Topic 7: Writing Equations of Parallel Lines

Script 1

Writing Equations of Parallel Lines with Marco and Janell

What is the equation of the line that is parallel to the line with the equation $y = \frac{3}{4}x - 6$ and passes through the point (4, 8) written in slope-intercept form?

MARCO

The instructions say to write the equation of the line that is parallel to the line with the equation y equals three fourths times x minus six and passes through the point four, eight.

> JANELL Written in slope-intercept form.

MARCO

We should use the point-slope formula because we're given a point and the slope.

> JANELL They didn't give us the slope.

MARCO

But the equation is given is the slope-intercept form, y equals m times x plus b where m is the slope of the line. So m equals three-fourths.

JANELL

And parallel lines have equal slopes.

MARCO

So the point-slope formula is y minus y one equals m times the difference, x minus x one.

JANELL

Okay then. We'll let four equal x one and eight equal y one.

MARCO

And m equals three-fourths.

JANELL

When we plug everything into the formula, that gives us y minus eight equals three-fourths times x minus four.

MARCO

Now we distribute the three-fourths.

JANELL

That makes y minus eight equals three-fourths times x minus...what's three-fourths times four?

MARCO

Well, you turn four into a fraction by putting it over one. So that's three-fourths times four over one. Then you multiply the numerators and multiply the denominators.

JANELL

So that's going to be three times four is twelve over four times one is four.

MARCO

And twelve divided by four is three.

JANELL

Okay then, we have y minus eight equals three fourths times x minus three.

MARCO

Now we just have to get rid of the eight on the left side by adding eight to both sides of the equation.

JANELL

The eights cancel on the left and negative three plus eight equals five. So the final answer is y equals three-fourths x plus five.

MARCO Give me a high five.