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4Instructions

1. Imperative: Print this pdf document or be prepared to annotate the
pdf with a tablet. Some blank spaces for writing are a little small
for large writing. If you cannot do either of these annotation options,
then write notes on blank paper, noting the relevant position within the
typed course notes. As you watch the intructional videos, write notes
in the blank spaces. This step is very important.

2. The instructor should write exercises from an appropriate textbook
where the text says Exercises/Homework.

3. Optional but highly recommended: Purchase and use Mathematica
or obtain it through your institution. We will occasionally use this to
display various graphics and verify calculations. All graphics shown in
this document were produced with Mathematica. You will most likely
find it very helpful with your studies. It is a symbolic computation tool
which has full programming capabilities. E.g. Try writing

Expand[(x+y)ˆ3]

then press Shift+Enter or

s = 0;

For[i = 0, i < 6, i++, s = s + i; Print[s]]

You can call on Wolfram alpha from with in it by beginning a cell with
= =.
If your school has a license, to install this on your machine, visit:
wolfram.com/siteinfo/

Get Mathematica Desktop.
Create a Wolfram ID, and download and install the software.



51 Year 10 Mathematical Methods

1.1 Term 1

1.1.1 Surds and Index Laws

The decimal expansion of
√

2 does not terminate, nor repeat.
√

2 = 1.41421356237309504880168872420969807856967187537695 . . .

There are no whole numbers a,b with b ̸= 0 and
√

2 = a
b. We say

√
2 is

irrational, meaning not rational.

Next we identify several important sets of numbers and notation for them.

Z Integers This is the set of all whole numbers · · ·−3,−3,−1,0,1,2, . . . .

R Real Numbers (All numbers on the number line.)

.
-3 -2 -1 0 1 2 3

2
4

Q Rational Numbers
{

a
b : a,b ∈ Z,b ̸= 0

}
, meaning the set of all frac-

tions a/b, where a and b are elements of (∈) the set of integers (Z) and b
is non-zero. Note: Integers are also rational numbers (Z⊂Q).

R−Q or R \Q Real Irrational Numbers (Real numbers that are not ra-
tional. e.g. π and

√
2 are real numbers but not rational numbers.)

Note: A real number is rational if and only if it has a repeating decimal
expansion or a terminating decimal expansion.



6A surd is a sum of expressions of the form a n
√

b.

Example 1.1 Which of the following real numbers are surds?

√
36

√
19

√
1

25
3
√

21 4π
3
√

1728

Example 1.2 Simplify the following using the multiplicative property of
square roots

√
ab =

√
a
√

b.

√
12 3

√
30

√
1

36
2
√

75
3
√

125
4

√
15
81

Exercises/Homework:



71.1.2 Arithmetic of Surds

We begin this section with rationalising the denominator of surds. We use
the properties

x
√

y
=

x
√

y
√

y
√

y
=

x
√

y
y

,

(√
a+

√
b
)(√

a−
√

b
)

= a−b.

Example 1.3 Rationalise the denominator for the following expres-
sions.

(a) 5√
3

(b) 6
√

5√
8

(c) 3
√

6
2
√

10

(d) 4−
√

3√
15

(e) 1
5−

√
3

(f) 6−
√

5
2+

√
8

Exercises/Homework:



81.1.3 Index Laws

We have the following index laws for real numbers a,b,c :

abac = ab+c, ab/ac = ab−c, for a ̸= 0(
ab)c

= abc,

(ab)c = acbc, (a/b)c = ac/bc = acb−c, for b ̸= 0

a−1 =
1
a
, for a ̸= 0

a0 = 1, 00 = 1 ( defined to be 1, but contraversial)
1

a−b = ab, for a ̸= 0, a−b =
1
ab for a ̸= 0.

Example 1.4 Express the following with positive indices

(a) a−3

(b) 2x−3y4

(c) 4
y−2

(d) (a−3b)
2

3a−1b2 × b−1

a

(e) (5a2b−1)
3

2a4b−2 ÷ b−5

2a−2

Exercises/Homework:



91.1.4 Fractional Indices

We can write
√

3 = 31/2 and(√
3
)2

= 31/2×31/2 = 3
1
2+

1
2 = 31 = 3.

This allows us to use index laws to simplify surds. We have the following
index laws for real number a and integers m,n:

am/n = n
√

m,

a1/2 =
√

a,

a1/3 = 3
√

a,

a1/n = n
√

a.

Example 1.5 Express the following in index form:

(a)
√

11

(b)
√

3x7

(c) 2 4
√

x9

(d) 11
√

7



10.

Example 1.6 Write the following in simplest surd form:

(a) 121/2

(b) 63/2

Example 1.7 Simplify:

(a) a1/5a3/5

(b)
(
b2b3

)1
4

(c)
(

x1/3

y1/6

)1/4

Exercises/Homework:



111.1.5 Solving Simple Equations in One Variable

In this section we will learn how to solve equations with one variable.

Example 1.8 Solve the following equations for x:

(a) 2x+9 = 12

(b) 3(2x+4) = 3x

(c) x−1
3 = 2

(d) 3− x
3 = 8

(e) 3−x
4 = x−4

Exercises/Homework:



121.1.6 Substitution

In this section we learn how to rearrange formulas and substitute values
into equations.

Example 1.9 The volume of a sphere of radius r is given by V = 4
3πr3.

(a) Solve the equation V = 4
3πr3 for r, where r is a real number.

(b) If the volume of the sphere is 42.8 m3, find the radius of the sphere.

Example 1.10 The area of a rectangular region adjoining a two semi-
circle regions on each end of the rectangle is given by A = xy+π

(
x
2

)2.

(a) Solve the equation A = xy+π
(

x
2

)2 for y in terms of x and A.

(b) If x = 36 m and y = 24 m, calculate A.

Exercises/Homework:



131.1.7 Solving Inequalities

Symbols:
x > 3 means x is greater than 3.
x < 3 means x is less than 3.
x ≥ 3 means x is greater than or equal to 3.
x ≤ 3 means x is less than or equal to 3.

Example 1.11 Sketch the region on the number line corresponding to:

(a) {x ∈ R : x > 3}= (3,∞).
-3 -2 -1 0 1 2 3 4

(b) {x ∈ R : x < 3}= (−∞,3).
-3 -2 -1 0 1 2 3 4

(c) {x ∈ R : x ≥ 3}= [3,∞).
-3 -2 -1 0 1 2 3 4

(d) {x ∈ R : x ≤ 3}= (−∞,3].
-3 -2 -1 0 1 2 3 4



14Rules:

• When multiplying an inequality by a negative number, turn the symbol
around. (> becomes <, < becomes >, ≤ becomes ≥, ≥ becomes ≤.)

• When inverting both sides of an inequality, turn the symbol around.

• Otherwise, treat solving an inequality like solving an equation.

Example 1.12 4 > 3 but −4 −3 and 1
4

1
3.

Example 1.13 Solve the inequality 3x−6 ≥ 8 for x.

Example 1.14 Solve the inequality −(4−6x)< 2(5− x) for x.



15.

Example 1.15 Solve the inequality x
4 −

2x
3 >−7 for x.

Example 1.16 Solve the inequality 5
3x > 2 for x.

Exercises/Homework:



161.1.8 Linear Equations Involving Fractions

The greatest common divisor of two integers a and b is written gcd(a,b).
This is the greatest positive integer c such that c divides a and c divides b.

The least common multiple of two integers a and b is written lcm(a,b).
This is the least positive integer c such that a divides c and b divides c.

Theorem 1 For any two positive integers a and b,

ab = gcd(a,b)lcm(a,b).

The greatest common divisor and least common multiple can be calculated
efficiently using the Euclidean algorithm.

Example 1.17 Calculate:

(a) 4×6

(b) gcd(4,6)

(c) 4×6
gcd(4,6)

(c) lcm(4,6)

(d) 1
4 +

1
6



17.

Example 1.18 Calculate lcm(12,18) and use it to simplify x+4
12 + x−6

18 .

Example 1.19 Calculate lcm(24,6) and use it to simplify x−3
6 + 5x−6

24 .

Exercises/Homework:



181.1.9 Parallel Lines and Perpendicular Lines

Two lines y = m1x+ c1 and y = m2x+ c2 are parallel if m1 = m2.

Two lines y = m1x+c1 and y = m2x+c2 are perpendicular if m1m2 =−1
(or equivalently, m2 =− 1

m1
).

Theorem 2 In Euclidean space:

• Two lines intersect in one point if and only if they are not parallel.

• Lines have either one intersection or infinitely many intersections (they
are the same line).

• There is a unique line passing through two points.

Example 1.20 Decide whether the two lines y =−9x−3 and y = 1
9x+2

are parallel, perpendicular, or neither.



19.

Example 1.21 Decide whether the two lines y =−1
3x+1 and 3y+x = 2

are parallel, perpendicular, or neither.

Example 1.22 Decide whether the two lines y = 1
6x+4 and 6y+ x = 3

are parallel, perpendicular, or neither.



20.

Example 1.23 Find the equation of the line that is parallel to
y =−5x+8 and passes through the point (2,−3).

Example 1.24 Find the equation of the line that is perpendicular to
y =−5x+8 and passes through the point (−4,−2).

To decide whether two lines are parallel, perpendicular, or neither:

Step 1 Put both lines in standard form y = mx+ c and hence identify slopes
m1 and m2.

Step 2 If m1 = m2, then the lines are parallel;

Step 3 Otherwise: if m1m2 =−1, then the lines are perpendicular;

Step 4 Otherwise: the lines are neither parallel nor perpendicular.

Exercises/Homework:



211.1.10 Distances Between Points and Midpoints of Line Segments

Consider the points P1 = (x1,y1) and P2 = (x2,y2). The distance between
P1 and P2 is obtained by Pythagoras’ theorem a2+b2 = c2, where
a = |x1− x2|, b = |y1− y2|, and c is the distance between P1 and P2.

P1

P2

The formula for the distance between P1 = (x1,y1) and P2 = (x2,y2) is

c = D(P1,P2) =

√
(x1− x2)

2+(y1− y2)
2.

Example 1.25 Find the distance between the points (0,4) and (−2,6).

The midpoint of the line segment connecting



22the points P1 = (x1,y1) and P2 = (x2,y2) is given by

M =

(
x1+ x2

2
,
y1+ y2

2

)
.

Example 1.26 Find the midpoint of the line segment connecting the
points (0,4) and (−2,6).

Example 1.27 Find real numbers a and b such that the midpoint of
(2a,a) and (3,b) is (4,−4).



23.

Example 1.28 The distance between the points (−4,1) and (6,a) is
4
√

21. Find a.

Exercises/Homework:



241.1.11 Simultaneous Equations by Substitution

Given two simultaneous linear equations that do not represent parallel
lines, we learn to find the point of their intersection by substitution. That
is, we solve one equation for a variable, say y, and then substitute that into
the other equation and solve for the other letter, say x.

Example 1.29 Solve the simultaneous system of linear equations

2x−4y = −6,

y = 3x+4.

. -4 -2 0 2 4

-4

-2

0

2

4



25.

Example 1.30 Solve the simultaneous system of linear equations

y = 8x−1,

y = 8x+2

if possible.

Example 1.31 For which real value of k does the simultaneous system
of linear equations

y = −3x−2,

y = kx+6

(a) have no solution?

(b) have one solution?

(c) have infinitely many solutions?

Exercises/Homework:



261.1.12 Simultaneous Equations by Elimination

Given a system of simultaneous linear equations, solving the system by
elimination applies the following procedure. We multiply each equation by
a number such that the coefficients of one of the variables (the coefficient
of the same letter) becomes the same or of opposite sign. We then add or
subtract equations so that that variable vanishes. Finally, we solve for the
other variable.

Example 1.32 Solve the system of equations

2x−6y = 8,

3x+4y = 10

by elimination.
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Example 1.33 Solve the system of equations

x+2y = 4,

2x+9y = 12

by elimination.

Exercises/Homework:



281.1.13 Applications of Simultaneous Equations

Next we consider applications of simultaneous equations.

Example 1.34 The sum of the ages of two children Kara and Ben is 17
and the difference in their ages is 5. If Kara is older than Ben, determine
their ages.

Exercises/Homework:



291.2 Term 2

1.2.1 Introduction to Trigonometry

We learn about the relationship between the angles in a right triangle and
the trigonometric ratios sine, cosine and tangent (sin, cos, tan).

B

A

C

c

a

b
The trigonometric ratios sine,
cosine and tangent are defined

sin(B) =
opp
hyp

,

cos(B) =
adj
hyp

,

tan(B) =
opp
adj

.

We have the useful acronym SOHCAHTOA for remembering these trig.
ratios.

Recall Pythagoras’ theorem:

Theorem 3 (Pythagoras) Let a,b,c be the lengths of the sides of a right
triangle, where c > a,b (c is the hypotenuse). Then a2+b2 = c2.

Example 1.35 Show that:

(a) sin(B)
cos(B) = tan(B),

(b) sin(B) = cos(A),

(c) cos(B) = sin(A),

(d) tan(B) = 1
tan(A),



30.

(e) cos2(B)+ sin2(B) = 1 by Pythagoras’ theorem.

Example 1.36 Find the side length x opposite an angle of 30◦ in a right
triangle with hypotenuse 8.

Example 1.37 Find the hypotenuse x in a right triangle if the triangle
has side length 4 adjacent to an angle of 44◦.

Exercises/Homework:



311.2.2 Finding Angles in Right Triangles

To solve a right triangle for an interior angle we use the inverse functions
of sine, cosine and tangent, (sin−1,cos−1, tan−1).

B

A

C

c

a

b

.

Since sin(B) = b
c , we have B = sin−1 (b

c

)
. This is also called arcsin.

Similarly, cos(B) = a
c so B = cos−1

(
a
c

)
. This is also called arccos.

tan(B) = b
a so B = tan−1

(
b
a

)
. This is also called arctan.

-400 -200 200 400

-1.0

-0.5

0.5

1.0
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-400 -200 200 400

-6

-4

-2

2

4

6

-6 -4 -2 2 4 6

-50

50

Example 1.38 A right triangle has hypotenuse of length 2 and sides of
length 1 and x. Solve for the angle adjacent to the side of length x, and
then solve for x.

Exercises/Homework:



331.2.3 Applications of Trigonometry

We consider some applications of trigonometry.

Example 1.39 A tower stands x metres high in elevation above the
ground. A man standing on the top of a 250 metre tall building looks up
to the tower with an elevation angle of 30◦ to the horizontal. The hori-
zontal distance between the man and the tower is 420 metres. Calculate
the elevation x of the tower.

Exercises/Homework:



341.2.4 Directions and Bearings

True Bearings (◦T ) are measured clockwise from North.

.

Recall that the mathematical convention is to measure angles from the pos-
itive end of the x-axis counter-clockwise.

Example 1.40 Consider the points O,A,B show below. If the line seg-
ment OA makes an angle of 40◦ South of West, what is the true bearing
of the point A from O?

.

40∘



35.

Example 1.41 Consider the points O,A,B show below. If the line seg-
ment OA makes an angle of 40◦ South of West, what is the true bearing
of the point O from A?

.

40∘

Example 1.42 A boat travels North-East for 5 km followed by a true
bearing of 20◦ for 10 km. Find the true bearing of the boat from the
original position.

Exercises/Homework:



361.2.5 The Unit Circle

(x,y)

Y

X
x

y
1

θ

A

Quadrant 1

S

Quadrant 2

T

Quadrant 3

C

Quadrant 4

x
2+y2=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Recall

sin(θ) =
opp
hyp

=
y
1
,

cos(θ) =
adj
hyp

=
x
1
,

tan(θ) =
opp
adj

=
y
x
.

For any point (x,y) on the unit circle x2 + y2 = 1, there is an angle θ such
that (x,y) = (cos(θ),sin(θ)). Since x2+ y2 = 1 we again have
cos2(θ)+ sin2(θ) = 1.

The acronym ASTC refers to the following:

For an angle θ in Quadrant 1, All sin(θ),cos(θ), tan(θ)> 0.

For an angle θ in Quadrant 2, Only Sine, sin(θ)> 0.

For an angle θ in Quadrant 3, Only Tan, tan(θ)> 0.

For an angle θ in Quadrant 4, Only Cos, cos(θ)> 0.



37.

A reference angle is an angle α with 0 ≤ α < 90◦ such that θ = 180◦±α ,
θ = 360◦−α , or θ = α . For example, if θ = 290◦, then the reference
angle α = 70◦ so that θ = 360◦−α .

Let α be the reference angle.

• If θ is in Quadrant 1, then θ = α .

• If θ is in Quadrant 2, then θ = 180◦−α .

• If θ is in Quadrant 3, then θ = 180◦+α .

• If θ is in Quadrant 4, then θ = 360◦−α .

Example 1.43 Calculate cos(320◦) and sin(320◦) by considering the
reference angle.

Exercises/Homework:



381.2.6 Exact Surd Values for Trigonometric ratios

Memorise the following useful triangles:

45∘

45∘

90∘

1

1

2

90∘

60∘

30∘

1

3

2

These two triangles give exact surd values for the trigonometric ratios of
angles 45◦, 30◦, and 60◦.

We have

cos(45◦) = , cos(30◦) = , cos(60◦) = ,

sin(45◦) = , sin(30◦) = , sin(60◦) = ,

tan(45◦) = , tan(30◦) = , tan(60◦) = .

The angle addition formulas:

sin(α +β ) = sin(α)cos(β )+ cos(α)sin(β ),

cos(α +β ) = cos(α)cos(β )− sin(α)sin(β ),

give additional exact values.
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Example 1.44 Calculate cos(15◦) and sin(15◦) using the above trian-
gles and the angle addition formulas.

Example 1.45 Calculate the exact surd value of cos(150◦).

Example 1.46 Find all angles θ with 0 ≤ θ < 360◦ such that
cos(θ) =−

√
3

2 .

Exercises/Homework:



401.2.7 Expanding Algebraic Expressions

Like terms are terms of a polynomial with the same letters to the same
powers.
Example: 4xy2 and −3xy2 ARE like terms.
Example: 4x2y and −3xy2 are NOT like terms.
Example: x2 and x are NOT like terms.
Example: x and 12 are NOT like terms.

We use the distributive law to expand brackets. This means multiplication
distributes over addition:

x(y+ z) = xy+ xz, (x+ y)z = xz+ yz.

Notice that 2(3+5) = 2×8 = 16.
Also 2(3+5) = 2×3+2×5 = 6+10 = 16.

The following are all consequences of the distributive law:

a(b+ c) =

a(b− c) =

(a+b)(c+d) =

=

=
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(a+b+ c)(d + e+ f ) =

(a+b)2 =

=

=

=

(a+b)(c+d)(e+ f ) =

=

=

Example 1.47 Expand (x−4)(x+8)

Example 1.48 Expand (2x−6)(3x+7)

Exercises/Homework:



421.2.8 Factorising Polynomials

Factorizing a polynomial is the process of expressing the polynomial as a
product of polynomials.

For example, x2−25 = (x+5)(x−5) since a2−b2 = (a+b)(a−b).
Similarly, x2−12 = x2−

√
12

2
=
(

x+
√

12
)(

x−
√

12
)

.

Example 1.49 Factorise 3x2−18x.

Example 1.50 Factorise x2+8x+15.

Example 1.51 Factorise x(x+3)−12(x−3).

Exercises/Homework:



431.2.9 Factorising Monic Quadratic Polynomials

A monic polynomial in one variable has leading coefficient equal to 1.
That is, a polynomial in the variable x has coefficient of xn, where n is
greatest, being 1.

x2+3x+8 is monic. 3x2−4x+12 is not monic.

A quadratic polynomial in one variable is a polynomial of the form

ax2+bx+ c,

where a,b,c are specific numbers. Quadratic refers to the greatest exponent
being equal to 2.

To factorise x2 + bx+ c, where b,c are specific integers, we seek to find
integers p,q such that

(x+ p)(x+q) = x2+(p+q)x+ pq = x2+bx+ c

so that

c = pq, b = p+q.

Step 1 If c = 0, put x2+bx+ c = x(x+b). Otherwise:

Step 2 If b = 0, x2+bx+ c = (x+
√

c)(x−
√

c). Otherwise:

Step 3 List all of the divisor pairs (s, t) of the absolute value of c up to their
order: (1, |c|), . . . .

Step 4 If c > 0, determine which pair (s, t) satisfies s+ t = |b|. If b > 0, put
x2+bx+ c = (x+ s)(x+ t). If b < 0, put x2+bx+ c = (x− s)(x− t).

Step 5 If c < 0, determine which pair (s, t) satisfies s− t =±b.
If b > 0, put x2 + bx+ c = (x+ s)(x− t), where s > t. If b < 0, put
x2+bx+ c = (x− s)(x+ t), where s > t.
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Example 1.52 Factorise the monic quadratic polynomial x2− x−20.

Example 1.53 Factorise the monic quadratic polynomial x2+9x+18.

Example 1.54 Factorise the monic quadratic polynomial x2+5x−84.

Exercises/Homework:



451.2.10 Factorising Non-monic Quadratics

We learn how to factorise expressions of the form ax2 + bx + c, where
a ̸= 0 and a,b,c ∈ Z (are integers). We demonstrate the procedure with an
example.

Example 1.55 Factorise 10x2−13x−3.
We first list the divisor pairs of |−3|= 3. We only have (1,3).
We list the divisor pairs of the absolute value of the leading coefficient
|10|= 10. We only have (1,10) and (2,5). Next we form a multiplication
table where we multiply divisors:

× 1 10 2 5
1
3

Since −3 < 0, we seek a pair of products with a difference of −13,
examining the differences within diagonals of the table.

We use these to form the required factors
10x2−13x−3 = ( )( ).

We can expand to check our work.
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Example 1.56 Factorise 6x2−13x−28.

.

× 1 28 2 14 4 7
1
6
2
3

Exercises/Homework:



471.2.11 Completing the Square with Quadratics

We show how to factorise a quadratic polynomial in one variable by com-
pleting the square. The factors we obtain do not always have integer coef-
ficients.

Example 1.57 Factorise 3x2+19x+20 by completing the square.

In our first step, we write ax2 + bx+ c as a
(
x2+ b

ax+ c
a

)
since a ̸= 0.

In other words, we factor out the leading coefficient of the polynomial
so that inside the brackets we have a monic quadratic polynomial. We
have:

3x2+19x+20 = 3
(
x2+ 19

3 x+ 20
3

)
.

Next we calculate 1
2 of the coefficient of x in the monic quadratic inside

the brackets.

1
2

19
3 = 19

6 .

We place this inside a square:
(
x+ 19

6

)2. Since the expansion of(
x+ 19

6

)2 contains
(19

6

)2 which is not in the original quadratic
3x2 +19x+20, we must subtract

(19
6

)2 from our new expression so that
we get an equal expression.
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3x2+19x+20 = 3
(

x2+
19
3

x+
20
3

)
,

= 3

((
x+

19
6

)2

−
(

19
6

)2

+
20
3

)
.

Now we tidy the remaining terms. Since −
(19

6

)2
+ 20

3 =−121
36 , we have

3x2+19x+20 = 3

((
x+

19
6

)2

− 121
36

)
,

= 3

((
x+

19
6

)2

−
(

11
6

)2
)
.

We have completed the square but it remains to use the property
a2−b2 = (a+b)(a−b) to factorize the quadratic polynomial.

3x2+19x+20 = 3
(

x+
19
6
+

11
6

)(
x+

19
6
− 11

6

)
,

= 3(x+5)
(

x+
8
6

)
,

= (x+5)(3x+4) .
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Example 1.58 Factorise 6x2+5x−56 by completing the square.

Exercises/Homework:



501.2.12 Solving Quadratics by Factorisation

We aim to solve equations of the form ax2 +bx+ c = 0 for x, where a,b,c
are specific numbers, by first factorising the quadratic expression.

Assuming there are real numbers p,q,r,s such that

ax2+bx+ c = (px+q)(rx+ s) = 0,

then we get px+q = 0 or rx+ s = 0 so that x =−q
p or x =−−s

r .

Notice that since a = pr and a ̸= 0, we have p,r ̸= 0.

We can find real numbers p,q,r,s such that ax2+bx+c = (px+q)(rx+ s)
when b2−4ac ≥ 0.

Example 1.59 Solve the equation 2x2+3x−27 = 0 by factorisation.

Exercises/Homework:



511.2.13 Solving Quadratics by Completing the Square

To solve a quadratic equation by completing the square, we first complete
the square, writing ax2 +bx+ c = P2 −Q2, where P = p1x+ p2 is a linear
polynomial in x and Q is a number.

Since P2−Q2 = (P+Q)(P−Q) = 0, we have P+Q = 0 or P−Q = 0 and
hence solve these equations for x.

Example 1.60 Solve the equation 2x2 + 3x− 27 = 0 by completing the
square.
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Example 1.61 Solve the equation 15x2 + 28x− 32 = 0 by completing
the square.

Exercises/Homework:



531.2.14 Solving Quadratics with a Formula

Assume that ax2+bx+c= 0, where a ̸= 0. Factoring a from the expression
on the left, we have

a
(

x2+
b
a

x+
c
a

)
= 0.

Half of b
a is b

2a so that

Simplifying,

Simplifying again,

.

We call ∆ = b2−4ac the discriminant.

Solving the equation for x,



54We have the quadratic formula:

x =
−b±

√
b2−4ac

2a
.

Example 1.62 Solve the equation 15x2 + 28x − 32 = 0 by using the
quadratic formula.

Exercises/Homework:



551.2.15 Applications of Quadratics

We learn to translate a word problem into a quadratic equation, solve the
equation, and write the solution.

Example 1.63 Mike is 5 years younger than Nina. The product of their
ages is 266. How old are Mike and Nina?
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Example 1.64 Margaret wants to fence an area of her yard adjacent to
the house for a dog yard with three sides of a rectangle consisting of
fencing and one side of the rectangle being the side of the house. Mar-
garet has only 128 metres of fencing material. What are the dimension
of the rectangle that give maximum area to the dog yard?

Exercises/Homework:



571.3 Term 3

1.3.1 Time Series

A time-series is a sequence of points in which the consecutive differences
in the independent variable is constant, and the independent variable rep-
resents time. When plotted, line segments connect consecutive points of a
time-series.

Example 1.65 S = {tn,sn}= {(1.2,−7.8),(1.4,−6.4),(1.6,−4.1),
(1.8,−5.3)} is an example of a time-series. If

sn+1− sn

tn+1− tn
= m

is constant for all n, then the time-series is linear. Since tn+1 − tn is
constant for all n in a time-series, a linear time-series has sn+1− sn = k
(a constant) for all n.

Example 1.66 Plot the data S = {(1.2,−7.8),(1.4,−6.4),(1.6,−4.1),
(1.8,−5.3)}, where the dependent variable represents a percentage
change in share price over that time interval.

Exercises/Homework:



581.3.2 Two-variable Data and Scatter Plots

A bivariate data set is a set of points (xn,yn) relating the dependent vari-
able Y to the independent variable X .

A scatter plot is a plot of points in a bivariate data set, where the indepen-
dent variable is shown on the horizontal axis and the dependent variable is
shown on the vertical axis.

An outlier is a point of a bivariate data set which is deemed to be isolated
from other points of the data set.

A bivariate data set has correlation if the points closely fit a line. Correla-
tions are described as strong correlation or weak correlation depending
on how well they fit a line. The data has positive correlation if the slope
of the line of best fit is positive. The data has negative correlation if the
slope of the line of best fit is negative.

Example 1.67 Consider the bivariate data set S = {(1,3),(4,2),(5,1),
(6,0),(9.− 2)}. Draw a scatter plot and describe any correlation ob-
served.

Exercises/Homework:



591.3.3 Guessing a Line of Best Fit

Given a bivariate data set S, we can guess a line of best fit by choosing two
points (x1,y1) and (x2,y2) and hence a line connecting them such that half
of the points in the data set S are above the line and half of the points in the
data set S are below the line. The points (x1,y1) and (x2,y2) do not need to
be in S.

Recall that the slope of the line passing through two points (x1,y1) and
(x2,y2) is given by Y = mX + c, where m = y2−y1

x2−x1
and c = y1 − mx1 or

c = y2−mx2. These c values are the same.

The construction of points in the data range with a line of best fit is called
interpolation. The construction of points outside the data range with a
line of best fit is called extrapolation.

Example 1.68 Consider the bivariate data set S = {(1,4),(2,6),(3,5),
(4,8),(5,12),(6,11)}. Draw a scatter plot, guess a line of best fit, and
describe any correlation observed.
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Guessing the points (0,1) and (6,13) to find the equation of a line of
best fit,

1 2 3 4 5 6

2

4

6

8

10

12

Exercises/Homework:



611.3.4 Introduction to Parabolas

We study parabolas with an equation of the form y = (x− k)2+ c or
y =−(x− k)2+ c, where c and k are particular real numbers.

Note that we can use these techniques more generally since

y = (x− k)2+ c = x2−2kx+
(
k2+ c

)
.

Since (x − k)2 ≥ 0 and (x − k)2 = 0 precisely when x = k, we see that
y = (x− k)2 + c ≥ c and y = c precisely when x = k. This means that the
point (k,c) is the minimum turning point of the parabola y = (x−k)2+c.

Similarly, (k,c) is the maximum turning point of the parabola
y =−(x− k)2+ c.

(k, c) X

Y

Features of y = (x− k)2+ c:

x− k = 0 or x = k is the axis of symmetry.
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When x = 0, we have y = k2+ c so the point
(
0,k2+ c

)
is the y-intercept,

which is the intersection with the y-axis.

When y= 0, (x−k)2+c= 0 so (x−k)2 =−c. If c≤ 0, then −c≥ 0 so that
x− k =±

√
−c and we have x = k±

√
−c so that the points

(
k−

√
−c,0

)
and

(
k+

√
−c,0

)
are the x-intercepts, the points of intersection with the

x-axis.

Example 1.69 Consider the parabola shown below. Find the minimum
turning point, x-intercepts, the y-intercept, and the axis of symmetry.

.
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Example 1.70 Sketch the parabola y = −(x+ 4)2 − 6, identifying the
maximum turning point, x-intercepts (if real), the y-intercept, and the
axis of symmetry.

.

Exercises/Homework:



641.3.5 Sketching Parabolas using Transformations of y = x2

We discuss sketching parabolas of the form y= a(x−h)2+k from the point
of view of transformations of the parabola y = x2.

Consider up/down and left/right translations of the parabola y = x2.

X

Y

X

Y

y = ax2 is a dilation of y = x2 by a.

If a > 0, then the parabola y = ax2 has a minimum at (0,0) and we say the

parabola is concave up.

X

Y

If a < 0, then the parabola y = ax2 has a maximum at (0,0) and we say the

parabola is concave down.

X

Y
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If the dilation has a > 1, then y = x2 is stretched upwards to become
y = ax2. If the dilation has 1 > a > 0, then y = x2 is compressed down-

wards to become y = ax2.

Y

y = (x−h)2 is a right translation of y = x2, h units right.

y = (x+h)2 is a left translation of y = x2, h units left.

y = x2+ k is an upwards translation of y = x2, k units upwards.

y = x2− k is an downwards translation of y = x2, k units downwards.

y = a(x+h)2 + k is a combination of translations and a dilation of y = x2.
Note that y = a(x+h)2+ k = ax2+2ahx+

(
ah2+ k

)
.

X

Y
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Example 1.71 Describe the transformations that transform y = x2 into
y =−2(x−3)2+4 and sketch the parabola y =−2(x−3)2+4.

X

Y

Exercises/Homework:



671.3.6 Sketching Parabolas using Factorization

To sketch y = ax2+bx+c, with a ̸= 0, suppose we are able to factorise the
right hand side as

y = ax2+bx+ c = (px+q)(rx+ s).

When y = 0 we get the x-intercepts by solving px+ q = 0 and rx+ s = 0
so that x = −q

p, x = −s
r . We have the two x-intercept points

(
−q

p,0
)

and(
−s

r ,0
)
. When x = 0 we have y = c so we have the y-intercept point (0,c).

Example 1.72 Sketch the parabola y = x2+4x−21 by factorisation.

X

Y

Exercises/Homework:



681.3.7 Sketching Parabolas by Completing the Square

If we have y = a(x−h)2+ k, then expanding,

y = a(x−h)2+ k,

=

=

If given y = ax2 +bx+ c, then to complete the square is to find h and k
such that

y = ax2+bx+ c = a(x−h)2+ k.

We have

h = , k = .

Example 1.73 Let y = 2x2 + 10x− 48. Complete the square using the
formulas for h and k above.

X

Y

-10 -5 5

-60

-40

-20

20

40

60

80
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Example 1.74 Let y = 2x2 + 10x − 48. Complete the square without
using formulas.

Example 1.75 Use the completed square
y = 2x2+10x−48 = 2

(
x+ 5

2

)2− 121
2 to sketch the parabola.

X

Y

Exercises/Homework:



701.3.8 Sketching Parabolas using Formulas

Let y = ax2+bx+ c.

Completing the square,

y = a( ) ,

=

=

=

=

If y = 0, then

. This is called the quadratic formula.
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Let ∆ = b2−4ac. This is called the discriminant of the quadratic polyno-
mial ax2+bx+ c.

Theorem 4 Let ∆ be the discriminant of f (x) = ax2+bx+ c.

• If ∆> 0, then f (x) has two distinct real roots; the sketch of the parabola
crosses the x-axis.

• If ∆ = 0, then f (x) has one distinct real root; it is repeated and the
quadratic is of the form f (x) = a(x−h)2. The sketch of the parabola
touches the x-axis at a tangent.

• If ∆ < 0, then f (x) has no real roots; there are two non-real roots. The
sketch of the parabola is above or below the x-axis entirely.

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

∆ > 0, ∆ = 0, ∆ < 0.
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The vertical line x = −b
2a is the axis of symmetry.

X

Y

The point
(−b

2a ,
−∆

4a

)
is the turning point; if a > 0, then minimum and the

parabola is concave up, if a < 0, then maximum and the parabola is con-
cave down.

The y-intercept point is (0,c).

If ∆ ≥ 0, then the x-intercept point(s) is/are
(
−b−

√
∆

2a ,0
)

,
(
−b+

√
∆

2a ,0
)

.

Example 1.76 Sketch y = 3x3−18x−48 using the above formulas.

X

Y

Exercises/Homework:



731.3.9 Applications of Parabolas

Example 1.77 A stone is tossed vertically upwards at 15 m/ s and
acce;erates downwards due to gravity at 10 m/ s2 so that u = 15 and
a =−10. Let y be the height of the stone after t seconds. If the height y
is given by

y = ut +
1
2

at2,

find the maximum height of the stone and sketch the parabola relating y
to t.
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Example 1.78 A gardener wants to erect a rectangular fenced area
using 50 m of fencing. Determine the dimensions that give maximum
area to the fenced region.

Exercises/Homework:



751.3.10 Introduction to Functions

A function f is a rule for sending (assigning) elements of a set X to el-
ements of a set Y , and we put y = f (x) or equivalently say (x,y) is in f ,
such that:

• For all elements x in X , there is a y in Y with y = f (x), meaning f
sends x to y.

• If y1 and y2 are in Y with f (x) = y1 and f (x) = y2, then we must have
y1 = y2. This means that f is unambiguous and x is never sent to two
different elements of Y . Rephrased, this is known as the vertical line
test: If a vertical line intersects with the graph of a function in the
x,y-plane, then it intersects exactly once.

If f is a function sending elements of X to elements of Y , we write f :
X −→ Y and state the rule for sending elements x to y; e.g. f (x) = y2. The
set X is called the domain of the function f and Y is called the codomain
of the function f . The range of a function f is the subset of Y of elements
that we sent to Y , the outputs of f .

Example 1.79 Let X = {1,2,3} and Y = {4,5,−2,0}. We define the
function f : X −→Y by f (1) = 5, f (2) = 4, f (3) =−2. f is an example
of a function with domain {1,2,3}, codomain {4,5,−2,0}, and range
{−2,4,5}. Notice that the range is a subset of the codomain.

Example 1.80 Let X be the set of all real numbers x satisfying
−1 ≤ x ≤ 1 and let Y be the set of all real numbers. Does the relation
x2+ y2 = 1 correspond to a function?
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Example 1.81 [−1,1] refers to the set all real numbers satisfying
−1 ≤ x ≤ 1. R refers to the set of real numbers. Define f : [−1,1]−→R
by f (x) =−

√
1− x2. Is f a function? Sketch the relation f .

Example 1.82 Show that f : R−→ R given by f (x) = x2 is a function.

Example 1.83 Let f : R −→ R be given by f (x) = 3x2 − 2x+ 4 be a
function. Calculate f (1), f (0), and f (5).

Exercises/Homework:



771.3.11 Introduction to Polynomial Functions

A polynomial in one variable x with real coefficients is an expression of
the form

anxn+an−1xn−1+ · · ·+a2x2+a1x+a0,

where:

• n is a non-negative whole number.

• a0,a1,a2, . . . ,an are real numbers called coefficients.

The coefficient of xn is the real number multiplying by xn in an expression.

In this section we will refer to polynomials in one variable x with real
coefficients simply as polynomials.

Note: A polynomial is a function f : R−→ R given by

f (x) = anxn+an−1xn−1+ · · ·+a2x2+a1x+a0.

The degree of a polynomial f (x) is the greatest exponent n among all of
the terms of the polynomial. We write deg( f ) = n.

an is called the leading coefficient of f , where deg( f ) = n and an is the
coefficient of anxn.

a0 is called the constant coefficient or constant term of f . a0 is the only
term of f that is a real number.

Theorem 5 If f (x) and g(x) are polynomials and k1,k2 are real numbers,
then k1 f (x), k2g(x), k1 f (x)+k2g(x), k1 f (x)g(x), k1 f (g(x)), and k1g( f (x))
are also polynomials.

Exercises/Homework:



781.3.12 Expanding Polynomials

Example 1.84 Expand the polynomial f (x) = (x + 2)(x − 3) in two
ways.

Example 1.85 Expand the polynomial
f (x) =

(
x2+2x−5

)(
x2+6x−2

)
.

Example 1.86 Expand the polynomial f (x) = (x+1)(x−3)(x−1).

Exercises/Homework:



791.3.13 Polynomial Long Division

Let f (x) and g(x) be polynomials, where deg( f )≥ deg(g). We learn how
to find polynomials q(x) and r(x) such that

f (x) = g(x)q(x)+ r(x),

where deg(q),deg(r) ≤ deg( f ). The polynomial q(x) is called the quo-
tient and r(x) is called the remainder.

Note: If f (x) = g(x)q(x)+ r(x), then f (x)
g(x) = q(x)+ r(x)

g(x).

Example 1.87 Let f (x) = x3 − 2x2 − 2x− 3 and let g(x) = x2 + x+ 1.
Use long division to calculate f (x)

g(x) .
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Example 1.88 Let f (x) = 2x3−9x2+20x−7 and let g(x) = x2−3x+4.
Use long division to find polynomials q(x) and r(x) such that
f (x) = g(x)q(x)+ r(x).

Example 1.89 Given that x− 1 is a factor of f (x) = x3 − 2x2 − 5x+ 6,
factorise f (x) as a product of 3 linear factors.

Exercises/Homework:



811.3.14 Quotients and Remainders for Polynomials

In this section we will introduce some important results for polynomial
quotients and remainders.

Theorem 6 Let f (x) be a polynomial. If f (a) = 0, then x−a is a factor of
f (x).

If g(x) is a factor of f (x), then we say g(x) divides f (x) and equivalently,
the remainder r(x) = 0 in f (x) = g(x)q(x)+ r(x).

Theorem 7 Let f (x) and g(x) be polynomials with g(x) ̸= 0 and
deg( f ) ≥ deg(g). There exist unique polynomials q(x) and r(x) such that
f (x) = g(x)q(x)+ r(x), where r(x) = 0 or deg(r)< deg(g).

Corollary 1.1 (Bézout) Let f (x) and x− a be polynomials, where a is a
real number. Then the quotient and remainder polynomials satisfy
r(x) = f (a) and

f (x) = (x−a)q(x)+ f (a).

Example 1.90 Let f (x) = 3x3+ x2−10x−8. Factorise f (x) as a prod-
uct of 3 linear factors by calculating f (−2), f (−1), f (0), f (1), f (2)
and using long division.
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Example 1.91 Show that x2+2 divides x4+ x3+6x2+2x+8.

Example 1.92 Let f (x) = x4 + x3 + 6x2 + 2x + 8, g(x) = x + 1. Use
Corollary 1.1 to find a polynomial q(x) such that
f (x) = (x+1)q(x)+ f (−1).

Exercises/Homework:



831.3.15 Roots of Polynomials

Theorem 8 (Null Factor Law) Let f (x) be a polynomial.
If f (x) = p1(x)p2(x) . . . pn(x) = 0, where the p(x) are polynomials, then
p1(x) = 0 or p2(x) = 0 or . . . pn(x) = 0.

Theorem 9 (Fundamental Theorem of Algebra) Let f (x) be a polyno-
mial of degree n. Then there are exactly n complex numbers
α = a+ b

√
−1, where a and b are real numbers, and it is possible that

b = 0 so the α may include real numbers, such that

f (x) = k (x−α1)(x−α2) . . .(x−αn) ,

and it is possible that the α coincide. Any non-real roots of f (x) occur in
conjugate pairs, meaning if f (a+b

√
−1) = 0, then f (a−b

√
−1) = 0.

Example 1.93 Find all roots α of f (x) = 2x3 + x2 − 4x− 3 and reflect
on the fundamental theorem of algebra.



84.

Example 1.94 Find all roots α of f (x) = x3 + x2 + x+1 and reflect on
the fundamental theorem of algebra.

Exercises/Homework:



851.4 Term 4

Under Construction
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