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Quantitative Approaches

»We’ve covered:
= Mean, median, mode

=\/ariance, standard deviation, standard error
=2 tests, t-tests, and Pearson’s correlation coefficients

*Today we’ll cover:
= Bivariate and multivariate linear regression

= Time permitting, maximum likelihood approaches (logit/probit)



Quantitative Approaches

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Variables CR IE IJE-CR Macro Firm Firm Firm All Fama McBeth Firm All
CR —0.021* —0.016"™" —0.018" —0.014 —0.018™ —0.018" —0.019*™ —0.020***
(0.007) (0.003) (0.004) (0.009) (0.007) (0.007) (0.002) (0.001)
IJE 0.109* 0.095** 0.100*** 0.119* 0.131* 0.135"* 0,132 0.126***
(0.059) (0.042) (0.030) (0.066) (0.066) (0.064) (0.005) (0.006)
PROF —0.002 —0.019 —0.036 —0.038"** —0.005
(0.016) (0.026) (0.036) (0.007) (0.007)
SZ 0.006* 0.007* 0.007* 0.008*** 0.006***
(0.003) (0.004) (0.004) (0.000) (0.000)
COLAT 0.118** 0.125%* 0.115%** 0.115*** 0.126***
(0.018) (0.017) (0.016) (0.006) (0.005)
RD —0.070 —0.069 —0.056 —0.067*** —0.057**
(0.073) (0.080) (0.096) (0.011) (0.022)
LIQ —0.005*** —0.005%** —0.007%** —0.007*** —0.009**
(0.001) (0.001) (0.002) (0.000) (0.000)
TAX —0.038** —0.034* —0.034* —0.035"*" —0.045**
(0.012) (0.012) (0.012) (0.002) (0.004)
CAPEX 0.067 0.059 0.113 0.114** 0.042***
(0.066) (0.059) (0.078) (0.020) (0.016)
DCPSF —0.010 —0.020 —0.021 —0.023** —0.019***
(0.015) (0.017) (0.016) (0.005) (0.002)
MCAP 0.008 0.017* 0.018* 0.022*** 0.022%**
(0.007) (0.010) (0.010) (0.004) (0.002)
VoL —0.092%** —0.096*** —0.127%
(0.028) (0.009) (0.015)
ASLF —0.009
(0.047)
Constant 0.169*** 0.112%* 0.160*** 0.159* 0.093** 0.095 0.118 0.103*** 0.109**
(0.026) (0.020) (0.020) (0.082) (0.041) (0.073) (0.076) (0.021) (0.043)
Observations 303,270 189,570 189,290 181,109 131,176 126,004 100,703 100,703 100,703
R-squared 0.129 0.127 0.139 0.138 0.218 0.221 0.227 0.239 0.268
Industry dummy YES YES YES YES YES YES YES YES YES

Year dummy YES YES YES YES YES YES YES YES YES




Quantitative Approaches

Independent variable type
Categorical Continuous
Categorical | tabular analysis probit/logit (Ch, 12)
Dependent
variable type | Continuous | difference of means, correlation coefficient;
regression extensions two-variable regression
(Ch. 11) model (Ch. 9) 1

Note: Tests in 1talics are discussed i this chapter.




Linear Regression

Scatterplot of Weight of Car vs City MPG

(ab)
— LD_O
O <
1 O O
. Q
S c ©
ks
> (cD_u Q—
""C & ?
Q o o) o 4
D s © com o
) E 00
o) 0
- > & @ o Qo0 O
) = O 00 ©
O O 00 M o) o)
(@) o @ 0O o)
QL - ooooooooo DO
b N O o O
Q o) 00 ®® 0O _O
o o} Q 000
0O o} o _ 0
0o 0 o

|ndependent Variable 2000 2500 3000 3500 4000

Weight of Car (in pounds)



Linear Regression

* For linear relationships...

= y=mx+b

= Where to fit this line?

= We require a systematic
means to find the line of
best fit |
= [ east squares approach

Scatterplot of Weight of Car vs City MPG

City Miles per Gallon
25 30 35 40 45
| |

20
I

15
I

2000 2500 3000 3500 4000

Weight of Car (in pounds)



Linear Regression

=\\e need to move past the y=mx+b formulation
Vi=a+fpx;+uy

=y.: dependent variable
"a: Y Intercept

=/3: slope coefficient

=x;: Independent variable
=y;: residual



Linear Regression

=\\e need to move past the y=mx+b formulation
Vi=a+fpx;+uy

=y.: dependent variable
=x;: Independent variable
=a:Y intercept



Linear Regression

=\\e need to move past the y=mx+b formulation
Vi=a+fpx;+uy

=(3: slope coefficient

= Consider this as the effect of your independent variable on the
dependent variable (Y= * X)

=y;: residual

» Residual here is synonymous with error; this is the degree of
deviation from the line of best fit and the observed value



Linear Regression

=\\e need to move past the y=mx+b formulation
Vi=a+fpx;+uy

=\\e also need to be conscious that this Is the population equation

=This Is the data generating process (DGP) in the world, not
necessarily in our sample



Linear Regression

=\\e need to move past the y=mx+b formulation

Y = @+ Bx; + 14
=\\e also need to be conscious that this Is the population equation

=This Is the data generating process (DGP) in the world, not
necessarily in our sample

=\When are discussing estimated values, we put a little hat on the
variables — alpha hat, beta hat, etc.

=This Is the sample regression equation



Linear Regression

=\\e need to move past the y=mx+b formulation

Y = @+ Bx; + 14
=Because the a, 3, and i values are not known, but rather estimated,
they get hats

*This signals that we don’t know these values, and we likely cannot
know these values, but we estimate a range of likely values within
which the population (‘true’) value lies — recall confidence intervals



Linear Regression

yi = @ + Bx; + U
=Recall the difference between stochastic and systematic variation

=Both operate In this equation
=\\e can dichotomize i; into two components
ﬁi = &j + U;

=\Where 1i; are our observed residuals, &; I1s the unmodelled systematic
variation, and wu; Is the remaining random (stochastic) variation



Linear Regression

Scatterplot of Weight of Car vs City MPG
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Linear Regression

yi = @ + Bx; + U
=Recall the difference between stochastic and systematic variation

=Both operate In this equation
=\\e can dichotomize i; into two components
ﬁi = &j + U;

=\We will always have some level of ii; due to both stochastic and
systematic variation, no matter how many Vs we add



Linear Regression

yi = @ + Bx; + U

=Recall the difference between stochastic and systematic variation
=Both operate In this equation
=\\e can dichotomize i; into two components

U; =& +u;

" As we’ll see later, it 1s not always beneficial to add more I'Vs to
decrease i;



Linear Regression

yi = @ + Bx; + U
=\What do we really care about in this equation?

=\We want to find £ as this is the estimated effect of our independent
variable(s) on the observed outcome (DV)

=But we also need to know where this effect begins (&) as well as our
degree of confidence about our estimates (ii;)



Linear Regression

= Returning to the

Scatterplot of Weight of Car vs City MPG
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Linear Regression

= Returning to the

Scatterplot of Weight of Car vs City MPG
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Linear Regression

Scatterplot of Weight of Car vs City MPG
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Linear Regression

Scatterplot of Weight of Car vs City MPG

= This is performed via the 9 -
two equations below 8-
n Y \/ 8 o _|
_ ,BA _ Z£=1(xi—x)(yi—3’) % : _
PINREIEEIIC e IR
=1 Q
- ad = :)_/ _ ﬁ f 20|00 25I00 30|00 35I00 40|00

Weight of Car (in pounds)



Linear Regression

Scatterplot of Weight of Car vs City MPG
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Linear Regression

=0Once we have our coefficient estimates, we calculate the standard
error of the  and a coefficients through the following equations

52
Zin:1(xi — X)*

SE(B) =

\

2 1 " 2
¢ _n—k—l.zizlui




Linear Regression

= In doing, we can construct
a confidence interval
about our regression
estimate

= Generally, 95%

= \We are 95% confident that
the ‘true’ effectof XonY  =-
falls within this range — © -
both Slope and intercept 2000 2500 3000 3500 4000

Weight of Car (in pounds)
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Linear Regression

=This is called Ordinary Least Squares (OLS)

=The name derives from the process of finding the line that minimizes
the square distances between the regression line and the observations

=This Is also termed linear regression or least squares regression

=This process has several benefits as well as a number of restrictions



Linear Regression: BLUE

=\\/e use OLS because 1t 1s BLUE
= The best, linear, unbiased estimator

=Best: Minimum variance between B and 8, and o and @, as the
sample size approaches oo

=L_inear: Where the relationship under study Is linear, we use a linear
estimator

=Unbiased: Accurately estimates the regression coefficients (&, )



Linear Regression:
Gauss Markov Assumptions

=*OLS has a number of assumptions/requirements

*These are known as the Gauss-Markov Assumptions

=The relationship under study must be linear in the population




Linear Regression:
Gauss Markov Assumptions

=*OLS has a number of assumptions/requirements

*These are known as the Gauss-Markov Assumptions

=Qur data is randomly drawn from the population




Linear Regression:
Gauss Markov Assumptions

=*OLS has a number of assumptions/requirements

*These are known as the Gauss-Markov Assumptions

=The Vs are not perfectly correlated with one another

= Non-collinearity



Linear Regression:
Gauss Markov Assumptions

=*OLS has a number of assumptions/requirements

*These are known as the Gauss-Markov Assumptions

=The IVs are not correlated with the error term/residuals




Linear Regression:
Gauss Markov Assumptions

=*OLS has a number of assumptions/requirements

*These are known as the Gauss-Markov Assumptions

=The errors (residuals) are uncorrelated with each other, and the 1Vs,
and with an expected value of 0

'cov(ui, uj) =0

'E(ui) =0



Linear Regression:
Gauss Markov Assumptions
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Linear Regression:
Gauss Markov Assumptions
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=With more than a
single 1V, we need to
conceptualize this in
three dimensions

=A circle In three
dimensions Is a sphere
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Linear Regression: R?

* How do we know if the linear regression line 1s doing a ‘good’ job in
predicting the observed data

= Such a measure Is inherently contingent on the dispersion of the
observed data




Linear Regression: R?

* How do we know if the linear regression line 1s doing a ‘good’ job in
predicting the observed data

= Such a measure Is inherently contingent on the dispersion of the
observed data — the variance of the data
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Linear Regression: R?

* How do we know if the linear regression line 1s doing a ‘good’ job in
predicting the observed data

= Such a measure Is inherently contingent on the dispersion of the
observed data

= Where there Is a greater degree of stochastic and systematic
variation at work in the observed data, the linear regression estimator
will do the best it can

=\\e can only reduce such variation to a limited degree



Linear Regression: R?

* How do we know if the linear regression line 1s doing a ‘good’ job in
predicting the observed data

=\We guantify the degree of variation explained by the linear
regression process by the metric of R? and adjusted R?

=This is also termed the coefficient of determination or “goodness of
fit” measure



Linear Regression: R?

=Total Sum of Squares: the total variation in Y,
=Residual Sum of Squares: the variation in Y, not explained by X;

TSS



Linear Regression: R?

=Total Sum of Squares: TSS = X, (y; — y)*
=Residual Sum of Squares: RSS = Z?zl u?)

TSS



Linear Regression: R?

=As we can see from these equations, there is no way to quantify how
many independent variables are being used

= |f you add more independent variables, you will explain more of
the observed variation

"TSS = 2., (yi = ¥)°

sRSS = Z’;l(af)

TSS




Linear Regression: R?

=As we can see from these equations, there is no way to quantify how
many independent variables are being used

= |f you add more independent variables, you will explain more of
the observed variation

(1—-R*)(n—1)

=Thus, we prefer to use adjusted R? |2, — | _ 1
n—p-—

;ﬂl:l,l' _—

=This weights our measure to
account for the number of where :
IVs we’re using R* = R — squared

n =number of samples/rows in the data set

p =number of predictors/ features




Linear Regression: Significance

= We’ve covered how to calculate the linear regression estimates, how
uncertainty is modeled, and how well the model explains observed
variation in the outcome variable

=\What about statistical significance?

=\\e calculate a t-statistic by comparing observed values to the value
posited by the null hypothesis, over the standard error of the model

BB
se(p)

tn—k



Linear Regression: Significance

= We’ve covered how to calculate the linear regression estimates, how
uncertainty is modeled, and how well the model explains observed
variation in the outcome variable

=\What about statistical significance?

=\\e calculate a t-statistic by comparing observed values to the value
posited by the null hypothesis, over the standard error of the model

_B=0
se(pB)

tn—k



Linear Regression: Tables

Table 1: Effect of Conspiratorial Ideation and Institutional Trust on Predicted COVID-19
Mitigation Behaviors.

=s\What does this look like? v

Ideation [0.062] [0.086]
Institutional Trust: 0.182* 0.176*
State [0.047] (0.057)
Institutional Trust: 0.288% 0.301***
Federal [0.040] (0.051)
Female 0.196 0.088 0.134
[0.134] (0.134) (0.123)
Age 0.070 0.130 0.115
[0.088] (0.092) (0.084)
Income —0.095 —0.069 —0.044
10.084] (0.089) (0.082)
Education —0.044 —0.037 —0.146
0.110] (0.100) (0.101)
Ideology —0.064 —0.155%* —0.058
[0.042] (0.049) (0.048)
Person of Color —0.100 —0.091 0.015
[0.182] (0.207) (0.189)
COVID-19 Personal —0.055 —0.097 —0.045
Experience [0.086] (0.097) (0.090)
Constant 1.345** 1.819*** —0.542%** 0.395 —0.839** —0.360
[0.155] [0.649] [0.180] (0.640) [0.150] (0.605)
N 177 137 280 134 281 134
Adjusted R? 0.250 0.211 0.060 0.101 0.184 0.242

Note. Values presented are linear regression estimates. Dependent variable is predicted COVID-19
behaviors - coded such that higher values indicate a higher likelihood of behaving in line with
scientific recommendations for COVID-19 transmission mitigation. Gender and race are dummy

variables coded such that 1 denotes female and person of color respectively. Standard errors in
parentheses. Efron (1982) variant standard errors in brackets. *p<0.1; **p<0.05; ***p<0.01.




Linear Regression: Tables

Table 1: Effect of Conspiratorial Ideation and Institutional Trust on Predicted COVID-19 (0.109) (0.101)
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Linear Regression: Multiple Vs

=\\e state the linear regression equation as:
Yi = a+fx; + U

=|t is Important to note that this is functionally shorthand
=In the single IV case, x; IS a vector
=This equation works for multiple Vs as well



Linear Regression: Multiple Vs

=\\e state the linear regression equation as:
Yi = a+fx; + U

=|t is Important to note that this is functionally shorthand
=In the single IV case, x; IS a vector
=This equation works for multiple Vs as well

Vi =+ Bixq; + Boxy; + faxg; + -+ U



Linear Regression: Multiple 1Vs
1.2 1.2 1

2.4 1.2

2
3.6 1.2 3
4.8 1.2 4
6.0 1.2 5
7.2 1.2 6
8.4 1.2 I
9.6 1.2 8
10.8 1.2 9

N . o o [




Linear Regression: Multiple IVs
x

: 2
0.8 1.2 1 -2 1
-1.6 1.2 2 2 2
2.4 1.2 3 2 3
3.2 1.2 4 . 4
-4 1.2 5 2 5
4.8 1.2 6 2 6
5.6 1.2 7 -2 7
6.4 1.2 8 2 8
7.2 1.2 9 2 9

- 1.2 10 2 10




Linear Regression: Multiple Vs
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Let’s Try an Example Together

=Data from 2012 ANES
=Effect of SES on Party Identification

=Think about your data structure, and how this would apply as we go
through this example



Linear Regression: Multiple Vs

=Multiple 1VVs complicate matters in two key ways

=First, the IVs may be correlated with each other violating one of the
GM assumptions

=Second, the model is less capable of assigning the variance in
outcomes due to one IV over another

=This Issue increases exponentially, not linearly, with the addition of
more and more Ivs



Linear Regression: Conclusion

= \We know how to:

= Calculate the linear best fit line (regression coefficient and
constant)

= Calculate uncertainty about the regression line
= Calculate the coefficient of determination
= Interpret linear regression results

"Remember: linear regression requires a continuous DV and a number
of assumptions to function properly

=With observational data, regression cannot make causal claims



For Next Class

=Read the excerpt on iCollege for Thursday

=Complete Final Paper and submit by Thursday (7/28) by midnight
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