
Quantitative Approaches to 
Political Science Research



Quantitative Approaches
▪We’ve covered:

▪Mean, median, mode

▪Variance, standard deviation, standard error

▪χ2 tests, t-tests, and Pearson’s correlation coefficients

▪Today we’ll cover:

▪Bivariate and multivariate linear regression

▪Time permitting, maximum likelihood approaches (logit/probit)
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Linear Regression
▪ For linear relationships…

▪ y=mx+b

▪ Where to fit this line?

▪ We require a systematic 

means to find the line of 

best fit

▪ Least squares approach



Linear Regression
▪We need to move past the y=mx+b formulation

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖

▪𝑦𝑖: dependent variable

▪𝛼: Y intercept

▪𝛽: slope coefficient

▪𝑥𝑖: independent variable

▪𝑢𝑖: residual
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Linear Regression
▪We need to move past the y=mx+b formulation

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖

▪𝛽: slope coefficient

▪Consider this as the effect of your independent variable on the 

dependent variable (Y=β * X)

▪𝑢𝑖: residual

▪Residual here is synonymous with error; this is the degree of 

deviation from the line of best fit and the observed value



Linear Regression
▪We need to move past the y=mx+b formulation

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖

▪We also need to be conscious that this is the population equation

▪This is the data generating process (DGP) in the world, not 

necessarily in our sample



Linear Regression
▪We need to move past the y=mx+b formulation

𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪We also need to be conscious that this is the population equation

▪This is the data generating process (DGP) in the world, not 

necessarily in our sample

▪When are discussing estimated values, we put a little hat on the 

variables – alpha hat, beta hat, etc.

▪This is the sample regression equation



Linear Regression
▪We need to move past the y=mx+b formulation

𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪Because the α, β, and ො𝑢 values are not known, but rather estimated, 

they get hats

▪This signals that we don’t know these values, and we likely cannot 

know these values, but we estimate a range of likely values within 

which the population (‘true’) value lies – recall confidence intervals



Linear Regression
𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪Recall the difference between stochastic and systematic variation

▪Both operate in this equation

▪We can dichotomize ො𝑢𝑖 into two components

ො𝑢𝑖 = 𝜀𝑖 + 𝑢𝑖

▪Where ො𝑢𝑖 are our observed residuals, 𝜀𝑖 is the unmodelled systematic 

variation, and 𝑢𝑖 is the remaining random (stochastic) variation



Linear Regression



Linear Regression
𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪Recall the difference between stochastic and systematic variation

▪Both operate in this equation

▪We can dichotomize ො𝑢𝑖 into two components

ො𝑢𝑖 = 𝜀𝑖 + 𝑢𝑖

▪We will always have some level of ො𝑢𝑖 due to both stochastic and 

systematic variation, no matter how many IVs we add



Linear Regression
𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪Recall the difference between stochastic and systematic variation

▪Both operate in this equation

▪We can dichotomize ො𝑢𝑖 into two components

ො𝑢𝑖 = 𝜀𝑖 + 𝑢𝑖

▪As we’ll see later, it is not always beneficial to add more IVs to 

decrease ො𝑢𝑖



Linear Regression
𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪What do we really care about in this equation?

▪We want to find መ𝛽 as this is the estimated effect of our independent 

variable(s) on the observed outcome (DV)

▪But we also need to know where this effect begins ( ො𝛼) as well as our 

degree of confidence about our estimates (ො𝑢𝑖)



Linear Regression
▪ Returning to the 

scatterplot

▪ We want to find the line of 

best fit

▪ This is determined by the 

line that minimizes 

distance between our 

observations and the linear 

line
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Linear Regression

▪ This is performed via the 

two equations below

▪ መ𝛽 =


𝑖=1

𝑛
𝑥𝑖− ҧ𝑥 𝑦𝑖−ത𝑦


𝑖=1

𝑛
𝑥𝑖− ҧ𝑥 2

▪ 𝛼 = ത𝑦 − መ𝛽 ҧ𝑥
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Linear Regression

▪ This is performed via the 

two equations below
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Linear Regression
▪Once we have our coefficient estimates, we calculate the standard 
error of the β and α coefficients through the following equations

𝑆𝐸 መ𝛽 =
ො𝜎2

𝛴ⅈ=1
𝑛 𝑥𝑖 − ҧ𝑥 2

ො𝜎2 =
1

𝑛 − 𝑘 − 1
⋅

𝑖=1

𝑛

ො𝑢𝑖
2



Linear Regression
▪ In doing, we can construct 

a confidence interval 

about our regression 

estimate

▪ Generally, 95%

▪ We are 95% confident that 

the ‘true’ effect of X on Y 

falls within this range – 

both slope and intercept



Linear Regression
▪This is called Ordinary Least Squares (OLS)

▪The name derives from the process of finding the line that minimizes 

the square distances between the regression line and the observations

▪This is also termed linear regression or least squares regression

▪This process has several benefits as well as a number of restrictions



Linear Regression: BLUE
▪We use OLS because it is BLUE

▪The best, linear, unbiased estimator

▪Best: Minimum variance between β and መ𝛽, and α and ො𝛼, as the 

sample size approaches ∞

▪Linear: Where the relationship under study is linear, we use a linear 

estimator

▪Unbiased: Accurately estimates the regression coefficients ( ො𝛼, መ𝛽)



Linear Regression: 
Gauss Markov Assumptions
▪OLS has a number of assumptions/requirements

▪These are known as the Gauss-Markov Assumptions

▪The relationship under study must be linear in the population



Linear Regression: 
Gauss Markov Assumptions
▪OLS has a number of assumptions/requirements

▪These are known as the Gauss-Markov Assumptions

▪Our data is randomly drawn from the population 



Linear Regression: 
Gauss Markov Assumptions
▪OLS has a number of assumptions/requirements

▪These are known as the Gauss-Markov Assumptions

▪The IVs are not perfectly correlated with one another

▪Non-collinearity



Linear Regression: 
Gauss Markov Assumptions
▪OLS has a number of assumptions/requirements

▪These are known as the Gauss-Markov Assumptions

▪The IVs are not correlated with the error term/residuals



Linear Regression: 
Gauss Markov Assumptions
▪OLS has a number of assumptions/requirements

▪These are known as the Gauss-Markov Assumptions

▪The errors (residuals) are uncorrelated with each other, and the IVs, 

and with an expected value of 0

▪cov 𝑢𝑖 , 𝑢𝑗 = 0

▪𝐸 𝑢𝑖 = 0



Linear Regression: 
Gauss Markov Assumptions
▪‘Spherical’ errors

▪The errors should be 

normally distributed 

about the regression 

line

▪If skewed, this means 

that the regression line 

is not ‘splitting’ the 

data, and is thus biased



Linear Regression: 
Gauss Markov Assumptions
▪‘Spherical’ errors

▪With more than a 

single IV, we need to 

conceptualize this in 

three dimensions

▪A circle in three 

dimensions is a sphere

▪68/95/99 of the error 

distribution



Linear Regression: R2

▪ How do we know if the linear regression line is doing a ‘good’ job in 
predicting the observed data

▪ Such a measure is inherently contingent on the dispersion of the 
observed data



Linear Regression: R2

▪ How do we know if the linear regression line is doing a ‘good’ job in 
predicting the observed data

▪ Such a measure is inherently contingent on the dispersion of the 
observed data – the variance of the data



Linear Regression: R2

▪ How do we know if the linear regression line is doing a ‘good’ job in 
predicting the observed data

▪ Such a measure is inherently contingent on the dispersion of the 
observed data

▪ Where there is a greater degree of stochastic and systematic 
variation at work in the observed data, the linear regression estimator 
will do the best it can

▪We can only reduce such variation to a limited degree



Linear Regression: R2

▪ How do we know if the linear regression line is doing a ‘good’ job in 
predicting the observed data

▪We quantify the degree of variation explained by the linear 
regression process by the metric of R2 and adjusted R2

▪This is also termed the coefficient of determination or “goodness of 
fit” measure



Linear Regression: R2

▪Total Sum of Squares: the total variation in 𝑌𝑖

▪Residual Sum of Squares: the variation in 𝑌𝑖 not explained by 𝑋𝑖

▪R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆



Linear Regression: R2

▪Total Sum of Squares: 𝑇𝑆𝑆 = 𝛴𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

▪Residual Sum of Squares: 𝑅𝑆𝑆 = 
𝑖=1

𝑛
ො𝑢𝑖
2

▪R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆



Linear Regression: R2

▪As we can see from these equations, there is no way to quantify how 
many independent variables are being used

▪If you add more independent variables, you will explain more of 
the observed variation

▪𝑇𝑆𝑆 = 𝛴𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

▪𝑅𝑆𝑆 = 
𝑖=1

𝑛
ො𝑢𝑖
2

▪R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆



Linear Regression: R2

▪As we can see from these equations, there is no way to quantify how 
many independent variables are being used

▪If you add more independent variables, you will explain more of 
the observed variation

▪Thus, we prefer to use adjusted R2

▪This weights our measure to                                                                             
account for the number of                                                                     
IVs we’re using



Linear Regression: Significance
▪ We’ve covered how to calculate the linear regression estimates, how 
uncertainty is modeled, and how well the model explains observed 
variation in the outcome variable

▪What about statistical significance?

▪We calculate a t-statistic by comparing observed values to the value 
posited by the null hypothesis, over the standard error of the model

𝑡𝑛−𝑘 =
መ𝛽 − 𝛽∗

𝑠ⅇ መ𝛽



Linear Regression: Significance
▪ We’ve covered how to calculate the linear regression estimates, how 
uncertainty is modeled, and how well the model explains observed 
variation in the outcome variable

▪What about statistical significance?

▪We calculate a t-statistic by comparing observed values to the value 
posited by the null hypothesis, over the standard error of the model

𝑡𝑛−𝑘 =
መ𝛽 − 0

𝑠ⅇ መ𝛽



Linear Regression: Tables
▪What does this look like?



Linear Regression: Tables

Independent Variables
Models



Linear Regression: Multiple IVs
▪We state the linear regression equation as:

𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪It is important to note that this is functionally shorthand

▪In the single IV case, 𝑥𝑖 is a vector

▪This equation works for multiple IVs as well 



Linear Regression: Multiple IVs
▪We state the linear regression equation as:

𝑦𝑖 = ො𝛼 + መ𝛽𝑥𝑖 + ො𝑢𝑖

▪It is important to note that this is functionally shorthand

▪In the single IV case, 𝑥𝑖 is a vector

▪This equation works for multiple IVs as well

𝑦𝑖 = ො𝛼 + መ𝛽1𝑥1𝑖 + መ𝛽2𝑥2𝑖 + መ𝛽3𝑥3𝑖 +⋯+ ො𝑢𝑖



Linear Regression: Multiple IVs
𝑦𝑖 መ𝛽1

𝑥𝟏𝑖
1.2 1.2 1

2.4 1.2 2

3.6 1.2 3

4.8 1.2 4

6.0 1.2 5

7.2 1.2 6

8.4 1.2 7

9.6 1.2 8

10.8 1.2 9

12 1.2 10



Linear Regression: Multiple IVs
𝑦𝑖 መ𝛽1

𝑥𝟏𝑖 መ𝛽𝟐 𝑥𝟐𝑖
-0.8 1.2 1 -2 1

-1.6 1.2 2 -2 2

-2.4 1.2 3 -2 3

-3.2 1.2 4 -2 4

-4 1.2 5 -2 5

-4.8 1.2 6 -2 6

-5.6 1.2 7 -2 7

-6.4 1.2 8 -2 8

-7.2 1.2 9 -2 9

-8 1.2 10 -2 10



Linear Regression: Multiple IVs
𝑦𝑖 መ𝛽1

𝑥𝟏𝑖 መ𝛽𝟐 𝑥𝟐𝑖 መ𝛽3
𝑥𝟑𝑖

-0.3 1.2 1 -2 1 0.5 1

-0.6 1.2 2 -2 2 0.5 2

-0.9 1.2 3 -2 3 0.5 3

-1.2 1.2 4 -2 4 0.5 4

-1.5 1.2 5 -2 5 0.5 5

-1.8 1.2 6 -2 6 0.5 6

-2.1 1.2 7 -2 7 0.5 7

-2.4 1.2 8 -2 8 0.5 8

-2.7 1.2 9 -2 9 0.5 9

-3 1.2 10 -2 10 0.5 10



Let’s Try an Example Together 

▪Data from 2012 ANES

▪Effect of SES on Party Identification

▪Think about your data structure, and how this would apply as we go 
through this example



Linear Regression: Multiple IVs
▪Multiple IVs complicate matters in two key ways

▪First, the IVs may be correlated with each other violating one of the 
GM assumptions

▪Second, the model is less capable of assigning the variance in 
outcomes due to one IV over another

▪This issue increases exponentially, not linearly, with the addition of 
more and more Ivs



Linear Regression: Conclusion
▪ We know how to: 
▪Calculate the linear best fit line (regression coefficient and 

constant)

▪Calculate uncertainty about the regression line

▪Calculate the coefficient of determination

▪Interpret linear regression results

▪Remember: linear regression requires a continuous DV and a number 
of assumptions to function properly

▪With observational data, regression cannot make causal claims



For Next Class

▪Read the excerpt on iCollege for Thursday

▪Complete Final Paper and submit by Thursday (7/28) by midnight 
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