WWW.MATHOFCOURSE.COM

End of Semester Examination,

Multivariate Calculus

Time: 90 Minutes for working

No perusal time before examination begins

Total marks available: 90

Full working must be shown on the pages provided.

Permitted materials: A pocket calculator or graphics calculator.

Mobile phones and laptops are not permitted. Please switch phones off.

Name:

1. Let

$$f(x,y) = y\sin(x) + x\cos(y).$$

- (a) Calculate the partial derivatives: $f_x(x,y) = \frac{\partial f}{\partial x}$ and $f_y(x,y) = \frac{\partial f}{\partial y}$. (4 Marks)
- (b) Calculate $\nabla f(0,0)$, the gradient vector of f(x,y) at the point (0,0).
- (c) Calculate the slope of the function f(x,y) in the direction of the vector $\mathbf{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -\mathbf{i} + \mathbf{j}$ at the point (0,0), the directional derivative $f_{\mathbf{v}}(0,0)$.

 (4 Marks)

2. The volume under the plane z=x-y and above the plane z=0 between x=0 and x=2, and between y=0 and y=2 is given by the double integral $V=\int_0^2\int_0^x(x-y)\,dy\,dx=\frac{4}{3}$. See Figure 1 below.

Figure 1: The region we are integrating over.

- (a) Show that $V = \int_0^2 \int_0^x (x y) \, dy \, dx = \frac{4}{3}$. (10 Marks)
- (b) Change the order of integration and show that $V=\frac{4}{3}$ again with this new order of integration. Hint: $V=\int_0^2\int_{f(y)}^2(x-y)\,dx\,dy$, where f(y) is a particular function of y that you must determine by consideration of a point (x,y) that is inside the shaded region of Figure 1 satisfying $0\leq y\leq 2$ and $f(y)\leq x\leq 2$ for some particular f(x). (4 Marks)

3. The velocity of water particles in a river is described by the vector field $\mathbf{F} = (x + 2y, -x, 0)$ shown in Figure 2 below.

Figure 2: Left: The vector field $\mathbf{F} = (x + 2y, -x, 0)$. Right: The vector field from above.

- (a) In which direction does curl(F) point? Explain. (2 Marks)
- (b) Is F irrotational? Explain. (2 Marks)
- (c) Calculate div(F). What does the sign of div(F) tell you? (2 Marks)
- (d) By calculating curl(**F**), show that **F** is not conservative. (6 Marks)
- (e) Show that the parametrization of the linear path from the point A = (1, 1, 1) to the point B = (0, 0, 0) is given by $C : \mathbf{r}(t) = (1 t, 1 t, 1 t), 0 \le t \le 1$.

 (2 Marks)
- (f) Calculate the work done in moving a particle through the current from the point A = (1, 1, 1) to the point B = (0, 0, 0) along a linear path. Recall that $W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(r(t)) \cdot \frac{d\mathbf{r}}{dt} dt$, where $\mathbf{r}(t) = (1 t, 1 t, 1 t)$. (6 Marks)
- (g) Now let $\mathbf{F} = (x + 2y, -x)$. Use Green's theorem in the plane,

$$W = \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (Q_x - P_y) \, dx \, dy, \text{ where } \mathbf{F} = (P, Q), P_y = \frac{\partial P}{\partial y}, Q_x = \frac{\partial Q}{\partial x}$$

to calculate the work done in moving a particle from the point (1,0) to (1,0) counterclockwise around the path $C: \mathbf{r}(t) = (\cos(t), \sin(t)), \ 0 \le t \le 2\pi$. Note that the region D enclosed by C is the unit disc $D = \{(x,y): x^2 + y^2 \le 1\}$, the disc whose boundary is the a circle of radius 1 and centre the origin. You may assume that $\iint_D 1 \, dx \, dy = \iint_D r \, dr \, d\theta = \int_0^1 \int_0^{2\pi} r \, dr \, d\theta$.

. (5 Marks)

- 4. Consider the vector field $\mathbf{F}(x,y) = (2xy + y^2, 2xy + x^2)$.
 - (a) Show that **F** is conservative by showing that $\operatorname{curl}(2xy + y^2, 2xy + x^2, 0)$ is the zero vector (0, 0, 0). (5 Marks)
 - (b) Show that $f(x,y) = x^2y + xy^2$ is a potential function for \mathbf{F} . i.e. $\mathbf{F} = \nabla f$ by solving for f(x,y) such that $f_x = 2xy + y^2$ and $f_y = 2xy + x^2$. Note that if you only differentiate f(x,y), then you will not get full marks for this part but part marks. (5 Marks)
 - (c) Calculate the work done $W = \int_{t=0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt$ in moving a particle from the point (0,0) to the point (1,1) along the path C, where C is the line connecting (0,0) and (1,1) by parametrizing C. Since \mathbf{F} is conservative and hence W is path independent, you may choose a linear path C. (5 Marks)
 - (d) Calculate the work done in moving a particle from the point A=(0,0) to the point B=(1,1) using the fundamental theorem for line integrals, $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(B) f(A). \tag{6 Marks}$

5. Use the fact that $\iiint_V 1 \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^1 r^2 \sin(\phi) \, dr \, d\phi \, d\theta$, where V is the interior of a sphere of radius 1 centred at the origin, to show that the volume of a sphere of radius 1 is $\frac{4}{3}\pi$. (10 Marks)

6. Find the flux of the vector field $\mathbf{F}(x,y,z)=(z,y,x)$ over the unit sphere $x^2+y^2+z^2=1$. You may assume that the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$, i.e. $\iiint_V 1 \, dV = \frac{4}{3}\pi r^3$, where V is the interior of a sphere of radius r. Note that the divergence theorem gives $\mathrm{Flux} = \iiint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V \mathrm{div}(\mathbf{F}) \, dV$.

(10 Marks)