics a tree is a graph that connects vertices with edges (branches)
so that each pair of vertices in connected by exactly one path. A tree has
no cycles and has n vertices and n−1 edges.

Example 1.124 Draw a tree with 6 vertices.

A tree diagram in probability is a tree in which the edges are labeled with
probabilities and the vertices are labeled with outcomes of a probability
experiment with multiple steps. The vertices of a tree diagram are set out
in columns that correspond to the steps of a multi-step experiment. A
path that includes a vertex in each step corresponds to an element of the
sample space. The probability of an event is obtained by multiplying the
probabilities on the edges of such a path.

Example 1.125 Consider the following tree diagram on flipping a coin
twice. Label the tree diagram with H and T. Label the edges with the
appropriate probabilities. Calculate the probability of two heads.
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Example 1.126 A bag contains 5 white marbles and 3 black marbles.
In a two-step experiment, two marbles are chosen randomly without
replacement. Draw a tree diagram and calculate the probability of se-
lecting two white marbles.

Exercises/Homework:



1001.4.11 Independent Events

Two events are independent events if the probability of a one event cannot
influence the probability of the other event.

For example, in flipping a coin twice, the first and second coin tosses are
independent events.

Drawing two coloured marbles from a bag without replacement are not in-
dependent events.

If Event A and Event B are independent events, then P(A|B) = P(A) and
P(B|A) = P(B). Furthermore, since P(A|B)P(B) = P(A ∩ B), we have
P(A∩B) = P(A)P(B).

Example 1.127 A six-sided die is tossed twice. If A is the event the first
toss gave a 3 and B is the event the second toss gave a 4, calculate:

(a) P(A),

(b) P(B),

(c) P(B|A),

(d) P(A∩B).

Exercises/Homework:



1012 Year 11 Mathematical Methods

2.1 Term 1

2.1.1 Mathematical Language and Sets

We begin by getting familiar with sets, important notation for sets, interval
notation, and relevant examples of these.

A set is a collection of objects (usually numbers) in which the elements
(members) of the set have no order and no elements are repeated.

A set can have finitely many elements or infinitely many elements.

Example 2.1 Let S = {1,5,−4,3,91} and C = {3,4,8,1,3,8}. S and C
are collections and S is a set.

We have the following notation for special important sets.
: means ‘such that’.
∈ means ‘is an element of’.
Z = {a : a is a whole number } = {· · ·− 3,−2,−1,0,1,2, . . .}. We read
this as the set of all a such that a is a whole number. In other words, the
set of integers.
Q =

{
a
b : a,b are in Z and b ̸= 0

}
. This is called the set of rational num-

bers.

2.2 Term 2

Under Construction



1022.3 Term 3

2.3.1 Limits and the First Derivative

Let f (x) be a function that is defined near a real number a. If the function
f (x) is the real number L near a, then we write

lim
x−→a

f (x) = L.

We say, the limit as x approaches a of f (x) is L.

More formally, the real number L is the limit of the sequence a1,a2, . . . if
and only if for every real number ε > 0, there exists a natural number N
such that for all n > N, we have |an−L|< ε .

Example 2.2 The function f (x) = x3−1
x−1 is not defined when x = 1. f (x)

is defined for all real x except for x = 1 and hence defined for x near 1.
Calculate lim

x−→1
f (x).
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Theorem 12 (Properties of Limits) Let a,k1,k2 be particular real numbers
and f (x),g(x) are functions such that lim

x−→a
f (x) and lim

x−→a
g(x) exist. Then:

• lim
x−→a

k1 f (x) = k1 lim
x−→a

f (x).

• lim
x−→a

(k1 f (x)+ k2g(x)) = k1 lim
x−→a

f (x)+ k2 lim
x−→a

g(x).

• lim
x−→a

( f (x)g(x)) =
(

lim
x−→a

f (x)
)(

lim
x−→a

g(x)
)

.

• If lim
x−→a

g(x) ̸= 0, then lim
x−→a

(
f (x)
g(x)

)
=

(
lim

x−→a
f (x)

)
(

lim
x−→a

g(x)
) .

• If f (x) is defined at x = a, then lim
x−→a

f (x) = f (a).
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The first derivative f ′(x) or derivative for short, is defined by the limit

f ′(x) = lim
h−→0

1
h
( f (x+h)− f (x)) .

This gives a function representing the slope of the function f (x) at any
particular x value in the domain of f . To differentiate is to find f ′(x).
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Example 2.3 Use the definition of the derivative to find f ′(x) for the
function f (x) = x2.

Example 2.4 Use the definition of the derivative to find f ′(x) for the
function f (x) = x3−4x+3.

Exercises/Homework:



1052.3.2 Differentiating Polynomials

Consider the polynomial function

f (x) = anxn+an−1xn−1+ · · ·+a2x2+a1x+a0.

We learn how to use rules to differentiate polynomial functions to obtain
the polynomial function f ′(x).

Let f (x) = kxn, where k is a particular real number and n is a non-
negative integer. Using the limit definition of f ′(x),

f ′(x) = lim
h−→0

1
h
( f (x+h)− f (x))

= . .

=

=

=

=

=

Rule: To differentiate f (x) = kxn, bring down n and subtract 1 from the
exponent so that (kxn)′ = knxn−1.



106.

Note: Since lim
x−→a

(p(x)+q(x)) = lim
x−→a

p(x)+ lim
x−→a

q(x) and the derivative
of a constant is 0, the derivative of

f (x) = anxn+an−1xn−1+ · · ·+a2x2+a1x+a0

is
f ′(x) = nanxn−1+(n−1)an−1xn−2+ · · ·+2a2x+a1.

Notation: f ′(x) = ( f (x))′ = d
dx ( f (x)).

Example 2.5 Let f (x) = x3 + 3x − 7. Calculate f ′(x) using both the
limit definition and the rules for differentiating polynomials.

Example 2.6 Let f (x) =−3x5+2x3−12x2+14x−32. Calculate f ′(x)
using rules for differentiating polynomials.

Exercises/Homework:



1072.3.3 Differentiating kx−n, where n > 0

Let f (x) = kx−n, where n is a positive integer and k is a particular non-zero
real number. Using the limit definition,

f ′(x) = lim
h−→

1
h
( f (x+h)− f (x)) ,

= . .

=

=

=

=

=

=

Theorem 13 Let f (x) = kxn, where k and n are real numbers.

• If n = 0, then f ′(x) = 0. (The derivative of a constant is zero.)

• If n ̸= 0, then f ′(x) = nkxn−1.
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Example 2.7 Differentiate the function f (x) = 2x3− 5
x +14x−8.

Example 2.8 Differentiate the function f (x) =−12x5+3x2+ 2
x2 − 1

x .

Exercises/Homework:



1092.3.4 Plotting y = f ′(x)

We plot y = f ′(x) for functions f (x) and answer questions on the sign of
the first derivative of a function.

Example 2.9 Let f (x) = 2x3 − 4x + 5. Plot y = f ′(x) and determine
where f ′(x) is positive, negative, and zero. Plot y = f (x) also and con-
sider any turning points in the context of the sign of f ′(x).

.

.
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Example 2.10 Let f (x) = x2 + 3x− 4. Plot y = f (x) and y = f ′(x) on
the same graph. State where f ′(x)> 0 and f ′(x)< 0.

.

Let a and b be real numbers. We say that f (x) is increasing on the interval
(a,b) if for all x: a < x < b, f ′(x) > 0. f (x) is increasing on the interval
[a,b] if for all x: a ≤ x ≤ b, f ′(x)> 0.

We say that f (x) is decreasing on the interval (a,b) if for all x: a < x < b,
f ′(x) < 0. f (x) is decreasing on the interval [a,b] if for all x: a ≤ x ≤ b,
f ′(x)< 0.

Note: If f (x) is increasing of [a,b], then f (a)< f (b). If f (x) is decreasing
of [a,b], then f (a)> f (b).

Exercises/Homework:



1112.3.5 Tangent Lines and Normal Lines

Let y = f (x) be a curve, where f (x) is a function. The tangent line at the
point (a,b) is the line which intersects with the curve at exactly the one
point (a,b) and has slope equal to the slope of the curve at the point (a,b).

To find the equation of a tangent line at (a,b),

The normal line at the point (a,b) is the line perpendicular to the tangent
line at the point (a,b) passing through (a,b).
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Recall that the lines y = mx+ c and y =− 1
mx+d are perpendicular.

Example 2.11 Let y = f (x) = 3x2 − 4x+ 4. Calculate the tangent line
and the normal line at the point (1,3).

Exercises/Homework:



1132.3.6 Rates of Change and Average Rates of Change

The average rate of change of y = f (x) over the interval [a,b] is

mav. =
f (b)− f (a)

b−a
.

The instantaneous rate of change of f (x) at the point where x= a is f ′(a).

If f ′(a) is positive, then the function is increasing at x = a.
If f ′(a) is negative, then the function is decreasing at x = a.

Example 2.12 Let y = −4x2 + 5x− 12. Determine the average rate of
change of f (x) over the interval [−1,2].
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Example 2.13 The position of a particle is given by

y = f (t) = 5t3−2t +6,

where t is time in seconds and y is the position in metres. The velocity
of the particle is v = f ′(t). Determine the velocity after 1 second, 2
seconds, 3 seconds.

Exercises/Homework:



1152.3.7 Points with Derivative 0

Let y = f (x), where f (x) is a function of x. The point (a,b) is a stationary
point if f ′(a) = 0, or equivalently, dy

dx

∣∣∣
x=a

= 0.

Example 2.14 Find all stationary points of the curve y = 2x3−15x+8.
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Example 2.15 The curve y = ax2 + bx + c, where a ̸= 0, a,b,c are
particular real numbers, has one stationary point (1,2). Show that
y = (c−2)(x−1)2+2.

Exercises/Homework:



1172.3.8 Classifying Stationary Points with the First Derivative

Recall that the point (a,b) of the curve y = f (x) is a stationary point if
f ′(a) = 0.

The stationary point (a,b) is called a local maximum if f ′(x)> 0 for
x = a− ε (immediately left of (a,b)), where ε is an arbitrarily small posi-
tive real number, and f ′(x)< 0 for x = a+ ε (immediately right of (a,b)).

The stationary point (a,b) is called a local minimum if f ′(x)< 0 for
x = a− ε (immediately left of (a,b)), where ε is an arbitrarily small posi-
tive real number, and f ′(x)> 0 for x = a+ ε (immediately right of (a,b)).

.

Such stationary points are called turning points.

A stationary point (a,b) such that f ′(x) > 0 for x = a− ε (immediately
left of (a,b)), where ε is an arbitrarily small positive real number, and
f ′(x)> 0 for x = a+ ε (immediately right of (a,b)) is called a stationary
inflection point.
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A stationary point (a,b) such that f ′(x) < 0 for x = a− ε (immediately
left of (a,b)), where ε is an arbitrarily small positive real number, and
f ′(x)< 0 for x = a+ ε (immediately right of (a,b)) is called a stationary
inflection point.

Example 2.16 The curve y = x4 + 2x3 has a local minimum and an
inflection point. Find them and reflect on the definitions of local
minimum and inflection point.
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Exercises/Homework:



1192.3.9 Optimisation Problems

Let f : [a,b] −→ R be a function and let y = f (x) be a curve/ Suppose
the curve has local maxima points (p1,q1), (p2,q2), . . . ,(pn,qn). A global
maximum point (u,v) is a point such that a ≤ u ≤ b and

v ≥ f (a), f (b), f (p1) , f (p2) , . . . , f (pn) .

In other words, the point in the domain with the greatest y-value.

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6
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The global minimum point is defined analogously; a point in the domain
with the least y-value.

Example 2.17 Visually inspect the curve above to identify local max-
ima, local minima, inflection points, and the global maximum and the
global minimum on the domain [−0.8,0.6].
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Example 2.18 Find the global maximum and global minimum of the
curve y = f (x) = x4+2x3−6x2−12x over the interval [−3,3].

Exercises/Homework:



1212.3.10 Motion of a Particle

The position of a particle or object is a point (t,x(t)) or (t,x(t),y(t)),
(x(t),y(t)), etc. which depends on time. If the object moves on a lin-
ear trajectory, then we can express the position x as a function of time as
position = x = x(t).

Example 2.19 A ball is tossed vertically upwards at t = 0 seconds from
2 metres above the ground. The elevation (position) of the ball in metres
at t seconds is given by y(t) =−5t2 +4t +2, t ≥ 0. Plot y versus t with
t on the horizontal axis.

The instantaneous velocity or just velocity of a particle with position x(t)
is v = x′(t) = dx

dt , the first derivative of the position x(t) with respect to t.

The average velocity of a particle with position x(t) is given by

vav =
x2− x1

t2− t1
.

The speed of a particle is the magnitude |x′(t)| (absolute value). The speed
of the particle with velocity (x′(t),y′(t)) is the magnitude

∥(x′(t),y′(t))∥=
√
(x′(t))2+(y′(t))2.

The average speed of a particle with position x(t) is given by |vav|.
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Example 2.20 Calculate the velocity, speed, and average speed of the
ball with position y(t) =−5t2 +4t +2, t ≥ 0 from vertical launch until
it hits the ground again.

The instantaneous acceleration or just acceleration of a particle is the
first derivative of the velocity of the particle,

a(t) = v′(t) = (x′(t))′ = x′′(t).

The average acceleration of a particle is aav =
v2−v1
t2−t1

, where v1 is the initial
velocity and v2 is the final velocity of the particle.

Exercises/Homework:



1232.3.11 The Chain Rule for Differentiation

Consider the function y =
(
2x−4x3+3

)5. Since this is a polynomial func-
tion of x, we could expand this before we differentiate the function. The
chain rule gives us another way to calculate the derivative of a function.

In this example, letting u = 2x−4x3+3,

Let F(x) be a function of x such that there are other functions g(x) and
f (x) satisfying

F(x) = f (g(x)) = ( f ◦g)(x).

The chain rule states that

F ′(x) = ( f (g(x)))′ = f ′(g(x)) ·g′(x).

Alternatively in Leibniz’s notation,

F ′(x) = ( f (g(x)))′ =
d f
dg

dg
dx

or
dy
dx

=
dy
du

du
dx

,

where y is a function of u and u is a function of x.

Note: dy
dx is not a fraction but the fact that the symbols look like fractions

is a very useful aide to memory.

Note: For small ∆x, dy
dx ≈

∆y
∆x.
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Example 2.21 Let y = 3
(
5x2−7x+2

)6. Calculate dy
dx.

Example 2.22 Let y =
(
3x2− 2

x2

)4. Calculate dy
dx.

Exercises/Homework:



1252.3.12 The Derivative of xa, where a is Rational

Recall that to differentiate y = xa, where a ̸= 0 is a rational number, we
have

dy
dx

= axa−1.

Example 2.23 Consider the function y :R(>0)−→R by y(x)=
√

x. Cal-
culate y′(x) = dy

dx.

Why do we have
d
dx

(xa) = axa−1?

If dx
dy ̸= 0, then dy

dx =
1(
dx
dy

), so if y = x
1
q , where q is a positive integer, then
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Example 2.24 Let y = x−4/5. Calculate dy
dx.

Example 2.25 Let y = 3
√

x2+1. Calculate dy
dx using the chain rule.

Exercises/Homework:



1272.3.13 Using Derivatives in Curve Sketching

The aim of this section is to use the sign of the first derivative to help us to
sketch the graph of a curve.

Example 2.26 Sketch the curve y = x2+1
x+1 .
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Continued,
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-15

-10

-5

5

10

Exercises/Homework:



1292.3.14 The Product Rule for Differentiation

Suppose that y(x) can be expressed as a product so that y = uv for some
functions u(x) and v(x). Then the product rule states that

dy
dx

=
d
dx

(uv) = v
du
dx

+u
dv
dx

= vu′(x)+uv′(x).

Example 2.27 Calculate dy
dx for y = x3(2x−7)4 using the product rule.

Example 2.28 Calculate dy
dx for y = x2

(
x+ 1

x

)
using the product rule.
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Example 2.29 Calculate dy
dx for y = (x+ 1)

√
x2−1 using the product

rule and the chain rule.

Exercises/Homework:



1312.3.15 The Quotient Rule for Differentiation

Let y = u
v = uv−1 = uw, where w = v−1.

By the product rule, The rule

d
dx

(u
v

)
=

1
v2

(
v

du
dx

−u
dv
dx

)
is called the quotient rule.
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Example 2.30 Use the quotient rule to differentiate y = x+2
3x+4.

Example 2.31 Use the quotient rule and chain rule to differentiate
y = 2x+5

(x−6)1/2 .

Exercises/Homework:



1332.4 Term 4

2.4.1 Sketching y = ax, a > 0

If y = ax, where 0 < a < 1, then letting b = 1
a so a = 1

b, we have y = ax = 1
bx ,

where b > 1. In this case we have exponential decay since as x −→ ∞,
1
bx −→ 0.

When x = 0, y = 1 so we have the point (0,1).

When x < 0, y > 1. If x =−1, then y = 1
a so we have the point

(
−1, 1

a

)
.

When x = 1, y = a, so we have the point (1,a).
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If y = ax, where a > 1, then we have exponential growth. As x −→−∞,
y −→ 0. When x = 0, y = 1 so we have the point (0,1).

Example 2.32 Sketch y = f (x) = 0.1x, give the domain and range of
f (x), and state the asymptotes.

.



134.

Example 2.33 Sketch y= f (x) = 5x, give the domain and range of f (x),
and state the asymptotes.

.

Applying the translation x 7−→ X + h, y 7−→ Y + k to the equation Y = aX

gives the equation y = ax−h+ k.

Example 2.34 Sketch y = f (x) = 3x+1 + 1, give the domain and range
of f (x), and state the asymptotes.

.

Example 2.35 Sketch y = f (x) = 22x+3, give the domain and range of
f (x), and state the asymptotes.

.

Exercises/Homework:



1352.4.2 Plotting y = ex and Translations

The irrational number e = 2.71828 . . . is an important mathematical con-
stant defined as the limit as n −→ ∞ of rational numbers {an}, where

an =

(
1+

1
n

)n

.

The first few terms of the sequence starting with n = 1 are a1 = 2,
a2 =

(
1+ 1

2

)2
= 9

4 = 2.25, a3 =
(
1+ 1

3

)3
= 64

27 ≈ 2.37. As n −→ ∞, the
sequence converges to the constant e. Another way to obtain e is through
the infinite series

e = 1+
1
1!

+
1
2!

+
1
3!

+ . . .

The constants e, π , and i =
√
−1 are related via the formula

eπi =−1.

To plot the curve y = ex, when x = 0, y = 1 so we have the point (0,1).
When x =−1, y = 1

e ≈ 0.37 so we have the point (−1,0.37).
When x = 1, y = e ≈ 2.72 so we have the point (1,2.72).
When x = 2, y = e2 ≈ 7.39 so we have the point (2,7.39).
When x = 3, y = e3 ≈ 20.09 so we have the point (3,20.09).
As x −→ ∞, we have y −→ ∞,
As x −→−∞, we have y −→ 0.
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Example 2.36 Sketch y = f (x) = ex+2 + 4, give the domain and range
of f (x), and state the asymptotes.

.

Note that since a = eloge(a), we can understand y = ax as y = ex loge(a).

Example 2.37 Sketch y = f (x) = 3x by finding a real number k such
that y = ekx.

.
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Interest in a bank account may be compounded daily, weekly, monthly,
annually, or continuously, depending on the terms of the account. Let r be
the interest rate per year (per annum) and compounding occurs n times per
year. Let P0 be the initial deposit (principal) and let P be the deposit after
some time has elapsed. After t years,

P = P0

(
1+

r
n

)nt
.

Notice that we can rewrite P as

P = P0

((
1+

1
(n/r)

)n/r
)rt

.

If we let N = n
r , then

P = P0

((
1+

1
N

)N
)rt

.

As n −→ ∞, N −→ ∞ so

lim
N−→∞

P =

=

=

Hence we obtain the formula for continuously compounding interest.
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Example 2.38 A bank offers an interest rate of 2% per annum. An ini-
tial deposit of $ 100 is is made.

(a) If compounded weekly, how many dollars are in the account after
10 year if no deposits or withdrawals are made?

(b) If compounded continuously, how many dollars are in the account
after 10 year if no deposits or withdrawals are made?

Exercises/Homework:



1392.4.3 Exponential Equations

Recall the exponent rules for real numbers a,b,c:

abac = ab+c, ab/ac = ab−c, for a ̸= 0(
ab)c

= abc,

(ab)c = acbc, (a/b)c = ac/bc = acb−c, for b ̸= 0

a−1 =
1
a
, for a ̸= 0

a0 = 1, 00 = 1 ( defined to be 1, but contraversial)
1

a−b = ab, for a ̸= 0, a−b =
1
ab for a ̸= 0.

To solve an exponential equation like that given in the example below, we
first change all of the bases into the same base. Next, once we have the
same base, we equate the exponents and solve the resulting equation.

Example 2.39 Solve the exponential equation 27∗5−2n = 93n+4 for n.

Example 2.40 Solve the exponential equation 4x = 6−2x for x.

Exercises/Homework:



1402.4.4 Logarithms, Log Rules and Solving Equations with Logs

Recall that for real numbers a,b,c with b,c > 0, ab = c is equivalent to
b = loga(c). If a = e = 2.71828 . . . , then we have y = ex is equivalent
to x = loge(y), which is sometimes written as x = ln(y). We call this the
natural logarithm.

Recall the following log rules:

loga(xy) = loga(x)+ loga(y), from abac = ab+c,

loga(x/y) = loga(x)− loga(y), from ab/ac = ab−c,

loga (x
n) = n loga(x), from

(
ab)c

= abc,

loga(b) =
logc (b)
logc (a)

, from (cy)x = cxy,

loga(1/b) =− loga(b), from
1
b
= b−1, loga (x

n) = n loga(x),

b = aloga(b), by letting x = loga(b),

loga(a) = 1,(a ̸= 1) from a1 = a,

loga(1) = 0, from a0 = 1.

Example 2.41 Simplify log2(8)− log2(12).
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Example 2.42 Solve log4(2x) = 2 for x.

Example 2.43 Solve log2(3x+2) = 6 for x.

Example 2.44 Solve ln(4x+4)+ ln(3x−2) = 2ln(x−1) for x.
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Example 2.45 Solve log4 (8
x) = 3x+1 for x.

Example 2.46 Solve log3(9x−8) = 2log3(x) for x.

Example 2.47 Solve 4logx(2) = log2(x) for x.

Exercises/Homework:



1432.4.5 Plotting y = loga(x) and Translations

To understand how to plot the curve y= loga(x), we consider the equivalent
equation x = ay. The linear transformation x 7−→ Y , y 7−→ X gives Y = aX

and this transformation is a reflection about the line y = x.

y = 2x and y = log2(x):
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Consider the relationship between the curves y = 2x and y = 3x and the
relationship between the curves y = log2 x and y = log3(x).
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If a > 0 and a ̸= 1, then the domain D of the y = f (x) = loga(x) is the set of
positive real numbers. In interval notation D = (0,∞) = {x ∈ R : x > 0}.
The range of f (x) is R= (−∞,∞).



144.

Consider the curve Y = loga(X) under the translation x 7−→ X +h,
y 7−→ Y + k. We get y = k+ loga(x−h).

Example 2.48 Consider the relationship between Y = log2(X) and
y =−3+ log2(x+1).

-1.0 -0.5 0.5 1.0 1.5 2.0
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What is the translation that relates these curves? State the domains of
these curves. Find the two corresponding exponential equations and
determine the translation between them.

Exercises/Homework:



1452.4.6 Differentiating ex

Recall that if y = f (x), then

dy
dx

= f ′(x) = lim
h−→0

1
h
( f (x+h)− f (x)) . (1)

Example 2.49 Let y = ex. Use the definition of the derivative, Equation

(1), together with the limit identity lim
a−→0

ea−1
a

= 1 to calculate dy
dx.

It follows that
dex

dx
= ex. (2)

Example 2.50 Recall that a = eln(x). Use this and the chain rule
dy
dx =

dy
du

du
dx to calculate the derivative of y = ax.
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Example 2.51 Calculate the derivative of y = 3x.

Example 2.52 Calculate the derivative of y = e−2x + e3x.

Example 2.53 Calculate the derivative of y = ex2+4x−2.
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Example 2.54 Calculate the derivative of y =
(

x2+ ex2
)3

and use it to

calculate the tangent line to the curve y =
(

x2+ ex2
)3

at the point (0,1).

Exercises/Homework:



1482.4.7 Differentiating ln(x)

Recall that x = ey is equivalent to y = ln(x). We will learn how to differen-
tiate ln(x) and related examples.

Example 2.55 Let y = ln(x). Calculate the derivative of ln(x) using
dex

dx = ex, together with the fact that if dx
dy ̸= 0, then dy

dx =
1
dx
dy

.

We have
d
dx

ln(x) =
1
x
. (3)

Example 2.56 Calculate the derivative d
dx ln(4x + 3) using the chain

rule.
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Example 2.57 Calculate the derivative d
dx ln(xex) without using the

product rule.

Example 2.58 Use the chain rule to differentiate y =
(
ln
(
2x+ x2

))2.

Example 2.59 Calculate the derivative of y = log2(3x).

Exercises/Homework:



1502.4.8 Equations of Exponential and Log Curves from Geometric Features

In this section we determine the equations of exponential curves and log-
arithmic curves given certain geometric information such as points on the
curve and/or asymptotes.

Example 2.60 The curve shown below is of the form y = k ln(x+c) and
has points (−1,0) and (0, ln(32)). Find c and k and hence determine
the equation of the curve.

.
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Example 2.61 The curve shown below is of the form y = k ln(x+c)+d
and has the points (4,4) and

(
3+ 1√

e,0
)

, and asymptote x = 3. Find
c,d and k and hence determine the equation of the curve.

.

1 2 3 4 5 6
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5

Example 2.62 The curve shown below is of the form y = cekx and has
the point (0,3) and the tangent line at the point (0,3) is y = −6x+ 3.
Find c and k and hence determine the equation of the curve.

. -1 1 2 3 4 5 6
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Exercises/Homework:



1522.4.9 Differentiating Trigonometric Functions sin(x), cos(x), and tan(x) and the Chain, Product, and
Quotient Rules

We derive the derivatives of sin(x), cos(x), and tan(x) calculate the deriva-
tives of other trigonometric functions.

Example 2.63 Using the definition of the derivative

f ′(x) = lim
h−→0

1
h
( f (x+h)− f (x))

together with the angle addition formulas

sin(a+b) = cos(a)sin(b)+ cos(b)sin(a),

cos(a+b) = cos(a)cos(b)− sin(a)sin(b),

and the limits:

lim
a−→0

sin(a)
a

= 1, lim
a−→0

cos(a)−1
a

= 0,

calculate the derivatives of sin(x) and cos(x).
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Continued...

We have
d
dx

sin(x) = cos(x), (4)

d
dx

cos(x) = −sin(x). (5)
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Example 2.64 Using the quotient rule d(u/v)
dx = 1

v2

(
vdu

dx −udv
dx

)
and

tan(x) = sin(x)
cos(x), calculate the derivative of tan(x)

Example 2.65 Calculate the derivative of cos
(
3x2−2

)
using the chain

rule.
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Example 2.66 Calculate the derivative of sin2 (2x+2) using the chain
rule.

Example 2.67 Calculate the derivative of cos(x)sin(x) using the prod-
uct rule d(uv)

dx = vdu
dx +udv

dx.
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Example 2.68 Calculate the derivative of cos(x)
ex using the quotient rule

d(u/v)
dx = 1

v2

(
vdu

dx −udv
dx

)
.

Example 2.69 Calculate the derivative of
sin(x2)
cos(ex) using the quotient rule

d(u/v)
dx = 1

v2

(
vdu

dx −udv
dx

)
and the chain rule.

Exercises/Homework:



1572.4.10 Acceleration of a Particle using the Second Derivative

The second derivative of a function y = f (x) is the derivative of the first
derivative f ′(x) or dy

dx. The second derivative is written f ′′(x) or f (2)(x) or
d2y
dx2 , which is d

dx

(
dy
dx

)
.

Example 2.70 Calculate the second derivative of
y = f (x) = sin(x)+

√
x.

Let s(t) be a scalar function of time t that represents the position of a
particle moving in a straight line. Then v(t) = s′(t) is the speed of the
particle at time t and a(t) = v′(t) = s′′(t) is the acceleration of the particle
at time t.

Example 2.71 A particle moving in a straight line has position given
by the point (s(t),0), where s(t) = cos(t)+e2t . Calculate the velocity of
the particle, the initial velocity of the particle, and the acceleration of
the particle at time t.

Exercises/Homework:



1582.4.11 Exercises on Stationary Points

Recall that the point P = (x0,y0) of the curve y = f (x) is a stationary point
if f ′ (x0) = 0.

Example 2.72 Find all stationary points of the curve
y = f (x) = 1

2e2x −5ex +4x.

Example 2.73 The curve y = f (x) = x4 +ax+b has a stationary point
(−1,0). Find a and b. Are there any other stationary points with real
coordinates?

Exercises/Homework:



1592.4.12 The Second Derivative Test

Recall that a stationary point P0 = (x0,y0) of a continuous curve y = f (x)
is a point with f ′ (x0) = 0. If the sign of the first derivative changes at P0,
then the point P0 is a maximum or minimum, which can be classified using
the first derivative test. The second derivative test is sometimes easier to
use than the first derivative test.

Theorem 14 (Second Derivative Test) Let y = f (x), where f (x) is con-
tinuous and f ′(x) and f ′′(x) exist at the point P0 = (x0,y0).

• If f ′ (x0) = 0 and f ′′ (x0)> 0, then the point P0 is a local minimum.

• If f ′ (x0) = 0 and f ′′ (x0)< 0, then the point P0 is a local maximum.

• If f ′ (x0) = 0 and f ′′ (x0) = 0, then the test is inconclusive; P0 could be
an inflection point or and undulation point.

Example 2.74 Find and classify all stationary points of the curve y= x2

using the second derivative test.
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An inflection point P0 = (x0,y0) of a continuous curve y = f (x) is a point
with a change in the curvature of the curve at the point P0, that is a change
in the sign of the second derivative so that f ′′ (x0+ ε) and f ′′ (x0− ε) have
opposite signs for all real ε > 0 and sufficiently small.

An undulation point P0 = (x0,y0) of a continuous curve y = f (x) is a
point with f ′′ (x0) = 0 such that there is no change of sign of the second
derivative at P0.

Theorem 15 (Inflection implies f ′′ is zero) If P0 = (x0,y0) is an inflection
point of the curve y = f (x), then f ′′ (x0) = 0.

Example 2.75 Find and classify all stationary points of the curve
y = x3. Identify all inflection points of the curve.

Example 2.76 Find and classify all stationary points of the curve
y = x4. Is the point (0,0) an inflection point?



161.

Example 2.77 Find and classify all stationary points of the curve
y = f (x) = x3 +3x2 −2x+4. Identify all inflection points of the curve.

.
-4 -2 2 4

50

100
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Example 2.78 Find and classify all stationary points of the curve
y = f (x) = x2 sin(x) defined on the domain D = [−π,π]. Identify all
inflection points of the curve in D.

.
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Exercises/Homework:



1632.4.13 Sketching Curves using the Second Derivative

The curve y = f (x) is concave up if f ′′(x) > 0. This means that f ′(x) is
increasing as x increases.

The curve y = f (x) is concave down if f ′′(x) < 0. This means that f ′(x)
is decreasing as x increases.

When sketching the curve y = f (x) defined on the domain D, where f (x)
is a function of x, we first calculate the following details:

• The y-intercept. Note that there is only one since f is a function.

• The x-intercept(s).

• Local maxima and local minima points.

• Global maxima and minima points on the domain D.

• Any inflection points.

• Any asymptotes.

• Regions of D in which the function f (x) is concave up.

• Regions of D in which the function f (x) is concave down.
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Example 2.79 Sketch the curve y = f (x) = x4−32x−12 on the domain
D = [−3,3].
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Example 2.80 Sketch the curve y = f (x) =− 1
720x4+ 1

24x2+ 1
x2 − 1

2

.
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Exercises/Homework:



1662.4.14 Revising Global Maxima and Minima

.

Recall the definition of global maximima and minima from Section 2.3.9.
In this section we will present the concept again.

Let y = f (x) be a continuous function on the domain D = [a,b]. If for all
x in the domain D, f (x)≤ v = f (u), then the point (u,v) is a global maxi-
mum point.

To find a global maximum point, we find and classify all of the local max-
imum points and compare their y coordinates to that of the boundaries of
the domain, f (a) and f (b). Among those, a point with the greatest y-value
corresponds to a global maximum.

Let y = f (x) be a continuous function on the domain D = [a,b]. If for all
x in the domain D, f (x)≥ v = f (u), then the point (u,v) is a global mini-
mum point.

To find a global minimum point, we find and classify all of the local min-
imum points and compare their y coordinates to that of the boundaries of
the domain, f (a) and f (b). Among those, a point with the least y-value
corresponds to a global minimum.
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Example 2.81 Find the global maximum and global minimum of
y = x4−64x2+800 on the domain D = [−3,8].



168.

Example 2.82 Find the global maximum and global minimum of
y = x6−80x3+1800 on the domain D = [−3,5].
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Example 2.83 A 10000 m3 enclosure is to be constructed for penguins
at a zoo made from expensive glass and inexpensive rock. One vertical
side of the enclosure and the horizontal bottom is to be made from rock.
Three vertical sides are to be made from rectangular sheets of glass
and the top of the enclosure is to be open. Since the glass is expensive,
the zoo aims to minimimise the surface area of glass used. The side
opposite the vertical rock face of the enclosure must have width equal to
20 metres. Find the dimensions of the enclosure that give the least glass
costs.

Exercises/Homework:



1702.4.15 Revising Optimisation

In an optimisation problem, we seek to find a maximum or a minimum
value of a function of (usually multiple variables) subject to some con-
straint. The constraint might be a budget, or a volume, or some similar
relationship between the variables that restricts the possible values of the
variables. When we determine the maxima and minima, we classify these
often using the second derivative test and we must consider the domain
of definition of the relevant functions since we require global maxima or
global minima to answer such questions.

The process we will use in our optimisation problems is to use the con-
straint to eliminate variables and then find maxima or minima of the re-
sulting function of one variable.

Example 2.84 The product of two positive numbers x and y is 35. Find
x and y such that f (x,y) = 2x+3y is least.
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Example 2.85 A farmer growing strawberries in a field wishes to find
the maximum crop yield per dollar spent on plants. A high plant den-
sity reduces the strawberry yield since they do not get enough light and
nutrients. If x strawberry plants are planted, then y strawberries are
expected per square metre, where y = 2500− 10000x−1/2 − 1

10x2. The
cost of east strawberry plant is $ 3. If the field is 1000 m2, what is the
maximum number of strawberries that can be produced, and what is the
production cost of a strawberry st the maximum yield? If the farm is
only viable if at least 20000 strawberries are produced, find the x such
that the production cost of a strawberry is least by finding the minimum
value of C = 3x

y .
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Continued...

Exercises/Homework:



1733 Year 12 Mathematical Methods

3.1 Term 1

3.1.1 Antiderivatives of Polynomials and Power Functions

Let f (x) be a function of x. In this section we seek to calculate F(x), a
function of x, such that f (x) = F ′(x) = d

dxF(x). The function F(x) is called
an antiderivative of f (x).

Since the derivative of a constant is zero, an antiderivative of a given func-
tion is not unique, The family of antiderivatives F(x)+C of a given func-
tion f (x) is unique, where C represents any constant.

Example 3.1 Let f (x) = x = F ′(x). Find the family of antiderivatives
F(x) and verify that their first derivative is in fact x.

Analogous to d f
dx , notation for an antiderivative is

F(x) =
∫

f (x) dx.

Another name for an antiderivative is the indefinite integral representing
the family of antiderivatives of f (x). When we calculate the indefinite
integral

∫
f (x) dx, we always put +C, where C represents any constant.

Example 3.2 Calculate the indefinite integral
∫

x2 dx.
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Recall that d
dx (x

m) = mxm−1 for m ∈ R−{−1}. If n ̸= −1, then letting
n = m− 1, we have m = n+ 1 so d

dxxn+1 = (n+ 1)xn and d
dx

1
n+1xn+1 = xn.

This means that we have the rule:∫
xn dx =

1
n+1

xn+1+C.

For the case n =−1, since d
dx ln(x) = 1

x = x−1, we have∫
x−1 dx = ln(x)+C.

We next consider some properties of the definite integral. For a constant k,
we have

d
dx

( f (x)+g(x)) = f ′(x)+g′(x),

d
dx

(k f (x)) = k f ′(x).

It follows that∫
f (x)+g(x) dx =

∫
f (x) dx+

∫
g(x) dx,∫

k f (x) dx = k
∫

f (x) dx.

If k is a constant, then ∫
k dx = kx+C.

Example 3.3 Calculate the indefinite integral
∫

4x5−2x3+7 dx.



175.

Example 3.4 Calculate the indefinite integral
∫

3x3+
√

x+4x−6 dx.

Example 3.5 Find f (x) satisfying f ′(x) = 3x2+9x+2 and f (0) = 1.

Exercises/Homework:



1763.1.2 Integrating Functions of the Form f (x) = (ax+b)c

Let u = ax+b. Then
∫
(ax+b)n dx =

∫
un dx. Since du

dx =
d
dx(ax+b) = a,

we have the substitution dx −→ 1
adu so that∫

(ax+b)n dx =
∫

un dx,

=
∫

un 1
a

du

=
1
a

∫
un du

=
1
a

1
n+1

un+1+C,

=
1

a(n+1)
(ax+b)n+1+C,

where C represents any constant.

To verify this, observe that

d
dx

1
a(n+1)

(ax+b)n+1+C = .

=
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Example 3.6 Calculate
∫
(4x+2)3 dx.

Example 3.7 Calculate
∫
(4x+2)−1 dx.
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Example 3.8 Find f (x) satisfying f ′(x) = 2
3x+5 and f (1) = 1.

Exercises/Homework:



1793.1.3 Integrating ekx

In this section we will learn how to calculate an antiderivative of ekx, where
k is a constant.

Since we have

d
dx

(
1
k

ekx +C
)

=
1
k

d
dx

ekx +0,

=
1
k

kekx,

= ekx,

We have the rule ∫
ekx dx =

1
k

ekx +C,

where C represents any constant.

Example 3.9 Calculate
∫

e3x + e−5x + e−
1
4x +2 dx.

Exercises/Homework:



1803.1.4 Integrating Trigonometric Functions

Recall that by letting u = ax+b,

d
dx

cos(ax+b) =
d cos(u)

du
du
dx

,

= −sin(u)
d
dx

(ax+b),

= −asin(ax+b).

Similarly
d
dx

sin(ax+b) = acos(ax+b).

To integrate these functions, let u = ax+b. Then∫
cos(ax+b) dx =

∫
cos(u) dx.

du
dx = a so we substitute dx −→ 1

adu. Hence∫
cos(ax+b) dx =

∫
cos(u)

1
a

du,

=
1
a

∫
cos(u) du,

=
1
a

sin(u)+C,

=
1
a

sin(ax+b)+C.

Similarly, ∫
sin(ax+b) dx =−1

a
cos(ax+b)+C.
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Example 3.10 Calculate
∫

cos(5x+9) dx.

Example 3.11 Calculate f (x) such that f ′(x) = 3sin(2x − 2) and
f (1) = 2.

Exercises/Homework:



1823.1.5 Integrating f ′(x)
f (x) and Other Functions by Substitution

Let f (x) be a function of x and let u = f (x). Then∫ f ′(x)
f (x)

dx =
∫ f ′(x)

u
dx.

Differentiating, du
dx =

d
dx f (x) = f ′(x) so we have the substitution

dx −→ 1
f ′(x) du. It follows that∫ f ′(x)

f (x)
dx =

∫ f ′(x)
u

1
f ′(x)

du,

=
∫

u−1 du,

= ln(u)+C,

= ln( f (x))+C,

where C represents any constant. We have the rule:∫ f ′(x)
f (x)

dx = ln( f (x))+C.

Example 3.12 Calculate
∫ 3x2

2x3+5 dx.
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Example 3.13 Calculate
∫ cos(x)

sin(x) dx.

Example 3.14 Calculate
∫

xex2
dx.

Example 3.15 Calculate
∫

2cos(x−3)sin(x−3) dx.
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Example 3.16 Use the fact that

d
du

(u ln(u)−u) = u× 1
u
+ ln(u)−1 = ln(u)

(by the product rule) to calculate
∫

ln(3x) dx.

Exercises/Homework:



1853.1.6 Using Integrals in Problems on Rates of Change

In this section we solve problems involving rates of change and use definite
integrals to complete the solution of such problems.

Example 3.17 Let y′(t) = 2t
√

1− t2 be the rate of change of the price of
tomatoes after t days. Calculate the price y(t) of tomatoes after t days
if y(0) = 1.

Exercises/Homework:



1863.1.7 Using Integrals with Particles Moving in a Straight Line

Recall that the velocity v(t) of a particle moving in a straight line, acceler-
ation a(t) of a particle moving in a straight line, and displacement s(t) of
a particle moving in a straight line satisfy

v(t) = s′(t), a(t) = v′(t) = s′′(t).

It follows that

s(t) =
∫

v(t) dt, v(t) =
∫

a(t) dt,

and so
s(t) =

x
a(t) dt dt.

Example 3.18 A ball is tossed vertically upwards from 1 metre above
the ground with velocity 12m/s. Assuming that acceleration due to
gravity is 10m/s2, calculate the maximum height of the ball.
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Continued...

Exercises/Homework:



1883.1.8 Revision of Elementary Probability

The probability of an event A, P(A) is a real number satisfying
0 ≤ P(A)≤ 1. It measures how likely an event is. More likely events have
probabilities closer to 1.

We can associate an event A to a set A. For example, if the event A is getting
a number less than 3 on a six-sided die, then A = {1,2}. The sample space
U of an event is the set of all possible outcomes.

If a set X is finite, then we use |X | or n(X) to denote the number of elements
in X . This is called the cardinality of the set X . The probability of the
event A is calculated via the cardinality of the set A corresponding to the
eventy A. We have

P(A) =
|A|

n(U )
,

the number of possibilities in the event A divided by the total number of
possibilities.

Recall A∩B is the subset of both A and B consisting of all elements in both
A and B.

A∪B is the set of all elements in A or B so that A ⊆ A∪B and B ⊆ A∪B.

A−B (also written A\B) is the set of elements of A that are not in B.

We have A ⊆ U , meaning the event A viewed as a set is a subset of the
sample space U .
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We say that the events A and B are equally likely if P(A) = P(B).

/0 denotes the empty set /0 = { }, the set without any elements, and we have
| /0|= 0.

The events A and B are mutually exclusive if A ∩ B = /0; equivalently,
P(A∩B) = 0 and P(A∪B) = P(A)+P(B).

A B

The complement of an event A viewed as a set, denoted A′ is given by
A′ = U −A and we have P(A′) = 1−P(A).

The addition rule states that for events A and B,

P(A∩B)+P(A∪B) = P(A)+P(B).

We can estimate the probability of an event A by

P(A)≈ number of times event A happened in trials
number of trials in the experiment

.

Exercises/Homework:



1903.1.9 Conditional Probability

The probability of event A, given that event B has already occurred,
P(A | B) is called the conditional probability of A given B.

If P(B) ̸= 0, then

P(A | B) =
P(A∩B)

P(B)
.

Example 3.19 A bag of marbles has 2 white marbles and 1 blue marble.
Calculate the probability of drawing a white marble given that a white
marble was already drawn and not replaced.

Tree diagram:
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P(A) = P(A | B)P(B)+P(A | B′)P(B′) .

This is a consequence of P(A) = P(A∩B)+P(A∩B′).

A and B are independent events if P(A | B) = P(A) and P(B | A) = P(B).
In other words, P(A | B) does not depend on whether or not B has occurred.
If A and B are independent events, then

P(A∩B) = P(A | B)P(B) = P(A)P(B).

Example 3.20 A 6 schools in a small town have a total of 845 girls and
830 boys in Year 12. The mathematics courses studied by the students
are shown in the following table:

Girls Boys Total

Essential 281 265 546
General 420 412 832
Methods 144 153 297

Total 845 830 1675

(a) Determine the probability that a student is a girl.

(b) Determine the probability that a student is a girl studying Mathe-
matical Methods.
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(c) Determine the probability that a student is a girl, given that they are
studying Mathematical Methods.

(d) Use the identity P(A) = P(A | B)P(B)+P(A | B′)P(B′) to calculate
the probability that a student studies Mathematical Methods.

Exercises/Homework:



1933.1.10 Discrete Random Variables

A random variable is a function that assigns a real number to each out-
come of a sample space.

A discrete random variable is a function that assigns a discrete value to
each outcome of a sample space U with the property that U has a one-to-
one correspondence with the set of natural numbers N= {1,2,3, . . .} when
U is infinite.

Example 3.21 A pair of dice is thrown and we have sample space

U = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), . . . ,(6,6)} .

We have |U | = 36 elements of the sample space. The sum of the num-
bers on the dice is a discrete random variable in the set

X = {2,3,4,5,6, . . . ,11,12}.

A continuous random variable is a random variable in which the out-
comes are real numbers not restricted to a set of discrete values.

Example 3.22 A pair of dice is tossed. Calculate the probability that
the sum on the dice is equal to 7.
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The probability distribution of a discrete random variable is a set con-
sisting of pairs (x,P(x)), where x is the random variable and P(x) is the
probability that x occurs. This information is sometimes represented in
a table. P(x) is called a discrete probability function when we have a
discrete random variable.

Example 3.23 Write the probability distribution for the sum on a pair
of dice, write this in a table, then display a plot of points (x,P(x)).

The notation ∑x P(x) refers to the sum of the probabilities of all discrete
random variables.

∑
x<b

P(x) is the sum of all random variables satisfying x < b. Similarly we

have ∑
x≤b

P(x), ∑
a<x

P(x), ∑
a≤x

P(x), ∑
a≤x≤b

P(x), ∑
a<x≤b

P(x), ∑
a≤x<b

P(x).
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Theorem 16 ∑x P(x) = 1 for a discrete random variable.

Example 3.24 Verify that ∑x P(x) = 1 for the sum of a pair of dice.

Example 3.25 For a pair of dice, calculate the probability that the sum
of the dice is greater than 3, ∑

3<x
P(x).

A uniform discrete random variable is a discrete random variable such
that for all x, P(X = x) = c, where c is constant. If U is finite and n = |U |,
then P(X = x) = 1

n.

Example 3.26 The toss of a single die is an example of a uniform ran-
dom variable. The sum of a pair of dice is an example of a non-uniform
discrete random variable.

Exercises/Homework:



1963.1.11 Expected Value

The mean of a collection A is the average of the elements of A, 1
n

n

∑
j=1

a j,

where A = {a1,a2, . . . ,an}.

The expected value of an event in a discrete random variable probability
distribution is the sum E = ∑x xp(x).

Example 3.27 In a game of chance a pair of dice is tossed. The player
receives the dollar value of the sum of the dice. The cost of a game is
$ 4. Calculate the expected value of a game and hence decide whether
the game is worth playing.
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Example 3.28 In a game of chance a pair of dice is tossed. Again, the
player receives the dollar value of the sum of the dice. However, this
time a game costs $ k to play. Calculate the least k such that the player
loses on average.
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The expected value is an average value or mean value, so we put µ =E(X).
If f (x) is a function of x, then E( f (x)) = ∑x f (x)P(x).

Example 3.29 Calculate E( f (x)) in terms of E(X), where
f (x) = 2x−1.

In general, f (E(X)) ̸=E( f (X)). If f (x) is linear, then f (E(X))=E( f (X)).
Also,

E(X +Y ) = E(X)+E(Y ).

The variance of a random variable X is defined

σ
2 = Var(X) = E

(
(X −µ)2

)
,

where µ = E(X). The variance measures how closely about the mean the
probability distribution is.

σ =
√

Var(X) is called the standard deviation of the random variable X .
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Example 3.30 Consider the probability distribution shown in the table
below:

x 1 2 3 4

P(x) 0.02 0.25 0.40 0.33

Calculate the mean µ = E(X) and the standard deviation σ .

Theorem 17 Let µ and σ be the mean and standard deviation of a discrete
random variable X. Then σ 2 = E

(
X2
)
−µ2.

Example 3.31 Use the above theorem to calculate the variance σ 2 for
the probability distribution in Example 3.30.
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For a uniform discrete random variable X with a finite sample space of
cardinality n, for all x we have P(x) = 1

n. It follows that

E(X) = ∑
x

xP(x) =
1
n ∑

x
x,

which is the average of the elements x of the random variable.

The variance satisfies

σ
2 = E

(
X2)−E(X)2,

=

(
∑

x
x2P(x)

)
− 1

n2

(
∑

x
x
)2

.

Example 3.32 Calculate µ = E(X) and σ 2 for a 12-sided die.

Exercises/Homework:



2013.1.12 The Binomial Distribution

A Bernoulli trial is a random experiment with two outcomes: success
or failure. We use p to denote the probability of a success. Hence the
probability of a failure is 1− p. A Bernoulli trial is independent of previous
or successive events.

A Bernoulli random variable x is 0 or 1 for failure and success respec-
tively. It follows that the probability distribution of a Bernoulli random
variable is {(0, p−1),(1, p)}.

Example 3.33 An unfair coin has probability 0.43 of landing on heads.
Write a table displaying the probability distribution for tossing the coin,
given that landing on heads is a success. What is the probability of
obtaining two heads in a row in tossing the coin twice?

x 0 1

P(X = x)

Recall that the binomial symbol is given by(
n
r

)
=

n!
(n− r)!r!

.

The probability of x successes in a sequence of n Bernoulli trials is given
by

P(X = x) =
(

n
x

)
px(1− p)n−x.



202Recall that (a+b)n = ∑
n
r=0

(n
r

)
an−rbr so it follows that

1 = ((1− p)+ p)n =
n

∑
x=0

(
n
x

)
(1− p)n−x px.

Since the sum of the probabilities is 1, we have a probability distribution.
This probability distribution is called a binomial distribution.

Example 3.34 The unfair coin in Example 3.33 above is tossed 5 times.
Calculate the probability of getting exactly 2 heads.

The expected value for a binomial distribution is

µ = ∑
x

xP(x) =
n

∑
x=0

x
(

n
x

)
(1− p)n−x px = np,

the number of times a success is expected in n trials. If a fair coin is tossed
10 times, then we would expect 10×0.5 = 5 heads. The variance σ 2 for a
binomial distribution is

σ
2 = E(X2)−µ

2 =

(
n

∑
x=0

x2
(

n
x

)
(1− p)n−x px

)
−n2p2 = np(1− p).

Exercises/Homework:



2033.1.13 Trigonometry

A triangle has three sides and three vertices. Each of the vertices has an
interior angle that is less than 180◦ = π radians. We will label the vertices
and refer to them as angles interchangeably. We will use uppercase letters
for vertices and corresponding angles and the same lowercase letter for the
side length opposite to that vertex/angle. Two triangles △ABC and △PQR
are congruent if all interior angles in one triangle are equal to those in the
other triangle.

A

B

C

a

b

c

P

Q

R

p

q

r

Congruent triangles △ABC and
△PQR can be labeled so that:

∠A = ∠P,
∠B = ∠Q,

∠C = ∠R.

Theorem 18 Two triangles △ABC and △PQR are congruent if and only
if they have side lengths a,b,c and p,q,r respectively such that there is a
real number m satisfying

p = am, q = bm, r = cm.

Note that the side length a is opposite the angle A, b is opposite the angle B,
c is opposite the angle C, p is opposite the angle P, q is opposite the angle
Q, and r is opposite the angle R. Furthermore, the triangles are labeled so
that ∠A = ∠P, ∠B = ∠Q, ∠C = ∠R.
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Example 3.35 Triangles △ABC and △PQR shown in the figure above
have vertices at points: A = (0,0),B = (3,5),C = (5,2) and
P = (6,1),Q = (7.5,3.5),R = (8.5,2). Determine the scale factor m in
Theorem 18.

Let △ABC be a right triangle with ∠C = 90◦ = π , labeled as shown.

B

A

C

c

a

b

The trigonometric ratios sine, cosine and tangent are
defined and satisfy:

sin(A) =
a
c
=

opp to A
hyp

= cos(B),

cos(A) =
b
c
=

adj to A
hyp

= sin(B),

tan(A) =
a
b
=

opp to A
adj to A

=
sin(A)
cos(A)

=
1

tan(B)
.

Recall the phase shift between sin(x) and cos(x) and that these are periodic
functions of period 360◦ = 2π:

sin(x °)

cos(x °)

-100 100 200 300

-1.0

-0.5

0.5

1.0

sin(180◦− x) = sin(x),
cos(180◦− x) = cos(x),

sin(x+90◦) = cos(x),
cos(x−90◦) = sin(x).



205Next we recall the following important results.

Theorem 19 The sum of the interior angles of a triangle is equal to
180◦ = π radians.

Theorem 20 (Pythagoras) If △ABC is a right triangle with C = 90◦ and
hypotenuse c, then a2+b2 = c2.

To solve a triangle means to find all interior angles and all side lengths.
We use the definitions of sin, cos, and tan to solve a given right triangle.

Example 3.36 A right triangle has hypotenuse 8 cm and another side
length equal to 5 cm. Solve the triangle.

Exercises/Homework:



2063.1.14 Sine Rule

Theorem 21 (Sine Rule) The triangle shown on the left satisfies all three
of the identities below on the right:

A

B

C

a

b

c

a
sin(A)

=
b

sin(B)
=

c
sin(C)

,

sin(A)
a

=
sin(B)

b
=

sin(C)

c
,

A+B+C = 180◦ = π radians.

Example 3.37 A triangle has an interior angle 112◦ with opposite side
length 9 m and adjacent side length 8 m. Use the sine rule to solve the
triangle.

Exercises/Homework:



2073.1.15 Cosine Rule

Theorem 22 (Cosine Rule) The triangle shown on the left satisfies all two
of the identities below on the right:

A

B

C

a

b

c
a2+b2 = c2+2abcos(C),

A+B+C = 180◦ = π radians.

Notice that when C = 90◦, cos(90◦) = 0 and we have a2+b2 = c2.

Theorem 23 (Triangle Inequality) The triangle △ABC satisfies:

a+b > c, a+ c > b, b+ c > a.

Furthermore, there a triangle of side lengths a,b,c if and only if the three
inequalities above are satisfied.

Example 3.38 Is there a triangle of side lengths 9,21,8?

Example 3.39 Solve the triangle with side lengths 7,9,15 if possible.

Exercises/Homework:



2083.1.16 Area of a Triangle

We will use the following triangle as a reference to think about the follow-
ing results on the area of a triangle.

A

B

C

a

b

c

Theorem 24 The triangle △ABC has area given by Area = 1
2bcsin(A).

Note: equivalently, Area = 1
2acsin(B) and Area = 1

2absin(C).

Theorem 25 (Heron’s Formula) The triangle △ABC has area given by
Area2 = s(s−a)(s−b)(s− c), where s = 1

2(a+b+ c).

Heron’s formula is easy to use and can also be used to confirm calculations
obtained via Theorem 24.

Example 3.40 Calculate the area of the triangle with side lengths 7 m,
9 m, 15 m in two ways by using Area = 1

2bcsin(A) and by Heron’s for-
mula.

Exercises/Homework:
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3.1.17 Angle of Elevation, Bearings

An angle of depression is the angle between an object and a horizontal
line where the object is below the horizontal line. See Angle A below.

B

A

An angle of elevation is the angle between an object and a horizontal line
where the object is above the horizontal line. See Angle B above.

Example 3.41 An airplane has an angle of elevation of 30◦ above sea
level from an observer in a boat and is 4 km from the observer. Calculate
the height of the airplane above sea level.

A bearing is the angle an object makes measured clockwise from North.
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Example 3.42 Two ships at points A and B are 30 km apart. The bear-
ing of the ship at point B from point A is 55◦.

(a) Calculate the bearing of the ship at point A from point B.

(b) How far East is B from A?

Exercises/Homework:



2113.1.18 Angles in 3D and Geometric Thinking

A point (x,y,z) in 3-dimensional space has a distance r from the origin
O = (0,0,0) given by r2 = x2+ y2+ z2 and two associated angles α and β

shown in the diagram below.

O
X

Y

α

O

Z

β

The triple (r,α,β ) is the spherical coordi-
nate representation of the rectangular coor-
dinate (x,y,z). On the left the plane con-
taining the points O, (x,y,z), and the z-axis
illustrates the measurement of the angle β .
This β is the angle from the z-axis to the line
connecting O and (x,y,z) so that cos(β ) = z

r .
Also, tan(α) = y

x and r2 = x2+ y2+ z2.

To get rectangular coordinates from spherical coordinates, we have

x = r cos(α)sin(β ),

y = r sin(α)sin(β ),

z = r cos(β ).
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Example 3.43 A pyramid has height 12 m and the base is an equilat-
eral triangle with one corner at the origin. The length of each side of
the base of the pyramid is 15 m. Calculate the coordinates of the peak
of the pyramid in both rectangular and spherical coordinates if the co-
ordinates of corners of the base of the pyramid are (0,0,0), (15,0,0),(

15
2 ,

15
√

3
2 ,0

)
.

X

Y

5 10 15

5

10

15
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Continued

Exercises/Homework:



2143.2 Term 2

Under Construction

3.3 Term 3

Under Construction

3.4 Term 4

Under Construction
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