

From Impact to Amnesia:

The Biology Behind Cognitive Decline

Liliana Cohen, MD
Mark L. Gordon, MD

From Impact to Amnesia: The Biology Behind Cognitive Decline

Introduction

Memory loss is commonly portrayed as an inevitable consequence of aging or a hallmark of neurodegenerative disease—a slow and irreversible erosion of brain cells dictated by time, genetics, or misfortune. In this view, forgetting is the price paid for longevity, and cognitive decline emerges only after neurons have been irreparably lost. But a growing body of scientific evidence tells a far more unsettling story.

For many individuals, the decline of memory and cognition does not begin with neuronal death at all. It begins with inflammation.

Long before neurons disappear, the brain's immune system becomes activated. Microglia shift from guardians to aggressors. Synaptic signaling is subtly distorted. Neurochemistry drifts from balance toward dysfunction. These changes unfold quietly, often without obvious injury or clinical warning, gradually altering how the brain processes, stores, and retrieves information. The result is not immediate dementia, but a creeping inefficiency of thought, names forgotten, focus diminished, emotional regulation strained.

This process, known as **neuroinflammation**, operates below the threshold of traditional diagnosis and well outside the public narrative of memory loss. Yet it may represent one of the most powerful, and least recognized, biological drivers of cognitive dysfunction across the lifespan. Whether initiated by physical trauma, environmental exposure, metabolic stress, or cumulative injury, chronic neuroinflammation reshapes the brain long before degeneration becomes visible on imaging or pathology.

Understanding memory loss through this lens forces a fundamental reconsideration of how cognitive decline begins, not as a sudden collapse of neurons, but as a prolonged inflammatory assault on the brain's capacity to communicate with itself.

Neuroinflammation: A Fire That Smolders Before It Burns

Neuroinflammation describes a state of sustained activation of the brain's innate immune system, driven primarily by microglia and supported by astrocytes. Under normal circumstances, this system is essential for survival. Acute inflammatory responses help clear cellular debris, neutralize threats, and restore neural equilibrium after injury. In this context, inflammation is not pathological, it is reparative.

The danger emerges when this response fails to resolve.

When inflammatory signaling becomes chronic or maladaptive, the brain enters a state of persistent immune activation. Microglia remain primed, astrocytes alter their metabolic and signaling roles, and the tightly regulated environment required for efficient synaptic communication begins to erode. Rather than destroying neurons outright, chronic neuroinflammation subtly rewires how neural networks function. Synapses weaken, neurotransmitter balance shifts, and signal-to-noise ratios degrade. Cognitive efficiency declines not abruptly, but gradually.

This distinction is critical. Traditional models of neurodegeneration focus on neuronal death as the initiating event, cells are lost, circuits collapse, and cognition fails. Neuroinflammation tells a different story. Function is compromised long before structure is lost. Memory falters not because neurons have disappeared, but because communication between them has become unreliable, energetically inefficient, and chemically distorted.

In this sense, neuroinflammation behaves like a slow-burning fire. It does not announce itself with immediate devastation. Instead, it smolders beneath the surface, altering the terrain of the brain over years

or decades. By the time overt neurodegeneration becomes apparent, the inflammatory process has often been shaping cognitive decline for far longer than either patient or clinician realizes.

Mechanotransduction: When Force Becomes Biology

Among the most powerful, and most overlooked, initiators of neuroinflammation is **mechanotransduction**, the process by which mechanical force is converted into biological signaling. The brain, suspended in cerebrospinal fluid and tethered by delicate vascular and axonal structures, is exquisitely sensitive to acceleration, deceleration, and rotational movement. It is not impact alone that matters, but motion itself.

Even in the absence of overt concussion, mechanical forces deform neuronal membranes, stretch axons, disrupt mitochondrial architecture, and strain the cytoskeleton. These microstructural distortions are sufficient to trigger a cascade of intracellular events. Calcium floods into neurons. Mitochondrial energy production falters. Reactive oxygen and nitrogen species increase. Inflammatory signaling pathways are activated, not as a response to tissue destruction, but to mechanical stress.

This is the biology of **subconcussive injury**.

Repetitive head impacts in contact sports, blast exposure in military environments, and routine collisions in activities considered “non-injurious” can initiate these processes without producing immediate symptoms. There may be no loss of consciousness, no dizziness, no identifiable concussion. Yet at the cellular level, the brain has registered the event. Inflammatory signaling is engaged, metabolic efficiency declines, and neural resilience is incrementally reduced.

The brain, in this sense, possesses a form of biological memory independent of conscious awareness. It records force not as experience, but as chemistry. Over time, repeated mechanical stress accumulates, priming the immune system of the brain and lowering the threshold for chronic neuroinflammation. Cognitive consequences may not emerge for years, but the initiating biology is set in motion long before the first forgotten name or lapse in attention draws concern.

Concussion, Subconcussion, and the Cumulative Burden

Concussive brain injuries are widely recognized as risk factors for persistent neuroinflammation and long-term cognitive impairment. Less widely appreciated is the growing evidence that **cumulative low-level trauma**, impacts insufficient to produce a diagnosed concussion, may be equally, and in some cases more, damaging over time. The danger lies not in any single event, but in repetition.

Recurrent micro-injuries sustain microglial activation and prevent the resolution of the inflammatory response. With each exposure, the blood-brain barrier becomes more permeable, allowing peripheral cytokines, immune cells, and inflammatory mediators to enter the central nervous system. What begins as a protective response gradually shifts toward chronic immune dysregulation. Repair gives way to degeneration, not abruptly, but incrementally.

This phenomenon is especially relevant in populations with repeated exposure to head acceleration and blast forces, athletes in contact sports and military personnel among them, where trauma often begins early in life and accumulates silently. The brain adapts in the short term, masking injury through redundancy and plasticity, but at a biological cost. Over time, resilience erodes.

The clinical consequences of this cumulative burden are rarely immediate. Memory impairment, slowed processing speed, emotional volatility, diminished attention, and executive dysfunction often emerge years or even decades after the last documented injury. To the individual and the public narrative, these symptoms appear disconnected from earlier trauma. To biology, they are not. The inflammatory imprint of repeated injury persists, shaping cognition long after the final impact has been forgotten.

Environmental and Metabolic Triggers of Neuroinflammation

Mechanical injury is not the sole initiator of neuroinflammation. A wide range of **environmental exposures** activate the same immune and oxidative pathways within the brain, often without any history of head trauma. Chronic exposure to air pollution, heavy metals, pesticides, and persistent infectious agents introduces inflammatory signals that penetrate neural tissue directly or act indirectly through systemic immune activation. Though disparate in origin, these insults converge on a common biological outcome: oxidative stress and mitochondrial dysfunction.

Mitochondria, the energetic engines of neurons, are particularly vulnerable to inflammatory and toxic stress. When their efficiency declines, neurons become metabolically fragile, less capable of maintaining synaptic integrity, and more susceptible to subsequent injury. In this sensitized state, even minor physiological stressors can provoke exaggerated inflammatory responses, amplifying damage that would otherwise have been contained.

Metabolic conditions further intensify this vulnerability. Insulin resistance, obesity, chronic sleep deprivation, and sustained psychosocial stress elevate circulating cytokines and reactive oxidative mediators. These signals were never intended to operate chronically, yet in modern physiology they often do. When the blood–brain barrier is compromised, whether by trauma, aging, vascular dysfunction, or prolonged stress, these inflammatory mediators gain access to the central nervous system, reinforcing and prolonging neuroinflammation.

In this context, cognitive decline cannot be understood as an isolated neurological phenomenon. It reflects a **systems-level failure**, in which metabolic dysregulation, immune activation, vascular compromise, and neural vulnerability intersect. Memory and cognition deteriorate not because of a single insult, but because the brain is continuously exposed to inflammatory signals it was never designed to withstand indefinitely.

Neurotransmitter Disruption: Chemistry Before Cell Death

One of the earliest and most consequential effects of neuroinflammation is its disruption of neurotransmitter systems essential to memory, attention, and emotional regulation. These chemical alterations occur well before neurons are lost, undermining cognitive function through impaired communication rather than structural destruction.

Acetylcholine, the neurotransmitter most closely associated with learning and memory, is particularly vulnerable. Inflammatory mediators inhibit choline acetyltransferase, the enzyme required for its synthesis, reducing cholinergic tone in key regions such as the hippocampus and cortex. The result is diminished encoding of new information and impaired recall, even in the absence of overt neurodegeneration.

Dopaminergic and serotonergic systems are similarly affected. Chronic inflammation alters receptor sensitivity, neurotransmitter availability, and synaptic signaling efficiency, leading to deficits in motivation, attention, reward processing, and emotional stability. These changes help explain why cognitive decline is frequently accompanied by apathy, depressed mood, anxiety, and reduced stress tolerance.

Glutamate regulation, critical for synaptic plasticity, is also compromised. Inflammatory signaling impairs astrocytic clearance of glutamate from the synaptic cleft, increasing excitotoxic stress. Over time, this excess excitatory activity damages synapses and weakens neural networks, further degrading cognitive resilience.

Together, these neurochemical shifts blur the traditional boundaries between neurological and psychiatric illness. Memory impairment, mood disturbance, irritability, and sleep disruption are not separate disorders occurring in parallel. They are **co-expressions of a single underlying biological disturbance**, a brain operating in a chronically inflamed and chemically imbalanced state.

Beta-Amyloid, Tau, and the Inflammatory Accelerator

The pathological hallmarks most commonly associated with Alzheimer's disease, **beta-amyloid plaques** and **Tau protein neurofibrillary tangles**, have long been treated as primary drivers of neurodegeneration. Increasingly, however, they are understood as **downstream consequences of chronic neuroinflammation**, rather than its initiating cause.

Sustained inflammatory signaling alters how neurons process amyloid precursor protein, shifting metabolism toward amyloidogenic pathways and increasing the production and aggregation of beta-amyloid. At the same time, inflammatory kinases activated by cytokines and oxidative stress promote Tau hyperphosphorylation, destabilizing microtubules and impairing axonal transport. These molecular changes emerge not in isolation, but within an environment already compromised by metabolic stress, neurotransmitter imbalance, and synaptic dysfunction.

Once established, beta-amyloid and Tau do not remain passive byproducts. Both act as **potent amplifiers of inflammation**, further activating microglia and perpetuating immune signaling within the brain. This creates a self-reinforcing cycle in which inflammation begets protein pathology, and protein pathology intensifies inflammation. The result is progressive synaptic loss, network disintegration, and regional vulnerability, most prominently within memory-critical structures such as the hippocampus and prefrontal cortex.

Viewed through this lens, neurodegeneration is not the opening act of cognitive decline but its culmination. Long before plaques and tangles dominate pathological descriptions, inflammatory processes have already eroded the brain's capacity for efficient communication. By the time classic markers are detected, the biological conditions that enabled their formation have often been in place for years, if not decades.

Peroxynitrite and Free Radicals: Molecular Saboteurs

At the molecular level, one of the most destructive links between chronic inflammation and neurodegeneration is **peroxynitrite**, a highly reactive nitrogen species formed through the rapid interaction of nitric oxide and superoxide. Unlike many reactive oxygen species that act briefly and locally, peroxynitrite exerts widespread and enduring effects on neural tissue.

Peroxynitrite readily damages lipids, proteins, and DNA, compromising membrane integrity and disrupting intracellular signaling. Mitochondrial respiration is impaired as key enzymes of the electron transport chain are modified, reducing cellular energy availability at a time when neurons are already metabolically stressed. Neurotransmitter synthesis and recycling are also disrupted, further eroding synaptic efficiency and network stability.

What distinguishes peroxynitrite from short-lived free radicals is the **persistence of its biochemical footprint**. Through nitration and oxidation of critical proteins, peroxynitrite alters the structure and function of molecules essential for synaptic plasticity, cytoskeletal integrity, and memory encoding. These modifications do not simply injure neurons; they lock them into a dysfunctional state, resistant to normal repair and adaptive processes.

Cognitive decline, in this context, is not solely the result of neuronal loss or visible structural damage. It reflects the cumulative impact of a **hostile biochemical environment**, one in which inflammatory mediators and reactive species continuously undermine the brain's capacity to restore balance, maintain communication, and adapt to injury. Recovery becomes biologically constrained not by absence of neurons, but by the chemistry in which they must operate.

Clinical Consequences Everyone Recognizes

The real-world effects of neuroinflammation rarely announce themselves dramatically. Instead, they emerge quietly, often dismissed as inconsequential or temporary. Early signs may include difficulty recalling names or recent conversations, diminished mental stamina, slower decision-making, increased distractibility, and

a reduced capacity to juggle multiple tasks. Emotional regulation may also suffer, with irritability, anxiety, or mood swings appearing alongside cognitive changes.

As inflammatory processes persist, these deficits deepen and broaden. Work performance declines as concentration wanes and mental fatigue increases. Relationships are strained by emotional volatility or withdrawal. Sleep becomes fragmented, further compounding cognitive inefficiency. What began as a subtle sense of “not being as sharp” evolves into a measurable loss of functional capacity that affects daily life.

Too often, these symptoms are attributed to normal aging, chronic stress, or primary psychiatric conditions. While such explanations may appear reasonable on the surface, they frequently obscure the underlying biological reality. When cognitive and emotional changes are misclassified in this way, recognition of neuroinflammation is delayed, and opportunities for early, biologically informed intervention are missed.

The consequence is not merely diagnostic error, but lost time, years in which inflammatory processes continue unchecked, gradually reshaping brain function long before traditional markers of neurodegenerative disease prompt concern.

A Shift in How We Understand Memory Loss

The emerging science of neuroinflammation demands a fundamental reframing of how cognitive decline is understood. Memory loss is not merely the inevitable consequence of aging neurons, nor solely the result of irreversible neurodegenerative disease. In many cases, it represents the downstream expression of **chronic, unresolved inflammation**, set in motion by physical trauma, environmental toxins, metabolic stress, or the cumulative interaction of all three.

Seen through this lens, cognitive decline is neither abrupt nor mysterious. It is a progressive biological process in which inflammation alters neurochemistry, disrupts synaptic communication, and destabilizes neural networks long before neurons are lost. By the time structural degeneration becomes visible, the underlying inflammatory cascade has often been active for years, quietly reshaping brain function and diminishing cognitive resilience.

Understanding this pathway, from **impact to amnesia**, changes what is possible. It shifts attention toward earlier detection, more precise risk identification, and intervention strategies aimed not only at preserving neurons, but at restoring the conditions required for effective neural communication. Memory loss, in this framework, is no longer viewed solely as an endpoint to be managed, but as a process that can be recognized, interrupted, and potentially altered before degeneration becomes irreversible.

Application of Brain Rescue 3 and Brain Care 2 in Neuroinflammatory States

These products have been designed to address neuroinflammation by targeting complementary but distinct biological domains involved in cognitive decline. **Brain Care 2** functions as a foundational anti-inflammatory and redox-support formulation, emphasizing lipid-mediated inflammation resolution, antioxidant defense, and protection against oxidative and nitrosative stress. Its core components, DHA, tocopherols, ascorbic palmitate, quercetin, glutathione, and EGCG, are positioned to support microglial regulation, mitochondrial stability, and blood-brain barrier integrity, making it particularly appropriate during periods of active neuroinflammatory burden or recovery following metabolic, environmental, or traumatic stressors.

Brain Rescue 3 builds upon this anti-inflammatory foundation by incorporating additional mitochondrial, neuroenergetic, and neurochemical support. Through the inclusion of PQQ, CoQ10, B vitamins, and adaptogenic compounds such as rhodiola and maca, BR3 is positioned for individuals in whom neuroinflammation is accompanied by cognitive fatigue, reduced mental stamina, mood instability, or impaired focus. In this context, BR3 serves not only to dampen inflammatory signaling, but to restore

neuronal energy production, neurotransmitter synthesis, and functional resilience once the inflammatory environment has been partially stabilized

Used sequentially or contextually, these formulations reflect a biologically rational approach: first supporting inflammatory resolution and oxidative balance, then enhancing neuroenergetic and cognitive performance, rather than attempting to stimulate function in an actively inflamed brain.

Dr. Liliana M. Cohen is a board-certified neurologist practicing in Thousand Oaks, California. She specializes in general neurology and neurophysiology, with broad clinical experience diagnosing and managing disorders of the brain, spinal cord, nerves, and muscles. Dr. Cohen is experienced in the evaluation and treatment of a wide range of neurological conditions including stroke, epilepsy, headache disorders, traumatic brain injury, dementia, movement disorders, autonomic dysfunction, and sleep disorders. She is currently affiliated with Los Robles Regional Medical Center and practices at a private neurology clinic in Thousand Oaks, accepting new patients and telehealth appointments.

In 2015, Dr. Cohen presented for the Millennium Health Centers, Inc, a lecture on The Neurobiology of Traumatic Brain Injury as part of the launch of Dr. Gordon's book – TBI – A Clinical Approach to Diagnosis and Treatment.

Dr. Cohen is a member of the American Academy of Neurology (AAN), the American Association of Neuromuscular and Neurodiagnostic Medicine (AANEM), and the American Medical Association (AMA).

Neuron Medical Corporation, 227 W. Janss Road, Suite 135, Thousand Oaks, CA 91360

On-Line: <https://neuronmedical.com/>

References

1. Perry, V. H., Holmes, C. (2014). Microglial priming in neurodegenerative disease. *Nature Reviews Neurology*, 10(4), 217–224. <https://doi.org/10.1038/nrneurol.2014.38>
2. Ransohoff, R. M. (2016). How neuroinflammation contributes to neurodegeneration. *Science*, 353(6301), 777–783. <https://doi.org/10.1126/science.aag2590>
3. Heneka, M. T., et al. (2015). Neuroinflammation in Alzheimer's disease. *The Lancet Neurology*, 14(4), 388–405. [https://doi.org/10.1016/S1474-4422\(15\)70016-5](https://doi.org/10.1016/S1474-4422(15)70016-5)
4. McKee, A. C., et al. (2015). The spectrum of disease in chronic traumatic encephalopathy. *Brain*, 138(1), 43–64. <https://doi.org/10.1093/brain/awu297>
5. Johnson, V. E., Stewart, W., Smith, D. H. (2013). Axonal pathology in traumatic brain injury. *Experimental Neurology*, 246, 35–43. <https://doi.org/10.1016/j.expneurol.2012.01.013>
6. Prins, M. L., et al. (2013). Repetitive mild traumatic brain injury. *Journal of Neurotrauma*, 30(1), 14–27. <https://doi.org/10.1089/neu.2012.2518>
7. Giza, C. C., Hovda, D. A. (2014). The new neurometabolic cascade of concussion. *Neurosurgery*, 75(Suppl 4), S24–S33. <https://doi.org/10.1227/NEU.00000000000000505>
8. Cunningham, C., et al. (2009). Systemic inflammation induces acute behavioral and cognitive changes. *Journal of Neuroscience*, 29(27), 8416–8425. <https://doi.org/10.1523/JNEUROSCI.2185-09.2009>
9. Block, M. L., Calderón-Garcidueñas, L. (2009). Air pollution: mechanisms of neuroinflammation. *Trends in Neurosciences*, 32(9), 506–516. <https://doi.org/10.1016/j.tins.2009.05.009>
10. Butterfield, D. A., Halliwell, B. (2019). Oxidative stress and neurodegeneration. *Nature Reviews Neuroscience*, 20(3), 148–160. <https://doi.org/10.1038/s41583-019-0132-0>
11. Beal, M. F. (2005). Oxidative damage as a mediator of neurodegenerative diseases. *Free Radical Biology and Medicine*, 38(3), 403–412. <https://doi.org/10.1016/j.freeradbiomed.2004.09.006>
12. Guo, T., et al. (2017). Peroxynitrite and neurodegeneration. *Journal of Neurochemistry*, 141(2), 217–232. <https://doi.org/10.1111/jnc.13933>

13. Calabrese, V., et al. (2010). Nitric oxide in the central nervous system. *Antioxidants & Redox Signaling*, 13(4), 503–525. <https://doi.org/10.1089/ars.2009.2924>
14. DiSabato, D. J., Quan, N., Godbout, J. P. (2016). Neuroinflammation: the devil is in the details. *Journal of Neurochemistry*, 139(S2), 136–153. <https://doi.org/10.1111/jnc.13607>
15. Heppner, D. L., Ransohoff, R. M., Becher, B. (2015). Immune attack: the role of inflammation in Alzheimer disease. *Nature Reviews Neuroscience*, 16(6), 358–372. <https://doi.org/10.1038/nrn3880>
16. Hardy, J., Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease. *Science*, 297(5580), 353–356. <https://doi.org/10.1126/science.1072994>
17. Kitazawa, M., et al. (2004). Inflammation-induced tau pathology in transgenic mice. *Journal of Neuroscience*, 24(24), 5283–5289. <https://doi.org/10.1523/JNEUROSCI.4667-03.2004>
18. Bhaskar, K., et al. (2010). Regulation of tau pathology by the microglial fractalkine receptor. *Neuron*, 68(1), 19–31. <https://doi.org/10.1016/j.neuron.2010.08.023>
19. Glass, C. K., et al. (2010). Mechanisms underlying inflammation in neurodegeneration. *Cell*, 140(6), 918–934. <https://doi.org/10.1016/j.cell.2010.02.016>
20. Mosconi, L., et al. (2010). Brain glucose hypometabolism and oxidative stress in Alzheimer's disease. *Annals of the New York Academy of Sciences*, 1147, 180–195. <https://doi.org/10.1196/annals.1427.007>
21. Mattson, M. P., et al. (2003). Mitochondrial regulation of neuronal plasticity and survival. *Trends in Neurosciences*, 26(10), 554–560. [https://doi.org/10.1016/S0166-2236\(03\)00234-3](https://doi.org/10.1016/S0166-2236(03)00234-3)
22. Banks, W. A. (2015). The blood–brain barrier in neuroinflammation. *Immunological Reviews*, 268(1), 41–55. <https://doi.org/10.1111/imr.12341>
23. Obermeier, B., Daneman, R., Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood–brain barrier. *Nature Medicine*, 19(12), 1584–1596. <https://doi.org/10.1038/nm.3407>
24. Boche, D., Perry, V. H., Nicoll, J. A. R. (2013). Review: activation patterns of microglia. *Neuropathology and Applied Neurobiology*, 39(1), 3–18. <https://doi.org/10.1111/nan.12020>
25. Wang, W., et al. (2015). Neuroinflammation and traumatic brain injury. *Journal of Neurotrauma*, 32(23), 1848–1856. <https://doi.org/10.1089/neu.2014.3708>
26. Streit, W. J., et al. (2004). Microglial activation in neurodegeneration. *Progress in Neurobiology*, 74(3), 171–187. <https://doi.org/10.1016/j.pneurobio.2004.09.003>
27. Miller, A. H., Raison, C. L. (2016). The role of inflammation in depression. *Nature Reviews Immunology*, 16(1), 22–34. <https://doi.org/10.1038/nri.2015.5>
28. Leonard, B. E. (2018). Inflammation and depression: a causal or coincidental link? *Neuropsychiatric Disease and Treatment*, 14, 2765–2776. <https://doi.org/10.2147/NDT.S178996>
29. Kempuraj, D., et al. (2017). Neuroinflammation induces neurodegeneration. *Molecular Neurobiology*, 54(9), 1–18. <https://doi.org/10.1007/s12035-016-0336-7>
30. Swardfager, W., et al. (2010). A meta-analysis of cytokines in Alzheimer's disease. *Biological Psychiatry*, 68(10), 930–941. <https://doi.org/10.1016/j.biopsych.2010.06.012>
31. Gordon, M.L. (2025). *Your Brain on Fire: The Missing Link in Mental Health and Cognition*.
32. Gordon, M.L., MD. (2023). *The Millennium's Primer Series: Neuroinflammation: The Road to Neuropsychiatric Illnesses*.
33. Gordon, M.L., MD. (2023). *Neuroinflammation as a Barrier to the Success of Psychedelic-Assisted Therapies*.
34. Gordon, Mark L. (2023). *Healing the Invisible Wounds: Evaluating Treatment Outcomes for TBI and PTSD*.
35. Gordon, Mark L., MD; Gordon, Alison M., NMD. (2023). *From Inflammation to Silence: Promising Strategies for Alleviating Tinnitus through Neuroinflammation Management*.