

Quantitative Approaches to \because Political Science Research

Quantitative Approaches

-We've covered:
-Mean, median, mode

- Variance, standard deviation, standard error
- χ^{2} tests, t-tests, and Pearson's correlation coefficients
-Today we'll cover:
- Bivariate and multivariate linear regression
- Time permitting, maximum likelihood approaches (logit/probit)

Quantitative Approaches

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables	CR	IJE	IJE-CR	Macro	Firm	Firm	Firm All	Fama McBeth	Firm All
CR	$\begin{aligned} & -0.021^{* * *} \\ & (0.007) \end{aligned}$		$\begin{aligned} & \hline-0.011^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & \hline-0.018^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & \hline-0.014 \\ & (0.009) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.018^{* *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & \hline-0.018^{* *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & \hline-0.019^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & \hline-0.020^{* * *} \\ & (0.001) \end{aligned}$
IJE		$\begin{aligned} & 0.109^{*} \\ & (0.059) \end{aligned}$	$\begin{aligned} & 0.095^{* *} \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.100^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.119^{*} \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.131^{*} \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.135^{* *} \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.132^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.126^{* * *} \\ & (0.006) \end{aligned}$
PROF					$\begin{aligned} & -0.002 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.038^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.007) \end{aligned}$
SZ					$\begin{aligned} & 0.006^{*} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.007^{*} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.007^{*} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.008^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.006^{* * *} \\ & (0.000) \end{aligned}$
COLAT					$\begin{aligned} & 0.118^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.125^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.115^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.115^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.126^{* * *} \\ & (0.005) \end{aligned}$
RD					$\begin{aligned} & -0.070 \\ & (0.073) \end{aligned}$	$\begin{aligned} & -0.069 \\ & (0.080) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.096) \end{aligned}$	$\begin{aligned} & -0.067^{* * *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.057^{* * *} \\ & (0.022) \end{aligned}$
LIQ					$\begin{aligned} & -0.005{ }^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.005^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.007^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.007^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000^{* * *} \\ & (0.000) \end{aligned}$
TAX					$\begin{aligned} & -0.038^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.033^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.034^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.035^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.045^{* * *} \\ & (0.004) \end{aligned}$
CAPEX					$\begin{aligned} & 0.067 \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.059 \\ & (0.059) \end{aligned}$	$\begin{aligned} & 0.113 \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.114^{* * * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.042^{* * *} \\ & (0.016) \end{aligned}$
DCPSF				$\begin{aligned} & -0.010 \\ & (0.015) \end{aligned}$		$\begin{aligned} & -0.020 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.023^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & -0.019^{* * *} \\ & (0.002) \end{aligned}$
MCAP				$\begin{aligned} & 0.008 \\ & (0.007) \end{aligned}$		0.017^{*} (0.010)	0.018* (0.010)	$\begin{aligned} & 0.022^{* *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.022^{* *} \\ & (0.002) \end{aligned}$
VOL							$\begin{aligned} & -0.092^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.096^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.127^{* * *} \\ & (0.015) \end{aligned}$
ASLF					$\begin{aligned} & -0.009 \\ & (0.047) \end{aligned}$				
Constant	$\begin{aligned} & 0.169^{* * *} \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.112^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.160^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.159^{*} \\ & (0.082) \end{aligned}$	$\begin{aligned} & 0.093^{* *} \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.095 \\ & (0.073) \end{aligned}$	$\begin{aligned} & 0.118 \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.103^{* * * *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.109^{* *} \\ & (0.043) \end{aligned}$
Observations	303,270	189,570	189,290	181,109	131,176	126,004	100,703	100,703	100,703
R-squared	0.129	0.127	0.139	0.138	0.218	0.221	0.227	0.239	0.268
Industry dummy	YES								
Year dummy	YES								

Quantitative Approaches

Wable 8 , पanabe gypes and appophate bvanate hyouhesis tests

		Independent variable type	
	Categorical	Continuous	
Dependent variable type	Categorical	tabular analysis	probit/logit (Ch, 12)
		Continuous difference of means; regression extensions (Ch. 11)	correlation coefficient; two-variable regression model (Ch. 9)

Note: Tests in italics are discussed in this chapter.

Linear Regression

Scatterplot of Weight of Car vs City MPG

Linear Regression

- For linear relationships...
- $y=m x+b$
- Where to fit this line?
- We require a systematic means to find the line of best fit
- Least squares approach

Scatterplot of Weight of Car vs City MPG

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\alpha+\beta x_{i}+u_{i}
$$

$-y_{i}$: dependent variable
$-\alpha$: Y intercept
$-\beta$: slope coefficient

- x_{i} : independent variable
- u_{i} : residual

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\alpha+\beta x_{i}+u_{i}
$$

$-y_{i}$: dependent variable

- x_{i} : independent variable
$-\alpha$: Y intercept

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\alpha+\beta x_{i}+u_{i}
$$

$-\beta$: slope coefficient

- Consider this as the effect of your independent variable on the dependent variable ($\mathrm{Y}=\beta$ * X)
- u_{i} : residual
- Residual here is synonymous with error; this is the degree of deviation from the line of best fit and the observed value

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\alpha+\beta x_{i}+u_{i}
$$

-We also need to be conscious that this is the population equation -This is the data generating process (DGP) in the world, not necessarily in our sample

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-We also need to be conscious that this is the population equation
-This is the data generating process (DGP) in the world, not necessarily in our sample
-When are discussing estimated values, we put a little hat on the variables - alpha hat, beta hat, etc.
-This is the sample regression equation

Linear Regression

-We need to move past the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formulation

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-Because the α, β, and \hat{u} values are not known, but rather estimated, they get hats
-This signals that we don't know these values, and we likely cannot know these values, but we estimate a range of likely values within which the population ('true') value lies - recall confidence intervals

Linear Regression

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-Recall the difference between stochastic and systematic variation
-Both operate in this equation
-We can dichotomize \hat{u}_{i} into two components

$$
\hat{u}_{i}=\varepsilon_{i}+u_{i}
$$

-Where \hat{u}_{i} are our observed residuals, ε_{i} is the unmodelled systematic variation, and u_{i} is the remaining random (stochastic) variation

Linear Regression

Scatterplot of Weight of Car vs City MPG

Linear Regression

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-Recall the difference between stochastic and systematic variation
-Both operate in this equation
-We can dichotomize \hat{u}_{i} into two components

$$
\hat{u}_{i}=\varepsilon_{i}+u_{i}
$$

-We will always have some level of \hat{u}_{i} due to both stochastic and systematic variation, no matter how many IVs we add

Linear Regression

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-Recall the difference between stochastic and systematic variation
-Both operate in this equation
-We can dichotomize \hat{u}_{i} into two components

$$
\hat{u}_{i}=\varepsilon_{i}+u_{i}
$$

-As we'll see later, it is not always beneficial to add more IVs to decrease \hat{u}_{i}

Linear Regression

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-What do we really care about in this equation?
-We want to find $\hat{\beta}$ as this is the estimated effect of our independent variable(s) on the observed outcome (DV)
-But we also need to know where this effect begins ($\hat{\alpha}$) as well as our degree of confidence about our estimates $\left(\hat{u}_{i}\right)$

Linear Regression

- Returning to the scatterplot
- We want to find the line of best fit
- This is determined by the line that minimizes distance between our observations and the linear line

Scatterplot of Weight of Car vs City MPG

Linear Regression

- Returning to the scatterplot
- We want to find the line of best fit
- This is determined by the line that minimizes distance between our observations and the linear line

Scatterplot of Weight of Car vs City MPG

Linear Regression

Scatterplot of Weight of Car vs City MPG

- This is performed via the two equations below
- $\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
- $\alpha=\bar{y}-\hat{\beta} \bar{x}$

Linear Regression

Scatterplot of Weight of Car vs City MPG

- This is performed via the two equations below
- $\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}$
- $\alpha=\bar{y}-\hat{\beta} \bar{x}$

Linear Regression

Scatterplot of Weight of Car vs City MPG

- This is performed via the two equations below
- $\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}$
- $\alpha=\bar{y}-\hat{\beta} \bar{x}$

Linear Regression

-Once we have our coefficient estimates, we calculate the standard error of the β and α coefficients through the following equations

$$
\begin{aligned}
& \widehat{S E}(\hat{\beta})=\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{\mathrm{i}=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \\
& \hat{\sigma}^{2}=\frac{1}{n-k-1} \cdot \sum_{i=1}^{n} \hat{u}_{i}^{2}
\end{aligned}
$$

Linear Regression

- In doing, we can construct a confidence interval about our regression estimate
- Generally, 95\%
- We are 95% confident that the 'true' effect of X on Y falls within this range both slope and intercept

Scatterplot of Weight of Car vs City MPG

Linear Regression

-This is called Ordinary Least Squares (OLS)
-The name derives from the process of finding the line that minimizes the square distances between the regression line and the observations
-This is also termed linear regression or least squares regression
-This process has several benefits as well as a number of restrictions

Linear Regression: BLUE

-We use OLS because it is BLUE
-The best, linear, unbiased estimator
-Best: Minimum variance between β and $\hat{\beta}$, and α and $\hat{\alpha}$, as the sample size approaches ∞
-Linear: Where the relationship under study is linear, we use a linear estimator
-Unbiased: Accurately estimates the regression coefficients ($\hat{\alpha}, \hat{\beta}$)

Linear Regression: Gauss Markov Assumptions

-OLS has a number of assumptions/requirements
-These are known as the Gauss-Markov Assumptions
-The relationship under study must be linear in the population

Linear Regression: Gauss Markov Assumptions

-OLS has a number of assumptions/requirements
-These are known as the Gauss-Markov Assumptions
-Our data is randomly drawn from the population

Linear Regression: Gauss Markov Assumptions

-OLS has a number of assumptions/requirements
-These are known as the Gauss-Markov Assumptions
-The IVs are not perfectly correlated with one another

- Non-collinearity

Linear Regression: Gauss Markov Assumptions

-OLS has a number of assumptions/requirements
-These are known as the Gauss-Markov Assumptions
-The IVs are not correlated with the error term/residuals

Linear Regression: Gauss Markov Assumptions

-OLS has a number of assumptions/requirements
-These are known as the Gauss-Markov Assumptions
-The errors (residuals) are uncorrelated with each other, and the IVs, and with an expected value of 0
$-\operatorname{cov}\left(u_{i}, u_{j}\right)=0$

- $E\left(u_{i}\right)=0$

Linear Regression: Gauss Markov Assumptions

-'Spherical' errors
-The errors should be normally distributed about the regression line
-If skewed, this means that the regression line is not 'splitting' the data, and is thus biased

Scatterplot of Weight of Car vs City MPG

Linear Regression: Gauss Markov Assumptions

-'Spherical' errors
-With more than a single IV, we need to conceptualize this in three dimensions

- A circle in three dimensions is a sphere
-68/95/99 of the error distribution

Scatterplot of Weight of Car vs City MPG

Linear Regression: R^{2}

- How do we know if the linear regression line is doing a 'good' job in predicting the observed data
- Such a measure is inherently contingent on the dispersion of the observed data

Linear Regression: R^{2}

- How do we know if the linear regression line is doing a 'good' job in predicting the observed data
- Such a measure is inherently contingent on the dispersion of the observed data - the variance of the data

Linear Regression: R^{2}

- How do we know if the linear regression line is doing a 'good' job in predicting the observed data
- Such a measure is inherently contingent on the dispersion of the observed data
- Where there is a greater degree of stochastic and systematic variation at work in the observed data, the linear regression estimator will do the best it can
-We can only reduce such variation to a limited degree

Linear Regression: R^{2}

- How do we know if the linear regression line is doing a 'good' job in predicting the observed data
-We quantify the degree of variation explained by the linear regression process by the metric of R^{2} and adjusted R^{2}
-This is also termed the coefficient of determination or "goodness of fit" measure

Linear Regression: R^{2}

-Total Sum of Squares: the total variation in Y_{i}
-Residual Sum of Squares: the variation in Y_{i} not explained by X_{i}
$\cdot \mathrm{R}^{2}=1-\frac{R S S}{T S S}$

Linear Regression: R^{2}

-Total Sum of Squares: $T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
-Residual Sum of Squares: $R S S=\sum_{i=1}^{n}\left(\widehat{u}_{i}^{2}\right)$
$\cdot \mathrm{R}^{2}=1-\frac{R S S}{T S S}$

Linear Regression: R^{2}

-As we can see from these equations, there is no way to quantify how many independent variables are being used

- If you add more independent variables, you will explain more of the observed variation
$-T S S=\Sigma_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- $R S S=\sum_{i=1}^{n}\left(\hat{u}_{i}^{2}\right)$
$\cdot \mathrm{R}^{2}=1-\frac{R S S}{T S S}$

Linear Regression: R^{2}

-As we can see from these equations, there is no way to quantify how many independent variables are being used

- If you add more independent variables, you will explain more of the observed variation
-Thus, we prefer to use adjusted R^{2}
$R_{a d j}^{2}=1-\frac{\left(1-R^{2}\right)(n-1)}{n-p-1}$
-This weights our measure to account for the number of IVs we're using
where :
$R^{2}=R-$ squared
$n=$ number of samples/rows in the data set
$p=$ number of predictors $/$ features

Linear Regression: Significance

- We've covered how to calculate the linear regression estimates, how uncertainty is modeled, and how well the model explains observed variation in the outcome variable
-What about statistical significance?
-We calculate a t-statistic by comparing observed values to the value posited by the null hypothesis, over the standard error of the model

$$
t_{n-k}=\frac{\hat{\beta}-\beta^{*}}{s e(\hat{\beta})}
$$

Linear Regression: Significance

- We've covered how to calculate the linear regression estimates, how uncertainty is modeled, and how well the model explains observed variation in the outcome variable
-What about statistical significance?
-We calculate a t-statistic by comparing observed values to the value posited by the null hypothesis, over the standard error of the model

$$
t_{n-k}=\frac{\hat{\beta}-0}{s e(\hat{\beta})}
$$

Linear Regression: Tables

-What does this look like? Mitigation Behaviors.

Conspiratorial Ideation	$\begin{gathered} -0.518^{* * *} \\ {[0.062]} \end{gathered}$	$\begin{gathered} -0.465^{* * *} \\ {[0.086]} \end{gathered}$				
Institutional Trust: State			$\begin{gathered} 0.182^{* * *} \\ {[0.047]} \end{gathered}$	$\begin{aligned} & 0.176^{* * *} \\ & (0.057) \end{aligned}$		
Institutional Trust: Federal					$\begin{aligned} & 0.288^{* * *} \\ & {[0.040]} \end{aligned}$	$\begin{gathered} 0.301^{* * *} \\ (0.051) \end{gathered}$
Female		$\begin{gathered} 0.196 \\ {[0.134]} \end{gathered}$		$\begin{gathered} 0.088 \\ (0.134) \end{gathered}$		$\begin{gathered} 0.134 \\ (0.123) \end{gathered}$
Age		$\begin{gathered} 0.070 \\ {[0.088]} \end{gathered}$		$\begin{gathered} 0.130 \\ (0.092) \end{gathered}$		$\begin{gathered} 0.115 \\ (0.084) \end{gathered}$
Income		$\begin{gathered} -0.095 \\ {[0.084]} \end{gathered}$		$\begin{gathered} -0.069 \\ (0.089) \end{gathered}$		$\begin{gathered} -0.044 \\ (0.082) \end{gathered}$
Education		$\begin{aligned} & -0.044 \\ & {[0.110]} \end{aligned}$		$\begin{aligned} & -0.037 \\ & (0.109) \end{aligned}$		$\begin{gathered} -0.146 \\ (0.101) \end{gathered}$
Ideology		$\begin{gathered} -0.064 \\ {[0.042]} \end{gathered}$		$\begin{gathered} -0.155^{* * *} \\ (0.049) \end{gathered}$		$\begin{aligned} & -0.058 \\ & (0.048) \end{aligned}$
Person of Color		$\begin{aligned} & -0.100 \\ & {[0.182]} \end{aligned}$		$\begin{aligned} & -0.091 \\ & (0.207) \end{aligned}$		$\begin{gathered} 0.015 \\ (0.189) \end{gathered}$
COVID-19 Personal Experience		$\begin{gathered} -0.055 \\ {[0.086]} \end{gathered}$		$\begin{aligned} & -0.097 \\ & (0.097) \end{aligned}$		$\begin{aligned} & -0.045 \\ & (0.090) \end{aligned}$
Constant	$\begin{aligned} & 1.345^{* * *} \\ & {[0.155]} \end{aligned}$	$\begin{aligned} & 1.819^{* * *} \\ & {[0.649]} \end{aligned}$	$\begin{gathered} -0.542^{* * *} \\ {[0.180]} \end{gathered}$	$\begin{gathered} 0.395 \\ (0.640) \end{gathered}$	$\begin{gathered} -0.839^{* * *} \\ {[0.150]} \end{gathered}$	$\begin{gathered} -0.360 \\ (0.605) \end{gathered}$
N	177	137	280	134	281	134
Adjusted R^{2}	0.250	0.211	0.060	0.101	0.184	0.242
Note. Values presented are linear regression estimates. Dependent variable is predicted COVID-19 behaviors - coded such that higher values indicate a higher likelihood of behaving in line with scientific recommendations for COVID-19 transmission mitigation. Gender and race are dummy variables coded such that 1 denotes female and person of color respectively. Standard errors in parentheses. Efron (1982) variant standard errors in brackets. ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$.						

Linear Regression: Tables

Table 1: Effect of Conspiratorial Ideation and Institutional Trust on Predicted COVID-19 Mitigation Behaviors.				
$\text { Independent Variables } \Longrightarrow$				
Institutional Trust: State		$\begin{array}{cc} 0.182^{* * *} & 0.176^{* * *} \\ {[0.047]} & (0.057) \end{array}$		
Institutional Trust: Federal			$\begin{gathered} 0.288^{* * *} \\ {[0.040]} \end{gathered}$	$\begin{gathered} 0.301^{* * *} \\ (0.051) \end{gathered}$
Female	$\begin{gathered} 0.196 \\ {[0.134]} \end{gathered}$	$\begin{gathered} 0.088 \\ (0.134) \end{gathered}$		$\begin{gathered} 0.134 \\ (0.123) \end{gathered}$
Age	$\begin{gathered} 0.070 \\ {[0.088]} \end{gathered}$	$\begin{gathered} 0.130 \\ (0.092) \end{gathered}$		$\begin{gathered} 0.115 \\ (0.084) \end{gathered}$
Income	$\begin{aligned} & -0.095 \\ & {[0.084]} \end{aligned}$	$\begin{aligned} & -0.069 \\ & (0.089) \end{aligned}$		$\begin{aligned} & -0.044 \\ & (0.082) \end{aligned}$
Education	-0.044	-0.037		-0.146

Linear Regression: Multiple IVs

-We state the linear regression equation as:

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

- It is important to note that this is functionally shorthand -In the single IV case, x_{i} is a vector
-This equation works for multiple IVs as well

Linear Regression: Multiple IVs

-We state the linear regression equation as:

$$
y_{i}=\hat{\alpha}+\hat{\beta} x_{i}+\hat{u}_{i}
$$

-It is important to note that this is functionally shorthand -In the single IV case, x_{i} is a vector
-This equation works for multiple IVs as well

$$
y_{i}=\hat{\alpha}+\hat{\beta}_{1} x_{1 i}+\hat{\beta}_{2} x_{2 i}+\hat{\beta}_{3} x_{3 i}+\cdots+\hat{u}_{i}
$$

Linear Regression: Multiple IVs

y_{i}	$\hat{\beta}_{1}$	$x_{\mathbf{1} i}$
1.2	1.2	1
2.4	1.2	2
3.6	1.2	3
4.8	1.2	4
6.0	1.2	5
7.2	1.2	6
8.4	1.2	7
9.6	1.2	8
10.8	1.2	9
12	1.2	10

Linear Regression: Multiple IVs

y_{i}	$\hat{\beta}_{\mathbf{1}}$	$x_{\mathbf{1}}$	$\hat{\beta}_{\mathbf{2}}$	$x_{\mathbf{2 i}}$
-0.8	1.2	1	-2	1
-1.6	1.2	2	-2	2
-2.4	1.2	3	-2	3
-3.2	1.2	4	-2	4
-4	1.2	5	-2	5
-4.8	1.2	6	-2	6
-5.6	1.2	7	-2	7
-6.4	1.2	8	-2	8
-7.2	1.2	9	-2	9
-8	1.2	10	-2	10

Linear Regression: Multiple IVs

y_{i}	$\hat{\beta}_{\mathbf{1}}$	$x_{\mathbf{1} i}$	$\hat{\beta}_{\mathbf{2}}$	$x_{\mathbf{2} i}$	$\hat{\beta}_{\mathbf{3}}$	$x_{\mathbf{3 i}}$
-0.3	1.2	1	-2	1	0.5	1
-0.6	1.2	2	-2	2	0.5	2
-0.9	1.2	3	-2	3	0.5	3
-1.2	1.2	4	-2	4	0.5	4
-1.5	1.2	5	-2	5	0.5	5
-1.8	1.2	6	-2	6	0.5	6
-2.1	1.2	7	-2	7	0.5	7
-2.4	1.2	8	-2	8	0.5	8
-2.7	1.2	9	-2	9	0.5	9
-3	1.2	10	-2	10	0.5	10

Let's Try an Example Together

-Data from 2012 ANES
-Effect of SES on Party Identification
-Think about your data structure, and how this would apply as we go through this example

Linear Regression: Multiple IVs

-Multiple IVs complicate matters in two key ways
-First, the IVs may be correlated with each other violating one of the GM assumptions
-Second, the model is less capable of assigning the variance in outcomes due to one IV over another
-This issue increases exponentially, not linearly, with the addition of more and more Ivs

Linear Regression: Conclusion

- We know how to:
- Calculate the linear best fit line (regression coefficient and constant)
-Calculate uncertainty about the regression line
- Calculate the coefficient of determination
- Interpret linear regression results
-Remember: linear regression requires a continuous DV and a number of assumptions to function properly
-With observational data, regression cannot make causal claims

For Next Class

-Read the excerpt on iCollege for Thursday
-Complete Final Paper and submit by Thursday (7/28) by midnight

