
Decompose the computational
problem you identified to:
• Help you better understand the problem
• Create sub-parts
• Reveal assumptions or missing information
• Identify where you can use CT elements to

address sub-parts
• Help organize your next steps

Use Pattern Recognition to address
your computational problem by:
• Collecting data or using an available data set
• Analyzing the data
• Representing the data (table, charts, graphs)
• Identify patterns

Use Abstraction to simplify
complexity and generalize findings
• Abstractions relate to your

computational problem
• Pattern recognition and abstraction

go hand-in-hand

Design an Algorithm to
address your computational
problem. Your design
can be a flow chart, decision
tree, pseudo code, or other
approach.
• First, establish a set of procedures
• Then, have others follow your

procedures
• Finally, others should arrive at your

expected results consistently.
~ If others get unexpected results,

you will need to modify your
design or procedures.

Start by identifying a
Computational Problem.

Think about:
Could it have multiple solutions?

Is it a problem that includes collecting data
or using a data set?

Is there an opportunity to create a
procedure (algorithm)?

Computational
Problem
Computational
problems are
open-ended and may
be real-world, but they
must include data and
an algorithm.

Problem
Decomposition
Breaking down
(unpacking) your
computational
problem into more
manageable parts.

Pattern
Recognition
Collecting data or
identifying a data set
(numerical, text, audio,
video, images, or
symbols); and
analyzing it to find
similarities,
differences or trends.

Abstraction
Reduces complexity by
filtering out non-relevant
information. This can
simplify problem solving
and helps create a
general idea of the
computational problem.

Algorithm Design
Developing a procedure
(algorithm) that can be
replicated by humans or
computer; includes testing
and redesign if the
outcome is not what is
expected.

Computational
Artifact
A computational artifact
can be, but is not limited
to, a program, image,
audio, video,
presentation, or web page
file; anything a human
makes using a computer.

Definitions Key

TICKETS
DE

CO
MPOSITION PATTERN RECOGNITION

ABSTRACTION ALGORITHM
S

COMPUTATIONAL
THINKING

Computational Thinking Process
for Problem Solving

THIS WAY

A ticket is an entry to an
amusement park and a

computational problem is an
entry into the CT Process.

Like a commemorative photo, a CT
artifact illustrates your experience

through the CT Process.

EXIT HERE

Create your
Computational Artifact.

It, much like an assignment’s final
report, showcases how you addressed

and solved your computational problem.

© 2021 International Society for Teaching in Education (ISTE). All Rights Reserved. iste.org/computationalthinking

