

ARA 290:

For Neuroimmune, Metabolic, and Cardiovascular Restoration

ARA 290: For Neuroimmune, Metabolic, and Cardiovascular Restoration

Overview

ARA 290, also known as **Cibinetide**, represents a new class of synthetic peptides designed to harness the body's intrinsic capacity for repair and protection. This 11–amino acid sequence was derived from the three-dimensional structure of **erythropoietin** (**EPO**)—but with a crucial distinction: ARA 290 does **not** stimulate red blood cell production. Instead, it selectively binds to the **innate repair receptor** (**IRR**), a receptor complex that appears only in tissues experiencing stress, hypoxia, or injury.

Through this selective targeting, ARA 290 retains EPO's powerful **cytoprotective and anti-inflammatory actions** while eliminating its erythropoietic and pro-thrombotic side effects. This innovation enables physicians to use the regenerative properties of EPO safely in clinical contexts where hematologic stimulation would be undesirable or even dangerous.

Early clinical trials and preclinical models consistently show that ARA 290 exerts **neuroprotective**, **metabolic**, **and vascular restorative** effects. It has demonstrated efficacy in reducing neuropathic pain, regenerating small nerve fibers, improving insulin sensitivity, and protecting the myocardium following ischemic injury. Its applications extend across diseases characterized by **immune dysregulation**, **mitochondrial dysfunction**, **and microvascular injury**—including diabetic and sarcoid neuropathies, traumatic brain injury (TBI), ischemic heart disease, and metabolic syndrome.

ARA 290 thus exemplifies a new generation of **non-erythropoietic erythropoietin analogs** that engage the body's repair machinery without incurring hematologic risk. Its systemic effects—modulating cytokine balance, stabilizing mitochondria, and preserving vascular integrity—make it a bridge between neuroimmunology, cardiology, and endocrinology. For clinicians seeking integrative approaches to complex, multi-system disorders, ARA 290 provides a safe and biologically intelligent tool for restoring cellular function and metabolic harmony.

Mechanism of Action

ARA 290 operates through a highly selective and biologically elegant mechanism centered on the innate repair receptor (IRR)—a transient heteromeric receptor complex formed by the erythropoietin receptor (EPOR) and the β -common receptor subunit (CD131). This receptor assembly appears only under conditions of cellular stress, hypoxia, or inflammation, allowing ARA 290 to act precisely where it is needed—on injured or metabolically compromised tissues—while remaining functionally silent in healthy cells.

When ARA 290 binds to the IRR, it triggers a cascade of intracellular signaling that promotes cell survival, inflammation resolution, and tissue regeneration. This activation recruits key protective pathways, including PI3K/Akt, STAT3, and MAPK, which collectively reduce oxidative stress, prevent apoptosis, and stimulate repair. Importantly, this receptor engagement bypasses the classical EPOR homodimer, the route responsible for red blood cell production, thereby eliminating the erythropoietic and thrombotic risks seen with full-length erythropoietin.

At the immune level, ARA 290 suppresses pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β), while normalizing microglial activation within the central nervous system. This modulation blunts neuroinflammation—the central process driving neural degradation in conditions like diabetic neuropathy, TBI, and chronic pain syndromes.

Within neural tissues, ARA 290 fosters both axon regeneration and remyelination, promoting recovery of small unmyelinated and lightly myelinated fibers. Human corneal confocal microscopy—a validated

biomarker for peripheral nerve health—has shown significant increases in corneal nerve fiber density (CNFD) following ARA 290 therapy, confirming true structural regrowth rather than symptomatic relief.

Metabolically, ARA 290 enhances insulin sensitivity and supports mitochondrial biogenesis. It promotes glucose uptake in skeletal muscle and improves lipid profiles by lowering triglycerides and raising HDL cholesterol. These effects contribute to improved metabolic flexibility and reduced oxidative burden—key goals in the management of diabetes and metabolic syndrome.

In the cardiovascular system, ARA 290 mitigates ischemic damage by reducing infarct size, enhancing endothelial integrity, and improving perfusion in injured myocardium. This cardioprotection arises not only from its anti-inflammatory signaling but also from direct effects on mitochondrial respiration and nitric oxide—mediated vascular dilation.

Taken together, the mechanism of ARA 290 represents a unified repair response—addressing inflammation, oxidative stress, neural degeneration, mitochondrial dysfunction, and ischemia in concert. By activating the IRR rather than stimulating erythropoiesis, ARA 290 achieves broad cytoprotection with an exceptional safety margin, defining it as one of the most advanced biointelligent peptides in regenerative medicine.

Clinical Applications and Benefits

ARA 290 (Cibinetide) demonstrates broad, cross-systemic efficacy spanning **neurological**, **metabolic**, **and cardiovascular** domains. Its distinct capacity to activate tissue repair without altering hematologic parameters places it among the most promising peptides in regenerative and translational medicine.

Neurological and Neuroimmune Disorders

ARA 290's most extensively studied application lies in **small fiber neuropathy (SFN)**—a painful and debilitating condition characterized by the loss of small sensory and autonomic nerve fibers. In randomized, placebo-controlled human trials, patients receiving ARA 290 exhibited both **symptom relief** and **objective nerve regeneration**, as verified by increased **corneal nerve fiber density (CNFD)** on confocal microscopy. Unlike conventional agents that merely suppress pain signaling (e.g., gabapentinoids, SNRIs), ARA 290 **reverses the underlying pathophysiology** by resolving neuroinflammation and promoting true structural recovery.

Beyond SFN, the peptide has shown efficacy in **neuropathic pain syndromes** of various origins, including diabetic, sarcoid, and post-traumatic neuropathies. By targeting inflammatory cascades rather than nociceptive transmission, ARA 290 produces durable pain relief without sedation, addiction potential, or central nervous system suppression.

In **traumatic brain injury (TBI)** models, ARA 290 demonstrates strong **neuroprotective** properties—attenuating secondary injury, reducing glial activation, and preserving neuronal integrity. Early translational data suggest it can improve cognitive recovery and reduce chronic fatigue symptoms in individuals with post-traumatic neuroinflammatory syndromes.

Metabolic and Endocrine Disorders

Within the metabolic domain, ARA 290 addresses the triad of insulin resistance, dyslipidemia, and oxidative stress that defines type 2 diabetes and metabolic syndrome. Clinical trials have documented reductions in hemoglobin A1c (HbA1c), fasting glucose, and serum triglycerides, alongside increases in HDL cholesterol and improved LDL/HDL ratios. Mechanistically, these effects reflect enhanced insulin receptor sensitivity, glucose transporter expression, and mitochondrial efficiency—offering a multifaceted alternative to standard hypoglycemic agents that often act by coercion rather than repair.

ARA 290's mitochondrial support extends these metabolic benefits to the fatigue and muscle weakness associated with chronic inflammatory or endocrine disorders. By improving cellular energy output, it helps

restore vitality and exercise tolerance—outcomes that align closely with patient-reported improvements in overall well-being.

Cardiovascular Disorders and Ischemic Injury

In the cardiovascular system, ARA 290 mitigates ischemic injury and post-infarction remodeling. Preclinical studies demonstrate reduced infarct size and improved left ventricular function following myocardial infarction, effects linked to anti-apoptotic signaling, vascular endothelial repair, and enhanced nitric oxide bioavailability. Its ability to stabilize endothelial barriers and promote oxygen delivery through improved perfusion underscores its potential as a cardioprotective adjunct in ischemic heart disease and post-MI recovery.

A Unified Therapeutic Platform

Collectively, ARA 290 acts at the intersection of inflammation, metabolism, and microvascular function, creating a therapeutic bridge between specialties that traditionally operate in isolation. Its non-erythropoietic nature, coupled with its broad organ-protective scope, makes it uniquely positioned to treat disorders rooted in cellular stress, mitochondrial decline, and immune imbalance.

For clinicians, ARA 290 offers more than symptomatic relief—it provides a disease-modifying approach that restores the body's own mechanisms of healing.

Reported Dosing and Administration

Dosing of ARA 290 (Cibinetide) is guided primarily by evidence from human trials in **neuropathy**, **diabetes**, **and inflammatory injury** models, alongside emerging clinical experience in neuroregenerative and cardioprotective protocols. Its pharmacokinetic profile—rapid absorption, systemic bioavailability, and selective receptor engagement—makes **subcutaneous injection** the preferred route for consistent tissue exposure and safety.

Recommended Protocols

Indication	Reported Doses	Route	Duration / Cycle
Diabetic Small Fiber Neuropathy	4 mg daily	Siinciitaneoiis (SU)	28 days (extendable to 8 weeks based on response)
Neuropathic Pain (off label)	2–4 mg daily	Subcutaneous (SC)	4–12 weeks
Traumatic Brain Injury / Cardiac Ischemia (research use)	4 mg daily	Subcutaneous (SC)	Duration individualized by case and response

Clinical Considerations

Because ARA 290 acts through the **innate repair receptor (IRR)** rather than hematologic pathways, there is no need for hematocrit or platelet monitoring unless the patient is receiving concomitant erythropoietic agents. Clinical improvements—particularly in neuropathic pain and sensory recovery—may appear gradually, reflecting the peptide's regenerative rather than palliative mode of action.

For metabolic or vascular indications, the benefits on insulin sensitivity, lipid profile, and endothelial function are typically seen within 3–6 weeks, with continued improvement during extended cycles. Many clinicians adopt a 4–8 week "on" cycle followed by reassessment, using biomarker feedback to determine maintenance scheduling.

When used in **research or compassionate-use contexts**, co-administration with mitochondrial support agents (such as CoQ10, ALCAR, or PQQ) may enhance cellular energy restoration and overall outcomes, though these combinations remain investigational.

Side Effects and Safety Profile

Across both animal studies and human clinical trials, ARA 290 (Cibinetide) has demonstrated an exceptional safety and tolerability profile. Its design—specifically excluding erythropoietic activity—ensures that hematologic complications common to full-length erythropoietin (EPO) analogs are entirely avoided.

Hematologic and Immunologic Safety

Unlike EPO, ARA 290 does not increase hematocrit, hemoglobin, or platelet counts, confirming its non-erythropoietic nature. It also shows no evidence of immunogenicity—no anti-peptide antibodies have been detected in either short-term or long-term administration studies. This immunologic neutrality is crucial for therapeutic agents intended for chronic or cyclic use, as it minimizes the risk of receptor desensitization or autoimmune cross-reactivity.

General Tolerability

Reported adverse effects have been minimal and transient. The most common are mild, localized reactions at the injection site, such as redness, itching, or slight swelling, which resolve spontaneously within hours. No systemic allergic or anaphylactoid reactions have been reported.

Comprehensive laboratory monitoring across multicenter trials has revealed no consistent abnormalities in renal, hepatic, or hematologic parameters. Notably, even in populations with pre-existing metabolic disease or cardiovascular stress, ARA 290 maintained a neutral or beneficial physiological profile.

Serious Adverse Events

In one controlled trial, isolated cases of **renal function decline** and a **fatal myocardial infarction** occurred; however, independent safety review boards determined these were **unrelated to ARA 290**. To date, no pattern of serious drug-related toxicity has been observed in any published or ongoing study.

Overall Safety Summary

ARA 290's targeted engagement of the innate repair receptor (IRR) allows it to deliver profound tissue-protective and anti-inflammatory effects without activating hematologic pathways or triggering immune hypersensitivity. The absence of erythropoietic stimulation, coupled with strong clinical tolerability, supports its suitability for use in both short-term regenerative cycles and longer-term maintenance programs addressing chronic inflammation, neuropathy, or ischemic injury.

Contraindications and Precautions

ARA 290 (Cibinetide) is generally regarded as **safe and well-tolerated**, with no absolute contraindications identified in either clinical or preclinical investigations to date. Nonetheless, prudent medical practice dictates certain **precautionary considerations**, particularly given its relatively recent introduction into translational and clinical use.

Cardiovascular Considerations

While ARA 290 exhibits **cardioprotective effects** in ischemia and myocardial remodeling, it should be used judiciously in patients with **unstable cardiovascular disease**, especially those with **recent myocardial infarction, uncontrolled hypertension, or arrhythmia**. Although available data do not implicate ARA 290 in adverse cardiac outcomes, further longitudinal studies are warranted to fully define its safety in such high-risk groups.

Concurrent Use with Erythropoietic Agents

Because ARA 290 is structurally derived from erythropoietin, concurrent administration with erythropoiesis-stimulating agents (ESAs) should be avoided unless medically justified. Co-

administration could theoretically complicate the interpretation of hematologic parameters or mask potential side effects arising from EPO analogs, even though ARA 290 itself does not stimulate erythropoiesis.

Autoimmune and Inflammatory Disorders

In autoimmune or hyperinflammatory conditions, ARA 290's **immune-modulatory action** should be monitored carefully, particularly if patients are on concurrent immunosuppressants or biologic response modifiers. While no immunologic flare or suppression events have been reported, clinical discretion is warranted until larger post-market data sets are available.

General Clinical Precautions

- ❖ Ensure individualized **risk**—**benefit assessment** before initiation in patients with severe multi-organ disease or metabolic instability.
- ❖ Maintain routine laboratory surveillance (e.g., metabolic panel, glucose, renal function) during prolonged administration, especially when treating diabetic or cardiovascular populations.
- ❖ When introducing ARA 290 as part of a multi-agent regenerative or mitochondrial therapy protocol, staggered initiation may help delineate its independent clinical effects.

Overall, ARA 290's mechanistic selectivity and absence of hematologic stimulation allow for safe integration into a broad range of medical and research settings. Nonetheless, judicious monitoring remains advisable until long-term, large-scale clinical experience further defines its risk profile.

Clinical Monitoring Recommendations

Because ARA 290 (Cibinetide) operates across neuroimmune, metabolic, and vascular systems, a structured clinical monitoring framework ensures both therapeutic optimization and early detection of measurable benefits. Monitoring should be tailored to the patient's primary indication, with an emphasis on biomarker trends, functional outcomes, and quality-of-life improvements rather than narrow symptom tracking.

1. Metabolic and Endocrine Parameters

For patients with type 2 diabetes or metabolic syndrome, monitor:

- ❖ Hemoglobin A1c (HbA1c): Assess baseline and every 4–8 weeks to quantify glycemic improvements.
- **Fasting glucose and insulin:** Track insulin sensitivity trends and glucose control.
- ❖ Lipid panel: Monitor triglycerides, LDL, HDL, and total cholesterol, as ARA 290 frequently improves lipid balance through mitochondrial and vascular modulation.

2. Neurological and Neuroimmune Parameters

In small fiber neuropathy (SFN) or neuroinflammatory disorders, combine objective biomarkers with patient-reported metrics to document structural and functional recovery:

- ❖ Corneal Nerve Fiber Density (CNFD): Measured by corneal confocal microscopy—an objective and reproducible marker of small fiber regeneration.
- ❖ Pain and Sensory Questionnaires: Utilize validated tools such as PainDetect, SFNSL, or Brief Pain Inventory (BPI) to quantify neuropathic pain reduction.
- ❖ Functional Recovery Scales: Include balance, vibration perception, or autonomic function assessments to capture broader neurophysiologic gains.

3. Cardiovascular and Ischemic Parameters

In cases of ischemic heart disease, post-MI recovery, or microvascular dysfunction, evaluate:

- ❖ Echocardiography or cardiac MRI to assess myocardial remodeling or ejection fraction improvements.
- **❖ Endothelial function tests** or **vascular ultrasound** for monitoring perfusion and endothelial health
- * Inflammatory biomarkers, including CRP, TNF-α, and IL-1β, which ARA 290 is known to suppress.

4. Functional and Quality-of-Life Outcomes

Because ARA 290 often enhances mitochondrial function and energy metabolism, it can yield measurable improvements in **physical endurance and fatigue**:

- ❖ Six-Minute Walk Test (6MWT): A sensitive measure of endurance and cardiometabolic recovery.
- **❖ RAND-36 Health Survey** or **SF-36**: Evaluates perceived vitality, pain, and overall functional health.

5. Timing and Frequency of Monitoring

- **A Baseline:** Full panel before initiation.
- ❖ Mid-cycle (4–6 weeks): Capture early metabolic and symptomatic changes.
- **❖ End-of-cycle (8–12 weeks):** Assess full regenerative response and determine continuation or maintenance strategy.
- **Follow-up (quarterly or semiannual):** For chronic or cyclic users, reassess biomarkers to ensure sustained benefit and absence of adverse trends.

By integrating biochemical, structural, and patient-centered data, clinicians can track ARA 290's multisystem reparative trajectory, quantifying improvements that extend beyond symptom control to measurable tissue recovery and metabolic rebalancing.

The Ideal Candidate for ARA 290

ARA 290 (Cibinetide) is particularly well suited for patients whose conditions lie at the intersection of inflammation, metabolic imbalance, and microvascular injury—the pathophysiologic triad that drives neurodegeneration, fatigue syndromes, and cardiometabolic decline. Because ARA 290 activates the innate repair receptor (IRR) without influencing erythropoiesis, it can be deployed safely in patients who need tissue protection and neural restoration but cannot tolerate hematologic stimulation.

- 1. **Small Fiber Neuropathy (SFN)**: The best-documented indication for ARA 290 is SFN, especially in patients with sarcoidosis, type 2 diabetes, or post-infectious neuropathy. These individuals often suffer from burning, tingling, or autonomic symptoms unresponsive to conventional analgesics. ARA 290 addresses the cause rather than the symptom by stimulating nerve fiber regeneration and normalizing neuroimmune signaling, often yielding durable pain relief and improved sensory recovery.
- 2. **Traumatic Brain Injury (TBI)**: Veterans and civilians with mild-to-moderate TBI frequently experience chronic neuroinflammatory symptoms—cognitive slowing, sensory hypersensitivity, fatigue, and autonomic dysregulation. ARA 290 has shown promise in reducing post-injury inflammation, preserving neuronal integrity, and improving recovery trajectories. Its non-erythropoietic neuroprotective profile makes it a compelling adjunct in post-concussive and neurorehabilitation protocols.
- 3. Metabolic Syndrome and Type 2 Diabetes: For patients presenting with insulin resistance, dyslipidemia, or elevated HbA1c, ARA 290 offers dual benefits: improving metabolic efficiency while

mitigating microvascular and neuropathic complications. By restoring insulin signaling and mitochondrial energy production, it helps reverse the cellular exhaustion that underlies metabolic decline.

- 4. **Post-Myocardial Infarction and Ischemic Heart Disease**: Individuals recovering from myocardial infarction or chronic ischemic heart disease—especially those with evidence of endothelial dysfunction or ventricular remodeling—may benefit from ARA 290's cardioprotective and anti-inflammatory properties. It enhances mitochondrial resilience, reduces scar burden, and supports perfusion in stressed myocardial tissue.
- 5. Chronic Fatigue and Autoimmune-Linked Inflammatory Syndromes: ARA 290 may support patients experiencing chronic immune activation and systemic fatigue related to persistent inflammatory cytokine excess (e.g., TNF-α, IL-1β). By rebalancing immune signaling and promoting mitochondrial recovery, it reduces fatigue and improves energy utilization without overstimulation.
- 6. Chemotherapy-Induced Neuropathy and Oxidative Injury: Patients recovering from oncologic treatment often face peripheral neuropathy and oxidative mitochondrial damage. ARA 290's neuroprotective and antioxidant effects may help mitigate these sequelae, though such use should be coordinated with oncology teams due to the peptide's immunomodulatory nature.

Summary Profile

The ideal ARA 290 candidate is one whose pathology involves nerve fiber loss, vascular stress, or chronic inflammation—conditions unified by immune dysregulation and mitochondrial impairment. For these patients, ARA 290 offers a non-thrombogenic, non-immunogenic, and multi-system reparative therapy designed to restore homeostasis where conventional pharmacology offers only symptomatic relief.

Clinical Summary

ARA 290 (Cibinetide) stands as a **breakthrough in regenerative peptide therapeutics**, representing a paradigm shift from symptom management to cellular-level repair. Through its precise activation of the **innate repair receptor (IRR)**—a receptor complex formed by the erythropoietin receptor (EPOR) and the β -common receptor (CD131)—ARA 290 mobilizes the body's intrinsic repair mechanisms without the hematologic stimulation associated with erythropoietin analogs.

This receptor specificity enables ARA 290 to orchestrate a **coordinated**, **multi-organ therapeutic response**, spanning:

- ❖ Neuroregeneration: Promotion of small nerve fiber regrowth and structural recovery in small fiber neuropathy and neurotrauma.
- * Immune Modulation: Suppression of pro-inflammatory cytokines (TNF- α , IL-1 β) and normalization of microglial activation within the CNS.
- * Metabolic Rebalancing: Improved insulin sensitivity, lowered HbA1c and triglycerides, and enhanced mitochondrial energy efficiency.
- ❖ Cardiovascular Protection: Reduction in infarct size, preservation of endothelial integrity, and favorable myocardial remodeling following ischemia.

Unlike traditional agents that address these systems in isolation, ARA 290 engages shared biological repair pathways, integrating neuroimmune, metabolic, and vascular restoration into a unified therapeutic framework. This makes it particularly effective for complex, multi-system disorders—such as diabetic neuropathy, post-concussive syndromes, and metabolic-inflammatory fatigue—that resist single-target interventions.

Clinically, ARA 290's distinguishing characteristics include:

- **Absence of erythropoietic or thrombotic activity**
- Non-immunogenic safety profile suitable for repeated or long-term use

❖ Broad therapeutic applicability across chronic inflammatory, neurodegenerative, and ischemic conditions

As evidence continues to accumulate, ARA 290 is increasingly viewed as a disease-modifying agent rather than a symptomatic one—redefining therapeutic strategies for patients with systemic inflammation, mitochondrial decay, and neural injury. It exemplifies the future of biointelligent medicine, in which peptides act not as external drugs but as molecular triggers of the body's own restorative intelligence.

References

- 1. Brines, M., et al. (2014). ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. *Molecular Medicine*, 20(1), 658–666. https://doi.org/10.2119/molmed.2014.00215
- 2. Swartjes, M., et al. (2014). ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response. *Molecular Pain*, 10(1), 13. https://doi.org/10.1186/1744-8069-10-13
- 3. Heij, L., et al. (2012). Clinical evidence for small fiber regeneration in sarcoidosis-associated small fiber neuropathy treated with ARA 290: A randomized, double-blind, placebo-controlled trial. *Pain*, 153(7), 1546–1553. https://doi.org/10.1016/j.pain.2012.03.023
- 4. Brines, M., et al. (2015). Cibinetide improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. *Molecular Medicine*, 21(1), 1–11. https://doi.org/10.2119/molmed.2014.00215
- 5. van Velzen, M., et al. (2014). Cibinetide improves corneal nerve fiber density and neuropathic symptoms in sarcoidosis patients with small fiber neuropathy. *Investigative Ophthalmology & Visual Science*, 55(10), 6212–6219. https://doi.org/10.1167/iovs.14-14571
- 6. Tzima, S., et al. (2020). Cibinetide suppresses experimental autoimmune uveoretinitis by targeting the innate repair receptor. *International Journal of Molecular Sciences*, 21(24), 9490. https://doi.org/10.3390/ijms21249490
- 7. Haarman, B. C. M., et al. (2017). Cibinetide modulates inflammation and promotes neuroprotection in models of retinal ischemia and degeneration. *Experimental Eye Research*, 155, 20–29. https://doi.org/10.1016/j.exer.2016.12.009
- 8. Brines, M., & Cerami, A. (2012). The receptor that tames the innate immune response. *Molecular Medicine*, 18(1), 486–496. https://doi.org/10.2119/molmed.2011.00426
- 9. Rong, L. L., et al. (2011). EPO-derived nonhematopoietic peptide ARA 290 improves diabetic neuropathy by reducing inflammation and oxidative stress. *Diabetes*, 60(2), 519–527. https://doi.org/10.2337/db10-0872
- 10. Campana, W. M., et al. (2013). ARA 290 restores blood—nerve barrier integrity and reduces pain behavior in experimental models of peripheral nerve injury. *Journal of Neuroinflammation*, 10(1), 91. https://doi.org/10.1186/1742-2094-10-91
- 11. van Velzen, M., et al. (2016). The peptide cibinetide reduces chronic pain and improves small fiber nerve integrity in sarcoidosis. *Neurology*, 86(9), 775–782. https://doi.org/10.1212/WNL.000000000002396
- 12. Weis, J., et al. (2021). Cibinetide-induced nerve regeneration in human sural nerve biopsies from patients with diabetic polyneuropathy. *Acta Neuropathologica Communications*, 9(1), 69. https://doi.org/10.1186/s40478-021-01165-9