EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

Fruit classification with image recognition & robot arm

I. Experimental Object

The purpose of this experiment was to develop an automatic object classification
system based on image recognition and robotic arm control. Capture images in real
time through the camera, identify the fruit on the object, and control the robotic arm
to grab and classify the object. Finally, automatic object classification is realized to

improve production efficiency.

I1. Experimental Content

This experiment is a comprehensive experiment that combines the training
recognition of the Nanodet with the grasping of the robotic arm, and the recognition is
carried out by the visual model Nanodet, and the robotic arm classifies the fruits
according to the recognition results. In this process, the main thing is to master the
whole control logic and the principles and methods related to the teaching of the
robotic arm and vision.

At the same time, this experiment is an expansive experiment, classify the
identified fruits, expand thinking, and consolidate the knowledge learned before,
combining machine vision with robotic arms can do a lot of interesting experiments,
and students can try different ways to play according to their interests.

Experimental steps:

1.Use a camera to capture live images.

2.1dentify fruit on objects based on Nanodet.

3.The recognition results are sent to the robotic arm control system.
4.The robotic arm grabs the object according to the recognition result and

sorts it and places it in the specified position.

II1. Experimental Environment

Experimental equipment Al Comprehensive Experiment Box

Operating system Linux

Experimental accessories 2D camera, Robotic arm.

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

IV. Experimental Principle

The image is acquired by a 2D camera, and the object is recognized based on the
Nanodet, and the pixel center point of the object is located at the same time. Through
visual calibration, the pixel center point of the object is converted into the world
coordinates of the robotic arm, and the robotic arm grabs the object and classifies it
according to the recognized fruits.

First, the position of the classification is defined in advance according to your
own needs, and the position can be modified arbitrarily according to the experimental
requirements. In the process of teaching the robotic arm, the movement path planning
should be reasonable according to the situation, and the movement path of the robotic
arm should be a "door-shaped" movement. That is, the robotic arm grabs the object
from point A and places it at point B, and the motion trajectory should not only teach
two points, point A and point B, so that the robotic arm will collide during the
movement and interfere with other points.

The correct teaching step should be to teach an A1 from the position of the
teaching point A directly above, teach a B1 directly above the teaching point B, the
transition point between A1 and B1 according to the situation, the principle of the
transition point is not to interfere with other teaching points, as shown in the figure

below.

A B

The visual calibration(calibration.py), Nanodet recognition(detect main.py),
robot control (Five_Robot_Control.py), and robot kinematics forward and inverse
(Five_Robot kinematics.py) solution program files required in the experiment have
been classified and encapsulated, and only need to be called as needed when used.
The purpose of this encapsulation is to facilitate maintenance, modification, and

clearer thinking, and the functions of each piece are separated independently.

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

The main program file "Robotic_fruit sorting.py" is built as a shelf, which
connects each function block in parallel and fills the business logic to make it a
complete host computer function. The detailed business process of the entire
framework is as follows.

The first is to capture photos through a camera. The photo acquisition program
uses a timer (triggered at certain intervals), because the acquisition of images is
always required, and the process operation of the entire interface is a single-threaded
mode, so you cannot wait until a photo is processed before the next one is collected,
such a program is very difficult to use, and it does not meet the requirements. Under
normal circumstances, images need to be captured at any time, so a multi-threaded
approach is required.

After the image acquisition is completed, the image needs to be processed
according to the business logic of the interface, the business logic of the interface is
that the camera is continuously displayed when the program is opened, and a photo
processing is collected when the detection is turned on, and the processing result is
displayed in the interface.

In this way, it is necessary to turn on the timer when the interface class is
initialized, continuously collect and display the image, the detection button of the
interface class, control the collection of a frame of image, and call the Nanodet
recognition class function to process and recognize the pixel value of the center point
of the fruit type and fruit box. The pixel value of the center point is obtained and the
visual calibration function is called to obtain the calibration data, and the world
coordinates are obtained after obtaining, and then the robot kinematics forward and
reverse solution class function is called to obtain the joint coordinates of the robot
target, and the joint coordinates are obtained and the robot control function is called,
and the joint parameters are input to control the robot to grasp the target. After
grabbing the target, the robotic arm control function is invoked to recognize the
characters and move to the target point according to the Nanodet.

This is the business logic of the whole program, a fruit classification experiment

from the acquisition of images— recognition of images— visual calibration—
3

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

kinematic inverse solution— robot control grabbing— fruit classification of the whole
process ends.
The flowing of the experimental principle:
(1) Recognition
1.Image capture: Capture live images via the camera.
2.Digit recognition: The fruit in the image is identified based on the Nanodet
model.
3.Hand-eye calibration: The pixel coordinates in the image are converted to
the actual world coordinates to ensure that the manipulator can accurately
locate the object.
(2) Robotic arm control system
1.Kinematic calculation: According to the world coordinates of the object,
calculate the joint angle of the robotic arm, so that the end of the robotic arm
reaches the target position.
2. Torque control: Turn on the torque of the robotic arm so that it can perform
grab and place operations.
3. Motion control: control the robotic arm to move according to the

calculated joint angle to complete the grasping and classification of objects.

V. Experimental Procedure

5.1 Running Jupyter lab

(1) Open the folder named "Experiments", click the right mouse button in the
blank. Select "Open Terminal", and enter "jupyter lab" in the terminal interface.

(2) In the folder name of the Jupyter Lab programming interface, select "8.%% T
ot I L#s AR " in "Source Program(J##£/7)" to open the "8.3& T4 5t AL
IR R 425" folder;

(3) On the startup page of the Jupyter Lab programming interface, select Python3
under the notebook menu to enter the program editor.

(4) Right-click the program file with the ".ipynb "endnote and select" Rename

"to name the program the name of the experiment performed.

4

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.
5.2 Import library files and methods

Import the libraries and modules needed for the experiment.cv2 is used for
computer vision related operations such as reading and displaying images, time is
used for timing control, and threading is used for multithreading. The remaining
custom modules are used for object recognition, camera calibration, manipulator
kinematics calculation, and manipulator control, respectively.

*The example code is as follows: *

Creating a new program file "2& T #L5 FIHLAE 7K SR 732 ipynb"

region JE {4 (Library files)

import cv2

import time

import threading

from detect_main import *

from calibration import * # F AR (Import the calibration module)

from Five_Robot_kinematics import * # 5 AMUBE 12 21 2~ 15 (Introduced the
Robotic Arm Kinematics Module)

from Five_Robot_Control import * # ‘T AMUBE 42 il B3 (Introduced the robot
arm control module)

endregion

5.3 Define global variables and instantiate objects

Define global variables for storing and sharing data, such as the current image,
object count, detection results, and so on. Instantiate objects that control robotic arms,
recognize objects, calibrate cameras, and calculate kinematics for invocation in
subsequent functions.

The example code is as follows:

Proceed with the program file "J& T-H 5t (AU E 7K S 532K ipynb"

region 4= J=)7% & (Global variables)

global shape_count_circles # [AJ¥11%%(Count the number of circles)
shap_count_circles = 0

global shape_count_square # 177 /% 1t#%k(Count the number of squares)
shape_count_square = 0

global result # il 45 5 (Test results)

result =[]

global bool_IsSend # %% %4 #r & (Send data flags)

bool_IsSend = False

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.
global clip_open_degree # J&JVERBUE YDA 5k I I EEEL, By 1k e sk
FF i K Ailk 2 341 e (The gripper opens the gripper degree every time the object is
placed, and attention is paid to prevent the gripper from opening too much and
colliding with other objects.)
clip_open_degree = 40
global clip_close_degree # &)U 1IN £ B2 (Angle when the gripper is closed)
clip_close_degree = 75
endregion
region SZ{4L X % (Instantiate the object)
robot_control = Blinx_Five_Robot_Control() # HL/E 12 i 5215 (Example of
robotic arm control)
object_recognition = Blinx_my_nanodet() # 7K J:1: 51 2451 (Examples of fruit
identification)
calibration = Blinx_Cam_Calibration() # 1%k 1 5L 41 (Example of camera
calibration)
five_robot_kinematics = Blinx_Five Robot_kinematics() # HLBE iz %) 27524
(Example of robotic arm kinematics)

endregion

& XA RARE image, FHT A7l 24 miii %

Define global variable ‘image’. Used to store the image of the current frame
global image

5.4 Send data thread function

Run in a separate thread, periodically checking bool IsSend flags. If the flag is
True, call the blinx_robot pick function to perform the gripping operation of the
robotic arm, and then reset the bool IsSend flag to False. After processing, clear the
list of result.

The example code is as follows:

Proceed with the program file "J& T-H 5t (AU E 7K 532K ipynb"

#ROREE LA R AL
Send data thread function
def blinx_send_data():
try:
while True:
time.sleep(0.1)
global bool_IsSend
if bool_IsSend:
bool_IsSend = False
global result

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

it result:
A P DU T R
Call the robotic arm gripping function
blinx_robot_pick(int(result[0]), int(result[1]))
print(" £ B KX 2IPUME (The data has been sent to

the robotic arm)™)

result =[]

else:
print(' E& IR F%5 %= (Image recognition errors)")

except Exception as e:
print("EE K IXZLFERE (The data sending thread is abnormal): ",

e)

5.5 The grasping function of Robotic Arm

Convert the detected object pixel coordinates to world coordinates, control
the robotic arm by calculating joint angles. Move the robotic arm to the target
position, perform grabbing and releasing actions, and call the blinx object class
ify function for object classification.

*The example code is as follows: *

Proceed with the program file "2& T4 5t FIHLIE 7K 2R 432K ipynb"

HUHRE P R £

Mechanical arm grabbing function.

def blinx_robot_pick(pixel x, pixel v):
IS R HERHAR R AR B i Ayt A AR
Convert pixel coordinates to world coordinates by calibration
point_x, point_y = calibration.blinx_calibration(pixel x, pixel_y)
print("" {5 AL FR(World coordinates):", point_x, point_y)
PR
Calculate joint angles
arrl, arr2, arr3, arr4 = five_robot_kinematics.arr(point_x, point_y, 0)
print("'>< 7 A B (Joint angles):™, arrl, arr2, arr3, arr4)
JT A HLIE
Turn on the robotic arm
robot_control.blinx_bus_servo_niuju_on(0xfe)
time.sleep(0.5)
1ZEHIHLE 23]
Control the movement of the robotic arm
robot_control.blinx_bus_servo_all(30, 58, 170, 217, 0, 1000)
time.sleep(2)
robot_control.blinx_bus_servo_all(arrl, arr2, arr3, arr4, 0, 1000)
time.sleep(2)

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.
robot_control.blinx_bus_servo_all(arrl, arr2, arr3, arr4, clip_close_degree,
1000)
time.sleep(2)
robot_control.blinx_bus_servo_all(30, 74, 172, 198, clip_close_degree, 1000)
time.sleep(2)
robot_control.blinx_bus_servo_all(200, 74, 172, 198, clip_close_degree, 1000)
time.sleep(2)
global result
iR 2R ek g
Call the object classification function
blinx_object_classify(result[2])
robot_control.blinx_bus_servo_all(200, 74, 172, 198, 0, 1000)
time.sleep(2)
robot_control.blinx_bus_servo_all(30, 58, 170, 217, 0, 1000)

5.6 Function for object classification

Depending on the fruit on the object, the object is placed in a predefined
position. Different fruit objects correspond to different placement points.
The example code is as follows:

Proceed with the program file "2& T4 5t FIHLIE 7K 2R 432K ipynb"

PRI 2 pR L
Object classification function
def blinx_object_classify(fruit):

global clip_open_degree

global clip_close_degree

#7E SCVUATBCE RO AR BRAN A

Define the coordinates and angles of the four drop points

pointl place = [213, 96, 193, 204, clip_close_degree, 1000]

point2_place = [192, 96, 193, 204, clip_close_degree, 1000]

point3_place = [220, 47, 210, 227, clip_close_degree, 1000]

point4_place = [185, 47, 210, 227, clip_close_degree, 1000]

MRHEAKR 2K

Classification according to fruits

if fruit == ""banana'"

robot_control.blinx_bus_servo_all(pointl_place[0], pointl_place[1],

pointl_place[2], pointl_place[3],

pointl_place[4], pointl_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(pointl_place[0], pointl_place[1],
pointl_place[2], pointl_place[3],
clip_close_degree - clip_open_degree,

pointl_place[5])

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

time.sleep(1)
robot_control.blinx_bus_servo_all(pointl_place[0], pointl_place[1],
pointl_place[2], 207,
clip_close_degree - clip_open_degree,
pointl_place[5])
time.sleep(1)
elif fruit == ""tomato":
robot_control.blinx_bus_servo_all(point2_place[0], point2_place[1],
point2_place[2], point2_place[3],
point2_place[4], point2_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(point2_place[0], point2_place[1],
point2_place[2], point2_place[3],
clip_close_degree - clip_open_degree,
point2_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(point2_place[0], point2_place[1],
point2_place[2], 207,
clip_close_degree - clip_open_degree,
point2_place[5])
time.sleep(1)
elif fruit == ""watermelon™":
robot_control.blinx_bus_servo_all(point3_place[0], point3_place[1],
point3_place[2], point3_place[3],
point3_place[4], point3_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(point3_place[0], point3_place[1],
point3_place[2], point3_place[3],
clip_close_degree - clip_open_degree,
point3_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(point3_place[0], point3_place[1],
point3_place[2], 207,
clip_close_degree - clip_open_degree,
point3_place[5])
time.sleep(1)
elif fruit == ""cucumber™:
robot_control.blinx_bus_servo_all(point4_place[0], point4_place[1],
point4_place[2], point4_place[3],
point4_place[4], point4_place[5])
time.sleep(1)
robot_control.blinx_bus_servo_all(point4_place[0], point4_place[1],
point4_place[2], point4_place[3],

clip_close_degree - clip_open_degree,

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

point4_place[5])

time.sleep(1)

robot_control.blinx_bus_servo_all(point4_place[0], point4_place[1],
point4_place[2], 207,

clip_close_degree - clip_open_degree,

point4_place[5])

time.sleep(1)

else:

print(""RAEIZKFR (Unknown fruit)*)

5.7 Function to enable the camera

Turn on the camera with the specified number and check if it turns on
successfully. If it is not opened successfully, an exception is thrown.
The example code is as follows:

Proceed with the program file "2& T4 5t FIHLIE 7K 2R 432K ipynb"
AT AR Sk R A

Open camera function
def blinx_open_camera(cam_num):

cap = cv2.VideoCapture(cam_num) # FJFF45%1% 3k (Open camera)

if not cap.isOpened(): # fu A &A% k72 5 e D)4T I (Check if the camera
turns on successfully)

raise Exception("E R ZE A5 BN ER R & IEH (Please check that

the camera is connected to the computer correctly)™)

returncap # IR[FIFEAZ LX) 5 (Return to the camera object)

5.8 Processing identifying objects or fruits

Perform object recognition on the incoming image, obtain the recognition result,
and display the recognized image. If the recognition is successful, set the flag

"bool IsSend" to True, update the variable "result", and wait for the thread function

"blinx_send data" to process it.
The example code is as follows:
Proceed with the program file "3 T 1L %t FRIHLIRE 7K 532K .ipynb"
JTURHEAT IO R, IR T S B EE
Begin object fruit recognition and display the recognized image
def blinx_start_detection(image):

try:
PR IK B0 R
Call the object fruit recognition function
img, identify_result = object_recognition.blinx_detect(image) # 7K1t

1

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

P31 (Fruit recognition)
cv2.imshow(*Camera', img) # ‘@~ iR A5 (&% (The image after
recognition is displayed)
global bool_IsSend, result
R FT I ST
Whether to turn on the robotic arm to grasp
bool _IsSend = True
result = identify_result
cv2.waitKey(0)
except Exception as e:

print("BHEIREUE M (Data fetching failed): ™, e)

5.9 Defining the main program

The main program cycles through the camera image and displays it. If the
'd" key is pressed, the blinx_ start detection is called for object recognition; If
the 'Q" key is pressed, the cycle is exited. Release the camera and close all
OpenCV windows when the program ends.

The example code is as follows:

Proceed with the program file "2& T4 5t FIHLIE 7K 2R 432K ipynb"

= K% (Main function)
def main():
global image # 7 B4 /57 & image(Declaring global variable ‘image’.)
cam_num =0 # ¥ E#AF k%5 (Set the camera number)
cap = blinx_open_camera(cam_num) # FT/F##1% % (Open camera)
try:
while True:
ret, frame = cap.read() # ZHHHG L — Wi &R (Set the camera

number)
if notret: # 40 S EUMIA D) (If the frame is not read
successfully)
print(""ZREUMI 2 (Failed to fetch frame)'™)
break
cv2.imshow("'Camera", frame) # 2714 (Display image)
image = frame # CRAF 510 MT LAE3EAT A5 I (The current frame is
saved for detection)
key = cv2.waitKey(30) & OXFF # Z5f5dddsm AN, AEk% 30ms 4
7 — X (Wait for the key to be entered, and check every 30ms)
if key == ord("d"): # f14% 'd'E(Press the 'D' key)
blinx_start_detection(image) # JFafiEAT404A 7K FE1H 51
(Perform object fruit recognition)
elif key == ord('q"): # W1R3% 1 'q' 5 (Press the 'Q' key)

1

EEen=EiE \\\ I

Hunan Blinx Technology Co.,Ltd.

break # 1B H7E¥(Exit the loop)
finally:
cap.release() # FBEHIEI% 3k (release the camera)

cv2.destroyAllWindows() # I OpenCV & 1 (Close all
OpenCV windows)

5.10 Running the main program

If the script is run as the main program, the "blinx send data" thread and the
main program are started. The "blinx_send data" thread is responsible for processing
the object recognition results and controlling the robotic arm, and the main program is

responsible for reading the camera image and triggering the recognition.

The example code is as follows:

Proceed with the program file "2& T4 5t FIHLIRE 7K 2R 532K ipynb"
£ A\ H(Program Entrance)
if _name__ =="_main__""
Ja BRI £ FE (Start the send data thread)

thread_send = threading. Thread(target=blinx_send_data)
thread_send.start()

main() # 1217 F 27 (Run the main program)

5.11 Program running effect

Note that the cube should be placed squarely towards the camera, not diagonally.

(x=207, y=106) ~ R:154 G:158 B:150

