Introduction You have been hired by a company as a network analyst.
Your first assignment is to begin tuning an IDS sensor running snort.
You have been provided a number of example packet captures for
review. Some of these captures will trigger alerts for your analysis,
others will require you to create signatures to match the traffic
patterns. Below is the detail of what you are expected to complete and
how you will be assessed. Project package is stored on our course
server at /usr/local/src/proj3/347-proj3.tar.gz

Group 1 Captures - Port Scans (complete 1 of 2) - 20pts each The two captures in
this group are port scans of different kinds. Configure and run snort to identify
the type of port scan involved. Then review the packet capture itself to identify its
characteristics, specifically the number of source IP addresses of the scanning,
the ports involved, the success of the scanning and the rate (packets over time).
Submission criteria:

1. Text of the alert from snort

Portscan detection. For more information, see README.sfportscan

| preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level { higl ¥

In order for the port scan to work | had to change the sense level of the built-in
portscan capability in snort from low to high and make sure it was uncommented.
Sense level being low won'’t detect a lot of port scans, while medium and high detects
more.

stranb@course_server_347_&447: $ snort -c ./snort.conf -A full -k
none -1 ./mylLogs/ -r group—Bl/capture—Bl.pcapl

Ran snort on Capture-01

Text alert:

stranb5@course_server_347_447: $ cat alert-vi
[*x] [122:5:1] (portscan) TCP Filtered Portscan [x*]
[Classification: Attempted Information Leak] [Priority: 2]

09/25-14:42:13.106431 10.0.23.109 -> 80.237.98.132
PROTO:255 TTL:128 TOS:0x® ID:6017 IpLen:20 DgmLen:165 DF

TCP Filtered Portscan, Attempted Information Leak

2. Characterization of the packet capture (packets-per second, randomness of ports,
source and destination IPs involved) Packet capture content screenshot below to see
and analyze the port numbers.

£ capture-01.pcap

¢TE E QaaaH

16 0.006751 10.0.23.109 80.237.98.132 Tcp 52 3504
80.237.98.132 Win=65535 Len=0 MSS=1356
0.006822 . 80.237.98.132 > Win=65535 Len=0 MSS=1356 d
19 0.420869 10.0.23.109 80.237.98.132 TcP 52 3444 -+ 4025 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
ettt et e e AR A S S S e e SR SO R C h RER —

® @ Wireshark - Conversations - capture-01.pcap

Win=65535 Len=0 MSS=1356

| Destination ~ | Protocol |Lengtt|Info
1 0.000000 10.0.23.109 80.237.98.132 - Win=65535 Len=0 MSS=1356 SACK_PERM
2 0.000036 10.0.23.109 80.237.98.132 - Win=65535 Len=0 MSS=1356 SACK_PERM
3 0.000068 10.0.23.109 80.237.98.132 TCP 52 3510 - 3822 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
4 0.000100 10.0.23.109 80.237.98.132 TCP 52 3502 - 1719 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
5 0.000132 10.0.23.109 80.237.98.132 TCP 52 3513 - 4278 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
6 0.000169 10.0.23.109 80.237.98.132 TCP 52 3511 - 2500 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
7 0.000201 10.0.23.109 80.237.98.132 TCP 52 3508 - 1814 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
8 0.000233 10.0.23.109 80.237.98.132 TCP 52 3497 - 4062 [SYN] Seq=0 Win=65535 Len=@ MSS=1356 SACK_PERM
9 0.000264 10.0.23.109 80.237.98.132 TCP 52 3487 - 4954 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
10 0.000296 10.0.23.109 80.237.98.132 TCP 52 3518 - 2845 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
11 0.000329 10.0.23.109 80.237.98.132 TCP 52 3509 - 1936 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
12 0.000363 10.0.23.109 80.237.98.132 TCP 52 3505 - 3591 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
13 0.006653 10.0.23.109 80.237.98.132 TCP 52 3563 - 4145 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
14 0.006687 10.0.23.109 80.237.98.132 TCP 52 3552 - 4603 [SYN] Seq=0 Win=65535 Len=0 MSS=1356 SACK_PERM
15 0.006719 10.0.23.109 80.237.98.132 TCP 52 3503 - 1504 Win=65535 Len=0 MSS=1356 SACK_PERM

IPv4-1 TCP-575 UDP

Address A ~ | Address B | Packets | Bytes | Packets A - B| Bytes A > B| Packets B > A| BytesB > A| Re
10.0.23.109 80.237.98.132 1,000 52 kB 1,000 52 kB 0 0 bytes © 0.000

Conversation Settings

Absolute start time
Limit to display filter

Copy

| Protocol
Bluetooth
BPv7
DCCP
Ethernet
FC
FDDI
|IEEE 802.11
IEEE 802.15.4

Statistics — Conversations to see ip addresses involved
- Source IP involved: 10.0.23.109
- Destination IP involved: 80.237.98.132
- Based on the packets of the TCP SYN scans on a variety of ports, the ports are
randomized.
- Some of the specific source ports are: 3574, 3547, 3510. They are randomized
there isn’t really a pattern

- Some of the specific destination ports are: 2675, 1319, 3822. Same with the
source ports they are randomized
- Based on these specific ports there are only SYN scan packets and no ACK,
which means there is no return traffic/response and verifies that the port scan
is a filtered scan.
(N N] Wireshark - Capture File Properties - capture-01.pcap

Details

w7 IGI'J\)I VL I Ia (Y B Y
Time

First packet: 2007-09-25 15:42:04
Last packet: 2007-09-25 15:42:43
Elapsed: 00:00:38

Capture

Hardware: Unknown
0OS: Unknown
Application: Unknown

Interfaces

Interface Dropped packets Capture filter Link type Packet size limit
(snaplen)
Unknown Unknown Unknown NULL/Loopback 96 bytes

Statistics

Measurement Captured Displayed Marked
Packets 1000 1000 (100.0%) -
Time span, s 38.858 38.858 —
Average pps 25.7 25.7 —
Average packet size, B 52 52

Bytes 52000 52000 (100.0%)

Average bytes/s 1338 1338

Average bits/s 10k 10 k

Capture file comments

Help Refresh Copy To Clipboard Close Save Comments

Packets-per second: Average is 25.7 packets per second. Went to statistics and looked
at the capture file properties to find the pps.

Group 2 Capture - Malformed Packets (complete 1 of 1) - 25pts The capture in this
group consists of malformed packets. Run the snort tool on this capture and
interpret the results. This will involve the triggered alert(s) as well as analysis of
the capture itself. You should consider the number of packets involved and the
duration of the event. Submission criteria:

1. Text of the alert from snort
ULlE < L -

SRULE_PATH/ re—backdoor.rules
$RULE_PATH/malware—-cnc.rules
$RULE_PATH/malware-other.rules
SRULE_PATH/malware-tools.rules

| had to make sure the built in malware detection rules in snort were uncommented.
My goal for this capture is to look at the malformed packets.

stranS5@course_server_347_447: $ snort -c¢ ./snort.conf -A full -k none -1

m 0Q - group-u

Ran snort on Capture-03

Text alert:

[stran5@course_server_347_447: $ cat alert-vl | more
[*%] [123:8:2] (spp_frag3) Fragmentation overlap [*x*]
[Classification: Generic Protocol Command Decode] [Priority: 3]
05/06-20:40:19.468485 137.12.64.210 —> 121.10.105.211

ICMP TTL:61 TOS:0x0 ID:43466 IplLen:20 DgmLen:1156

Frag Offset: 0x0172 Frag Size: ©x0470

[*%] [123:8:2] (spp_frag3) Fragmentation overlap [*x*]
[Classification: Generic Protocol Command Decode] [Priority: 3]
05/06-20:40:19.470211 137.12.64.210 —> 121.10.105.211

ICMP TTL:61 TO0S:@x0 ID:43471 IplLen:20 DgmLen:150@ MF

Frag Offset: ©0x00B9 Frag Size: ©x@5C8

Fragmentation overlap, Generic Protocol command Decode

2. Characterization of the packet capture (packets-per second, randomness of ports,
source and destination IPs involved) Packet capture contents screenshot below:

| Time | Source | Destination | Protocol | Lengtr|Info
v U4 VO 1374 1e1Ue 21U 11410s1UDecLL Lrve 1174 1iaymciicu PIULULUL \p1uLu—sunr Ui 1—23vY, 1w-aziv)

0.034997 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960, ID=a9fd)
0.035007 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960,
0.035360 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480,
0.035379 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480,
0.035714 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480,
0.035732 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol (proto=ICMP off=1480, ID=a9ff)
0.035792 137.12.64.210 121.10.105.211 IPV4 1174 Fragmented protocol (proto=ICMP off=2960, 9ff)
0.035794 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol (proto=ICMP off=2960, ID=a9ff)
0.036050 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960,
0.036051 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol (prot CMP off=2960,
0.036368 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol (proto=ICMP off=2960,
0.036386 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960,
0.036739 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480,
0.036750 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480,
0.036815 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960,
106 0.036816 137.12.64.210 121.10.105.211 IPv4 1174 Fragmented protocol off=2960,
107 0.037070 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol off=1480, I
108 0.037086 137.12.64.210 121.10.105.211 IPv4 1518 Fragmented protocol (proto=ICMP off=1480, ID=aa®3)
109 0.037155 137.12.64.210 121.10.105.211 IPv4 1174 Fraamented orotocol (proto=ICMP 1. off=2960. ID=aa@3)

Frame 8: 1174 bytes on wire (9392 bits), 1170 bytes captured (9360 bits)

[] Wireshark - Conversations - capture-03.pcap

IPv4-13 TCP UDP

Address A ~ | Address B | Packets | Bytes | Packets A - B| Bytes A > B| Packets B > A| BytesB > A|
70.86.40.74 137.12.36.202 1 705 bytes 1 705 bytes 0 0 bytes
Absolute start time 80.177.212.86 137.12.14.220 2kB 2 kB 0 bytes
Limit to display filter 81.203.228.247 137.12.36.202 471 bytes 471 bytes 0 bytes
82.224.105.18 137.12.63.5 6 kB 6 kB 0 bytes
82.230.61.95 137.12.63.5 1kB 1kB 0 bytes
Copy 83.38.217121 137.12.63.5 6 kB 6 kB 0 bytes
84.126.197.182 137.12.63.5 5kB 5 kB 0 bytes
84.222.186.54 137.12.105.181 941 bytes 941 bytes 0 bytes
89.13.169.192 137.12.14.220 7kB 7 kB 0 bytes
89.245.239.169 137.12.105.181 3kB 3kB 0 bytes
90.2.167.126 137.12.63.5 6 kB 6 kB 0 bytes
116.27.182.78 137.12.14.21 1kB 1kB 0 bytes
137.12.64.210 121.10.105.211 4 MB 4 MB 0 bytes

Conversation Settings

SO aN
DD a0 aN

| Protocol
Bluetooth
BPV7
DCCP
Ethernet
FC
FDDI
|EEE 802.11
|EEE 802.15.4

OO0OO0OO0OO0OO0OO0OO0OO0OOO0OO

w
Y
=

Statistics — Conversations to find ip addresses involved

- Source IP involved: 70.86.40.74, 80.177.212.86, 81.203.228.247, 82.224.105.18,
82.230.61.95, 83.38.217.121, 84.126.197.182, 84.222.186.54, 89.13.159.192,
89.245.239.169, 90.2.167.126, 116.27.182.78, 137.12.64.210

- Destination IP involved: 137.12.36.202, 137.12.14.220, 137.12.36.202,
137.12.63.5, 137.12.105.181, 137.12.14.211, 121.10.105.211

- There are no ports in this capture because these are ICMP packets being sent.
ICMP packets don’t use ports.

00 Wireshark - Capture File Properties - capture-03.pcap

Details
=napsnot iengin.

Time

First packet: 2008-05-06 21:40:19
Last packet: 2008-05-06 21:40:27
Elapsed: 00:00:08

Capture

Hardware: Unknown
0S: Unknown
Application: Unknown

Interfaces

Interface Dropped packets Capture filter Link type Packet size limit
(snaplen)
Unknown Unknown Unknown Ethernet 2048 bytes

Statistics

Measurement Captured Displayed Marked
Packets 3160 3160 (100.0%) -
Time span, s 8.383 8.383 —
Average pps 376.9 376.9 —
Average packet size, B 1323 1323

Bytes 4179293 4179293 (100.0%)

Average bytes/s 498 k 498 k

Average bits/s 3988 k 3988 k

Capture file comments

Help Refresh Copy To Clipboard Save Comments

Packets-per second: Average is 376.9 packets per second. Went to statistics and
looked at the capture file properties to find the pps.

3. Your summary of what is happening in the capture

Based on this capture there are a lot of source ip’s, destination ip and port numbers.
This represents a high volume of network activity. This high volume of network activity
can either represent a distributed denial-of-service (DDoS) or another malicious activity
that is overwhelming the system. Since the system is being bombarded with network

traffic, tasks that involve using the network will be slower and some important data can
be lost.

Group 3 Capture - Malicious Payload (complete 1 of 2) - 25pts The capture in this
group has a malicious payload. Run the snort tool on the capture and interpret
the results. This will involve the triggered alert(s) as well as analysis of the
capture itself. With some knowledge of what you are up against, use wireshark to
find the malicious payload and take a screenshot of what you found. For one of
the captures, the payload will be a file, for the other it will be a lie told in public.
Submission criteria:

1. Text of the alert from snort

include $RULE:PATHI —kit.rules

include $RULE_PATH/exploit.rules

In snort | had to make sure the exploit built-in rule was uncommented

include $RULE _PATH/indicator- ode.rules
| also had to make sure the shellcode built-in rule was uncommented.

Both the shellcode and the exploit rules affect the payload. Exploits are known attacks
on the payload, and the payload is the shellcode. So, that is why these rules are crucial
for detecting malicious payload.

tran5@course_server:347:447: $ snort -c¢ ./snort.conf -A full -k none -1
./myLogs/ -r group—ﬁB/capture—Bh.pcapl

Ran snort on Capture-04

Text alert:

stran5@course_server_347_L447: $ cat alert-vi

[*%] [123:3:2] (spp_frag3) Short fragment, possible DoS attempt [33%*]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/08-22:11:26.616090 10.1.1.1 -> 129.111.30.27

UDP TTL:64 TOS:0x0 ID:242 IplLen:20 DgmLen:56 MF

Frag Offset: ©x0000 Frag Size: 0x0024

[*x] [123:5:2] (spp_frag3) Zero-byte fragment packet [*x]
[Classification: Attempted Denial of Service] [Priority: 2]
09/08-22:11:26.616445 10.1.1.1 -> 129.111.30.27

UDP TTL:64 TOS:0x0 ID:242 IplLen:20 DgmlLen:24

Frag Offset: 0x0003 Frag Size: 0x0004

stranb@course_server_347_447: $ I

Short fragment, possible DOS attempt, Generic Protocol Command Decode
Zero-byte fragment packet, Attempted Denial of Service

2. Research as to the meaning of the alert

Short fragment, possible DOS attempt, Generic Protocol Command Decode: This
alert means an |IP fragmentation attack. It is a type of DOS attack. The packets break up
data into multiple fragmented packets that fit within the MTU (Maximum Transmission
Unit). So, a malicious user can send these broken up data packets, which makes it
really hard for the intended/regular user to connect to the network and do tasks that
involve it. One example is websites being unable to load for the intended user.

Zero-byte fragment packet, Attempted Denial of Service: This is a fragmentation
attack as well. It's mostly the same as the first alert, but this one the packets have no
data payload. That is why it is called zero-byte. Even though there is no payload data
for these packets, they still require processing from the network. The processing can
leak and show the weaknesses in the system, which lets malicious users know how to
exploit the system.

3. Identification of the malicious payload

ARP spoof detection. For more information, see the Snort Manual - Config
Snort - Preprocessors — ARP Spoof Preprocessor

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 fo:0f:00:T0:0T:00
preprocessor arpspoof_detect_host: 10.0.0.6 66:66:39:cf:d9:cl

Had to edit the snort.conf rule. Had to add the line preprocessor
arp_spoof_detect_host: 10.0.0.6 00:00:39:cf:d9:cd. Had to uncomment
preprocessor arpspoof. Had to run snort again with those added.

| 89/08-22:11:33.

Le=a]] [Calalzgéagall

09/08-22:11:31.

[*x] [112:4:1]

09/08-22:11:32.

eyl [falalzaAgal]]

[kx] [112:4:1]

09/08-22:11:34.

(spp_arpspoof) Attempted ARP cache overwrite

286591

cache overwrite

Attempted ARP

(spp_arpspoof)
286584

(spp_arpspoof) cache overwrite

286582

Attempted ARP

(spp_arpspoof) Attempted ARP cache overwrite

286597

attack [s*]

attack [*x*]

attack [x**]

attack [s*]

Alert based on my snort.conf file edit was Attempted ARP cache overwrite attack.
This is an arp spoof attack, which is when an attacker sends a spoofed mac address to
a local network to associate with the host ip. The host thinks it's legitimate and uses that
mac address, which causes the traffic to be sent to the attacker and not the actual host

itself..
0 :254? Tell 1

10 35.285494 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 42 Who has 10.0.0 0.0.0.6
11 36.285487 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 42 Who has 10.0.0.254? Tell 10.0.0.6
12 37.285485 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 42 Who has 10.0.0.254? Tell 10.0.0.6

38.285500 AddtronTechn_d9:7c.. Broadcast Who has 10.0.0.254? Tell 10.0.0.6

38.287366 10.0.0.254 is at 00:00:39:cf:d9:cd

The host 10.0.0.6 gets asked repeatedly who has the mac address of 10.0.0. 254

Toshiba_cf:d9:cd

AddtronTechn_d9: 7c..

i 10 35.285494 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 10.0.0. 2547 Tell 10 0.0. 6
| 11 36.285487 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 10.0.0.254? Tell 10.0.0.6
‘ 12 37.285485 AddtronTechn_d9:7c.. Toshiba_cf:d9:cd ARP 42 Who has 10.0.0.254? Tell 10.0.0.6
.285500 AddtronTechn_d9:7c.. Broadcast ARP 10.0.0.254? Tell 10.0.0.6

9:

60 10.0.0.254 is at 00:00:39:cf:d
60 Reply

98 Echo (ping) request
98 Echo (ping) reply

.287366
.061851
.973426
.977697

Toshiba_cf:d9:cd
Cisco_7c:eb:3d
10.0.0.6
10.0.0.254

AddtronTechn_d9: 7c..
Cisco_7c:eb:3d
10.0.0.254

10.0.0.6

ARP

LOOP
ICMP
ICMP

id=0xc41b, seq=0/0, ttl=
id=0xc41b, seq=0/0, ttl=

> Frame 10: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
> Ethernet II, Src: AddtronTechn_d9:7c:fd (00:40:33:d9:7c:fd), Dst: Toshiba_cf:d9:cd (00:00:39:cf:d9:cd)
> Address Resolution Protocol (request)

The “who has” packet shows the malicious mac address of 00:40:33:d9:7c:fd, and its
malicious because the “who has” keeps popping up.

ARP WNo nas 19.0.9.254¢ lell 10.9.0.b
10.0.0.254 is at 00:00:39:cf:d9:cd

Reply

Echo (ping) request id=0xc41b, seq=0/0, tt1=64 (reply in 17)
Echo (ping) reply id=0xc41b, seq=0/0, tt1=255 (request in 16)

38. 285500
38.287366
40.061851
47.973426
17 47.977697

Broaacast
AddtronTechn_d9:7c..
Cisco_7c:eb:3d

AJOTroniecnn_ay: /C..
Toshiba_cf:d9:cd
Cisco_7c:eb:3d
10.0.0.6

10.0.0.254

10.0.0.6 ICMP 98

o e §

Frame 14: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: Toshiba_cf:d9:cd (00:00:39:cf:d9:cd), Dst: AddtronTechn_d9:7c:fd (00:40:33:d9:7c:fd)

> Address Resolution Protocol (reply)

Finally the last ARP packet has the correct reply with the legitimate mac address of
00:00:39:cf:d9:cd

The Malicious Payload is the spoofed mac address of 00:40:33:d9:7c:fd. It is a lie told
to the public because the host thinks that 00:40:33:d9:7c:fd

Group 4 Captures - Writing Signatures (complete 2 of 2) - 40pts each The two
captures in this group are non-malicious traffic, but the company wants to create
alerts when certain events happen. The following descriptions provide details on
how to write the custom signatures to trigger on these events which occur in
specific packets noted in the capture names. Please be mindful of ensuring that
all conditions are met for an alert and that the correct number of events trigger
alerts. capture-06-p01.pcap (packet #1 in this capture is what you need to match
on) For this capture, the company wishes to see when a particular file is written
to a location using the TFTP protocol. Your signature should filter on the
following with respect to packet 1 of the capture:

1. Protocol: UDP

2. Destination IP of the TFTP server: 192.168.0.13

3. Destination port: 69

4. Alert text: “Capture 6 Write Requested”

5. Payload content: (HEX encoded)0x0002(ASCIl encoded)rfc1350.txt

6. SID: 10005450

7.REV: 1

Submission criteria:

1. Text of the signature you created

include $50:RULE:PATH/server—other.rules
include $SO_RULE_PATH/server-webapp.rules
Include $HOME_DIR/proj-083/myRules/personal-rulesPG.rules

Event thresholding or suppression commands. See threshold.conf
include /etc/snort/threshold.conf
"snort-lite.conf" 720L, 30667B 718,1

Had to make sure the snort-lite.conf file had my custom rules activated

0090 shanetran248 — stran5@course_server_347_447: ~[proj-03 — ssh « ssh f...

alert udp any any -> 192.168.0.13/32 69 \
(msg:I"Capture 6 Write Requested”; \
content: "|@@ @2|"; \
content: "rfcl35@.txt"; \
sid: 10005450; rev: 1;)

"myRules/personal-rulesPG.rules" 5L, 164B
This is my text signature based on the signature criteria given in the question.

2. Text of the alert from snort

stran5@course_server_347_447: $ snort -c ./snort-lite.conf -A full -k ng

ne -1 ./mylLogs/ -r group-04/capture—@6-—p@l.pcap I

Ran snort-lite on Capture-06

stran5@course_server_347_447: $ cat alert-vi
[#%] [1:10005450:1] "Capture 6 Write Requested” [**]

[Priority: @]

04/27-03:07:59.452740 192.168.0.1:57509 -> 192.168.0.13:69

UDP TTL:255 T0S:0x@ ID:® IpLen:20 DgmlLen:48

Len: 20

stran5@course_server_347_A447: $ I

This is my text alert from snort based on the rules | made.

capture-07-p08.pcap (packet #8 in this capture is what you need to match on) For
this capture the company is interested in identifying when their backup

authentication service ID is used to successfully log into one of their systems.
Since they use RADIUS authentication for all logins, we have a capture of events
related to authentication. Your signature should trigger once for this capture, if it
is configured as follows:

1. Protocol: UDP

2. Source port: 1812

3. Alert text: “Capture 7 RADIUS Auth Passed”

4. Payload content (1): (HEX encoded) 0x02 located in position 1 of the packet
payload (indicating passed authentication)

5. Payload content (2): (ASCIl encoded) “steve” which represents the username
of the backup account

6. SID: 10005452

7.REV: 1

Submission criteria:

1. Text of the signature you created

alert udp any 1812 -> any any \

(msg: "Capture 7 RADIUS Auth Passed"l i\
content: "|@2|"; \
content: "steve"; \
sid: 10005452; rev: 1;)

~
~
~
~
~
~
~
~
~

~

"myRules/personal-rulesPG.rules" 11L, 319B

This is my text signature based on the signature criteria given in the question.

2. Text of the alert from snort

[stranb@course_server_347_447: $ cat alert-vi

[**] [1:10005452:1] "Capture 7 RADIUS Auth Passed” content: "|@2|" [xx*]
[Priority: @]

08/24-14:23:59.948233 127.0.0.1:1812 —> 127.0.0.1:65443

UDP TTL:64 TOS:0x0 ID:64337 IplLen:20 DgmLen:13@

Len: 102

stranb@course_server_347_447: $ I

This is my text alert from snort based on the rules | made.

