Refractive Shift (Coupling) with Standard and Wavefront LASIK

April 2005 ASCRS

Mark E Johnston MD FRCSC James E Johnston COA John G Goertz OD FAAO

Nebraska Laser Eye Associates Omaha, Nebraska www.nebraskaeye.com

Refractive Surgical Consultant TM

uses surgeon outcomes to calculate laser nomograms

	Actual Results	Theoretical
Number Eyes	1,081	1,081
Average	0.29	0.29
Standard Deviation	0.41	0.26
Minimum	-0.99	-0.27
Maximum	1.88	1.52
+/- 0.50 D (N / %)	780 / 1,081 (72.2%)	882 / 1,081 (82.0%)
+/- 1.00 D (N / %)	1,019 / 1,081 (94.3%)	1,059 / 1,081 (98.0%)
> +/- 1.00 D (N / %)	62 / 1,081 (6.0%)	22 / 1,081 (2.0%)

	Actual Results	Theoretical	
Number Eyes	860	860	
Average	0.01	0.01	
Standard Deviation	0.20	0.06	
Minimum	-0.61	-0.10	
Maximum	0.93	0.50	
+/- 0.50 D (N / %)	836 / 860 (97.2%)	860 / 860 (100.0%)	
+/- 1.00 D (N / %)	860 / 860 (100.0%)	860 / 860 (100.0%)	
> +/- 1.00 D (N / %)	0 / 860 (0.0%)	0 / 860 (0.0%)	

Refractive Surgical Consultant TM Results

Laser	Sphere (s) nomogram	Cyl (c) nomogram	# Eyes s/c	R ² s SE	R ² c SE
Visx Blend	1.21s +0.04s ² +0.04sc	0.06s+0.01s ² +1.18c +0.03c ² +0.05sc	216 199	0.97 0.45	0.97 0.30
Visx Custom	1.49 s + 0.07s ² +0.08sc	1.07c + 0.07c ²	128 128	0.97 0.45	0.97 0.28
B&L Zyoptix	1.09s + 0.02s ² +0.31c +0.11c ² +0.07sc	0.05s +0.01s ² +0.96c -0.03c ² +0.05sc	439 439	0.95 0.31	0.96 0.18
Visx Fourier	1.02 s + 0.29c +0.07c ² +0.06sc	0.09s+0.02s ² +0.80c -0.07c	371 369	0.97 0.39	0.97 0.23

Zyoptix

Ablation pattern is difficult to analyze, but treatment times of high cylinder and/or high sphere are very long

Zyoptix: Predicted power in Spherical Equivalent (SE)

3D side view with cylinder in the z axis

1.09s + 0.02s2 +0.31c +0.11c2 +0.07sc +1/2 cyl adjustment

Predicted Spherical Equivalent with Visx Blend

Increasing hyperopic shift with sphere and cylinder

s = 1.21s + 0.04s2 + 0.04sc (+½ cyl adjustment)

Spherical aberration and atoricity increases with increasing sphere and cylinder ablation Increases as Sphere Squared with spherical system

Post –op Spherical aberration (SA) compared to pre-op sphere

The curves generated using the nomogram approximate the surface contour difference from an ideal ablation.

Visx blend with the rule: The long axis, corresponding to the SC0 curve has slight under-correction centrally and moderate peripheral under-treatment. The short axis, corresponding to the s62 curve has significant over-treatment both midperipheral and peripherally

Visx Wavefront:

Note how sequential laser spot rotate around the central axis

Custom Vue

Note that mid-peripheral overcorrection creates mild negative spherical aberration

Custom Vue Predicted outcomes (SE)

Low cylinder and sphere ablation have mid-peripheral under-correction and prolate cornea

Side view with the cylinder in z axis

1.49 s + 0.07s2 + 0.08sc

+1/2 cyl adjustment

Custom Vue, cylinder with the rule:

Over-correction in the mid-periphery of the long axis S5*C0 Under-correction in the short axis S5*C2

Predicted results (SE) Visx Fourier

Cyl in z axis

 $1.02 \text{ s} + 0.29 \text{ c} + 0.07 \text{ c}^2 + 0.06 \text{ sc} + \frac{1}{2} \text{ cyl nomogram}$

Summary

- The sphere squared (S²) coefficient is related to spherical aberration
- Sphere times cylinder (S*C) coefficient is related to atoricity
- Coupling is induced by the relative mismatch of the central, mid-peripheral and peripheral ablation, especially when significant cylinder is present.
- Improved ablation profiles reduce clinical coupling and require less nomogram adjustment