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A materials informatics framework to explore a large number of candidate van der Waals (vdW) materials
is developed. In particular, in this study a large space of monolayer transition metal halides is investigated by
combining high-throughput density functional theory calculations and artificial intelligence (AI) to accelerate
the discovery of stable materials and the prediction of their magnetic properties. The formation energy is used
as a proxy for chemical stability. Semi-supervised learning is harnessed to mitigate the challenges of sparsely
labelled materials data in order to improve the performance of AI models. Our approach creates avenues for
the rapid discovery of chemically stable vdW magnets by leveraging the ability of AI to recognize patterns in
data, to learn mathematical representations of materials from data and to predict materials properties. Using
this approach, previously unexplored vdW magnetic materials with potential applications in data storage and
spintronics are identified.

I. INTRODUCTION

A. Magnetic ordering in reduced dimensions

Two-dimensional (2D) materials, also referred to as van der Waals
(vdW) materials due to the weak interlayer forces, exhibit a range of
interesting properties including superconductivity, topological insu-
lating behavior and magnetic order [1]. There is an exigent need to

FIG. 1. (a) The crystal structure of the family of transition metal
halides A2X6, based on Cr2I6, used in this study. One or both A sites
are replaced with transition metal atoms (highlighted blue in the peri-
odic table in panel (d)) and the X sites (above and/or below) the plane
are replaced with halogens (highlighted green). The magnetic con-
figurations studied are (b) ferromagnetic and (c) antiferromagnetic.
(d) The elements used to make chemical substitutions are highlighted
in the periodic table.

1 This is the pre-peer reviewed version of the following article: T. D. Rhone
et al., “Artificial Intelligence Guided Studies of van der Waals Magnets,”
Adv. Theory Simulations, p. 2300019 (2023), which has been published
in final form at https://doi.org/10.1002/adts.202300019. This article may
be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Use of Self-Archived Versions.

identify 2D materials with properties suitable for advances in science
and technological innovation. Traditional tools for materials discov-
ery, based on serial experiments or first-principles calculations, are
slow and expensive. Identifying a means of accelerating the discov-
ery process for materials with exotic electronic spin and charge de-
grees of freedom is an active area of research [2–10]. In addition, a
general approach to design a crystal structure with any desired prop-
erty, although of great scientific interest and practical importance, is
still in the early stages of development [11–13]. The work described
here advances the design of novel vdW magnets.

Long-range magnetic ordering in 2D crystals has recently been
discovered [14, 15], leading to a race to better understand the prop-
erties of magnetism in reduced dimensions and to identify additional
2D magnets with desirable properties for applications in spintronics
and data storage [16–19]. Since long-range magnetic order can be
strongly suppressed in 2D according to the Mermin-Wagner theo-
rem [20], 2D crystals, such as monolayer CrI3, provide a new plat-
form for exploring the interplay between reduced dimensionality and
magneto-crystalline anisotropy (MCA). MCA stabilizes magnetic or-
dering in 2D materials. This interplay could give rise to spin degrees
of freedom such as spin textures, that have both scientific interest and
relevance for developing novel quantum computing architectures.

B. Layered transition metal halides

2D vdW ferromagnets have been identified in five structurally
distinct groups, namely, transition metal phosphorous trichalco-
genides, transition metal halides, ternary iron-based tellurides, tran-
sition metal oxyhalides, and transition metal dichalcogenides [1, 21].
In this study we focus on the family of transition metal halides (see
Figure 1). This class of 2D solids includes materials with differ-
ent stoichiometries and crystal phases [22]. They are mainly com-
posed of dihalides MX2 and trihalides MX3 (M = V, Cr, Mn, Fe, Co,
Ni, Ru; X = Cl, Br, I). Due to the relatively large atomic radius of
halide anions and the partially filled 3d electronic shells of transition
metal cations, magnetic vdW materials with a layered structure are
expected to emerge from these compounds [22]. For many years,
electronic correlations in Cr trihalides have been investigated, and a
series of exciting phenomena were revealed in this family of mate-
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FIG. 2. The neural network architecture used to implement semi-
supervised learning. An autoencoder is coupled to a feed-forward
neural network. The embedding space of the autoencoder is the in-
put for the feed-forward neural network. The loss functions of the
autoencoder and the feed-forward neural network are coupled.

rials. Cr trihalides with different anions exhibit different properties.
These include: (a) The intralayer exchange of these three compounds
is ferromagnetic (FM), while the interlayer exchange changes from
antiferromagnetic (AFM) to FM (from CrCl3 to CrBr3). The mag-
netic order for CrI3 depends on the layer number. The corresponding
magnetization direction varies from inplane (CrCl3) to out-of-plane
(CrBr3 and CrI3) [23]. (b) Owing to the governing superexchange
interaction [24] and spin–orbit coupling (SOC) [24], the Curie tem-
perature TC of several layers of Cr trihalides increases from 17 K
(CrCl3) to 37 K (CrBr3) then to 46 K (CrI3) [23]; this trend stems
from the extended anion radius and as well as higher atomic num-
ber. (c) The spin models that describe 2D magnetism are the XY
and Ising models for CrCl3 and CrI3, respectively. The description
of CrBr3 lies between the Heisenberg and Ising models [25], indi-
cating the importance of exchange anisotropy linked to the increase
of the atomic number of the halide anion. In addition, the spin-flip
field decreases with the increasing temperature in CrI3 and CrCl3
[26]. The TC of CrBr3 and CrCl3 increases as the magnetic field in-
creases, while it is almost field-independent in CrI3 due to the large
anisotropy. In addition, various phenomena such as large valley split-
ting [27], higher-spin Kitaev model [28], and quantum anomalous
Hall effect [29], have been reported in transition metal halides, sug-
gesting their potentials in different research fields.

Monolayer CrX3 has a hexagonal lattice with point group
D3d . [30] The present study will use this crystal structure as the pro-
totype structure and explore how changes in chemical composition
affect its magnetic and thermodynamic properties. A more thorough
investigation of competing phases is left for future work.

C. Materials discovery using AI

Materials data (created from experiments or from first-principles
calculations) combined with AI can be used to accelerate materials
science research and discovery [9, 31–33]. AI models trained on a set
of crystal structures and corresponding material properties can pre-
dict the properties of a much larger space of materials. In particular,
there is a great deal of interest in harnessing AI for identifying novel
magnetic materials [8, 9]. Recent studies leveraging AI to study ma-
terials highlight the importance of the careful choice of descriptors
for making successful predictions [32, 34]. In these studies, state-of-
the-art mathematical representations of crystal structures, based on
graph neural networks, were constructed to reliably model material
properties.

Early efforts to create materials descriptors used chemical compo-

TABLE I. DFT identifies candidate materials satisfying the search
criteria for the formation energy, E f [eV] and the magnetic moment,
µ [µB] of CrI3. The calculated DFT values for E f and µ are dis-
played.

Formula E f µ Formula E f µ

Cr2I6 -6.213 11.3 Mn2Cr2Br12 -11.082 13.1
MnCrCl6 -15.767 13.1 MnTcBr3Cl3 -10.971 14.6
Mn2I3Cl3 -9.530 15.2 CrFeCl6 -13.650 14.9
CrFeBr6 -9.067 14.8 MnReI3Cl3 -6.488 14.1
CrFeI3Cl3 -8.210 14.4 CrFeBr3Cl3 -11.307 14.9
Fe2Br3Cl3 -8.102 18.5

sition only [9, 35] and later incorporated simple metrics for encoding
crystal structure [36, 37]. Recent studies demonstrate that AI mod-
els constructed from descriptors using chemical compositions can be
successful if the study is restricted to isostructural materials [9]. An-
other recent approach of increasing interest is to create mathematical
representations of materials from data [32]. AI models (neural net-
works in particular) are universal function approximators that con-
tain increasingly sophisticated representations in successive hidden
layers of the neural network. In the case of the neural network au-
toencoder architecture, a compressed representation of the data is
created in the embedding layer, or latent space of the autoencoder.
This gives rise to the prospect of using AI to uncover physical in-
sight through the study of the latent space representation by linking
the encoded representation of a material to its target property. The
autoencoder’s latent space can conceivably elucidate patterns in a
high-dimensional descriptor space revealing relationships that lead
to physical insight [38].

A major challenge in materials informatics is the scant amount
of data, or more specifically, labelled data that can be used for su-
pervised learning. To overcome this challenge, efforts have been
made to perform unsupervised learning, where no labels are needed
for inference. In addition, semi-supervised learning can be imple-
mented, where both labelled and unlabelled data are exploited to
train models [39]. Although the use of semi-supervised learning has
already been reported in the materials discovery literature [39], this
tool appears to be underutilized by the materials informatics commu-
nity. Semi-supervised learning can be used to mitigate the challenge
of scarce data, since increasing the amount of unlabelled data can
improve model performance. Since the bottleneck for training AI
models is often the lack of difficult to obtain labelled data, semi-
supervised learning provides a significant benefit [39]. In this work,
we leverage semi-supervised learning (see Figure 2) to overcome
the challenge of sparsely labeled data and to search for novel vdW
magnets.

II. RESULTS AND DISCUSSION

A subset of the density functional theory (DFT) results are shown
in Figure 3. The displayed results constitute the ground state mag-
netic configuration, with the formation energy, E f on the left and the
magnetic moment, µ on the right. Calculations were performed on
700 candidates out of a total of ∼104 candidates. The grey squares
represent the combinations that were not calculated. The magnetic
moment and formation energy values vary with changes in chemi-
cal composition. The objective in this work is to identify materials
with large magnetic moments that are also chemically stable as deter-
mined by their formation energy. For instance, we highlight that our
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FIG. 3. A subset of the DFT results are displayed. The left panel shows the formation energy, E f [eV] for AiAiiXi
3Xii

3 candidates where XiXii

= Br3Cl3. The right panel shows the magnetic moment, µ [µB] for AiAiiXi
3Xii

3 candidates where XiXii = I3I3. The horizontal axis shows the
Ai sites and the vertical axis shows the Aii sites. Candidates that were not calculated are represented by grey squares.

DFT search finds that several A2X6 structures have magnetic mo-
ments larger than that of CrI3, with formation energy lower (hence
more stable) than that of CrI3 (see Table I).

Next, we train a NN model to learn the relationship between a
crystal structure’s chemical composition and its corresponding mag-
netic and thermodynamic properties. Training was performed with
both labeled and unlabeled data using semi-supervised learning. The
trained NN facilitates the fast and accurate prediction of materials
properties for the entire materials space, allowing us to quickly iden-
tify materials candidates that might satisfy our search criteria. The
NN model performance is displayed in Figure 4 for both the mag-
netic moment and the formation energy. The parity plots show good
model performance for both the magnetic moment and the formation
energy. We note that the training tasks for the magnetic moment and
the formation energy were coupled together and not trained indepen-
dently using two separate models. An additional training task, the
magnetic excitation energy, ∆E, was added to the model’s loss func-
tion to further constrain the NN. By adding the magnetic excitation
energy and the formation energy to the loss function for the mag-
netic moment prediction, we incorporate soft constraints into the NN.
This is an example of physics informed machine learning (PIML), a
state-of-the-art approach at the intersection of physics and AI [40–
43]. Our PIML approach links the magnetic excitation energy to the
physics of the system by mapping the DFT energies to the Heisen-
berg spin Hamiltonian [44] as shown in Eqn. 1:

EFM = E0 +(3J1 +6J2 +3J3)|⃗S|2)

EAFM = E0 +(−3J1 +6J2 −3J3)|⃗S|2)
∆E = EFM −EAFM

= 6(J1 + J3)|⃗S2|

(1)

The magnetic excitation energy is the difference in the DFT total
energy of the ferromagnetic configurations, EFM and the antiferro-

magnetic configurations, EAFM . ∆E is determined by J1 and J3 (see
Equation 1), where J1, J2, and J3 are the first, second and third near-
est neighbour interactions respectively. S⃗ represents the spin on the
transition metal atom.

If we require the model to learn ∆E, E f and µ simultaneously, we
can better constrain the NN model. We find that this soft constraint
decreases overfitting when compared with a model trained with only
µ in the loss function.

To demonstrate the usefulness of the semi-supervised learning ap-
proach we trained several models with varying amounts of unlabelled
data. Increasing the amount of unlabelled data increased the NN
model performance as shown in Figure 5. With about 700 labelled
data points and no unlabelled data we obtained an average R2 vali-
dation score of 0.2. With only additional unlabelled data points (up
to 4,000) we get an increase in the R2 to 0.8. The NN performance
improves with increased amounts of unlabelled data due to the au-
toencoder portion of the NN becoming better at learning the materi-
als representation. The FNN is then better able to make predictions
given the improved inputs created by the latent space of the autoen-
coder [45].

We attempt to extract physical insight from the autoencoder NN
by analyzing the latent space. Using PCA we project the latent space
onto the first two principal components, X1, X2 and plot the results
in Figure 6. A pattern emerges in the 2D projection of the latent
space where materials with small magnetic moment are in one region
while materials with larger magnetic moments are in another part of
the 2D latent space. This suggests that there is a link between crys-
tal structure and chemical composition, as encoded using the SOAP
descriptor, and the magnetic moment.

The NN can be used to rapidly predict the properties of candidate
materials and to screen for those materials with large magnetic mo-
ment and high chemical stability. We compared the AI predictions
with the labeled data in the validation/training set; of the 496 pre-
dictions, 14 satisfied the following search criterion: magnetic mo-
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FIG. 4. The parity plot for the AI results are shown for (a) magnetic
moment µ [µB] and (b) formation energy E f [eV]. The test set R2

score is 0.77. The red squares (green circles) indicate test (training)
set data.

FIG. 5. The R2 validation set score versus the number of unlabeled
data points is displayed. Increasing the amount of unlabeled data in
our semi-supervised learning tasks improves the prediction perfor-
mance. Markers delimit the mean R2 score and errors bars indicate
the standard deviation of these scores for a set of 10 separate runs.
The red squares (blue circles) indicate test (training) set data.

ment µ > 11.3 µB and formation energy E f < -6.213 eV. Exam-
ples of the promising candidates include: Mn4I6Cl6, Cr2Fe2Cl12
and Mn2Cr2Br12. The candidates and their corresponding proper-
ties are displayed in Table II. Although the formation energy is a
proxy for chemical stability, it is a necessary but not sufficient indi-
cator for chemical stability. The absence of imaginary phonon modes
gives a more robust estimate of the chemical stability. We calcu-
lated the phonon dispersion for the following promising structures:
Cr2Fe2Br6Cl6, Fe2Cr2Br12, Mn2Cr2Cl12 and Mn4I6Cl6 and found
that they were dynamically stable except for Mn4I6Cl6 [see Support-
ing Information for further details].

Furthermore, we chose 71 additional candidates at random from
the unlabelled data set, predicted their properties using AI and then
chose the 6 candidates with the highest magnetic moments with
E f < -6.213 eV. Additional DFT calculations were used to ver-
ify the AI predictions. The resulting promising candidates were
CrAuCl6, MnVBr3Cl3, MnHgBr3Cl3, MoWBr3Cl3, MnReBr3Cl3
and MnCdBr3Cl3. These results along with their corresponding
properties are included in Table II.

III. CONCLUSION

We created a machine learning framework leveraging semi-
supervised learning to accelerate the discovery of monolayers of
transition metal halides. Semi-supervised learning mitigates the lack

FIG. 6. The two-dimensional projection of the embedding space of
the autoencoder neural network is displayed. The first and second
principal components, X1 and X2, are on the horizontal and vertical
axis respectively. A pattern in the data emerges indicating a connec-
tion between the position in embedding space and the value of the
magnetic moment.

of labelled data by creating a mathematical representation of the
materials using unlabelled data. Furthermore, we identified novel
transition metal halides with large magnetic moments that are pre-
dicted to be chemically stable as evidenced by the thermodynamic
and dynamic stability calculations. In particular, we predict that
Cr2Fe2Br6Cl6, Fe2Cr2Br12 and Mn2Cr2Cl12 are all promising struc-
tures with larger magnetic moments and lower formation energy than
Cr2I6.

Our materials prediction framework can be easily generalized
for the exploration of materials with different crystal structures be-
yond the one considered here. Specifically, different crystal struc-
ture prototypes can be used, including mixed ones, for example, a
data set comprising both transition metal halides and transition metal
trichalcogenides.

IV. EXPERIMENTAL SECTION

1. Database of first-principles calculations

In order to create a framework for investigating 2D magnets using
a data-driven approach, we first create a database of crystal struc-
tures of the form A2X6, based on monolayer Cr2I6 (Figure 1(a))
using DFT calculations with non-collinear spin and spin-orbit inter-
actions included. There is a combinatorially large number of possible
candidate A2X6 structures (∼104) with different elements occupy-
ing the A and X sites. We randomly selected an initial subset of 700
structures for investigation with DFT (and performed calculations
on additional structures at a later stage). We obtain the formation
energy, magnetic order and magnetic moment of each crystal struc-
ture. The ground-state properties were determined by examining the
energies of the fully optimized structure with several spin configura-
tions, including parallel, and anti-parallel spin orientations at the A
sites (Figure 1(b)). The energy difference between parallel and anti-
parallel spin configurations estimates the magnetic excitation energy.
The sign of the magnetic excitation energy is an indicator of the mag-
netic order of a material.

To create the database we use DFT calculations with the VASP
code [46, 47]. We used the GGA-PBE for the exchange-correlation
functional. The energy cutoff was 450 eV. The vacuum region was
thicker than 20 Å. Calculations were performed using 2×1 super-
cells with two A sites per unit cell. The atoms were fully relaxed
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TABLE II. Materials candidates that satisfy the search criteria (i.e.
higher magnetic moment and lower formation energy than that of
Cr2I6) are displayed alongside the formation energy, E f [eV] and
the magnetic moment, µ [µB] of Cr2I6. The calculated DFT values
for E f and µ are displayed alongside the corresponding AI predicted
values. The asterisk indicates those candidates initially chosen from
the unlabelled data set.

Formula E f (DFT) E f (AI) µ (DFT) µ (AI)
Cr2I6 -6.213 -5.8 9.2 11.3
MnCrBr6 -11.082 -11.2 13.1 11.6
MnCrCl6 -15.767 -14.2 13.1 11.7
MnReI3Br3 -4.397 -6.4 14.1 12.0
Fe2Br3Cl3 -8.102 -12.1 18.5 12.0
CrFeI3Br3 -6.126 -6.8 14.6 12.4
MnReI3Cl3 -6.489 -7.1 14.1 12.8
Fe2I3Cl3 -5.368 -7.4 16.9 13.2
MnTcBr3Cl3 -10.971 -9.9 14.6 13.5
CrFeI3Cl3 -8.210 -7.6 14.4 13.5
CrFeBr6 -9.067 -7.8 14.8 13.7
CrFeCl6 -13.651 -12.0 14.9 13.9
Mn2I3Cl3 -9.530 -8.3 15.2 14.2
CrFeBr3Cl3 -11.307 -9.2 14.9 14.3
*MnCdBr3Cl3 -11.994 -12.8 5.7 6.7
*MnVBr3Cl3 -14.713 -12.3 11.2 8.1
*CrAuCl6 -8.898 -9.2 8.9 9.4
*MoWBr3Cl3 -8.568 -6.9 9.8 9.9
*MnHgBr3Cl3 -9.121 -10.4 5.7 11.1
*MnReBr3Cl3 -9.643 -9.1 14.3 13.9

until the force on each atom was smaller than 0.01eVÅ−1. A Γ-
centered 8×8×1 k-point mesh was utilized. We create the different
structures by choosing different transition metal atoms for each of the
Cr atoms in the unit cell. The halogens above and below the basal
plane were separately selected from F, Br, Cl, or I. Figure 1(d) shows
the choice of substitution atoms in the Periodic Table. An example
of a structure created through this process is (CrTi)Br3Cl3. The FM
(AFM) configuration was created by making the spins on the A sites
parallel (antiparallel). The magnetic moment per supercell and the
formation energy per supercell [9] were extracted for each relaxed
structure and each magnetic configurations. Dynamic stability was
estimated by performing phonon calculations using phonopy [48].

2. Materials descriptors and AI modelling

A careful choice of descriptors is essential for the success of any
AI approach. Materials descriptors (i.e. mathematical representa-
tions of materials) are used for both data analytics and to serve as

inputs to AI models. Many materials descriptors have been devel-
oped with increasing levels of sophistication, from those based on
atomic properties only [35] to those that incorporate clever mathe-
matical descriptions of the crystal structure [36, 37, 49]. In this study
we leverage the smooth overlap of atomic orbitals (SOAP) kernel as
a descriptor [49]. The SOAP kernel encodes chemical composition
and crystal structure into a form that can be cast into a vector that
is used to describe the position of materials in chemical space. The
SOAP kernel is used as an input for our AI models.

We performed semi-supervised learning using the SOAP kernel
as the input and the magnetic moment, the formation energy and
the magnetic excitation energy are the target properties. The data
were randomly divided into a training/validation set and a test set.
Training/validation were typically 90% of the total data while test
data comprised 10% of all the data. We employed a combination
of neural network (NN) models to perform semi-supervised learn-
ing. That is, we coupled an autoencoder with a feed-forward neural
network; the autoencoder neural network (ANN) does not require
labels (i.e. unsupervised learning) whereas the feed-forward neu-
ral network (FNN) requires labels (i.e. supervised learning). See
Figure 2 for a schematic of the architecture. The AENN and FNN
models are trained at the same time. Successive layers of the au-
toencoder network facilitate increasingly higher level materials rep-
resentations. The optimal number of hidden layers and nodes in each
hidden layer was found using random hyperparameter search. The
embedding layer (i.e. latent space) of the autoencoder is used as the
input to the FNN (see the Supporting Information for details). The
embedding layer of the ANN learns a representation of the materi-
als data that can be used for pattern recognition when compressed
further into a two-dimensional descriptor space. That is, we can fur-
ther compress the latent space into two dimensions using principal
component analysis (PCA) or t-distributed stochastic neighbor em-
bedding (t-SNE) [50, 51].

Supporting Information
Supporting Information is available from the Wiley Online Li-

brary or from the author.
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