
Fundamentals of R
for BIologists
Dillon A. Jones

LearnAdventurously.com



Fundamentals of R for Biologists

Dillon Jones

2022-07-25

Contents

Preface 4

Overview of material. 5

Section 0 - Introduction to R and Rstudio 7

0.0 Section 0 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.1.1 What is R and Rstudio? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.1.2 The layout of Rstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.1.3 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.2.1 Common Files in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.2.2 The Working Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.3.1 Intro to Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.3.2 Intro to Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

0.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Section 1 - Basics of R 18

1.0 Section 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Math Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.2 Intro to Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.3 Classes of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.4 Types of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Loading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Saving Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 Intro to Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bonus: Tips for Data Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



Section 2 - Manipulating Objects and Logic 35

2.0 Section 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Subsetting Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Subsetting Dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Subsetting Dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.3 Subsetting Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Intro to Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Combining logical statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Adding new columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Combining data with rbind() and cbind() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Combining Data with merge() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Section 3 - Introduction to Tidyverse 51

3.0 Section 3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Intro to tidyverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Intro to Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 select and pull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 arrange and relocate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 filter and distinct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 mutate and count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 summarize and group_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Section 4 - Cleaning data and creating pipelines 66

4.0 Section 4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Best Practices for Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 glimpse and simple plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.3 unique and Na values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 changing data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 replacing data directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Fixing typos with replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Cleaning data with filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Section 5 - logic, custom functions, and apply() 82

5.0 Section 5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Intro to if-else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Intro to For-Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.3 Intro to custom functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2



5.2.1 for loops on dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 For-loops for analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Apply function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Tying it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Section 6 - Plotting with ggplot2 100

6.0 Section 6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Intro to ggplot2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.2 labeling layers and ggobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 color and fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Size shape and transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3 visualizing using data and aes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 faceting with facet_wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.2 saving visualizations using ggsave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bonus: Intro to ggplot themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bonus: customizing themes with elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3



Preface

This textbook was written to help those in the biological sciences learn the R programming language. This
body of work was written out of frustration of my own R coding journey. While I was learning the R language
many years ago, I kept running into tutorials that assumed a programming background, used data sets that
had no direct relevance to my work, and often included so much material that it was overwhelming to parse
through.

This textbook attempts to remedy those issues by assuming no coding background of its reader, using
example biological datasets, and by only focusing on the most important functions needed to be successful
in R.

While this work is catered for those in the early to intermediate biology careers, the content contained within
is applicable for students of any background.

This textbook was developed in-line with an online course of the same name found at LearnAdventur-
ously.com/courses. While this textbook is free to download, the course offers over 70 video lessons, simple
quizzes to cement your knowledge, and “Mastery Checks” which are mini-projects found at the end of every
major section. This course is entirely online and self-paced with a certificate awarded to those who complete
the course.

In the interest of keeping this preface short, I want to leave you with one last note. The world we live in is
a vast landscape filled with limitless information. So much information that we humans could never hope to
collect, categorize, or comprehend it all. We live in a time with no single solution for our problems. Instead
there are dozens, hundreds, or even thousands of equally valid answers for the same question.

As you learn the R language, there will be times where you feel stuck. Where you are unsure of what to do
next. Where you may think there is no solution to your unique problem. The beauty of coding is that we
can create new solutions. Throughout this text, I am providing you not with old solutions to old problems.
Rather, I hope to give you the tools so that you can create your own solutions.

I hope the information contained within this text will help you with whatever questions you may seek to
answer in this world.

Happy coding!

-D

4



Overview of material.

As mentioned in the preface, this text assumes no background knowledge of coding in any language. However,
I recognize that many people may have already downloaded R + Rstudio, assigned a few objects, and perhaps
even analyzed some data in R.

Section 0 - Introduction to R and Rstudio is meant for those who may have never written a single line of
code, are incredibly lost anytime they read documentation for R, or may have never even heard of R and
Rstudio before. I would recommend all students to at least glance at Section 0, just in case there is material
that is beneficial to you. However, it is also a section that is meant to be skipped for those that may already
have some knowledge of R.

Section 1 - Basics of R covers some of the basic elements of R. This section introduces the different classes
and types of objects we will use in R. Then, we learn the fundamentals of loading and saving data into and
out of R. Finally, we introduce the basics of plotting and visualizing your data.

Section 2 - Manipulating Objects and Logic largely covers subsetting and logic. Here students will learn how
to extract specific elements from all types of objects in R. Then they will learn how to combine different
datasets using the rbind(), cbind() and merge() functions. This section is incredibly important to grasp as
it lays down the foundation for many topics covered later in the text.

Section 3 - Introduction to Tidyverse introduces the tidyverse package. In short, tidyverse is a collection of
functions specifically catered to data wrangling, manipulation, and visualization. This section will start by
detailing pipes and pipelines. Then we introduce a variety of tidyverse functions that allow us to extract
data (select() and pull()), manipulate how our data appears (arrange() and relocate()), and how to filter our
data based on some criteria (filter() and distinct()). Finally, we then cover how to do simple analyses using
the mutate(), count(), summarize(), and group_by() functions.

Section 4 - Cleaning data and creating pipelines is specifically aimed at cleaning datasets. Here we introduce
best practices for data cleaning and uses a variety of functions learned in Section 3 to fix problematic data.
I also detail how to use functions such as unique(), is.na(), and glimpse() to uncover potential problems in
our data. This section is likely the most important section for those in the biological sciences to learn, as
cleaning our data often takes a considerable amount of time.

Section 5 - logic, custom functions, and apply() takes a step back and introduces a variety of operations
that are common place in nearly all programming languages. Students will learn how to fork their code with
if-else statements, run functions over entire data sets use for-loops, and teaches students how to create their
own custom functions. In my opinion, learning and understanding this section is the absolute best thing you
can do to increase your coding ability. This section provides you with the tools to solve almost any problem
you may run into.

Section 6 - Plotting with ggplot2 covers how to visualize data with the ggplot2 package. ggplot2 is the
most widely used data visualization package and is often a source of frustration. This section will break
down ggplot into its fundamental components. We discuss how to create basic visualizations using all of the
parameters available in ggplot2.

Finally, there are a variety of “bonus” lessons scattered throughout this textbook. As mentioned in the
preface, this textbook has an accompanying online course found at LearnAdventurously.com/courses. The
bonus lessons are completed lessons that for one reason or another were cut from the final course. This could
be due to the complexity of the lesson, how it would fit into the overall course, or any number of reasons.
Rather than removing this already completed material, I kept them in the text as “bonus” lessons. These
are still in the online course as well, however they have no accompanying video lecture. It is very likely, that
these lessons will be used in future courses and texts that cover a particular topic in more detail.

As you go through this text it is highly recommended that you follow along in your own Rstudio environment.
I encourage you to actually write out the code and try to understand how it all works. If you would like to
download each section as an R Markdown document, which allows you to run the code embedded throughout
this text, that is all available in the online course.

5



I hope this adequately covers all of the material that you are about to learn! When you’re ready, hop into
any of the sections and get started on your R journey!

Happy coding!

6



Section 0 - Introduction to R and Rstudio

0.0 Section 0 Overview

Welcome to the course!

This section is meant for those who have absolutely no prior experience with R, need a refresher on how to
install R/Rstudio, or are struggling with some of the core concepts. The topics covered this week include:

• What is R and Rstudio?

• How to install R and Rstudio

• The layout of Rstudio

• What is a function?

• What is a package?

• How to add comments to your scripts

This section is considered optional dependent on your current level of R. If you need to come back to this
section, it will always be available!

0.1.1 What is R and Rstudio?

What is R and Rstudio?

Lets start with a very basic overview of R and Rstudio.

What is R? “R is a language and environment for statistical computing and graphics.” https://www.r-
project.org/about.html

In short, R is a language that allows you to manipulate, analyze, and visualize data. A big benefit
of R, is that it is free and open source, meaning anyone can develop their own packages that include custom
functions. We’ll touch more on R functions and packages shortly, but first lets introduce Rstudio.

What is Rstudio? Rstudio is an Integrated Development Environment (IDE) specifically catered for R.
In essence, Rstudio is a software that is tailor-made to run the R language with several major
quality of life features that make coding in R much easier.

Both R and Rstudio are 100% free for you to download and use on your own device.

Installing R To install R you will need to download and install the respective software from https://cran.r-
project.org/

At the top of that page, there are download links for Windows, Mac, and Linux. Install the latest R version
and you can then begin to run R on your computer!

Installing Rstudio After you have installed R, you can install Rstudio on your device by download-
ing it from https://www.rstudio.com/products/rstudio/download/#download and following the installation
wizard.

7

https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download


An R alternative in your Browser Alternatively, you can use RStudio in your browser without needing
to download anything by navigating to rstudio.cloud. While there are minor differences between RStudio
and rstudio.cloud, I have made sure the course can operate through either platform.
Take note, that rstudio.cloud does have a limit on how much you can use the free version. If you are just
wanting to get started right now, this is your best bet!
Use what you are most comfortable with!

0.1.2 The layout of Rstudio

How do you use RStudio?

As mentioned earlier, RStudio is tailor made for R. At the top of the Rstudio window we have the
toolbar with various buttons for creating new files, configuring settings, and adjusting Rstudio for your
purposes.
Beyond the toolbar, Rstudio has by default 4 panes that we will work in:

• The top left pane is our source. Here where we will edit our scripts and Rmarkdown files. We can
also view full data sets here.

• The top right pane is our environment. This is where objects from our analysis will live.

• The bottom left pane is our console. When we run scripts this is where those scripts will go. Outputs
from our analyses will also go there. You are free to run lines of code directly in the console as well.

• The bottom right pane allows you to see files and view plots.

While these panes can be adjusted for your particular workflow, this setup is the most standard way of using
Rstudio and is how we will use it throughout this course.
You may also notice that my Rstudio has a different color scheme than yours. That can be changed by going
to Tools> Global Options> Appearance and changing the editor theme. I use Idle fingers as I have a
good deal of light sensitivity that makes the default theme difficult to look at!

8

rstudio.cloud


0.1.3 The Environment

The Environment pane

The environment pane lives on the upper right hand side of Rstudio. The environment allows us to see what
objects are saved in R as well as quickly preview their contents. Running the chunk below will add a series
of objects to the environment that you can then explore.

num_val <- 2 #A single numeric value
char_val <- "frog" # A single character value

num_vect <- c(1,2,3,4,5) # a vector of numbers

df <- data.frame(col_1 = c(1,2,3,4,5), #A dataframe of 3 columns and 5 rows
col_2 = c('a','b','c','d','e'),
col_3 = c(22.4,23.7,34.2,12.3,45.3))

list <- list(num_val,char_val,num_vect,df) #a list that contains all the previous objects

For values and vectors, a preview of the data is simply displayed beside their object name.
For more complex objects, such as dataframes and lists, a preview can be displayed by selecting the circular
button with a right facing triangle to the left of the object.
A complete view of the data can be seen be selecting either the table (in the case of data frames and matrices)
or the magnifying glass icon (in the case of lists) to the right of the object.

0.2.1 Common Files in R

Common files in R

This section will briefly cover some of the most common file types exclusive to R

R scripts (.R files) In most uses of R, we create scripts. Scripts are a collection of functions written
in the R language that can be interpreted by the R software. We call the process of creating these
scripts, coding.
Scripts can achieve any number of goals such as manipulating a data set, conducting a statistical analysis,
or visualizing the results of your research. Scripts are kept in R as a .R file.

9



R Markdown (.Rmd files) RMarkdown objects can be thought of as an extension of scripts that allow
you to run segments of code (called chunks) alongside text. RMarkdown files can also be exported into PDF,
html, or even word documents. Once exported, they retain all of the text and code while also displaying the
results from the chunks.
All of these lessons are actually created using RMarkdown! If you are reading this on the website, you are
reading the exported html file from an RMarkdown object.
Here is an example chunk that simply adds 2+2. Remember, chunks are snippets of code that we can run
and achieve a simple result. If we run this chunk, we will see the output of 2+2 below the chunk.

2+2

## [1] 4

Of course, future chunks are going to be more complicated than just 2+2. If opening the RMarkdown file
directly, you can run each chunk as you wish. Some people prefer to do all of their R coding solely in
RMarkdown objects instead of in scripts as they can easily organize their thoughts. How you decide to use
R is up to you!

Data files (.RData) As we will learn soon, R allows the creation of many objects. These objects could
be data sets, results from analyses, or visualizations related to your study!
While it is entirely possible to save each of these objects individually, and there are certainly cases where that
is preferable, we can also save collections of these objects as a single .RData file. This makes file management
much easier especially if you are conducting your analysis in several steps, need to collaborate with someone
on the project, or just like to keep your data organized!

0.2.2 The Working Directory

Working directory

Before we load data into R, we need to introduce the working directory.
In short, the working directory is a folder on your computer that R has access to. This folder is
the spot that you designate for R to load in data, export results, and in general, work out of.
This working directory can be almost anywhere on your computer.
Lets say you make a new folder on your desktop named “example”. What we need to get now is the path to
this working directory.

Path to Working Directory The path tells R how to find this folder. If the folder is on your desktop,
it is very likely your path is something similar to “C:\Users\Dillon\Desktop\example” if you’re on windows
YOUR PATH WILL BE DIFFERENT THAN MINE
Unless the username on your machine is also Dillon, it is likely your path will be different. If you are not
tech savvy, it may be confusing to figure our what your path is the first time.
I’ve included a few resources the detail how to find the path for various devices.

• Windows: https://www.addictivetips.com/windows-tips/get-complete-path-to-a-file-or-folder-on-
windows-10/

• Mac: https://www.howtogeek.com/721126/3-ways-to-see-the-current-folder-path-on-mac/

• Linux: https://www.howtouselinux.com/post/linux-command-get-file-path

10

https://www.addictivetips.com/windows-tips/get-complete-path-to-a-file-or-folder-on-windows-10/
https://www.addictivetips.com/windows-tips/get-complete-path-to-a-file-or-folder-on-windows-10/
https://www.howtogeek.com/721126/3-ways-to-see-the-current-folder-path-on-mac/
https://www.howtouselinux.com/post/linux-command-get-file-path


Set the Working Directory Once you have your path, you will set your working directory via the
setwd() function

#Example for my PC
setwd("C:/users/dillon/desktop/example")

Note, that for the setwd() function you need to place the path in quotations and ensure you use
forward slashes ( / )and not back slashes ( \ ).

If the chunk above ran successfully, you should see the working directory at the top of your console in
Rstudio.

Setting a working directory can often be very confusing for first time R users, but it is important to get this
concept down. You will use a working directory almost every time you use R.

0.3.1 Intro to Functions

Intro to Functions

Throughout these sections I have provided examples of several functions. Functions are self contained bundles
of code that accomplish some task given an input. One example is sum(). The sum() function takes a
vector of numeric values (input) and calculates the sum of all those values (output).

sum(c(1,2,34,6,5,4,2,83))

## [1] 137

There are of course many more functions that accomplish a wide variety of tasks. Any function in R takes
in arguments. Arguments are separated by commas and could be an object, a TRUE/FALSE value, or some
text that instructs the function in some way.

We can explicitly specify which argument we want to use by using the name of the argument alongside the
equal sign.

This is a good time to introduce the plot function!

#lets first make some equal length vectors of data
age <- c(1,2,5,4,5,4,2,3,7,6)
size_cm <- c(1.5,2.6,1,1,5,6,2.7,4,9.8,10)

#then we can plot that data using the arguments x and y.
# argument x relates to the data you place on the x axis
# argument y relates to the data you place on the y axis

plot(x = age, y = size_cm)

11



1 2 3 4 5 6 7

2
4

6
8

10

age

si
ze

_c
m

Arguments are described by each function in detail and placed in a particular order. For example, with
plot() x is the first argument, while y is the second.

This order can be shuffled if we explicitly define each argument. For example, this chunk shows how to plot
age and size_cm correctly in 3 different ways.

plot(age,size_cm)
plot(x = age, y = size_cm)

12



1 2 3 4 5 6 7

2
4

6
8

10

age

si
ze

_c
m

plot(y = size_cm,x = age)

Naturally, functions can take many different arguments. To understand more about a function and what
arguments it takes, we can place a question mark in front of the function to access its help documentation.

An example of the help window is shown below. If you run this on your own device, it will appear in the
bottom right pane.

?plot

13



We can also make our functions easier to read by splitting them between multiple rows. To do so, you need
to ensure that the function parentheses still contain all the arguments, and that each line is separated by a
comma

#then we can plot that data using the arguments x and y.
# x relates to the data you place on the x axis
# y relates to the data you place on the y axis
# xlab adds a label on the x axis
# ylab adds a label on the y axis
# main adds a title to the plot

plot(x = age, y = size_cm,
xlab = "Age on the X axis",
ylab = "Size in centimeters on the y axis",
main = "Title for my plot on age versus size")

14



1 2 3 4 5 6 7

2
4

6
8

10
Title for my plot on age versus size

Age on the X axis

S
iz

e 
in

 c
en

tim
et

er
s 

on
 th

e 
y 

ax
is

Again, if you are explicitly defining the arguments in your function, the order they appear does not matter.

#The following code will produce the same plot, even if the order of these arguments doesnt really make sense. I changed the point color to red in the second plot to make it clearer as to which plot is which.

plot(xlab = "Age on the X axis",
ylab = "Size in centimeters on the y axis",
x = age, main = "Title for my other plot on age versus size",
y = size_cm, col = "red")

15



1 2 3 4 5 6 7

2
4

6
8

10
Title for my other plot on age versus size

Age on the X axis

S
iz

e 
in

 c
en

tim
et

er
s 

on
 th

e 
y 

ax
is

Functions are what we will mostly be working with in R. The beauty of R being an open source software, is
that anyone can write their own functions and distribute them to other users through packages. Including
you!

0.3.2 Intro to Packages

Intro to Packages

Packages are collections of functions written by other users. These packages are often catered to solving a
particular issue or are meant for a particular analysis.

For example, there are packages for manipulating spatial data, analyzing phylogenetic history, and interfacing
with organizations such as the IUCN to name a few.

For any package, we must first install it into R and then we need to load it with library().

You can think of installing the package like buying a book and putting it on your book shelf.

Loading the package is similar to pulling the book off the shelf so you can access the information contained
within.

To install a package, we just need to use the install.packages() function

#This is where we get the "book" and put it on our bookshelf.

install.packages("tidyverse")

Then to load the package we just use the library() function

16



#this is where we get the information from the "book" to use in R
library(tidyverse)

Once a package is installed on your device, you typically will not need to install it again and can just access
it with the library() function.

Naturally, it would be impossible to teach a course using all of the different packages available. However,
there is one package that in my opinion should be used in nearly every single R project.

That package is tidyverse.

Technically, tidyverse is a package which contains many carefully curated packages. Tidyverse allows all
of these packages to communicate with one another seamlessly. You can see all the included packages at
tidyverse.org, but here are a few and their uses.

• dplyr - data manipulation

• ggplot2 - visualizations

• stringr - manipulating strings and characters

In Section 3, we introduce tidyverse in detail.

0.3.3 Comments

Commenting

When we code, it is good practice to leave comments for ourselves. Comments are parts of our script that
do not run. In R, any text following the # symbol is treated as a comment.

Comments can be used to leave notes for yourself, add organization to your code, and document how your
particular analysis is meant to run. Pay attention to comments through this course as they often have
instructions or extra information!

Take this chunk for example. Even though there is plenty of text in the comments, only the output 2+2 will
run.

#This is a comment and will not affect the code when I run it.
#We need to make sure each line that we want commented is precededed by a # symbol

#3+3

#We can see above that the command 3+3 will not run unless we remove the # symbol

2 + 2

## [1] 4

Using comments often is key to keeping your code neat and organized. Imagine coming back to a particular
script 3 months later and having no idea why you did what you did!

In short, use comments and use them often!

17

tidyverse.org


Section 1 - Basics of R

1.0 Section 1 Overview

Section 1 Overview

Welcome to Section 1 of Fundamentals of R for biologists!

This section covers introductory material for this course. While not as fundamental as Section 0, the material
covered is still considered basics of R and Rstudio.

We will cover:

• Common types and classes of R objects

• How to load, save, and organize data in R

• A brief intro into the plot() command.

1.1.1 Math Rules

Math Rules

One of R’s most fundamental uses is as a calculator. R can run any number of mathematical functions. The
following chunk shows the basics.

Simple operations Simple mathematical operations can be performed easily

2+2 # Addition via the + symbol
4-2 # Subtraction via the - symbol
2*2 # Multiplication via the * symbol
2/2 # Division via the / symbol
2ˆ2 # Exponents via the ˆ symbol

## [1] 4
## [1] 2
## [1] 4
## [1] 1
## [1] 4

R follows PEMDAS rules as well.

2*3+100
100 + 2*3
(100 +2)*3

## [1] 106
## [1] 106
## [1] 306

18



Simple functions R also contains a wide variety of functions to perform different mathematical operations.

#Heres a few examples

sum(2,2,3,5,6,8) #Sum of all these numbers

mean(2,2,3,5,6,8) #The average of all these numbers

median(2,2,3,5,6,8) #The median of these numbers

sqrt(81) #get the square root of a number

sd(c(2,3,4,5,6,7,8,2,10,10)) #The standard deviation of a a set of numbers

## [1] 26
## [1] 2
## [1] 2
## [1] 9
## [1] 3.020302

We can also round values using ceiling() (to round up) and floor() (to round down). The round() function
exists as well and follows standard rounding rules.

x <- 3.2

ceiling(x)
floor(x)
round(x)

## [1] 4
## [1] 3
## [1] 3

1.1.2 Intro to Objects

Intro to Objects

Lets introduce a concept that is fundamental to R. Objects and object assignment.

An object is anything in R that holds information for R to use. We assign information to an object using
the arrow <- or the single equal sign =

x <- 2 # a simple object, x, containing the data 2

x #if we type x, then the information within x will be printed

## [1] 2

19



When we assign data to an object in R, we use the Arrow symbol <-. Think of it as the information you
are wanting to retain is flowing into the object via the arrow sign.

Objects can be named any combination of characters and numerics

What makes an object useful, is that we can apply functions to the data contained within.

#Watch that in all of the below examples, x is equal to 10

x<- 10 #x is equal to 10

x+2

x*6

x/2

## [1] 12
## [1] 60
## [1] 5

Objects can contain more than a single number of course. The object below contains many numbers and we
can run functions that apply to all of the values contained within the object.

x <- c(2,4,5,6,7,8,2) #Now x contains all the numbers 2,4,5,6,7,8,2

x+10 #We can add 10 to every number

x*2 #we can multiply all the numbers by 2

sum(x) #we can get the sum of all those values

mean(x) #we can get the mean of all these values

## [1] 12 14 15 16 17 18 12
## [1] 4 8 10 12 14 16 4
## [1] 34
## [1] 4.857143

Objects are a core component of R programming. But objects don’t just need to be simple numbers. Lets
explore the different classes of objects we can use in R.

1.1.3 Classes of Objects

Intro to Object Classes

All data and objects in R fall into a class. Classes describe the object and tell R how to interpret the
information.

Most often, you will work with objects from the classes: character, numeric, and logical

20



However, be aware that many custom classes exist for different types of data!
You can find the class of on object by using the function class()

class(2) #numeric
class('Urban') #character
class(1==2) #logical

## [1] "numeric"
## [1] "character"
## [1] "logical"

In the below example, we assign numeric data to the variable x. This gives x the class numeric.

x <- 2+4

class(x)

## [1] "numeric"

Character Character objects are composed of letters, numbers, and symbols, often referred to as strings.
Common strings include dates, names, and locations. You cannot perform mathematical operations over a
character object. We can specify an object as a character by using quotation marks (double or single!).

x <- "string double quotes"
x

class(x)

x <- 'string single quotes'
x

class(x)

## [1] "string double quotes"
## [1] "character"
## [1] "string single quotes"
## [1] "character"

The next example shows what would happen if you tried to add the number 3 to a character object. Even
though the character is the number 3, we cannot apply mathematical operations over it because it is in the
character class. To r, this would be like trying to add 2 to the word apple.

x <- "3"
x
class(x)

x + 2

## Error in x + 2: non-numeric argument to binary operator

## [1] "3"
## [1] "character"

21



Numeric Numeric objects are simply numbers. A numeric refers to any number whether they be whole
numbers (integers) or if they contain decimals (doubles). Numeric objects can have mathematical operations
performed on them.

x <- 2
class(x)

x <- 2.5
class(x)

x + 2

class(x+2)

## [1] "numeric"
## [1] "numeric"
## [1] 4.5
## [1] "numeric"

Logical Logical objects need to be either TRUE or FALSE values. These are often used for pres-
ence/absence, TRUE/FALSE, or any other type of binary data. Additionally, logical objects can be used to
compare one value to another value. These are really useful while cleaning your data.

class(TRUE)
class(FALSE)

## [1] "logical"
## [1] "logical"

We can create logic by comparing 2 values with the double equal sign

1==1
1==2

## [1] TRUE
## [1] FALSE

Doing so results in a logical object is we save the output

x <- 1==2

class(x)
x

## [1] "logical"
## [1] FALSE

There are many more data classes that you can work with, but this should give us a good start. Lets talk
about how we can organize data and objects into different types.

22



1.1.4 Types of Objects

Types of Objects

Objects can contain data in a variety different of formats. In this course, we will focus on Values, Vectors,
Matrices, Data frames, and Lists. Each is explained below, alongside what classes of objects they can
be composed of.

Values Values, represent single entries of data. They can be of any class.

x <- 2
x <- 'froggy'

Vectors Vectors, represent 1 dimensional data (a single row) with several values. We often create vectors
using the function c().

x <- c(2,3,4,5,6)
x

y <- c('red','blue','green','yellow')
y

## [1] 2 3 4 5 6
## [1] "red" "blue" "green" "yellow"

Values can be of any class, however, be aware that mixing classes will result in the character class for all the
values.

z <- c(2,3,4,'Apple','Orange','Frogpear')
z
class(z)

## [1] "2" "3" "4" "Apple" "Orange" "Frogpear"
## [1] "character"

Matrix A Matrix, represents 2 dimensional data (columns and rows) where the classes of data (numeric,
logical, character etc.) are all the same

mat <- matrix(c(c(1,2,3,4,5),
c(2,3,4,5,6),
c(3,4,5,6,7),
c(1,4,5,6,5)), ncol = 5)

mat

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 5 5 5 4
## [2,] 2 2 6 6 5
## [3,] 3 3 3 7 6
## [4,] 4 4 4 1 5

23



Similar to a vector, mixing the data classes will result in the data becoming all of the class character.

mat <- matrix(c(c(TRUE,2,3,4,5),
c(2,3,FALSE,5,6),
c("a","frog","fog","frg","frog_2.0"),
c(1,4,5,6,5),

c(4,5,8,2,1)), ncol = 5)
mat

## [,1] [,2] [,3] [,4] [,5]
## [1,] "1" "2" "a" "1" "4"
## [2,] "2" "3" "frog" "4" "5"
## [3,] "3" "0" "fog" "5" "8"
## [4,] "4" "5" "frg" "6" "2"
## [5,] "5" "6" "frog_2.0" "5" "1"

Data frames Data frames, are similar to matrices in that they are 2 dimensional sets of data. However,
they contain columns where each class can be different.

This is the data type you will most often import your datasets as into R. In the example below, I am creating
a data frame by combining equal length vectors via the data.frame() function. Notice that each vector is
of a different class.

age <- c(1,2,5,4,5,4,2,3,7,6)
size_cm <- c(1.5,2.6,1,1,5,6,2.7,4,9.8,10)
habitat <- c("Urban","Urban","Urban","Suburban","Suburban","Suburban","Rural","Rural","Rural","Rural")
true_false <- c(T,T,F,T,F,T,T,T,F,F) #Using shorthand True/False

df <- data.frame(age,size_cm,habitat, true_false)

df

## age size_cm habitat true_false
## 1 1 1.5 Urban TRUE
## 2 2 2.6 Urban TRUE
## 3 5 1.0 Urban FALSE
## 4 4 1.0 Suburban TRUE
## 5 5 5.0 Suburban FALSE
## 6 4 6.0 Suburban TRUE
## 7 2 2.7 Rural TRUE
## 8 3 4.0 Rural TRUE
## 9 7 9.8 Rural FALSE
## 10 6 10.0 Rural FALSE

Lists Lists contain multiple objects within them. These can be any type of object such as single values,
data frames, or even other lists! We will not use lists too often in this course, but they are very common
outputs from functions in R.

The below example shows a list containing several vectors of equal length.

list <- list(x = c(1,2,3,4,5,6),
y = c(1,45,67,54,23),
z = c(5,5))

24



list

## $x
## [1] 1 2 3 4 5 6
##
## $y
## [1] 1 45 67 54 23
##
## $z
## [1] 5 5

All these different object and data types are critical to understanding R. Throughout the course we will refer
to different types of data by their class and structure.

1.2.1 Loading Data

Loading Data

Now lets talk about loading data into R. As a reminder, your working directory needs to be set in order to
properly load and save data in R.

Once your working directory is set, lets place the data we want to use inside of that folder.

Here we have a file named example.csv placed inside our working directory.

To load the .csv file into R, we will use the function read.csv()

read.csv('example.csv')

## ID age length_mm mass_g habitat_type
## 1 A 1 12 55 urban
## 2 B 1 11 43 urban
## 3 C 3 15 61 urban
## 4 D 1 16 43 urban
## 5 E 2 17 43 suburban
## 6 F 2 17 51 suburban
## 7 G 3 17 52 suburban
## 8 H 1 15 55 rural
## 9 ID 1 14 57 rural
## 10 J 2 13 49 rural

The above example simply reads the data. Reading the data is how we tell R to interpret a data set so that
it can be used. If we want to use the data in R, it is best to assign it to an object. Lets do that, naming the
object df

df <- read.csv('example.csv')

If you ran this bit of code yourself, you should see the object df under the environment window in the top
right pane of your RStudio.

25



Important considerations

• Your working directory needs to be set correctly and the file you wish to load is placed inside that
working directory

• The filename needs to be typed exactly as it appears (capitalizations, spaces, symbols etc.)

• You need to include the file extension. In the case of the example.csv dataset, the file extension is .csv.
This file extension stands for Comma Separated Values. Every file has an extension however, they may
be hidden on your device.

– Refer to this documentation for assistance in windows: https://www.howtogeek.com/205086/
beginner-how-to-make-windows-show-file-extensions/

– For Mac: https://support.apple.com/guide/mac-help/show-or-hide-filename-extensions-on-mac-
mchlp2304/mac

1.2.2 Saving Data

Saving Data

When we want to export data out of R there are 2 primary ways to save objects: Saving single objects to a
file or saving multiple objects to a file that we can open with R.

Saving single objects Often we need to work with data in multiple different programs. Say you import
a spreadsheet into R, do some type of manipulation, and then want to view it in excel. The same goes for
wanting to export an object to view in GIS software, a visualization to put in a publication, etc etc

To save objects, we use the write family of functions.

In the same fashion that we read data in to R, we will write data out of R. There are a wide variety
of write functions that we use for different types of data. Here I will show you how to use the write.csv()
function.

write.csv() does exactly what you think. It writes an object out of R into a .csv file that you can very
easily open up in your favorite spreadsheet viewing software.

26

https://www.howtogeek.com/205086/beginner-how-to-make-windows-show-file-extensions/
https://www.howtogeek.com/205086/beginner-how-to-make-windows-show-file-extensions/
https://support.apple.com/guide/mac-help/show-or-hide-filename-extensions-on-mac-mchlp2304/mac
https://support.apple.com/guide/mac-help/show-or-hide-filename-extensions-on-mac-mchlp2304/mac


Lets take that same data frame we read into R, and now lets write it into our working directory and name
it exported_df.csv

write.csv(df,file = 'exported_df.csv')

The function above simply takes the dataframe df, and writes it out as the file exported_df.csv. Note
that you need to add the file extension, in this case .csv, in order for the file to export correctly.

There are a wide variety of write functions suited for different types of data. I have included a few examples
below. Note that many of these will require packages that are noted in the comment.

write.tree() #Writes phylogenetics tree from APE package

write.FASTA() #Writes a FASTA file from the APE package

st_write() #Writes a variety of spatial objects from the SF package

write_delim() #Writes out a table not using a comma delimiter from the reader package

Saving multiple objects What if you want to save multiple objects at once?

Lets say after mastering the material in this course, you create an advanced series of r scripts for your
research. You might have started with a single data set, but now you have multiple data objects, results
from analyses, and various visualizations that you don’t want to rerun the next time you open up R.

This is where we will save and load .Rdata files

.Rdata files can contain many different objects. The chunk below creates many different objects.

num_val <- 2 #A single numeric value
char_val <- "frog" # A single character value

num_vect <- c(1,2,3,4,5) # a vector of numbers

df <- data.frame(col_1 = c(1,2,3,4,5), #A dataframe of 3 columns and 5 rows
col_2 = c('a','b','c','d','e'),
col_3 = c(22.4,23.7,34.2,12.3,45.3))

list <- list(num_val,char_val,num_vect,df) #a list that contains all the previous objects

What we can do, is place all of these different objects into a single .Rdata file which we can load later. We
do this by using the save() function. Simply list out every object we want to save and then include a file
name with the file argument.

save(df,list,char_val,num_val,num_vect, file = "ExampleRfile.Rdata")

Now if we want to load that same data in the future, we simply use the load() function. Lets clear the data
in the environment using the next chunk to demonstrate this.

rm(list = ls()) #this nifty command removes everything in the environment

Now lets load the data back in using the load() function

27



load('ExampleRFile.Rdata')

simple right? It is good practice to get in the habit of saving and loading collections of R objects after major
steps in your analysis. This will help keep your code more organized and give you the benefit of not needing
to store dozens of different files for a single analysis.

1.3.1 Intro to Plotting

Intro to Plotting

We can create a variety of visualizations using plot(). plot() is a base R function for creating plots. Later
in the course we will focus heavily on visualization with ggplot2, however, using base R plots are still useful
in making simple graphs!

plot() has a variety of arguments we can use:

• x - the x-axis variable (independent variable)

• y - the y axis variable (optional; dependent variable)

• xlab - the label on the x axis

• ylab - the label on the y axis

• main - the title of the plot

There are quite a few more that can be found in the help text for plot! (?plot)

Lets load in a simple data frame we want to make a plot of. It contains 2 numeric data (mass_g and
length_cm) and a character data (species)

df <- data.frame(mass_g = c(10,20,10,15,10,10,15,20,11,10,12,11),
length_cm = c(11,12,15,12,11,13,14,15,11,13,12,13),
species = c("Species_A", "Species_A","Species_A","Species_A","Species_B","Species_B","Species_B","Species_B",
"Species_C","Species_C","Species_C", "Species_C"))

Scatter plot Lets make a simple scatter plot of length and mass. Scatter plots assume that both x and y
are numeric data. We assume mass is dependent on length, thus length goes on the x axis.

Note: To access data within a data frame, we use the $ next to the name of the object. This is covered in
more detail in Section 2.

plot(x = df$length_cm, y = df$mass_g)

28



11 12 13 14 15

10
12

14
16

18
20

df$length_cm

df
$m

as
s_

g

Simple! Lets now add in the title, x axis label, and y axis label, using the arguments we mentioned.

plot(x = df$length_cm, y = df$mass_g,
xlab = "Length (cm)", ylab = "Mass (g)",
main = "Relationship of Length and Mass")

29



11 12 13 14 15

10
12

14
16

18
20

Relationship of Length and Mass

Length (cm)

M
as

s 
(g

)

As a reminder, each argument needs to be separated by a comma and all arguments need to be within the
parentheses.

Box plot We create box plots when we have character and numeric data. Lets create one for the variables
mass_g and species!

To do so, we use the boxplot() function. boxplot() uses similar arguments as plot(), the only difference
is that the data input uses a format of y~x. y is still our dependent variable, while x is our independent
variable.

boxplot(df$mass_g ~ df$species)

30



Species_A Species_B Species_C

10
12

14
16

18
20

df$species

df
$m

as
s_

g

As mentioned earlier, we can specify our labels and title using the same arguments as plot(). Lets add those
now.

boxplot(df$mass_g ~ df$species, main = "Masses of different species",
xlab = "Species", ylab= "Mass in grams")

31



Species_A Species_B Species_C

10
12

14
16

18
20

Masses of different species

Species

M
as

s 
in

 g
ra

m
s

This has been just a brief introduction into plots! Once you want to start making more complex plots, I
highly recommend learning the ggplot package we introduce in week 6!

Bonus: Tips for Data Organization

A quick note on data organization

It is very likely that your working directory is subject to get extremely messy, extremely quickly. Between
all the different scripts, datasets, and documentation its easy to get overwhelmed. Here are some suggestions
to keep this in order.

Folder Organization In general, its a good idea to have a folder for each scripts, inputs, outputs, and
raw_data in your working directory.

32



This is easy to work with in R. If your working directory is set properly, you can access these subfolders in
your functions by placing the name of the subfolder in front of the file name.

Take the example below which assumes you have your .csv file in a subfolder in your working directory
named inputs. It will first read that csv and then write a variety of objects into the outputs folder, which is
later loaded by the load() function.

#read the data contained in the inputs subfolder
read.csv('inputs/example.csv')

#save the data into an outputs folder
save(df,list,char_valu,file = "outputs/output_file.rdata")

#load the data found in the outputs folder
load(file = 'outputs/output_file.rdata')

Organization of your project before you even begin to write a line of code can make a huge difference for
keeping everything organized, making sure you understand your analysis, and can save you hours of lost
effort just trying to find where a particular file is.

Other considerations

• Segmenting you analysis into ordered steps.

• Trying to keep your labeling consistent for objects, files, and folders. Use short, yet descriptive names.

33



• Keeping good documentation of how your code works and what it interacts with.

– Heavy use of comments and/or using RMarkdown documents are great solutions!

Again, there is no perfect method for managing data. However, even a tiny bit of imperfect data organization
can make your life all the more easy. I implore you to think about data organization, commenting your code,
and keeping track of everything whenever you start working on a project.

I promise it will go a long way!

34



Section 2 - Manipulating Objects and Logic

2.0 Section 2 Overview

Week 2 Overview

At this stage of the course, we know the basic object and data types, we know the different classes of data ,
and we know some of the basic R principles.

This week we will cover data manipulation via subsetting and combining datasets. In short, subsetting
allows us to extract data via index numbers, filters, or some other criteria. Combining involves adding new
information to a data set from another piece of data.

We will cover:

• Subsetting via index number for vectors, data frames, and lists

• Subsetting using logic

• Adding rows via rbind()

• Adding columns via cbind()

• Merging data frames using merge()

The principles in this section will be used throughout your R career and will allow us to introduce more
advanced concepts in later weeks!

2.1.1 Subsetting Vectors

Subsetting vectors with index values

This section will cover how to subset vector type data using base R. Base R means that we require no outside
packages to perform the tasks listed below.

As review, vectors are 1-dimensional data where all values are of the same type. Lets create a vector of
numbers that range from 1 to 10. We will use the c function here. c() combines comma-separated values
into a single object.

vect <- c(2.4,1.1,3,4.5,7.8,2.3,3.3,1.1,5.5,7)

We can subset and extract values using their index.

An index signifies where in an object a particular value lives. In the vector we created, the first value has
an index of 1. The second value, an index of 2. So on and so forth.

We can subset a vector by specifying the index number we wish to extract within square brackets [ ]. The
example below will print all the values in vect, and then only the 4th value (4.5).

vect

vect[4]

35



## [1] 2.4 1.1 3.0 4.5 7.8 2.3 3.3 1.1 5.5 7.0
## [1] 4.5

We can extract multiple values at once by listing out all the indices inside the c() function.

#Pull the 1st, 5th, and 7th values
vect[c(1,5,7)]

#pull the 2nd, 4th, and 8th, values

vect[c(2,4,8)]

## [1] 2.4 7.8 3.3
## [1] 1.1 4.5 1.1

We can also specify a range of values to extract. To do so, place the bounds of the positions, separated with
a colon (:).

#pull the first 5 values
vect[1:5]

#Pull the values 3 through 6

vect[3:6]

## [1] 2.4 1.1 3.0 4.5 7.8
## [1] 3.0 4.5 7.8 2.3

The colon denotation can be combined with c for greater flexibility.

#Pull the first 5 values as well as the 7th, and the 10th values

vect[c(1:5,7,10)]

## [1] 2.4 1.1 3.0 4.5 7.8 3.3 7.0

This is a very basic overview of how to subset vectors with index values. Subsetting with indices is the most
basic, and thus most limited, way to subset. In future sections, we will learn how to subset any type of data
using logic.

2.1.2 Subsetting Dataframes

Subsetting Dataframes

In R, you will be working most often with dataframes. As a reminder, these are 2-dimensional datasets
organized in columns and rows.

Lets make a simple dataframe named df that includes ID, Habitat type, Length in Millimeters, and age

36



df <- data.frame(ID = c(1,2,3,4,5,6,7,8,9,10),
Habitat_type = c('Urban','Urban','Urban',

'Suburban','Suburban','Suburban',
'Rural','Rural','Rural','Rural'),

length_mm = c(2.4,2.5,3.6,3.6,2.1,2.2,5,1.9,2.3,2.2),
age = c(1,2,2,2,1,1,3,3,4,1))

df

## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1
## 6 6 Suburban 2.2 1
## 7 7 Rural 5.0 3
## 8 8 Rural 1.9 3
## 9 9 Rural 2.3 4
## 10 10 Rural 2.2 1

To extract a single column of data by name, we use the name of the dataframe, in our case df, followed by
the $ symbol.

#Extract just the length_mm column
df$length_mm

#Extract just the ID columns
df$ID

## [1] 2.4 2.5 3.6 3.6 2.1 2.2 5.0 1.9 2.3 2.2
## [1] 1 2 3 4 5 6 7 8 9 10

Naturally, we can extract this data and pipe it directly into a function. For example, finding the average
length of our length_mm column.

#Get the mean length
mean(df$length_mm)

## [1] 2.78

This method works great if we want to extract a single column of data, but what if we want to extract
multiple columns, or a column and a few rows?

That’s where the square brackets and index numbers come into play again

Subsetting with index numbers Using the same format as the vectors, where its the name of the object
followed by the square brackets. Inside the square brackets we will input 2 index values into the brackets
separated by a comma. This is because the data is 2-dimensional and we can subset by rows or columns.

The value to the left of the comma will correspond to rows. In this below example, we are going to pull the
first 5 rows. Since we do not specify anything on the column side, all of the columns are pulled.

37



df[1:5,]

## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1

The right hand value corresponds to the columns. For this value, we can use the position of the columns or
their names placed in quotation marks. The next two chunks will pull the same columns using both of these
formats.

df[,c(3,4)]

## length_mm age
## 1 2.4 1
## 2 2.5 2
## 3 3.6 2
## 4 3.6 2
## 5 2.1 1
## 6 2.2 1
## 7 5.0 3
## 8 1.9 3
## 9 2.3 4
## 10 2.2 1

df[,c('length_mm','age')]

## length_mm age
## 1 2.4 1
## 2 2.5 2
## 3 3.6 2
## 4 3.6 2
## 5 2.1 1
## 6 2.2 1
## 7 5.0 3
## 8 1.9 3
## 9 2.3 4
## 10 2.2 1

Naturally, we can combine subsets for rows and columns. Like this example that pulls the first three rows
of the age column.

df[1:3,'age']

## [1] 1 2 2

You may have noticed that leaving either side blank will pull all of the rows or columns respectively. If we
leave both sides blank, all of the information contained within the object will be pulled.

38



df[,]

## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1
## 6 6 Suburban 2.2 1
## 7 7 Rural 5.0 3
## 8 8 Rural 1.9 3
## 9 9 Rural 2.3 4
## 10 10 Rural 2.2 1

2.1.3 Subsetting Lists

Subsetting Lists

Lists are collections of objects in R. Model outputs, collections of data, and some custom classes all use the
list format.

Lets create a simple list that contains a single vector and a single dataframe.

#A simple vector of the numbers 1 through 10
vect <- c(2.4,1.1,3,4.5,7.8,2.3,3.3,1.1,5.5,7)

#a dataframe that includes ID, Habitat Type, Length in millimetes, and age
df <- data.frame(ID = c(1,2,3,4,5,6,7,8,9,10),

Habitat_type = c('Urban','Urban','Urban',
'Suburban','Suburban','Suburban',
'Rural','Rural','Rural','Rural'),

length_mm = c(2.4,2.5,3.6,3.6,2.1,2.2,5,1.9,2.3,2.2),
age = c(1,2,2,2,1,1,3,3,4,1))

#A ist that contains just the vector and the dataframe
list <- list(vect,df)

list

## [[1]]
## [1] 2.4 1.1 3.0 4.5 7.8 2.3 3.3 1.1 5.5 7.0
##
## [[2]]
## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1
## 6 6 Suburban 2.2 1
## 7 7 Rural 5.0 3
## 8 8 Rural 1.9 3

39



## 9 9 Rural 2.3 4
## 10 10 Rural 2.2 1

Much like vectors and data frames, you can use square brackets to extract an element from the list using its
index value. However, you will use 2 square brackets to extract an object from the list.

#extract the first element in a list. In this case its our vector
list[[1]]

#extract the second element in a list. In this case its our data frame
list[[2]]

## [1] 2.4 1.1 3.0 4.5 7.8 2.3 3.3 1.1 5.5 7.0
## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1
## 6 6 Suburban 2.2 1
## 7 7 Rural 5.0 3
## 8 8 Rural 1.9 3
## 9 9 Rural 2.3 4
## 10 10 Rural 2.2 1

If a list has named elements, you can extract each element using the $ operator just like a dataframe. Lets
recreate our list, naming the vector, vect_list, and our dataframe df_list

named_list <- list(vect_list = vect,
df_list = df)

named_list$df_list

## ID Habitat_type length_mm age
## 1 1 Urban 2.4 1
## 2 2 Urban 2.5 2
## 3 3 Urban 3.6 2
## 4 4 Suburban 3.6 2
## 5 5 Suburban 2.1 1
## 6 6 Suburban 2.2 1
## 7 7 Rural 5.0 3
## 8 8 Rural 1.9 3
## 9 9 Rural 2.3 4
## 10 10 Rural 2.2 1

Or you use the name of the object in the double brackets

named_list[['vect_list']]

## [1] 2.4 1.1 3.0 4.5 7.8 2.3 3.3 1.1 5.5 7.0

40



Extracting information from objects in the list If we want to extract further information from an
object in the list, we can use the appropriate operator (single brackets, index numbers, $ etc.) for the object
we are extracting.

For example, here we extract the vector from the list and then pull the 5th element. The vector is the first
object in the list.

list[[1]][5]

## [1] 7.8

The same logic applies to dataframes. In the following code we first pull the second object in the list which
is the dataframe. Then we pull the first five rows from the length_mm column.

#Pull the second object in our list (the data frame) and then pull the length column from there
list[[2]][1:5,'length_mm']

## [1] 2.4 2.5 3.6 3.6 2.1

As a reminder, there are often multiple ways of doing each of these operations and its totally up to you how
you decide to do it. In the next example, we use the $ instead of the square brackets on the named_list and
then extract the 5th value from the vector using the index number.

named_list$vect_list[5]

## [1] 7.8

What is important to understand about coding is that you can accomplish the same task in multiple ways.
By understanding the basics of subsetting, you can chain together more complex subsets to achieve whatever
your project requires of you!

2.2.1 Intro to Logic

Intro to Logic

While we could subset every single dataset using just the index numbers, this may prove to be cumbersome
or impossible with large datasets.

For example, lets make a vector with 100 numbers. We will also use the colon to specify that we are creating
a vector with the numbers 1 through 100.

vect <- c(1:100)
vect

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100

41



We can make subsetting easy by using logic. Logic allows us to evaluate all of the values within an object
according to some criteria. Each value in the object, will return a TRUE or FALSE value based on the
logical statement that you provide. Those TRUE/FALSE values are then used to subset the object.
Common logical operators includes:

• > Greater than

• < Less than

• >= Greater than or equal to

• <= Less than or equal to

• == Equal to

• != Not Equal to

When we create logical statements, we need to first say what object we are checking, include the appropriate
logical operator, and then the value(s) we are checking.
For example, lets use all of this logic on the vector we created around the number 30! Note that since we
are subsetting the object vect, we will still use the square brackets to indicate that it is a subset.
Pull values that are greater than 30.

vect[vect > 30]

## [1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
## [20] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## [39] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
## [58] 88 89 90 91 92 93 94 95 96 97 98 99 100

Pull values that are less than 30.

vect[vect < 30]

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29

Pull values that are less than or equal to 30.

vect[vect <= 30]

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30

Pull values that are greater than or equal to 30.

vect[vect >= 30]

## [1] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
## [20] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [39] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
## [58] 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Pull values that are equal to 30. Note that you need to use two equal signs.

42



vect[vect == 30]

## [1] 30

The ! means not. Pull the values that are NOT equal to 30.

vect[vect != 30]

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## [20] 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39
## [39] 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
## [58] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
## [77] 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
## [96] 97 98 99 100

Logical statements can be chained together to create more complex filters. The next lesson will cover how
to use logic on dataframes and how to create AND as well as OR statements in your logic!

2.2.2 Combining logical statements

Logic with ‘and’ and ‘or’ What if we want to create more complex logical statements? For example, all
values in the dataset that are greater than 30 AND are from a particular location.
We can combine logical terms using & (for AND statements) as well as | (for OR statements).
The operator for OR statements, this symbol |, is called the pipe symbol and is NOT the uppercase i or the
lowercase L. You can typically find it on the right side of your keyboard above the enter key.
Lets make a simple dataframe with 3 different sites and the number of species found during 4 different
surveys

df <- data.frame(SITE_ID = c("A100", 'A100','A100','A100',
'B100','B100','B100','B100',
'C100','C100','C100','C100'),

survey = c(1,2,3,4,1,2,3,4,1,2,3,4),
num_species = c(10,7,17,18,10,12,11,13,18,19,20,17))

We can use logic on this dataframe just like we did with the vector. Remember that we need to specify the
column we are applying the logic unto using the $.
This example says we want to subset the rows where SITE_ID is equal to A100. Remember, we need 2
equal signs for logical statements.

df[df$SITE_ID == 'A100',]

## SITE_ID survey num_species
## 1 A100 1 10
## 2 A100 2 7
## 3 A100 3 17
## 4 A100 4 18

If we want to combine logical terms, we just separate each piece of logic by either & or |
Lets find values where the SITE_ID is equal to A100 AND the number of species found is less than 15

43



df[df$SITE_ID == 'A100' & df$num_species < 15,]

## SITE_ID survey num_species
## 1 A100 1 10
## 2 A100 2 7

Great! We found 2 entries in our dataset!

Lets run that again, but changing it from AND ( & ) to OR ( | )

df[df$SITE_ID == 'A100' | df$num_species < 15,]

## SITE_ID survey num_species
## 1 A100 1 10
## 2 A100 2 7
## 3 A100 3 17
## 4 A100 4 18
## 5 B100 1 10
## 6 B100 2 12
## 7 B100 3 11
## 8 B100 4 13

We can see there are many more values. Often newcomers to logic have trouble with using AND logic or
OR logic effectively. In general, AND logic will be more restrictive, while OR logic will be more inclusive.

You can use any combination of logical operators alongside AND/OR to filter nearly any dataset you are
working with!

2.3.1 Adding new columns

Adding new columns With dataframes we often need to add new columns. These columns could be an
ID, a new vector of data, or are calculated based on some other column. Luckily, this is very straightforward!

Lets create the dataframe we will use.

df <- data.frame(Habitat_type = c('Urban','Urban','Urban',
'Suburban','Suburban','Suburban',
'Rural','Rural','Rural','Rural'),

length_mm = c(2.4,2.5,3.6,3.6,2.1,2.2,5,1.9,2.3,2.2),
age = c(1,2,2,2,1,1,3,3,4,1))

df

## Habitat_type length_mm age
## 1 Urban 2.4 1
## 2 Urban 2.5 2
## 3 Urban 3.6 2
## 4 Suburban 3.6 2
## 5 Suburban 2.1 1
## 6 Suburban 2.2 1

44



## 7 Rural 5.0 3
## 8 Rural 1.9 3
## 9 Rural 2.3 4
## 10 Rural 2.2 1

We can add a column by using the $ operator we learned in the subsetting section. Lets add an ID column
that just adds a number for each of the 10 rows.

df$ID <- 1:10

df

## Habitat_type length_mm age ID
## 1 Urban 2.4 1 1
## 2 Urban 2.5 2 2
## 3 Urban 3.6 2 3
## 4 Suburban 3.6 2 4
## 5 Suburban 2.1 1 5
## 6 Suburban 2.2 1 6
## 7 Rural 5.0 3 7
## 8 Rural 1.9 3 8
## 9 Rural 2.3 4 9
## 10 Rural 2.2 1 10

We can of course create a vector to add to the dataframe.

df$ID <- c('a','b','c','d','e','f','g','h','i','j')

df

## Habitat_type length_mm age ID
## 1 Urban 2.4 1 a
## 2 Urban 2.5 2 b
## 3 Urban 3.6 2 c
## 4 Suburban 3.6 2 d
## 5 Suburban 2.1 1 e
## 6 Suburban 2.2 1 f
## 7 Rural 5.0 3 g
## 8 Rural 1.9 3 h
## 9 Rural 2.3 4 i
## 10 Rural 2.2 1 j

In the above chunk we used the same name as the ID column as the prior chunk. This overwrote the data
contained within that column. Be careful with accidentally overwriting data!

We can also perform simple calculations while adding data. Lets say we want to convert all the length values
from mm to cm. We simply divide the mm column by 10.

df$length_cm <- df$length_mm/10

df

45



## Habitat_type length_mm age ID length_cm
## 1 Urban 2.4 1 a 0.24
## 2 Urban 2.5 2 b 0.25
## 3 Urban 3.6 2 c 0.36
## 4 Suburban 3.6 2 d 0.36
## 5 Suburban 2.1 1 e 0.21
## 6 Suburban 2.2 1 f 0.22
## 7 Rural 5.0 3 g 0.50
## 8 Rural 1.9 3 h 0.19
## 9 Rural 2.3 4 i 0.23
## 10 Rural 2.2 1 j 0.22

When adding new columns, we need to make sure the data being added is equal to the number
of rows, or the number of rows is divisible by the data being added. An example is in order.

In the above examples, we added 10 values to the dataframe because it already had 10 rows. What happens
if we try to add 12 values?

df$ID <- c(1,2,3,4,5,6,7,8,9,10,11,12)

## Error in ‘$<-.data.frame‘(‘*tmp*‘, ID, value = c(1, 2, 3, 4, 5, 6, 7, : replacement has 12 rows, data has 10

We get an error! That is because there are too many values for that dataframe.

Now what happens if we try to add 5 numbers instead?

df$ID <- c(1,2,3,4,5)

df

## Habitat_type length_mm age ID length_cm
## 1 Urban 2.4 1 1 0.24
## 2 Urban 2.5 2 2 0.25
## 3 Urban 3.6 2 3 0.36
## 4 Suburban 3.6 2 4 0.36
## 5 Suburban 2.1 1 5 0.21
## 6 Suburban 2.2 1 1 0.22
## 7 Rural 5.0 3 2 0.50
## 8 Rural 1.9 3 3 0.19
## 9 Rural 2.3 4 4 0.23
## 10 Rural 2.2 1 5 0.22

The data actually gets added twice! That is because 10 is divisible by 5. If we tried to add 4 numbers
instead, we get a different result.

df$ID <- c(1,2,3,4)

## Error in ‘$<-.data.frame‘(‘*tmp*‘, ID, value = c(1, 2, 3, 4)): replacement has 4 rows, data has 10

We get another error. That is because 10 is not divisible by 4 into whole numbers.

When adding or overwriting the data in a column, ensure you are adding the same amount of data as rows,
or an amount that the number of rows is divisible by.

46



2.3.2 Combining data with rbind() and cbind()

Combining data with rbind() and cbind()

Combining datasets will happen often through your R career. For biology, we often combine datasets from
multiple survey events or to pair information found in different datasets.

Lets load in our first dataset.

df <- data.frame(Habitat_type = c('Urban','Urban','Urban',
'Suburban','Suburban','Suburban',
'Rural','Rural','Rural','Rural'),

length_mm = c(2.4,2.5,3.6,3.6,2.1,2.2,5,1.9,2.3,2.2),
age = c(1,2,2,2,1,1,3,3,4,1))

This first dataset is for survey a. We will create a new ID column, where all values are a.

df$ID <- "a"

A few weeks later we conduct another survey and want to combine the data with survey a. We’ll create new
survey data and give it an id of b.

df_2 <- data.frame( ID = "b",
Habitat_type = c('Rural','Urban','Rural',

'Suburban','Urban','Suburban',
'Rural','Urban','Rural','Rural'),

length_mm = c(1.4,1.9,7.8,3.1,2.2,2.7,4,3.4,2.3,4.5),
age = c(1,1,2,1,1,2,3,1,4,4))

rbind() We can combine these 2 datasets using the rbind() function. The r in rbind() stands for row
and it simply adds rows to a dataset from another dataset.

rbind(df,df_2)

## Habitat_type length_mm age ID
## 1 Urban 2.4 1 a
## 2 Urban 2.5 2 a
## 3 Urban 3.6 2 a
## 4 Suburban 3.6 2 a
## 5 Suburban 2.1 1 a
## 6 Suburban 2.2 1 a
## 7 Rural 5.0 3 a
## 8 Rural 1.9 3 a
## 9 Rural 2.3 4 a
## 10 Rural 2.2 1 a
## 11 Rural 1.4 1 b
## 12 Urban 1.9 1 b
## 13 Rural 7.8 2 b
## 14 Suburban 3.1 1 b

47



## 15 Urban 2.2 1 b
## 16 Suburban 2.7 2 b
## 17 Rural 4.0 3 b
## 18 Urban 3.4 1 b
## 19 Rural 2.3 4 b
## 20 Rural 4.5 4 b

For rbind to work properly, each dataset must have the same number of columns and the
columns must be named identically.

cbind() Lets say we want to add columns of data instead. In this case I created a dataframe that has Site
ID and the day each survey took place.

df_col <- data.frame(Site_ID = c('a','b','c','b','b','b','c','d','c','c'),
Day = c(1,2,3,4,5,5,5,6,6,7))

Instead of binding rows, we are binding columns. So we use the cbind() command

cbind(df,df_col)

## Habitat_type length_mm age ID Site_ID Day
## 1 Urban 2.4 1 a a 1
## 2 Urban 2.5 2 a b 2
## 3 Urban 3.6 2 a c 3
## 4 Suburban 3.6 2 a b 4
## 5 Suburban 2.1 1 a b 5
## 6 Suburban 2.2 1 a b 5
## 7 Rural 5.0 3 a c 5
## 8 Rural 1.9 3 a d 6
## 9 Rural 2.3 4 a c 6
## 10 Rural 2.2 1 a c 7

Similarly to rbind(), cbind() needs the same number of rows in each dataset to combine properly. Also,
the order will matter. When using cbind() you must be very careful to ensure each set of data has the data
in the correct order.
The next lesson will introduce the merge() function, which is a more powerful and flexible way of combining
datasets together. However, rbind() and cbind() are still powerful tools to have in your R-senal

2.3.3 Combining Data with merge()

Combining data with merge() While cbind() and rbind() are certainly useful, they are limited in what
they can accomplish. The merge() function is a more flexible way of combining datasets and simultaneously
handles combining by rows and by columns.
Lets make 2 new datasets. The first (turt_morpho) has morphological information for turtles caught during
a tracking study. The second (turt_habitat) will tell us the location the turtle was first found and the
distance to water.
Notice that in each dataset we identify unique turtles according to the column Turtle_ID and the same
turtles show up in each dataset.

48



turt_morpho <- data.frame(Turtle_ID = c('a','b','c','d','e'),
Carapace_length_cm = c(130,140,75,49,120),
Mass_g = c(500,550,300,200,435))

turt_habitat <- data.frame(Turtle_ID = c('a','b','c','d','e'),
Location = c('Orchard','Orchard','Wetland','Wetland','Wetland'),
Dist_m = c(10,50,200,3,0))

merge() needs a column shared between the two datasets, typically an ID column. We will merge these 2
datasets based on the Turtle_ID column shared between them.

merge(turt_morpho,turt_habitat, by = "Turtle_ID")

## Turtle_ID Carapace_length_cm Mass_g Location Dist_m
## 1 a 130 500 Orchard 10
## 2 b 140 550 Orchard 50
## 3 c 75 300 Wetland 200
## 4 d 49 200 Wetland 3
## 5 e 120 435 Wetland 0

Easy peasy!

We can combine datasets together with different column names by using the by.x and the by.y arguments in
merge(). Lets make a new dataset indicating the weather when each turtle was found. In this dataset, the
column for the turtle id is simply ID instead of Turtle_ID

We will also include 2 new turtles with the ID F and G.

turt_weather <- data.frame(ID = c('a','b', 'c', 'd', 'e','f','g'),
Weather = c('sunny','sunny','cloudy','cloudy','cloudy','cloud','sunny'))

Lets merge them. by.x relates to the first dataset and by.y related to the second dataset.

merge(turt_habitat,turt_weather, by.x = "Turtle_ID",by.y = "ID")

## Turtle_ID Location Dist_m Weather
## 1 a Orchard 10 sunny
## 2 b Orchard 50 sunny
## 3 c Wetland 200 cloudy
## 4 d Wetland 3 cloudy
## 5 e Wetland 0 cloudy

Considerations with merge With merge, we do need to be aware of a few things. If one dataset has
rows not found in the other, the default behavior is to exclude them during the merge. That is why in the
above merged dataset, we did not see turtles F and G.

We can change that behavior by setting the arguments all.x and all.y to TRUE or FALSE. The default is
FALSE for each. Setting them to TRUE will keep all the data. Where data is missing, the function will
introduce NA values.

49



merge(x = turt_habitat,y = turt_weather,
by.x = "Turtle_ID",by.y = "ID",
all.x = FALSE, all.y = TRUE)

## Turtle_ID Location Dist_m Weather
## 1 a Orchard 10 sunny
## 2 b Orchard 50 sunny
## 3 c Wetland 200 cloudy
## 4 d Wetland 3 cloudy
## 5 e Wetland 0 cloudy
## 6 f <NA> NA cloud
## 7 g <NA> NA sunny

Merging to include NA values or not is neither right nor wrong, it all depends on your data, your analyses,
and exactly what you hope to accomplish.

Sometimes you want to exclude the data that doesn’t have an overlap and sometimes you want to include
it!

50



Section 3 - Introduction to Tidyverse

3.0 Section 3 Overview

Section 3 Overview

Tidyverse is an extremely useful package that will serve you well throughout your R career.

This week will introduce concepts such as:

• What is tidyverse?

• What is a pipeline?

• How can we use tidyverse to clean and manipulate our data?

The data we will use for this week, is based on a field survey of 3 cacti species cacti found in Baja California.
The data is a simple data frame named cactus_df that has 3 variables:

• species - character data that lists the scientific name of each species (“F. gracilis”, “F. gatesii”, “F.
cylindraceus”)

• spine_length_cm - numeric data of how long the average spine length of each specimen in centimeters.

• lifestage - character data that specifies if each specimen was “Immature” or “Mature”.

set.seed(123)

cactus_df <- data.frame(

species = rep(c("F. gracilis","F. gatesii","F. cylindraceus"),each = 10),

spine_length_cm = rnorm(30,8,2),

lifestage = rep(c("Mature", "Immature"),15))

cactus_df

## species spine_length_cm lifestage
## 1 F. gracilis 6.879049 Mature
## 2 F. gracilis 7.539645 Immature
## 3 F. gracilis 11.117417 Mature
## 4 F. gracilis 8.141017 Immature
## 5 F. gracilis 8.258575 Mature
## 6 F. gracilis 11.430130 Immature
## 7 F. gracilis 8.921832 Mature
## 8 F. gracilis 5.469878 Immature
## 9 F. gracilis 6.626294 Mature
## 10 F. gracilis 7.108676 Immature
## 11 F. gatesii 10.448164 Mature
## 12 F. gatesii 8.719628 Immature

51



## 13 F. gatesii 8.801543 Mature
## 14 F. gatesii 8.221365 Immature
## 15 F. gatesii 6.888318 Mature
## 16 F. gatesii 11.573826 Immature
## 17 F. gatesii 8.995701 Mature
## 18 F. gatesii 4.066766 Immature
## 19 F. gatesii 9.402712 Mature
## 20 F. gatesii 7.054417 Immature
## 21 F. cylindraceus 5.864353 Mature
## 22 F. cylindraceus 7.564050 Immature
## 23 F. cylindraceus 5.947991 Mature
## 24 F. cylindraceus 6.542218 Immature
## 25 F. cylindraceus 6.749921 Mature
## 26 F. cylindraceus 4.626613 Immature
## 27 F. cylindraceus 9.675574 Mature
## 28 F. cylindraceus 8.306746 Immature
## 29 F. cylindraceus 5.723726 Mature
## 30 F. cylindraceus 10.507630 Immature

There are a few extra functions this week to create this dataset. rep() repeats values and rnorm() creates
a normal distribution of values given some mean and standard deviation

This is the first week where we will use the same dataset throughout the whole week. The code to create
the dataset will always be in the overview section of that week. If you are following along in your own R
environment, make sure the data is loaded for you!

3.1.1 Intro to tidyverse

Introduction

So far in this course we have largely been working in base R. This means we have only been using the set
of functions that come preinstalled with R. These functions are absolutely needed and will serve you well
throughout your R career.

From here on in the course, we will heavily use the suite of functions from the tidyverse package. tidyverse
is technically multiple packages that have been tweaked to communicate with one another. tidyverse
includes tools primarily for data manipulation/cleaning and data visualization.

Here are some of the packages used:

• ggplot2 - data visualization

• dplyr - data manipulation

• tidyr - tidy data for consistency

• readr - loading in data

• stringr - manipulating string objects

More info can be found on the tidyverse website: https://www.tidyverse.org/packages/

To install tidyverse we need to use the install.packages() function

52

https://www.tidyverse.org/packages/


install.packages('tidyverse')

Once a package is installed on your machine, you then need to load it with library() to actually use the
functions contained within. Make sure the package is installed before you try to load it!

library(tidyverse)

If all is loaded properly, we can now use all of the functions within tidyverse! From this point on in the
course, assume that tidyverse is always loaded. The overview section of each week will reload tidyverse for
anyone following along in their own R environment!

3.1.2 Intro to Pipes

Intro to Pipes

A core component of tidyverse are pipes. Pipes allow us to take the output of one function, and input it
into a following function. In this way, we can chain together functions to create a pipeline!

Pipes make it much easier to string together multiple functions. Lets take a very simple example.

First lets take the mean of spine length the way we’ve already learned

mean(cactus_df$spine_length_cm)

## [1] 8.356677

Now lets do the same operation, but this time using a pipe.

cactus_df$spine_length_cm %>%
mean()

## [1] 8.356677

A pipe is denoted by %>% and is placed after a function. The input for the pipe is the output from the
prior function. By default, the pipe places that output automatically into the first argument of the next
function. We can explicitly specify where we want to place the output using a period (.) if we so desire.
This is useful if we want to pipe the output into a different argument.

For example, this chunk will run the same as the prior chunk:

cactus_df$spine_length_cm%>%
mean(.)

## [1] 8.356677

53



Think of a pipe like, well, a pipe.

Some object “flows” into the the start of the pipe and is then passed through each function before ultimately
exiting the pipe. The mean example above is rather simple. Lets show a more complex pipe.

In this example, we are filtering the cactus dataset to only include mature, F. Gracilis records and then
taking the mean of the spine length. We’ll learn about the filter() function soon, but, in short, it filters an
object based on some criteria.

mean(filter(filter(cactus_df, species == "F. gracilis"), lifestage == "Mature")$spine_length_cm)

## [1] 8.95645

While this works, it is rather difficult to read and can be confusing with the different commas, parentheses
and quotations. If you make an error here it can be difficult to troubleshoot!

Lets now do the same operation, but instead using pipes! The pull() function here pulls the column of data
as a vector so that we can then calculate the mean.

cactus_df%>%
filter(species == "F. gracilis")%>%
filter(lifestage == "Mature")%>%
pull(spine_length_cm)%>%
mean()

## [1] 8.95645

This pipeline is much easier to understand. We know the object is first filtered by species, then by lifestage.
Then it pulls out the spine_length_cm column and calculates the mean.

Notice that we also do not need to call the column name using the $ symbol in our functions! Within a
pipeline, we can just use the column names from the input object.

If we want to save the output from the pipeline, we just need to assign it like we would any other object.
While we can do it at the start of the pipe, I find it is more intuitive to do it at the end using a -> arrow.

#Either of these will save the output of the pipeline
#to an mean_mature_F_gracilis_spine_cm object

cactus_df%>%
filter(species == "F. gracilis")%>%
filter(lifestage == "Mature")%>%
pull(spine_length_cm)%>%
sum() -> mean_mature_F_gracilis_spine_cm

mean_mature_F_gracilis_spine_cm <- cactus_df%>%
filter(species == "F. gracilis")%>%
filter(lifestage == "Mature")%>%
pull(spine_length_cm)%>%
sum()

The pipe is a core part of the tidyverse package. From this point forward, this course will almost always use
pipes except in the case of very simple functions!

54



3.2.1 select and pull

select() and pull()

Tidyverse makes it easy to pull data from objects. Here we will learn of the 2 most common functions for
this task, select() and pull()

select() select() allows you to grab specific columns from an input dataset.

cactus_df%>%
select(species)

## species
## 1 F. gracilis
## 2 F. gracilis
## 3 F. gracilis
## 4 F. gracilis
## 5 F. gracilis
## 6 F. gracilis
## 7 F. gracilis
## 8 F. gracilis
## 9 F. gracilis
## 10 F. gracilis
## 11 F. gatesii
## 12 F. gatesii
## 13 F. gatesii
## 14 F. gatesii
## 15 F. gatesii
## 16 F. gatesii
## 17 F. gatesii
## 18 F. gatesii
## 19 F. gatesii
## 20 F. gatesii
## 21 F. cylindraceus
## 22 F. cylindraceus
## 23 F. cylindraceus
## 24 F. cylindraceus
## 25 F. cylindraceus
## 26 F. cylindraceus
## 27 F. cylindraceus
## 28 F. cylindraceus
## 29 F. cylindraceus
## 30 F. cylindraceus

You can select multiple columns by separating them with a comma. As you can see, select() returns a data
object containing all of the columns.

cactus_df%>%
select(spine_length_cm,species)

55



## spine_length_cm species
## 1 8.759279 F. gracilis
## 2 6.995353 F. gracilis
## 3 7.333585 F. gracilis
## 4 5.962849 F. gracilis
## 5 5.856418 F. gracilis
## 6 8.607057 F. gracilis
## 7 8.896420 F. gracilis
## 8 8.106008 F. gracilis
## 9 9.844535 F. gracilis
## 10 12.100169 F. gracilis
## 11 7.017938 F. gatesii
## 12 3.381662 F. gatesii
## 13 10.011477 F. gatesii
## 14 6.581598 F. gatesii
## 15 6.623983 F. gatesii
## 16 10.051143 F. gatesii
## 17 7.430454 F. gatesii
## 18 5.558565 F. gatesii
## 19 8.362607 F. gatesii
## 20 7.722217 F. gatesii
## 21 8.011528 F. cylindraceus
## 22 8.770561 F. cylindraceus
## 23 7.258680 F. cylindraceus
## 24 9.288753 F. cylindraceus
## 25 7.559027 F. cylindraceus
## 26 8.663564 F. cylindraceus
## 27 10.193678 F. cylindraceus
## 28 8.870363 F. cylindraceus
## 29 7.348137 F. cylindraceus
## 30 10.297615 F. cylindraceus

pull() pull() is very similar to select() in that it pulls data from an object. The main difference is that
pull() returns a vector instead of a dataframe.

cactus_df%>%
pull(spine_length_cm)

## [1] 8.759279 6.995353 7.333585 5.962849 5.856418 8.607057 8.896420
## [8] 8.106008 9.844535 12.100169 7.017938 3.381662 10.011477 6.581598
## [15] 6.623983 10.051143 7.430454 5.558565 8.362607 7.722217 8.011528
## [22] 8.770561 7.258680 9.288753 7.559027 8.663564 10.193678 8.870363
## [29] 7.348137 10.297615

This makes it possible for us to pipe our outputs directly into functions that require a vector input, such as
mean().

cactus_df%>%
pull(spine_length_cm)%>%
mean()

## [1] 8.048841

56



3.2.2 arrange and relocate

arrange() and relocate()

A common data cleaning step is sorting by values and rearranging the order of columns. The arrange()
and relocate() functions will accomplish each of those tasks!

arrange() arrange() allows us to sort our data according to one of our columns. The default is by
ascending order.

cactus_df%>%
arrange(spine_length_cm)

## species spine_length_cm lifestage
## 1 F. gatesii 4.664116 Immature
## 2 F. cylindraceus 4.764235 Mature
## 3 F. gracilis 5.947158 Immature
## 4 F. cylindraceus 5.951742 Immature
## 5 F. gatesii 6.096763 Mature
## 6 F. cylindraceus 6.300591 Mature
## 7 F. gatesii 6.430191 Mature
## 8 F. gatesii 6.579187 Mature
## 9 F. cylindraceus 6.718588 Immature
## 10 F. gracilis 6.744188 Immature
## 11 F. gracilis 6.799481 Immature
## 12 F. cylindraceus 6.849306 Mature
## 13 F. gatesii 7.239547 Mature
## 14 F. gatesii 7.304915 Immature
## 15 F. gatesii 7.506616 Mature
## 16 F. gracilis 7.528599 Mature
## 17 F. cylindraceus 7.888876 Immature
## 18 F. gatesii 7.909945 Immature
## 19 F. cylindraceus 8.211352 Mature
## 20 F. gracilis 8.477463 Mature
## 21 F. gatesii 8.513767 Immature
## 22 F. cylindraceus 8.602307 Immature
## 23 F. cylindraceus 9.038814 Mature
## 24 F. gracilis 9.096794 Immature
## 25 F. cylindraceus 9.215929 Immature
## 26 F. gatesii 9.837993 Immature
## 27 F. gracilis 9.987008 Mature
## 28 F. gracilis 10.721305 Mature
## 29 F. gracilis 11.065221 Immature
## 30 F. gracilis 12.374666 Mature

If we want to sort in descending order, we need to use the desc() function within arrange()

cactus_df%>%
arrange(desc(spine_length_cm))

57



## species spine_length_cm lifestage
## 1 F. gracilis 12.374666 Mature
## 2 F. gracilis 11.065221 Immature
## 3 F. gracilis 10.721305 Mature
## 4 F. gracilis 9.987008 Mature
## 5 F. gatesii 9.837993 Immature
## 6 F. cylindraceus 9.215929 Immature
## 7 F. gracilis 9.096794 Immature
## 8 F. cylindraceus 9.038814 Mature
## 9 F. cylindraceus 8.602307 Immature
## 10 F. gatesii 8.513767 Immature
## 11 F. gracilis 8.477463 Mature
## 12 F. cylindraceus 8.211352 Mature
## 13 F. gatesii 7.909945 Immature
## 14 F. cylindraceus 7.888876 Immature
## 15 F. gracilis 7.528599 Mature
## 16 F. gatesii 7.506616 Mature
## 17 F. gatesii 7.304915 Immature
## 18 F. gatesii 7.239547 Mature
## 19 F. cylindraceus 6.849306 Mature
## 20 F. gracilis 6.799481 Immature
## 21 F. gracilis 6.744188 Immature
## 22 F. cylindraceus 6.718588 Immature
## 23 F. gatesii 6.579187 Mature
## 24 F. gatesii 6.430191 Mature
## 25 F. cylindraceus 6.300591 Mature
## 26 F. gatesii 6.096763 Mature
## 27 F. cylindraceus 5.951742 Immature
## 28 F. gracilis 5.947158 Immature
## 29 F. cylindraceus 4.764235 Mature
## 30 F. gatesii 4.664116 Immature

relocate() The relocate() function uses the same format as select() but reorders columns without re-
moving any columns. Whatever is inputted into the function appears as the first set of columns. You do not
need to input all columns.

cactus_df %>%
relocate(spine_length_cm)

## spine_length_cm species lifestage
## 1 9.987008 F. gracilis Mature
## 2 9.096794 F. gracilis Immature
## 3 8.477463 F. gracilis Mature
## 4 6.744188 F. gracilis Immature
## 5 10.721305 F. gracilis Mature
## 6 6.799481 F. gracilis Immature
## 7 12.374666 F. gracilis Mature
## 8 11.065221 F. gracilis Immature
## 9 7.528599 F. gracilis Mature
## 10 5.947158 F. gracilis Immature
## 11 6.579187 F. gatesii Mature
## 12 8.513767 F. gatesii Immature
## 13 7.506616 F. gatesii Mature

58



## 14 7.304915 F. gatesii Immature
## 15 6.096763 F. gatesii Mature
## 16 7.909945 F. gatesii Immature
## 17 6.430191 F. gatesii Mature
## 18 4.664116 F. gatesii Immature
## 19 7.239547 F. gatesii Mature
## 20 9.837993 F. gatesii Immature
## 21 6.849306 F. cylindraceus Mature
## 22 9.215929 F. cylindraceus Immature
## 23 4.764235 F. cylindraceus Mature
## 24 7.888876 F. cylindraceus Immature
## 25 9.038814 F. cylindraceus Mature
## 26 8.602307 F. cylindraceus Immature
## 27 8.211352 F. cylindraceus Mature
## 28 6.718588 F. cylindraceus Immature
## 29 6.300591 F. cylindraceus Mature
## 30 5.951742 F. cylindraceus Immature

3.2.3 filter and distinct

Introduction to filter() and distinct()

Removing problematic data is a must for data analysis. This section will cover how to filter records based
on some criteria using filter() and how to identify unique records using distinct()

filter() filter() allows us to filter columns based on some criteria. The filter() function utilizes the same
logical statements that we learned about in Section 2 .

cactus_df%>%
filter(species == "F. gracilis")

## species spine_length_cm lifestage
## 1 F. gracilis 8.235293 Mature
## 2 F. gracilis 6.105051 Immature
## 3 F. gracilis 7.018885 Mature
## 4 F. gracilis 7.487816 Immature
## 5 F. gracilis 11.687724 Mature
## 6 F. gracilis 6.696100 Immature
## 7 F. gracilis 8.470773 Mature
## 8 F. gracilis 8.155922 Immature
## 9 F. gracilis 6.076287 Mature
## 10 F. gracilis 7.857384 Immature

We can chain multiple filters together by separating them with a comma.

cactus_df %>%
filter(species == "F. gracilis" , lifestage == "Mature")

59



## species spine_length_cm lifestage
## 1 F. gracilis 8.235293 Mature
## 2 F. gracilis 7.018885 Mature
## 3 F. gracilis 11.687724 Mature
## 4 F. gracilis 8.470773 Mature
## 5 F. gracilis 6.076287 Mature

Using a comma is the equivalent of saying “I only want rows that equal my first criteria AND my second
criteria”. If we want to find records using OR, we would use the | symbol.

cactus_df %>%
filter(species == "F. gracilis" | lifestage == "Mature")

## species spine_length_cm lifestage
## 1 F. gracilis 8.235293 Mature
## 2 F. gracilis 6.105051 Immature
## 3 F. gracilis 7.018885 Mature
## 4 F. gracilis 7.487816 Immature
## 5 F. gracilis 11.687724 Mature
## 6 F. gracilis 6.696100 Immature
## 7 F. gracilis 8.470773 Mature
## 8 F. gracilis 8.155922 Immature
## 9 F. gracilis 6.076287 Mature
## 10 F. gracilis 7.857384 Immature
## 11 F. gatesii 10.889102 Mature
## 12 F. gatesii 8.082466 Mature
## 13 F. gatesii 3.893506 Mature
## 14 F. gatesii 5.078720 Mature
## 15 F. gatesii 11.818207 Mature
## 16 F. cylindraceus 9.403569 Mature
## 17 F. cylindraceus 4.855712 Mature
## 18 F. cylindraceus 4.796928 Mature
## 19 F. cylindraceus 5.076489 Mature
## 20 F. cylindraceus 12.200218 Mature

distinct() distinct() finds unique rows of data. Lets select just the species column and see what distinct
species we have.

cactus_df%>%
select(species)%>%
distinct()

## species
## 1 F. gracilis
## 2 F. gatesii
## 3 F. cylindraceus

Cool! 3 species! If we run distinct over multiple columns, we can find all unique arrangements of those data!
For example, what distinct combinations of species and lifestage do we have?

60



cactus_df%>%
select(species,lifestage)%>%
distinct()

## species lifestage
## 1 F. gracilis Mature
## 2 F. gracilis Immature
## 3 F. gatesii Mature
## 4 F. gatesii Immature
## 5 F. cylindraceus Mature
## 6 F. cylindraceus Immature

3.3.1 mutate and count

Introduction to mutate() and count()

mutate() mutate() allows us to add a new column to the end of the dataset or to alter data already
present. This could be as simple as adding an ID column using row_number(). or converting centimeters
to millimeters for example. We specify the name of the new column first, and then what information that
column contains.

If we use a column name already in the data, mutate() will overwrite the data!

cactus_df%>%
mutate(ID = row_number())

## species spine_length_cm lifestage ID
## 1 F. gracilis 9.575478 Mature 1
## 2 F. gracilis 9.538084 Immature 2
## 3 F. gracilis 8.664405 Mature 3
## 4 F. gracilis 5.983247 Immature 4
## 5 F. gracilis 7.761095 Mature 5
## 6 F. gracilis 7.439209 Immature 6
## 7 F. gracilis 9.125979 Mature 7
## 8 F. gracilis 7.255122 Immature 8
## 9 F. gracilis 9.953947 Mature 9
## 10 F. gracilis 7.250838 Immature 10
## 11 F. gatesii 10.105423 Mature 11
## 12 F. gatesii 5.901646 Immature 12
## 13 F. gatesii 5.479690 Mature 13
## 14 F. gatesii 14.482080 Immature 14
## 15 F. gatesii 7.166285 Mature 15
## 16 F. gatesii 8.596455 Immature 16
## 17 F. gatesii 9.273139 Mature 17
## 18 F. gatesii 7.032439 Immature 18
## 19 F. gatesii 9.033724 Mature 19
## 20 F. gatesii 8.737929 Immature 20
## 21 F. cylindraceus 7.569239 Mature 21
## 22 F. cylindraceus 8.130586 Immature 22
## 23 F. cylindraceus 7.931865 Mature 23
## 24 F. cylindraceus 12.256904 Immature 24
## 25 F. cylindraceus 6.517328 Mature 25

61



## 26 F. cylindraceus 5.808007 Immature 26
## 27 F. cylindraceus 8.075577 Mature 27
## 28 F. cylindraceus 8.620961 Immature 28
## 29 F. cylindraceus 8.873047 Mature 29
## 30 F. cylindraceus 7.083269 Immature 30

mutate() can also be used with simple calculations. For example, converting cm to mm.

cactus_df%>%
mutate(spine_length_mm = spine_length_cm*10)

## species spine_length_cm lifestage spine_length_mm
## 1 F. gracilis 9.575478 Mature 95.75478
## 2 F. gracilis 9.538084 Immature 95.38084
## 3 F. gracilis 8.664405 Mature 86.64405
## 4 F. gracilis 5.983247 Immature 59.83247
## 5 F. gracilis 7.761095 Mature 77.61095
## 6 F. gracilis 7.439209 Immature 74.39209
## 7 F. gracilis 9.125979 Mature 91.25979
## 8 F. gracilis 7.255122 Immature 72.55122
## 9 F. gracilis 9.953947 Mature 99.53947
## 10 F. gracilis 7.250838 Immature 72.50838
## 11 F. gatesii 10.105423 Mature 101.05423
## 12 F. gatesii 5.901646 Immature 59.01646
## 13 F. gatesii 5.479690 Mature 54.79690
## 14 F. gatesii 14.482080 Immature 144.82080
## 15 F. gatesii 7.166285 Mature 71.66285
## 16 F. gatesii 8.596455 Immature 85.96455
## 17 F. gatesii 9.273139 Mature 92.73139
## 18 F. gatesii 7.032439 Immature 70.32439
## 19 F. gatesii 9.033724 Mature 90.33724
## 20 F. gatesii 8.737929 Immature 87.37929
## 21 F. cylindraceus 7.569239 Mature 75.69239
## 22 F. cylindraceus 8.130586 Immature 81.30586
## 23 F. cylindraceus 7.931865 Mature 79.31865
## 24 F. cylindraceus 12.256904 Immature 122.56904
## 25 F. cylindraceus 6.517328 Mature 65.17328
## 26 F. cylindraceus 5.808007 Immature 58.08007
## 27 F. cylindraceus 8.075577 Mature 80.75577
## 28 F. cylindraceus 8.620961 Immature 86.20961
## 29 F. cylindraceus 8.873047 Mature 88.73047
## 30 F. cylindraceus 7.083269 Immature 70.83269

mutate() is one of the most often used functions in tidyverse despite its simple appearance!

count() A very common data analysis practice is to count the number of times a particular value occurs
in a dataset. count() will accomplish this task.

For example, counting the number of records for each species and each lifestage. The sort argument will sort
them from largest to smallest

62



cactus_df%>%
count(species, lifestage, sort = TRUE)

## species lifestage n
## 1 F. cylindraceus Immature 5
## 2 F. cylindraceus Mature 5
## 3 F. gatesii Immature 5
## 4 F. gatesii Mature 5
## 5 F. gracilis Immature 5
## 6 F. gracilis Mature 5

We can also count logical statements! For example, how many spine lengths are longer than 10 cm?

cactus_df%>%
count(spine_length_cm > 10)

## spine_length_cm > 10 n
## 1 FALSE 27
## 2 TRUE 3

3.3.2 summarize and group_by

Intro to summarize() and group_by()

summarize() and group_by() summarize() is very similar to mutate in that it summarizes the data
in some way. In fact, if we run the same code from the mutate section using summarize() we will get the
same output.

cactus_df%>%
summarize(spine_length_mm = spine_length_cm*10)

## spine_length_mm
## 1 58.73348
## 2 105.26370
## 3 73.00699
## 4 62.68974
## 5 75.27441
## 6 76.05648
## 7 102.19841
## 8 81.69475
## 9 95.08108
## 10 70.01416
## 11 84.28891
## 12 73.50628
## 13 81.89167
## 14 62.09273
## 15 53.78397
## 16 119.94427
## 17 92.01418
## 18 54.97457
## 19 67.77668

63



## 20 56.29040
## 21 123.97621
## 22 106.24826
## 23 74.69710
## 24 90.86388
## 25 71.71320
## 26 70.47506
## 27 64.22794
## 28 68.10765
## 29 113.01815
## 30 78.91944

The difference is that summarize() does not add the output to the input dataset. This may seem less
useful as first, but in reality, we use summarize() often with the next function group_by()

group_by() group_by() will split your data into groups based on unique values. This example will
group our data based on each of our 3 species.

cactus_df%>%
group_by(species)

## # A tibble: 30 x 3
## # Groups: species [3]
## species spine_length_cm lifestage
## <chr> <dbl> <chr>
## 1 F. gracilis 5.87 Mature
## 2 F. gracilis 10.5 Immature
## 3 F. gracilis 7.30 Mature
## 4 F. gracilis 6.27 Immature
## 5 F. gracilis 7.53 Mature
## 6 F. gracilis 7.61 Immature
## 7 F. gracilis 10.2 Mature
## 8 F. gracilis 8.17 Immature
## 9 F. gracilis 9.51 Mature
## 10 F. gracilis 7.00 Immature
## # ... with 20 more rows

It may seem like not much has happened, but now lets reintroduce summarize() after the group_by()
function to get the mean spine length.

cactus_df%>%
group_by(species)%>%
summarize(mean_spine_length_cm = mean(spine_length_cm))

## # A tibble: 3 x 2
## species mean_spine_length_cm
## <chr> <dbl>
## 1 F. cylindraceus 8.62
## 2 F. gatesii 7.47
## 3 F. gracilis 8.00

64



We now have 3 outputs, one for each group passed from the group_by() function!

We can group by multiple criteria as well! Simply separate each grouping variable by a comma.

cactus_df%>%
group_by(species, lifestage)%>%
summarize(mean_spine_length_cm = mean(spine_length_cm))

## ‘summarise()‘ has grouped output by ’species’. You can override using the
## ‘.groups‘ argument.

## # A tibble: 6 x 3
## # Groups: species [3]
## species lifestage mean_spine_length_cm
## <chr> <chr> <dbl>
## 1 F. cylindraceus Immature 8.29
## 2 F. cylindraceus Mature 8.95
## 3 F. gatesii Immature 7.34
## 4 F. gatesii Mature 7.60
## 5 F. gracilis Immature 7.91
## 6 F. gracilis Mature 8.09

group_by() with summarize() is perhaps the most useful pairing of functions in tidyverse!

65



Section 4 - Cleaning data and creating pipelines

4.0 Section 4 Overview

Intro to data cleaning

This week we are going to start actually applying the skills we have learned throughout this course.

When working with any data set, it needs to be cleaned. Cleaning involves standardizing data, removing
problematic records, and ensuring that your data is as accurate as possible. We will cover topics such as:

• Identifying potential problems in datasets

• Fixing a variety of common issues

• Creating a pipeline to clean data

Creating our data and loading tidyverse Our data set for this week involves collecting genetic samples
from endangered guppies.

• survey_date - Dates the sample was taken

• gene_id - a unique identifier for each gene sample taken

• location - An informal location where the data was taken

• lat - the latitude in decimal degrees

• lon - the longitude in decimal degrees

• length_mm - the length of the fish in millimeters

This data set has very intentional errors that we will identify throughout this week!

library(tidyverse)

guppy_genes_df <- data.frame(
'survey_date' = c('7/27/2020','7/27/2020','7/27/2020','7/28/2020','7/28/2020',

'7/30/2020','7/30/2020','7/30/2020','7/31/2020','8/1/2020',
'8/1/2020','8/5/2020','8/50/2020','8/5/2020','8/7/2020'),

"gene_id" = c('FMMJ_GUP_1924','FMMJ_GUP_1924','AHTD_GUP_5866','POIU_GUP_5241',
'TT_G_4','GRRA_GUP_5693','AGTH_GUP_1540',NA,'ASDD_GUP_3596',
'SDAD_GUP_3114','THTE_GUP_3944','SSAS_GUP_1456','AASD_GUP_1217',
'JNKT_GUP_4566',NA),

'location' = c("UPPER_STREAM","UPPER_STREAM","UPER_STREAM","UPPER_STREAM",
"UPPER_STREAM","UPER_STREAM","UPPER_STREAM","UPPER_STREAM",
"UPPER_STREAM","LOWER_STREAM","LOWER_STREAM","LOWER_STREAM",
"LOWER_STREAM","LOWER_STREAM","LOWER_STREAM"),

'lat' = c(17.124975,17.124975,17.124634,1.7124844,17.124049,17.124028,
17.124837,17.124910,17.124526,17.125321,17.125925,17.124701,
17.125541,17.125032,17.124425),

66



'lon' = c('-88.124909','-88.124909','-88.125183','-88.125748','-88.125883',
'-88.124755','-88.124802','-88.124369','-88.125922','-88.124812',
'-88.125675','-88.124641','-88.124052','-88.124394','-88.125226'),

'length_mm' = c(25,25,19,23,20,22,22,24,230,37,35,230,32,32,40))

4.1.1 Best Practices for Data Cleaning

Best practices for cleaning data

When it comes to cleaning data, what are best practices?

Really, cleaning data is more of an art than a science. There are many philosophies, methods, and ways in
which we can clean a data set. There is no one-size-fits all approach.

However, below are a few tips that should be taken into account when cleaning ANY dataset.

Backup your data You should always create a backup BEFORE you start cleaning it. A backup will
ensure that you will always have an original copy to work off of in case of errors. I would recommend making
a backup for each stage of your data cleaning process.

Keep notes When you clean your data, keep detailed notes of what you changed and why you changed it.
RMarkdown documents, a word document, or even a notes column on your spreadsheet are all valid options
based on your specific goals. Keep these short and accurate. Remember, these notes are for you in the
future!

Fix at the source In this course, I show you how to fix your data in R. However, it is often best to fix
your data at the source BEFORE you input it into R. This typically means updating the spreadsheet in
excel or some other spreadsheet software manually.

That being said, using R to identify potential issues while then fixing them in your spreadsheet software is
a highly effective strategy!

Make your data consistent Consistent data is incredibly important. Checking for consistency ensures
your data is accurate, the data class of each column is correct, and that errors are fixed before you analyze.

A few examples for consistent biological data include:

• Taxonomy naming conventions (Dryophytes cinerea vs D. cinerea vs D_cinerea)

• Missing data format (Null vs NA vs N/A)

• Dates (July 27, 1996 vs 27/7/1996 vs 7/27/1996)

• Coordinates (S17.1117 vs -17.1117 vs 17 6’ 42.1194”)

• Units and conversions (100 F vs 37.778 C)

67



Trust YOUR knowledge of YOUR data When cleaning data you will often have to make judgement
calls. A few examples of judgement calls include determining which taxonomy is “correct”, which format
you keep your data in, or determining the true meaning of a typo. These judgement calls can be difficult to
make, but you understand your study better than anyone else.

However, lean towards excluding problematic data rather than including it. Just like people! If you aren’t
sure which value is correct, you can always convert it to an NA value and include a note for yourself. This
is also where backups come in handy to preserve the original entries!

4.1.2 glimpse and simple plots

Identifying issues with glimpse() and simple plots

Before we clean and manipulate the data, we should explore the data. Exploring the data at this stage
allows us to get a “feel” for what potential issues there may be.

glimpse() Lets understand what our data looks like. You could go through it manually, however, tidyverse
offers a really nice function through dplyr called glimpse().

guppy_genes_df%>%
glimpse()

## Rows: 15
## Columns: 6
## $ survey_date <chr> "7/27/2020", "7/27/2020", "7/27/2020", "7/28/2020", "7/28/~
## $ gene_id <chr> "FMMJ_GUP_1924", "FMMJ_GUP_1924", "AHTD_GUP_5866", "POIU_G~
## $ location <chr> "UPPER_STREAM", "UPPER_STREAM", "UPER_STREAM", "UPPER_STRE~
## $ lat <dbl> 17.124975, 17.124975, 17.124634, 1.712484, 17.124049, 17.1~
## $ lon <chr> "-88.124909", "-88.124909", "-88.125183", "-88.125748", "-~
## $ length_mm <dbl> 25, 25, 19, 23, 20, 22, 22, 24, 23, 37, 35, 230, 32, 32, 40

glimpse() tells us the names of the columns, provides a preview of the data, and highlights the data class
of each column. From here we can see that our lat and lon columns are actually different data types (lat is
numeric, lon in character). This could be an issue in downstream analyses!

Simple plots reveal a lot With numerical data, sometimes a simple plot of a single variable can very
quickly show you issues.

plot(guppy_genes_df$length_mm)

68



2 4 6 8 10 12 14

50
10

0
15

0
20

0

Index

gu
pp

y_
ge

ne
s_

df
$l

en
gt

h_
m

m

From these plots we identify potential problems through a visual check. It looks like we have an outlier at
index 12 that needs to be addressed at some point.

Lets also just plot our lat and lon columns.

plot(guppy_genes_df$lat)

69



2 4 6 8 10 12 14

5
10

15

Index

gu
pp

y_
ge

ne
s_

df
$l

at

plot(guppy_genes_df$lon)

70



2 4 6 8 10 12 14

−
88

.1
25

5
−

88
.1

24
5

Index

gu
pp

y_
ge

ne
s_

df
$l

on

Again, more weird data. In the lat column it looks like the value at index 4 is an issue. For reference, the
lon data looks fairly normal. These values may be correct, but its always a good idea to look at any weird
points in your data. Often, these are simple data entry issues than can be easily resolved!

4.1.3 unique and Na values

Identifying issues using unique() and is.na()

This section will continue identifying issues in our data using 2 simple functions: unique() and is.na().

unique() A great method for identifying typos, synonym data, or inconsistent data entry is by seeing all
unique values in a column. We can easily do this with unique().

Lets look for unique values in survey_date. Again, pull() pulls the column that we want to feed into unique.

guppy_genes_df%>%
pull(survey_date)%>%
unique()

## [1] "7/27/2020" "7/28/2020" "7/30/2020" "7/31/2020" "8/1/2020" "8/5/2020"
## [7] "8/50/2020" "8/7/2020"

71



It looks like we have an issues with some of our dates. One of them reads as 8/50/2020 which is impossible.

Lets check our location column as well.

guppy_genes_df%>%
pull(location)%>%
unique()

## [1] "UPPER_STREAM" "UPER_STREAM" "LOWER_STREAM"

It seems like we have a few typos in the data here as well!

It should be noted that unique will not tell you how many typos there are nor will it reveal where in the
data the typo exists. We’ll have to investigate our data further to uncover these typos!

is.na() Searching for NA values is always important. NA values typically indicate missing data or import
issues. Luckily, we can identify them with is.na().

Using is.na() on the entire dataset will search everywhere for NA values.

is.na(guppy_genes_df)

## survey_date gene_id location lat lon length_mm
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE TRUE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE TRUE FALSE FALSE FALSE FALSE

Alternatively you can use it on individual columns.

is.na(guppy_genes_df$gene_id)

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE TRUE

TRUE values indicate where NA values are. We can see that our NA values are located in gene_ID (at
index position 8 and 15).

When searching for NA values we need to be aware that is.na() only finds NA. Many datasets will use
different notations to indicate NA values such as NULL or N/A. Make sure you look for these values as well!
unique() will often highlight those values.

72



4.2.1 changing data types

Correcting data types We can easily change the data class of an object using the as.~ suite of functions.
These include, as.numeric(), as.character(), as.data.frame() etc. etc.

We identified that our lon column is a character class when we used glimpse() to look at the data.

glimpse(guppy_genes_df)

## Rows: 15
## Columns: 6
## $ survey_date <chr> "7/27/2020", "7/27/2020", "7/27/2020", "7/28/2020", "7/28/~
## $ gene_id <chr> "FMMJ_GUP_1924", "FMMJ_GUP_1924", "AHTD_GUP_5866", "POIU_G~
## $ location <chr> "UPPER_STREAM", "UPPER_STREAM", "UPER_STREAM", "UPPER_STRE~
## $ lat <dbl> 17.124975, 17.124975, 17.124634, 1.712484, 17.124049, 17.1~
## $ lon <chr> "-88.124909", "-88.124909", "-88.125183", "-88.125748", "-~
## $ length_mm <dbl> 25, 25, 19, 23, 20, 22, 22, 24, 23, 37, 35, 230, 32, 32, 40

Lets fix that using mutate() and as.numeric()! as.numeric() will simply convert the data in that column
into a numeric value.

guppy_genes_df%>%
mutate(lon = as.numeric(lon))

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.12491 25
## 2 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.12491 25
## 3 7/27/2020 AHTD_GUP_5866 UPER_STREAM 17.124634 -88.12518 19
## 4 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.12575 23
## 5 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.12588 20
## 6 7/30/2020 GRRA_GUP_5693 UPER_STREAM 17.124028 -88.12475 22
## 7 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.12480 22
## 8 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.12437 24
## 9 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.12592 23
## 10 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.12481 37
## 11 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.12568 35
## 12 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.12464 230
## 13 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.12405 32
## 14 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.12439 32
## 15 8/7/2020 <NA> LOWER_STREAM 17.124425 -88.12523 40

In the output, we can see that lon is now a double, a type of numeric!

Changing dates It also appears that our survey_date column is a character. This may pose no problem
for your analysis, however there are situations where you may wish for it to be in the Date format.

as.Date() will convert the character data to date format, however it requires you to input the format the date
is in. This is because there are many different standards for order (day/month/year vs month/day/year),
format (27 Jul. 1996 vs July 27, 1996) and punctuation (7-27-1996 vs 7/27/1996).

Our dates are in the format month/day/Year, this corresponds to an abbreviated format of “%m/%d/%Y”.

73



guppy_genes_df%>%
mutate(survey_date = as.Date(survey_date,format = "%m/%d/%Y"))

## survey_date gene_id location lat lon length_mm
## 1 2020-07-27 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 2020-07-27 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 3 2020-07-27 AHTD_GUP_5866 UPER_STREAM 17.124634 -88.125183 19
## 4 2020-07-28 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 5 2020-07-28 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 6 2020-07-30 GRRA_GUP_5693 UPER_STREAM 17.124028 -88.124755 22
## 7 2020-07-30 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 8 2020-07-30 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 9 2020-07-31 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23
## 10 2020-08-01 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.124812 37
## 11 2020-08-01 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.125675 35
## 12 2020-08-05 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.124641 230
## 13 <NA> AASD_GUP_1217 LOWER_STREAM 17.125541 -88.124052 32
## 14 2020-08-05 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.124394 32
## 15 2020-08-07 <NA> LOWER_STREAM 17.124425 -88.125226 40

We specify the format as a string in the format argument of as.Date(). There are a variety of abbreviations
that we use in this string to format the date properly.

The help text for strptime() (which is used by as.Date(); use ?strptime to access it) details all of the
abbreviations, however the most common ones are listed here:

• %a - Abbreviated weekday name

• %A - Full weekday name in the current locale.

• %b Abbreviated month name

• %B Full month name

• %d Day of the month as decimal number (01–31).

• %e Day of the month as decimal number (1–31), with a leading space for a single-digit number.

• %H Hours as decimal number (00–23).

• %I Hours as decimal number (01–12).

• %m Month as decimal number (01–12).

• %M Minute as decimal number (00–59).

• %p AM/PM indicator in the locale.

• %S Second as integer (00–61)

• %y Year without century (00–99).

• %Y Year with century.

74



4.2.2 replacing data directly

Fixing issues using R

In the last lesson we identified potential issues with our dataset. And for only 15 observations, its very
messy! Lets start fixing these issues!

Just like we talked about in the best practices lesson, it is almost always better to fix the issues at the source.
Typically, this will be in excel or some other spreadsheet software. However, this course will show you how
to fix issues using R.

Replacing data directly

Remember that our lat column appeared to have some weird data when we plotted it. Lets look at the
values and determine whats going on.

guppy_genes_df%>%
select(lat)

## lat
## 1 17.124975
## 2 17.124975
## 3 17.124634
## 4 1.712484
## 5 17.124049
## 6 17.124028
## 7 17.124837
## 8 17.124910
## 9 17.124526
## 10 17.125321
## 11 17.125925
## 12 17.124701
## 13 17.125541
## 14 17.125032
## 15 17.124425

Here we can see that the 4th lat coordinate appears to have a misplaced decimal. Lets replace the value
manually using our subsetting knowledge.

guppy_genes_df[4,'lat'] <- 17.12484

Remember, we need to use the arrow to assign data to an object. Since we are subsetting the dataset to the
left of the arrow, the value 17.12484 will be inputted at that subset, overwriting the data.

Lets check to see if it worked!

guppy_genes_df%>%
select(lat)

## lat
## 1 17.12497
## 2 17.12497

75



## 3 17.12463
## 4 17.12484
## 5 17.12405
## 6 17.12403
## 7 17.12484
## 8 17.12491
## 9 17.12453
## 10 17.12532
## 11 17.12592
## 12 17.12470
## 13 17.12554
## 14 17.12503
## 15 17.12442

Looks good to me! This is of course a tedious process if you need to replace many records. This issue would
be much easier to solve by fixing it at the source before its in R! (Yes I will keep hammering this point home)

4.3.1 Fixing typos with replace

Fixing data with replace()

Sometimes the simplest way to fix typos is with a simple find and replace. We can accomplish this by using
mutate() and the function replace().

If we remember, the location data has a few typos.

guppy_genes_df%>%
select(location)

## location
## 1 UPPER_STREAM
## 2 UPPER_STREAM
## 3 UPER_STREAM
## 4 UPPER_STREAM
## 5 UPPER_STREAM
## 6 UPER_STREAM
## 7 UPPER_STREAM
## 8 UPPER_STREAM
## 9 UPPER_STREAM
## 10 LOWER_STREAM
## 11 LOWER_STREAM
## 12 LOWER_STREAM
## 13 LOWER_STREAM
## 14 LOWER_STREAM
## 15 LOWER_STREAM

We could replace each value manually in a dataset this small. However, what if we had 2,000 rows to fix this
typo in?
That’s where the replace() function comes in.
replace() has three arguments:

76



• x - A vector to find and replace over. In our case, this will be the location column.

• list - A vector of index positions. We can use logic to get these indices where TRUE values indicate
where to replace.

• values - The replacement values

Lets see it in action! Remember, we want to use mutate() in order to directly update the location column.

guppy_genes_df%>%
mutate(location = replace(x = location,

list = location == "UPER_STREAM",
values= "UPPER_STREAM"))

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 3 7/27/2020 AHTD_GUP_5866 UPPER_STREAM 17.124634 -88.125183 19
## 4 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 5 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 6 7/30/2020 GRRA_GUP_5693 UPPER_STREAM 17.124028 -88.124755 22
## 7 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 8 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 9 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23
## 10 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.124812 37
## 11 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.125675 35
## 12 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.124641 230
## 13 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.124052 32
## 14 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.124394 32
## 15 8/7/2020 <NA> LOWER_STREAM 17.124425 -88.125226 40

Alternatively, you could create a new column if you do not wish to overwrite the data. Just use a name for
mutate() that isnt in your data already!

guppy_genes_df%>%
mutate(location_clean = replace(x = location,

list = location == "UPER_STREAM",
values= "UPPER_STREAM"))

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 3 7/27/2020 AHTD_GUP_5866 UPER_STREAM 17.124634 -88.125183 19
## 4 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 5 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 6 7/30/2020 GRRA_GUP_5693 UPER_STREAM 17.124028 -88.124755 22
## 7 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 8 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 9 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23
## 10 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.124812 37
## 11 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.125675 35
## 12 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.124641 230
## 13 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.124052 32

77



## 14 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.124394 32
## 15 8/7/2020 <NA> LOWER_STREAM 17.124425 -88.125226 40
## location_clean
## 1 UPPER_STREAM
## 2 UPPER_STREAM
## 3 UPPER_STREAM
## 4 UPPER_STREAM
## 5 UPPER_STREAM
## 6 UPPER_STREAM
## 7 UPPER_STREAM
## 8 UPPER_STREAM
## 9 UPPER_STREAM
## 10 LOWER_STREAM
## 11 LOWER_STREAM
## 12 LOWER_STREAM
## 13 LOWER_STREAM
## 14 LOWER_STREAM
## 15 LOWER_STREAM

4.3.2 Cleaning data with filter

Cleaning data with filter()

We’ve used filter() in the past to filter a data set via some logical criteria. We could easily filter out our
data set based on that same logic.

guppy_genes_df%>%
filter(location == "UPPER_STREAM")

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 3 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 4 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 5 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 6 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 7 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23

While absolutely useful, it is fairly straightforward to filter out based on simple logic. However, lets take
this as an opportunity to introduce a common issue in datasets: duplicates.

Cleaning duplicated data with filter() Duplicated data happens often. Data could have been entered
twice, there could have been an accidental copy and paste, or the dataset actually should contain duplicated
data points!

The process of identifying duplicated data is pretty easy with the duplicated() function

guppy_genes_df%>%
duplicated()

78



## [1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE

TRUE values indicate that the row is a duplicate. In this data, it looks like row 2 is a duplicate of row 1!

guppy_genes_df

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 3 7/27/2020 AHTD_GUP_5866 UPER_STREAM 17.124634 -88.125183 19
## 4 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 5 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 6 7/30/2020 GRRA_GUP_5693 UPER_STREAM 17.124028 -88.124755 22
## 7 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 8 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 9 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23
## 10 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.124812 37
## 11 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.125675 35
## 12 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.124641 230
## 13 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.124052 32
## 14 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.124394 32
## 15 8/7/2020 <NA> LOWER_STREAM 17.124425 -88.125226 40

This could be intentional and should be kept, or its an issue that should be removed.

We can remove duplicated rows very easily using duplicated().

We need to add the period in duplicated() as it is within the filter() function. The period tells r where to
input the object returned from the last pipe.

guppy_genes_df%>%
filter(!duplicated(.))

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.124909 25
## 2 7/27/2020 AHTD_GUP_5866 UPER_STREAM 17.124634 -88.125183 19
## 3 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.712484 -88.125748 23
## 4 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.125883 20
## 5 7/30/2020 GRRA_GUP_5693 UPER_STREAM 17.124028 -88.124755 22
## 6 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.124802 22
## 7 7/30/2020 <NA> UPPER_STREAM 17.124910 -88.124369 24
## 8 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.125922 23
## 9 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.124812 37
## 10 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.125675 35
## 11 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.124641 230
## 12 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.124052 32
## 13 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.124394 32
## 14 8/7/2020 <NA> LOWER_STREAM 17.124425 -88.125226 40

We’ve now removed the single duplicate row!

Naturally, we can also use filter to filter by any criteria

79



4.3.3 putting it all together

Putting it all together

Throughout this section we identified issues in our data, gave some best practices on how to fix them, and
taught you how to fix the data yourself using R.

So far, we have just been cleaning the data one step at a time. This section will stitch all those pieces
together to create a simple pipeline for cleaning all of the data in one fell swoop!

#load in raw data, removes duplicates, NA, fixes date format, latitude typo,
#location typos, length_mm typo, and converts the lon column to a numeric

guppy_genes_df%>%

filter(!duplicated(.))%>% #duplicates
filter(!is.na(gene_id))%>% #remove na
mutate(survey_date, replace(survey_date,survey_date == "8/50","8/5"))%>% #fix dates format
mutate(lat = replace(lat,lat == "1.712484","17.12484"))%>% #fix typo
mutate(location = replace(location,location == "UPER_STREAM","UPPER_STREAM"))%>% #fix typo
mutate(length_mm = replace(length_mm,length_mm == 230,23))%>% #fix typo
mutate(lon = as.numeric(lon)) -> guppy_genes_df_clean #data class change and output

guppy_genes_df_clean

## survey_date gene_id location lat lon length_mm
## 1 7/27/2020 FMMJ_GUP_1924 UPPER_STREAM 17.124975 -88.12491 25
## 2 7/27/2020 AHTD_GUP_5866 UPPER_STREAM 17.124634 -88.12518 19
## 3 7/28/2020 POIU_GUP_5241 UPPER_STREAM 1.7124844 -88.12575 23
## 4 7/28/2020 TT_G_4 UPPER_STREAM 17.124049 -88.12588 20
## 5 7/30/2020 GRRA_GUP_5693 UPPER_STREAM 17.124028 -88.12475 22
## 6 7/30/2020 AGTH_GUP_1540 UPPER_STREAM 17.124837 -88.12480 22
## 7 7/31/2020 ASDD_GUP_3596 UPPER_STREAM 17.124526 -88.12592 23
## 8 8/1/2020 SDAD_GUP_3114 LOWER_STREAM 17.125321 -88.12481 37
## 9 8/1/2020 THTE_GUP_3944 LOWER_STREAM 17.125925 -88.12568 35
## 10 8/5/2020 SSAS_GUP_1456 LOWER_STREAM 17.124701 -88.12464 23
## 11 8/50/2020 AASD_GUP_1217 LOWER_STREAM 17.125541 -88.12405 32
## 12 8/5/2020 JNKT_GUP_4566 LOWER_STREAM 17.125032 -88.12439 32
## replace(survey_date, survey_date == "8/50", "8/5")
## 1 7/27/2020
## 2 7/27/2020
## 3 7/28/2020
## 4 7/28/2020
## 5 7/30/2020
## 6 7/30/2020
## 7 7/31/2020
## 8 8/1/2020
## 9 8/1/2020
## 10 8/5/2020
## 11 8/50/2020
## 12 8/5/2020

All the hard work from this week can be summed up in just a few lines of code!

80



This is a perfect example of a well documented pipeline. We can clearly see what each step does, it is well
organized, and we can add on new steps as we find more issues. Further, the cleaned data was assigned to
a new object guppy_genes_df_clean. This preserves the original as a backup, in case we want to alter our
pipeline in the future!

81



Section 5 - logic, custom functions, and apply()

5.0 Section 5 Overview

Week 5 Overview

At some point you will likely need to perform some type of calculation through an entire dataset. This could
be as simple as getting the sum and standard deviation of each rows, or running a suite of statistics and
analyses over every object in a list. This may require you to write your own function and have it run over
every record in a dataset!

These next few sections will:

• Teach you to make if-else statements

• Describe for-loops and how to construct one

• Introduce the apply() function

• Show you how to make simple functions of your own!

The data The dataset for this week describes populations of Jaguars. The scientists are sampling shoulder
height between multiple adult individuals in each population. They want to do a simple t.test to see if there
are differences in the mean average height between the populations.

This data is constructed using the rbind() function and through a quick pipeline to add a population column
and then rename the columns. In the course so far, we have learned how to do everything in this code!

library(tidyverse)

rbind(c(70,71,72,76,69,74,79,70,70,76),
c(80,70,75,69,76,59,62,70,71,72),
c(60,60,62,64,58,64,69,68,61,62),
c(72,62,64,59,62,48,55,61,63,64),
c(70,68,72,73,69,64,76,70,70,74),
c(80,63,78,59,78,49,62,65,71,62)) ->jag_df

jag_df%>%
as.data.frame()%>%
mutate(pop = c("pop_a",'pop_b','pop_c','pop_d','pop_e','pop_f'))%>%
relocate(pop) -> jag_df

colnames(jag_df) <- c("pop",'indiv_1','indiv_2','indiv_3',
'indiv_4','indiv_5','indiv_6',
'indiv_7','indiv_8','indiv_9','indiv_10')

jag_df

82



5.1.1 Intro to if-else

Intro to If else statements If else statements are a staple of all programming languages. They create a
“fork” in our coding based on some logical criteria. If TRUE, R will run one set of code. If FALSE, R will
run another set of code.

Lets give a simple example where if x is larger than y, print “Larger”

x = 7
y = 5

if (x > y){
print("Larger")

}

## [1] "Larger"

In an if statement, we first input a logical statement inside the parentheses. If it is TRUE, R runs the
code inside the curly brackets {}. This would be the first path in our fork.

We can then add in an else statement that tells R what to do if the logical statement is returned FALSE.
This would be the second path in our fork. Lets change the values and tell R what to do if Y is less than X.

x = 20
y = 25

if(x>y){

print("x is larger")

}else{

print("y is larger")

}

## [1] "y is larger"

Similarly to if, the code we want to run is placed inside a new set of curly brackets. Notice that else is
placed directly after the closing curly bracket from the if statement.

5.1.2 Intro to For-Loops

Introduction to For Loops Similarly to if-else statements, for loops are a common principle in
programming. In essence, a for loop goes through some object and performs some snippet of code for every
nth value in the object.

Take this simple example with a vector named vec that we want to perform a few calculations on.

83



vec <- c(1,5,9,8,7)

The for-loop has a few different components we need to explain.
We first need to specify how we want to run the for loop and the object we want to apply the for loop over.

for(i in vec){}

This so far states says that for every value in the vector vec, perform whatever operations are in the curly
brackets. The letter i stands for the index value. This can be any character value.
The index value represents where in the object we are. By default it starts at 1, and increases by 1 each
time the loop completes.
Lets add some code to the curly brackets that will print i at every step of the for loop.

for(i in vec){print(i)}

## [1] 1
## [1] 5
## [1] 9
## [1] 8
## [1] 7

We now get all the values in the vector! In for-loops with a simple vector, i is simply the value in the vector.
The above for loop is essentially the same as running the following code.

vec[1]
vec[2]
vec[3]
vec[4]
vec[5]

## [1] 1
## [1] 5
## [1] 9
## [1] 8
## [1] 7

Naturally, we can do more than just print a simple value.
The following output will have 3 columns, the first is the current value, the second is with 5 added to each
value, and the third is each value multiplied by 3.

for(i in vec){

print(c(i,
i+5,
i*3))}

## [1] 1 6 3
## [1] 5 10 15
## [1] 9 14 27
## [1] 8 13 24
## [1] 7 12 21

84



5.1.3 Intro to custom functions

Intro to custom functions

Creating functions it not as difficult as it sounds and doing so is really helpful! It dramatically improves your
coding ability, makes your scripts easier to understand, and over time can allow you to do more complex
analyses easier.

For example, lets say we have 3 vectors. I used rnorm() here to create a normal distribution of 100 values.

vec_1 <- c(rnorm(100,0,1))
vec_2 <- c(rnorm(100,10,5))
vec_3 <- c(rnorm(100,3,10))

Lets say we want to calculate a few summary statistics for each. I included the print() function to make
the output easier to read.

print("Vector 1")
mean(vec_1)
sd(vec_1)
median(vec_1)
range(vec_1)
print("") #print a blank value

print("Vector 2")
mean(vec_2)
sd(vec_2)
median(vec_2)
range(vec_2)
print("")

print("Vector 3")
mean(vec_3)
sd(vec_3)
median(vec_3)
range(vec_3)
print("")

## [1] "Vector 1"
## [1] 0.06841222
## [1] 0.9662672
## [1] 0.03591471
## [1] -2.014210 2.293079
## [1] ""
## [1] "Vector 2"
## [1] 9.784007
## [1] 5.015307
## [1] 9.892128
## [1] -2.329491 22.857291
## [1] ""
## [1] "Vector 3"
## [1] 3.905776

85



## [1] 10.12999
## [1] 4.582607
## [1] -23.60923 26.97452
## [1] ""

This code is quite long and repetitive. We could instead create a custom function to make our lives easier!

We do so by using function(). function() contains arguments and objects we want to use within the
parentheses. The code we wish to run is contained within curly brackets {}.

In the return() function, we place the object from within the function we wish to output. In our case, we
combined all the results into an object named output.

summary_vect <- function(x){

output <- c(mean(x), sd(x), median(x), range(x))

return(output)
}

Now look what happens if we run this function for all 3 vectors

summary_vect(vec_1)

## [1] 0.06841222 0.96626723 0.03591471 -2.01421050 2.29307897

summary_vect(vec_2)

## [1] 9.784007 5.015307 9.892128 -2.329491 22.857291

summary_vect(vec_3)

## [1] 3.905776 10.129989 4.582607 -23.609228 26.974525

Writing custom functions helps us keep our code clean, makes our analyses more reproducible, and makes
updating your code much easier! If we want to add or remove one summary statistic, we just need to make
the change in the function, not throughout the entire script!

In general, keep your functions as simple as possible and no simpler!

5.2.1 for loops on dataframes

For loops on dataframes

Lets give an example where we need to perform some data manipulations and some analyses over our jaguar
dataframe.

When iterating through a dataframe object, we need to be explicit about how we iterate. For example, if
we just iterate through jag_df, every single value will be returned.

The values are displayed in the console using the print() function.

86



for(i in jag_df){print(i)}

## [1] "pop_a" "pop_b" "pop_c" "pop_d" "pop_e" "pop_f"
## [1] 70 80 60 72 70 80
## [1] 71 70 60 62 68 63
## [1] 72 75 62 64 72 78
## [1] 76 69 64 59 73 59
## [1] 69 76 58 62 69 78
## [1] 74 59 64 48 64 49
## [1] 79 62 69 55 76 62
## [1] 70 70 68 61 70 65
## [1] 70 71 61 63 70 71
## [1] 76 72 62 64 74 62

This may be useful in some circumstances, but typically we want to go through the dataframe row by row
or column by column. We can accomplish this by using the nrow() function (or ncol() for columns).

By placing a “1:” in front of nrow(), we tell R that we want to iterate starting from 1 up to the number of
rows in the dataset. This will make sure we hit every observation.

Notice, that when we run this chunk, i is no longer the value itself. It is now the index value of each row.

for(i in 1:nrow(jag_df)){print(i)}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6

Lets run a for-loop that shows how to subset the dataset by row. This will help you get a visual representation
of the data we are working with with each iteration of i.

for(i in 1:nrow(jag_df)){

print(jag_df[i,])

}

## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 1 pop_a 70 71 72 76 69
## individual_6 individual_7 individual_8 individual_9 individual_10
## 1 74 79 70 70 76
## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 2 pop_b 80 70 75 69 76
## individual_6 individual_7 individual_8 individual_9 individual_10
## 2 59 62 70 71 72
## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 3 pop_c 60 60 62 64 58
## individual_6 individual_7 individual_8 individual_9 individual_10
## 3 64 69 68 61 62

87



## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 4 pop_d 72 62 64 59 62
## individual_6 individual_7 individual_8 individual_9 individual_10
## 4 48 55 61 63 64
## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 5 pop_e 70 68 72 73 69
## individual_6 individual_7 individual_8 individual_9 individual_10
## 5 64 76 70 70 74
## pop individual_1 individual_2 individual_3 individual_4 individual_5
## 6 pop_f 80 63 78 59 78
## individual_6 individual_7 individual_8 individual_9 individual_10
## 6 49 62 65 71 62

Essentially, this for-loop is first running jag_df[1,], then jag_df[2,] then jag_df[3,] and so on until it runs
out of rows.

5.2.2 For-loops for analyses

For-loops for Analyses

Lets create a for loop that goes through each row of the dataset and runs a simple t.test(). The test
will compare the mean jaguar heights of each population to a control population to detect any significant
differences.

control_pop_heights <- c(71,72,74,73,77,70,73,77,72,75)

for(i in 1:nrow(jag_df)){

t.test(control_pop_heights,jag_df[i,2:11])%>%
print()

}

##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 0.53775, df = 16.144, p-value = 0.5981
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.057493 3.457493
## sample estimates:
## mean of x mean of y
## 73.4 72.7
##
##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 1.4216, df = 11.537, p-value = 0.1816
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

88



## -1.618501 7.618501
## sample estimates:
## mean of x mean of y
## 73.4 70.4
##
##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 7.9008, df = 15.752, p-value = 7.24e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.752204 13.447796
## sample estimates:
## mean of x mean of y
## 73.4 62.8
##
##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 5.8498, df = 11.512, p-value = 9.256e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.759648 17.040352
## sample estimates:
## mean of x mean of y
## 73.4 61.0
##
##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 2.1489, df = 16.132, p-value = 0.04716
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.03962077 5.56037923
## sample estimates:
## mean of x mean of y
## 73.4 70.6
##
##
## Welch Two Sample t-test
##
## data: control_pop_heights and jag_df[i, 2:11]
## t = 2.0792, df = 10.023, p-value = 0.06422
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4775583 13.8775583
## sample estimates:
## mean of x mean of y
## 73.4 66.7

Results! It seems some populations may differ from the control based on the p-value. This output is useful,

89



but is a bit messy.
Lets do another for loop that prints out the results in an easier to read format, and includes the mean height
for each population.

for(i in 1:nrow(jag_df)){

#here we create a temp variable only for printing the results of the t.test
#This will get overwritten with every new iteration of the for loop

temp <- t.test(control_pop_heights,as.numeric(jag_df[i,2:11]))

population <- jag_df[i,"pop"]

#cat is a useful function that concats things together to print.
#The seperator '\n' makes a new line

#we access results of the t.test using the $ on the temp variable.

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(jag_df[i,2:11])),'\n',
"P-value from t.test:", temp$p.value, "\n","\n")

}

## Population: pop_a
## Mean height is: 72.7
## P-value from t.test: 0.5980817
##
## Population: pop_b
## Mean height is: 70.4
## P-value from t.test: 0.1816071
##
## Population: pop_c
## Mean height is: 62.8
## P-value from t.test: 7.239574e-07
##
## Population: pop_d
## Mean height is: 61
## P-value from t.test: 9.256243e-05
##
## Population: pop_e
## Mean height is: 70.6
## P-value from t.test: 0.04715914
##
## Population: pop_f
## Mean height is: 66.7
## P-value from t.test: 0.06421611
##

The above chunk great use case for a for-loop. Namely, going through a dataset, performing some series of
operations, and providing us an easy to read output.
For loops can get considerably more advanced (e.g. doing every nth record instead of every one, dynamically
creating outputs, looping everything into a list etc), however, that is beyond the scope of this course!

90



5.3.1 Apply function

The apply() Function

In the last section we learned about for-loops, which iterate over a dataset and perform some set of functions.

Here we will learn about a cousin of the for loops, the apply() function.

apply() functions essentially do the same thing as for loops, however, apply() is easier to read, needs less
explicit instruction, and in some cases, can be faster than for loops

apply() takes in 3 arguments, X, MARGIN, and FUN

X is the input data that you want to apply over

MARGIN is the direction you want to apply. MARGIN = 1 is for rows, MARGIN = 2 is for columns,
MARGIN = c(1,2) applies the function over both rows and columns

FUN is the function you wish to apply.

Lets use apply() to get the means of each row in the dataset. Notice X is using the subsetted dataset to
exclude the character column pop.

apply(X = jag_df[,2:11],
MARGIN = 1,
FUN = mean)

## [1] 72.7 70.4 62.8 61.0 70.6 66.7

A big benefit of apply() is that you can return the results of apply() to a new object as well. While
absolutely possible with for-loops, it is generally more intuitive with apply.

jag_means <- apply(X = jag_df[,2:11],
MARGIN = 1,
FUN = mean)

To call more complex functions, we need to use function(x) in the FUN argument. x in this case is similar
to how i is used in the for loop. For example, using t.test() just like we did with the for-loops

control_pop_heights <- c(71,72,74,73,77,70,73,77,72,75)

apply(X = jag_df[,2:11],
MARGIN = 1,
FUN = function(x) t.test(x,control_pop_heights))

## [[1]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -0.53775, df = 16.144, p-value = 0.5981
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.457493 2.057493
## sample estimates:
## mean of x mean of y

91



## 72.7 73.4
##
##
## [[2]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -1.4216, df = 11.537, p-value = 0.1816
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.618501 1.618501
## sample estimates:
## mean of x mean of y
## 70.4 73.4
##
##
## [[3]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -7.9008, df = 15.752, p-value = 7.24e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -13.447796 -7.752204
## sample estimates:
## mean of x mean of y
## 62.8 73.4
##
##
## [[4]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -5.8498, df = 11.512, p-value = 9.256e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -17.040352 -7.759648
## sample estimates:
## mean of x mean of y
## 61.0 73.4
##
##
## [[5]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -2.1489, df = 16.132, p-value = 0.04716
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.56037923 -0.03962077

92



## sample estimates:
## mean of x mean of y
## 70.6 73.4
##
##
## [[6]]
##
## Welch Two Sample t-test
##
## data: x and control_pop_heights
## t = -2.0792, df = 10.023, p-value = 0.06422
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -13.8775583 0.4775583
## sample estimates:
## mean of x mean of y
## 66.7 73.4

5.3.2 Tying it all together

Tying it all together

Take a look at the for loop we created to show our t.test() results

control_pop_heights <- c(71,72,67,68,69,70,71,71,72,71)

for(i in 1:nrow(jag_df)){

#here we create a temp variable only for printing the results of the t.test This will get overwritten with every new iteration of the for loop

temp <- t.test(control_pop_heights,as.numeric(jag_df[i,2:11]))

population <- jag_df[i,"pop"]

#cat is a useful function that concats things together to print. The seperator '\n' makes a new line

#we access results of the t.test using the $ on the temp variable.

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(jag_df[i,2:11])),'\n',
"P-value from t.test:", temp$p.value, "\n","\n")

}

After scraping the hard drive, you discovered 3 more datasets of jaguar populations. Sure we could copy and
paste the for loops and change the values needed for each loop. However, this could easily lead to a lengthy,
messy script that is difficult to troubleshoot!

for(i in 1:nrow(jag_df)){

93



temp <- t.test(control_pop_heights,as.numeric(jag_df[i,2:11]))

population <- jag_df[i,"pop"]

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(jag_df[i,2:11])),'\n',
"P-value from t.test:", temp$p.value, "\n","\n")

}

for(i in 1:nrow(jag_df_2)){

temp <- t.test(control_pop_heights,as.numeric(jag_df_2[i,2:11]))

population <- jag_df_2[i,"pop"]

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(jag_df_2[i,2:11])),'\n',
"P-value from t.test:", temp$p.value, "\n","\n")

}

for(i in 1:nrow(jag_df_3)){

temp <- t.test(control_pop_heights,as.numeric(jag_df_3[i,2:11]))

population <- jag_df_3[i,"pop"]

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(jag_df_3[i,2:11])),'\n',
"P-value from t.test:", temp$p.value, "\n","\n")

}

Look a lengthy, messy script that is difficult to troubleshoot!

Instead, lets pull out the code inside the for loop and turn it into a function!

fun_height_summary <- function(x){

control_pop_heights <- c(71,72,67,68,69,70,71,71,72,71)

#Run t.test
t_test_results <- t.test(control_pop_heights,as.numeric(x[2:11]))

#extract which population is being run
population <- x["pop"]

#Output to console
cat("Population:", population,'\n',

94



"Mean height is:",mean(as.numeric(x[2:11])),'\n',
"P-value from t.test:", t_test_results$p.value, "\n","\n")

#return t_test_results
return(t_test_results)
}

Now we can use that function anywhere in our R environment! If we wanted to use that function over
apply() we now can simply type in the function name. We are applying this function over all of the rows
in jag_df.

apply(jag_df,1,fun_height_summary)

## Population: pop_a
## Mean height is: 72.7
## P-value from t.test: 0.05555104
##
## Population: pop_b
## Mean height is: 70.4
## P-value from t.test: 0.9239286
##
## Population: pop_c
## Mean height is: 62.8
## P-value from t.test: 4.607665e-05
##
## Population: pop_d
## Mean height is: 61
## P-value from t.test: 0.001097607
##
## Population: pop_e
## Mean height is: 70.6
## P-value from t.test: 0.7425727
##
## Population: pop_f
## Mean height is: 66.7
## P-value from t.test: 0.298002
##

## [[1]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -2.0988, df = 13.246, p-value = 0.05555
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.06851405 0.06851405
## sample estimates:
## mean of x mean of y
## 70.2 72.7
##
##
## [[2]]
##

95



## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -0.097849, df = 10.308, p-value = 0.9239
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.735846 4.335846
## sample estimates:
## mean of x mean of y
## 70.2 70.4
##
##
## [[3]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 5.9934, df = 12.923, p-value = 4.608e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.731003 10.068997
## sample estimates:
## mean of x mean of y
## 70.2 62.8
##
##
## [[4]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 4.4797, df = 10.295, p-value = 0.001098
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.641727 13.758273
## sample estimates:
## mean of x mean of y
## 70.2 61.0
##
##
## [[5]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -0.33541, df = 13.235, p-value = 0.7426
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.971742 2.171742
## sample estimates:
## mean of x mean of y
## 70.2 70.6
##
##

96



## [[6]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 1.1009, df = 9.5208, p-value = 0.298
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.632493 10.632493
## sample estimates:
## mean of x mean of y
## 70.2 66.7

That’s a bit of a messy output! This is because our code prints results to the console with cat() as well
as returns the t_test_results object. What we can do to clean this up, is add a summary argument that if
FALSE, does not print the output from cat().

fun_height_summary <- function(x, summary = TRUE){

control_pop_heights <- c(71,72,67,68,69,70,71,71,72,71)

t_test_results <- t.test(control_pop_heights,as.numeric(x[2:11]))

population <- x["pop"]

#cat is a useful function that concats things together to print. The seperator '\n' makes a new line

#we access results of the t.test using the $ on the temp variable.
if(summary == TRUE){

cat("Population:", population,'\n',
"Mean height is:",mean(as.numeric(x[2:11])),'\n',
"P-value from t.test:", t_test_results$p.value, "\n","\n")

}

return(t_test_results)
}

Now the code will only output the t_test_results from return() if summary is equal to FALSE. Remember,
that we need to use the function(x) format for the function with multiple arguments.

apply(jag_df,1,function(x) fun_height_summary(x, FALSE))

## [[1]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -2.0988, df = 13.246, p-value = 0.05555
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.06851405 0.06851405
## sample estimates:

97



## mean of x mean of y
## 70.2 72.7
##
##
## [[2]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -0.097849, df = 10.308, p-value = 0.9239
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.735846 4.335846
## sample estimates:
## mean of x mean of y
## 70.2 70.4
##
##
## [[3]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 5.9934, df = 12.923, p-value = 4.608e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.731003 10.068997
## sample estimates:
## mean of x mean of y
## 70.2 62.8
##
##
## [[4]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 4.4797, df = 10.295, p-value = 0.001098
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.641727 13.758273
## sample estimates:
## mean of x mean of y
## 70.2 61.0
##
##
## [[5]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = -0.33541, df = 13.235, p-value = 0.7426
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

98



## -2.971742 2.171742
## sample estimates:
## mean of x mean of y
## 70.2 70.6
##
##
## [[6]]
##
## Welch Two Sample t-test
##
## data: control_pop_heights and as.numeric(x[2:11])
## t = 1.1009, df = 9.5208, p-value = 0.298
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.632493 10.632493
## sample estimates:
## mean of x mean of y
## 70.2 66.7

If we we want to run this function over our several jaguar data sets and assign the results of the t tests to
an object, that is incredibly easy!

jag_1_ttest <- apply(jag_df_1,1,function(x) fun_height_summary(x, FALSE))

jag_2_ttest <- apply(jag_df_2,1,function(x) fun_height_summary(x, FALSE))

jag_3_ttest <- apply(jag_df_3,1,function(x) fun_height_summary(x, FALSE))

This section shows how we can take messy, and redundant code and make it understandable using some
fundamental programming elements. Between for loops, if else statements, and creating your own custom
functions, there is no task you R you cannot complete!

99



Section 6 - Plotting with ggplot2

6.0 Section 6 Overview

Section 6 Overview

This is last section of the R course! At this stage you are well on your way to become an R wizard! This week
will focus entirely on creating graphics using ggplot2. ggplot2 is a standalone package, however it comes
included with tidyverse! ggplot2 has a bit of a learning curve, however it offers unparalleled customization
of your visualizations and is by far the most popular visualization package in the R ecosystem.

This section will cover:

• how to make and customize plots with ggplot

• how to create multiple plots of your data using faceting

• how to craft your own custom ggplot themes

The data and loading tidyverse The data for this section describes results from a series of fruit fly
experiments. I used a series of functions to create more realistic looking data sets for this section. Each is
briefly explained below.

group = This a column to create 3 groups. The function rep() simply repeats “group_1”, “group_2”,
“group_3” 200 times each to create 600 rows of data.

lifespan_days = The lifespan of the fruit flies in days. The function rnorm() produces values from a normal
distribution given a mean and a standard deviation. The code here created 200 values and it was run 3 times
(one for each group) for 600 data values.

length_mm = The length of each fly in millimeters. rnorm() was used in a similar way as lifespan.

eye_color = 4 eye colors repeated 150 times each for 600 data values.

wing_size = The size of the wing either reported as “none” “small” or “normal”. The sample() function
allows us to sample each of those reported values based on some probability that each is picked. We ran 3
iterations of this function, sampling 200 values each, with different probabilities for each iteration.

library(tidyverse)

set.seed(1234) #set seed ensures our distributions are the same every time

fruit_fly_df <- data.frame(
group = rep(c("group_1", "group_2",'group_3'), each = 200),

lifespan_days = c(rnorm(200,7.5,.7),
rnorm(200,9,.6),
rnorm(200,10,.3)),

length_mm =c(rnorm(200,3,2)+1,
rnorm(200,4,1)+1,
rnorm(200,5,2)+1),

100



eye_color = rep(c("green","red","black","brown"),150),

wing_size = c(sample(c("none","small","normal"),200,
prob = c(.4,.5,.1), replace = TRUE),

sample(c("none","small","normal"),200,
prob = c(.1,.5,.1), replace = TRUE),

sample(c("none","small","normal"),200,
prob = c(.4,.1,.5), replace = TRUE)))

6.1.1 Intro to ggplot2

Intro to ggplot2

ggplot2 is a package specifically for data visualization and is included within the tidyverse package. ggplot2
allows for full customization of every element in your plot as well as layering multiple graphics over one
another.

Plots made in ggplot2 utilize 3 main components: data, aesthetics, and geometric layers

data is the data object being fed into ggplot, typically a data frame.

aesthetics describes how the variables within our data can be mapped to different aesthetic elements of our
plot. For example, we can map which data goes on the x axis and which data goes on the y axis.

geometric layers (geom layers) describe exactly how the data will displayed. There are a wide variety
of geom layer types available. geom_point creates a scatter plot, geom_boxplot creates a boxplot, and
geom_line creates line plots to name a few.

Lets introduce each of these major components

Data The main function we will use from ggplot2 is ggplot().

Using ggplot(), lets first load in the data and attempt to create a plot.

ggplot(data = fruit_fly_df)

101



Nothing happened!

Exactly as intended. The data is loaded via the ggplot function, however r doesnt know what to do with
that data yet as there are many unknowns.

Which variables are actually going to be plotted? Are there variables we can use to group our data? Is there
a column we can use to label our data points?

That’s where aesthetic mapping comes into play!

Aesthetic mapping In order to use the data, we need to map its variables to aesthetics using aes().
aes() will tell r how to use our data in the visualization. Lets add it to our ggplot() function to map a few
variables.

Here we are mapping the length_mm variable to the x axis (or as an independent variable) and the lifes-
pan_days variable to the y axis (or as a dependent variable).

ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))

102



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
length_mm

lif
es

pa
n_

da
ys

If we run this code, we get a plot but none of of the data was displayed. This is because we have so far
only loaded the ggplot() layer. This layer simply loads the data and sets up the default aesthetic mappings.
Since we supplied it with 2 variables, it already created a base plot window based off of that data (notice
the x and y axis limits/labels).

Geometric Layer If we want to specify how to visualize our data, we need to include a geom layer. Lets
add in just the geom_point() layer to create a scatter plot.

We specify the next layer of our ggplot using the plus symbol (+) and each layer is its own self contained
function. Here we want to add another layer, geom_point, that creates the scatter plot.

ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))+
geom_point()

103



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
length_mm

lif
es

pa
n_

da
ys

A very simple scatterplot! Hooray!

These three elements of the ggplot: the data, the aesthetics, and the geometric layers; form the basis for
every single ggplot you will make from here on out. Through the next few sections you will learn how to
customize every element of the above plot!

6.1.2 labeling layers and ggobjects

Labeling, layers, and gg objects

labeling using labs() Lets now handle some basics, such as labeling. We can specify our labels all in the
labs() function. We can customize the title, subtitle, caption, x-axis label, y-axis label, and even the alt
text all within labs()!

ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))+
geom_point()+
labs(title = "title", subtitle = "subtitle", caption = "caption",

x = "X axis label", y = "Y axis label",
alt = "Simple alt text describing the graph")

104



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

New layers As mentioned earlier, ggplot works with layers. Lets say we want to add a new layer on top
of the geom_point layer that shows a trendline.

We can do so by adding a + and creating a new layer. Lets add a layer which creates a trend line based on
the data. To do this, we will use geom_smooth()

ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))+
labs(title = "title", subtitle = "subtitle", caption = "caption",

x = "X axis label", y = "Y axis label",
alt = "Simple alt text describing the graph")+

geom_point()+
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

105



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

Straight forward! We can move the layers around as we please, but know that the the topmost layer is what
is loaded first, then the second is loaded on top of the first, and so on and so forth.

Creating gg objects A huge benefit of ggplot is that we can save our ggplot code as an object!

For example, lets save the ggplot() and labs() portions into a single object named gg.

gg <- ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))+
labs(title = "title", subtitle = "subtitle", caption = "caption",

x = "X axis label", y = "Y axis label",
alt = "Simple alt text describing the graph")

If we run gg, we will get that base plot once again.

gg

106



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

From there we can easily add new layers without needing to repeat information! Lets quickly create 3 plots.
Each will inherit the same information from gg to create their plot.

gg+
geom_point()

107



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

gg+
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

108



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

gg+
geom_point()+
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

109



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
X axis label

Y
 a

xi
s 

la
be

l

subtitle

title

caption

Creating gg objects will keep your code clean and easy to understand. Further, it is incredibly helpful when
you need to make a series of plots that contain similar information!

6.2.1 color and fill

color and fill We can change the color of our data using 2 different arguments, color and fill.

color determines the color of 1-dimensional data visualizations (points and lines)

#create a new gg object to be used for the lesson
gg <- ggplot(data = fruit_fly_df, aes(x = length_mm, y = lifespan_days))+

labs(title = "Lifespan dependent on length", x = "Length mm", y = "Lifespan days")

gg+geom_point(color = "blue")

110



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

color also determines the border color of 2-dimensional data visualizations (e.g. boxplots, bar charts)

#To create boxplots we need to group by our grouping variable in aes().
gg+geom_boxplot(aes(group = group),

color = "blue")

111



6

7

8

9

10

11

2 4 6 8
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

fill determines what color 2 dimensional data visualizations are filled in with. This example fills in the box
plot red, while keeping the border color blue

gg+geom_boxplot(aes(group = group), fill = "red", color = "blue")

112



6

7

8

9

10

11

2 4 6 8
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

As a reminder, in the bonus documents section I have included resources for all the different color formats.

6.2.2 Size shape and transparency

Size, Shape, Transparency, and Linetype

Color and fill are not the only arguments we can specify. This lesson will give a brief rundown of the most
commonly used aesthetic arguments.

Size Size controls the size of the data points. Size takes numerical inputs in millimeters.

#Left Plot
gg + geom_point(size = 1)

#Right plot
gg + geom_point(size = 4)

113



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

Lifespan dependent on length

Shape Shape controls the shape of the points. Shapes can be a character value (e.g. “square”) or an integer
that corresponds to a shape. For example, 17 is a triangle.

#Left Plot
gg + geom_point(shape = "square")

#Right Plot
gg + geom_point(shape = 17)

114



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

Lifespan dependent on length

Alpha Alpha controls the transparency of the points. Alpha values are decimals on a scale of 0-1, with 1
being completely opaque, and 0 being completely transparent.

#Left Plot
gg + geom_point(alpha =.25)

#Right Plot
gg + geom_point(alpha = .75)

115



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

Lifespan dependent on length

Line type When we plot lines, we can specify the type of line using the linetype argument. linetype takes
in either characters or a numeric value. There are seven types linetype allows.

• 0 - no line

• 1 - solid ————————-

• 2 - dashed - - - - - - - - - - - - - - -

• 3 - dotted . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

• 4 - dotdash -.-.-.-.-.-.-.-.-.-.-.-.-.-.

• 5 - longdash – – – – – – – – – –

• 6 - twodash – - – - – - – - – - – -

I set the alpha value low on these graphs to show the lines better.

gg+geom_point(alpha = .2)+
geom_smooth(linetype = 3)

gg+geom_point(alpha = .2)+
geom_smooth(linetype = "longdash")

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

116



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

Lifespan dependent on length

Naturally, there are many aesthetics that we wish to customize. The bonus documents “Intro the Themes”
and “Intro to elements” cover in depth how to fully edit every component of your plot!

6.2.3 visualizing using data and aes

Visualizing using data and aes() Using the aes() function, we have the capability to let our data
determine how the visualization looks. For example, lets create the scatterplot, but let the group variable
determine the color.

gg + geom_point(aes(color = group))

117



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

Now we can actually see some cool trends!

Naturally, we can do this procedure with any variable. Lets now determine the size of our points according
to length.

gg+ geom_point(aes(size = lifespan_days,
color = group))

118



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

group

group_1

group_2

group_3

lifespan_days

6

7

8

9

10

Lifespan dependent on length

Using aes() properly can lead to some stunning visualizations! However, I want to specifically point out
some common mistakes when using it.

Common mistakes with aes() When we specified the color of our points without using data, we specified
it outside of aes().

gg + geom_point(aes(), color = "blue")

119



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s
Lifespan dependent on length

When we determined the color of our points according to our data, we placed the color argument inside of
aes().

gg + geom_point(aes(color = group))

120



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

A very common mistake is placing the exact color we want to use inside of aes(). For example:

gg + geom_point(aes(color = "blue"))

121



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s

colour

blue

Lifespan dependent on length

As we can see, the points are not blue.

By placing color = “blue” inside of aes, we are telling r to visualize the data according to some variable
“blue”, which does not exist in our data. This is why “blue” shows up on the legend.

Red just happens to be the first default color ggplot2 uses.

Conversely, specifying data we wish to map to an aesthetic outside of aes() results in an error message.

gg+geom_point(color = group)

## Error in layer(data = data, mapping = mapping, stat = stat, geom = GeomPoint, : object ’group’ not found

This can be very confusing for newcomers to ggplot2. Just remember, if we want the aesthetics to relate to
data in our dataset, put the arguments in aes().

If we do not want to relate to our data, then keep our arguments outside of aes().

6.3.1 faceting with facet_wrap

Faceting with ggplot

This section will introduce faceting. Faceting allows us to make many plots at once based on some grouping
variable in our data.

122



Lets make a simple scatterplot, but this time including facet_wrap(). We’ll split our data according to
the ‘group’ variable.

Here we need to include the tilde (~) in order for facet_wrap to work correctly.

gg +
geom_point()+
facet_wrap(~group)

group_1 group_2 group_3

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

7

8

9

10

11

Length mm

Li
fe

sp
an

 d
ay

s

Lifespan dependent on length

We now have three plots, one for each group!

We can also supply color and shape using group into aes().

gg +
geom_point(aes(color = group, shape = group))+
facet_wrap(~group)

123



group_1 group_2 group_3

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

7

8

9

10

11

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

Facet according to 2 variables We can of course facet on another grouping variable, such as eye color
or wing size

gg +
geom_point(aes(color = group, shape = group))+
facet_wrap(~eye_color)

124



green red

black brown

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

7

8

9

10

11

6

7

8

9

10

11

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

gg +
geom_point(aes(color = group, shape = group))+
facet_wrap(~wing_size)

125



none normal small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

7

8

9

10

11

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

However, If we want to facet according to 2 variables, we can do so by placing another variable to the left of
the tilde (~). Lets split it between group as well as wing size.

gg +
geom_point(aes(color = group, shape = group))+
facet_wrap(group~wing_size)

126



group_3

none

group_3

normal

group_3

small

group_2

none

group_2

normal

group_2

small

group_1

none

group_1

normal

group_1

small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6
7
8
9

10
11

6
7
8
9

10
11

6
7
8
9

10
11

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

The variables on either side of the tilde (~) correspond to either rows or columns with the format being
rows~columns. For example, the above plot makes the groups the rows and the wing size the columns
(group ~ wing_size).

Faceting is an incredible useful tool in ggplot and should be in any data analysts toolkit!

6.3.2 saving visualizations using ggsave

Saving visualizations using ggsave()

Saving visualizations created in ggplot is easy using the ggsave function.

Lets create a visualization and save it to the object “output”.

output <- gg +
geom_point(aes(color = group, shape = group))+
facet_wrap(~group)

output

127



group_1 group_2 group_3

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

7

8

9

10

11

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

We can now use ggsave() in a very similar manner as the save() function we learned a few weeks ago. Lets
save our figure as a png image.

ggsave(output, filename = "BestVisualization.png")

## Saving 6.5 x 4.5 in image

Again, ensure you input the file extension (in this case .png) when saving your plot. You can also save your
plot as a PDF file (.pdf) by changing the file extension.

ggsave(output, filename = "BestVisualization.pdf")

## Saving 6.5 x 4.5 in image

As a reminder, the plots will save to your currently set working directory.

Bonus: Intro to ggplot themes

Intro to ggplot themes

When we want to customize specific aspects of how our ggplot looks, we will often want to edit the theme.
The theme controls the overall appearance of non-data elements in our plot (axes, titles, legend etc.).
Luckily, there are a wide variety of built in themes (as well as many packages that add themes).
Lets make our scatter plot, coloring by group and use a few different themes. First the normal plot

128



gg+
geom_point(aes(color = group))

6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

The minimal theme is quite common. Stripping away most unneeded elements

gg+
geom_point(aes(color = group))+
theme_minimal()

129



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

A classic theme is theme_classic()

gg+
geom_point(aes(color = group))+
theme_classic()

130



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

To add in something totally different, we’ll show the dark theme.

gg+
geom_point(aes(color = group))+
theme_dark()

131



6

7

8

9

10

11

0.0 2.5 5.0 7.5 10.0
Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

These simple themes can dramatically speed up your data visualization procedure.

Luckily, we can also edit every single component of the theme using the theme() function. Every component
of the theme is broken into elements that we can edit. For example, on the x-axis we can edit the elements
that relate to the tick-marks, the data labels, and the axis title.

The next document will cover how to edit each of those elements!

Bonus: customizing themes with elements

Customizing themes with elements

Regardless of which base theme we start with, we can fully edit every element using the theme() function.

Elements allow us to specify particular aspects of our ggplot. Lets start with element_text(), which
controls the size, color, position, and just about everything related to text.

First lets create a gg object of our faceted plot from before.

gg <- gg +
geom_point(aes(x = length_mm, y = lifespan_days, color = group, shape = group))+
geom_smooth(aes(x = length_mm, y = lifespan_days))+
facet_wrap(group~wing_size)

132



There are nearly 100 different elements we can edit within theme(). Naturally, we do not need to specify
the format for every single element, only the ones we wish to change.

The full list of editable elements as well as their element class (explained below) can be found via the help
documentation for theme() (?theme).

This lesson will focus on how to use the 4 main element classes to edit any of those 100 elements.

Elements When we edit a component of our plot, we must use one of the element functions to make this
happen.

The most common element classes include:

• element_text() for text such as axis labels or the title.

• element_rect() for rectangular elements such as the plot background,

• element_line() for line elements such as the axis line.

• element_blank() which returns a blank element. This is useful for removing elements all together.

Each of these functions contain a variety of arguments that let you specify the exact format of the element.

element_text() element_text() allows us to edit text elements. A few common arguments we specify
include:

• family = what font to use

• face = controls bolding, italics, underlining etc

• color = font color

• size = font size

• angle = the angle of the text

Lets change the text and the title of our legend using these arguments

gg + theme(legend.title = element_text(size = 15, angle = 30, family = "serif"),
legend.text = element_text(face = "italic", color = "steelblue"))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

133



group_3

none

group_3

normal

group_3

small

group_2

none

group_2

normal

group_2

small

group_1

none

group_1

normal

group_1

small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

8

10

6

8

10

6

8

10

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

element_rect() Rectangular elements include backgrounds and borders. The main arguments include:

• fill =The color of the fill

• color = the color of the border

• size = the size of the border line

• linetype = specifies the format of the border line (solid, dashed, dotted etc.)

Lets change the format of the panels using element_rect()

gg +
theme(panel.background = element_rect(color = "green",

linetype = "dotted",
size = 2,
fill = "steelblue"))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

134



group_3

none

group_3

normal

group_3

small

group_2

none

group_2

normal

group_2

small

group_1

none

group_1

normal

group_1

small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

8

10

6

8

10

6

8

10

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

Well its an ugly plot but its a plot nonetheless!

element_line() element_line determines the format of line elements. Common arguments include:

• color = the color of the line

• size = size of the line

• linetype = format of the line (solid, dashed, dotted etc.)

• lineend = style of the end of the line (round, butt, square)

• arrow = Arrow specifications using the arrow() function

Here lets edit the axis lines using element_line()

gg+ theme(axis.line = element_line(color = "red",
size = .5,
linetype = "dashed",
lineend = "square"))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

135



group_3

none

group_3

normal

group_3

small

group_2

none

group_2

normal

group_2

small

group_1

none

group_1

normal

group_1

small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

8

10

6

8

10

6

8

10

Length mm

Li
fe

sp
an

 d
ay

s group

group_1

group_2

group_3

Lifespan dependent on length

element_blank() element_blank() takes no arguments but allows us to remove specific elements.

Lets use this to remove the legend title and the grid lines in each panel.

gg+
theme(legend.title = element_blank(),

panel.grid = element_blank())

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

136



group_3

none

group_3

normal

group_3

small

group_2

none

group_2

normal

group_2

small

group_1

none

group_1

normal

group_1

small

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

6

8

10

6

8

10

6

8

10

Length mm

Li
fe

sp
an

 d
ay

s

group_1

group_2

group_3

Lifespan dependent on length

As we can see, using themes and elements allow us to edit any aspect of our ggplot to our specifications! This
week should have made you comfortable with working in ggplot and making the edits you need to make!

137


	Preface
	Overview of material.
	Section 0 - Introduction to R and Rstudio
	0.0 Section 0 Overview
	0.1.1 What is R and Rstudio?
	0.1.2 The layout of Rstudio
	0.1.3 The Environment
	0.2.1 Common Files in R
	0.2.2 The Working Directory
	0.3.1 Intro to Functions
	0.3.2 Intro to Packages
	0.3.3 Comments

	Section 1 - Basics of R
	1.0 Section 1 Overview
	1.1.1 Math Rules
	1.1.2 Intro to Objects
	1.1.3 Classes of Objects
	1.1.4 Types of Objects
	1.2.1 Loading Data
	1.2.2 Saving Data
	1.3.1 Intro to Plotting
	Bonus: Tips for Data Organization

	Section 2 - Manipulating Objects and Logic
	2.0 Section 2 Overview
	2.1.1 Subsetting Vectors
	2.1.2 Subsetting Dataframes
	Subsetting Dataframes
	2.1.3 Subsetting Lists
	2.2.1 Intro to Logic
	2.2.2 Combining logical statements
	2.3.1 Adding new columns
	2.3.2 Combining data with rbind() and cbind()
	2.3.3 Combining Data with merge()

	Section 3 - Introduction to Tidyverse
	3.0 Section 3 Overview
	3.1.1 Intro to tidyverse
	3.1.2 Intro to Pipes
	3.2.1 select and pull
	3.2.2 arrange and relocate
	3.2.3 filter and distinct
	3.3.1 mutate and count
	3.3.2 summarize and group_by

	Section 4 - Cleaning data and creating pipelines
	4.0 Section 4 Overview
	4.1.1 Best Practices for Data Cleaning
	4.1.2 glimpse and simple plots
	4.1.3 unique and Na values
	4.2.1 changing data types
	4.2.2 replacing data directly
	4.3.1 Fixing typos with replace
	4.3.2 Cleaning data with filter
	4.3.3 putting it all together

	Section 5 - logic, custom functions, and apply()
	5.0 Section 5 Overview
	5.1.1 Intro to if-else
	5.1.2 Intro to For-Loops
	5.1.3 Intro to custom functions
	5.2.1 for loops on dataframes
	5.2.2 For-loops for analyses
	5.3.1 Apply function
	5.3.2 Tying it all together

	Section 6 - Plotting with ggplot2
	6.0 Section 6 Overview
	6.1.1 Intro to ggplot2
	6.1.2 labeling layers and ggobjects
	6.2.1 color and fill
	6.2.2 Size shape and transparency
	6.2.3 visualizing using data and aes
	6.3.1 faceting with facet_wrap
	6.3.2 saving visualizations using ggsave
	Bonus: Intro to ggplot themes
	Bonus: customizing themes with elements


