New Approaches to assessment of Intelligence, Specific Learning Disability, ADHD, and Autism

Jack A. Naglieri, Ph.D.

Research Professor, University of Virginia Senior Research Scientist, Devereux Emeritus Professor of Psychology

George Mason University
www.jacknaglieri.com
jnaglieri@gmail.com

In order to understand learning and learning problems we must have a brain-based understanding of intelligence.

Introductions

- Introduce yourself to those at your table
- My interest in intelligence and instruction
- Initial degrees in psychology
- Experiences at UGA
- Need for evidence based interpretation
- My personal perspective on being a researcher and test developer
-Why this topic?

Summary of the Workshop

$$
\begin{aligned}
& \text { This workshop is specifically designed to assist psychologists and others } \\
& \text { who evaluate intelligence to better understand academic and social success } \\
& \text { and difficulties. Understanding learning disabilities requires an } \\
& \text { understanding of learning Abilities. Traditional IQ (e.g., Wechsler and Binet) } \\
& \text { has been widely used despite their limitations, especially regarding fair } \\
& \text { assessment of diverse populations. Alternatives to traditional IQ, and in } \\
& \text { particular, the Cognitive Assessment System - Second Edition (CAS2; } \\
& \text { Naglieri, Das \& Goldstein, 2014) provides a neuropsycholgical approach to } \\
& \text { intelligence based on A. R. Luria's view of brain function. Research has } \\
& \text { shown that the Planning, Attention, Simultaneous, Successive cognitive } \\
& \text { processes the CAS2 measures detects problems those with specific learning } \\
& \text { disability, Autism, and ADHD have. CAS2 is the most appropriate test for } \\
& \text { diverse populations and research has shown that PASS constructs are directly } \\
& \text { related to interventions. } \\
& \text { Psychologists and Guidance Officers can now evaluate learning problems } \\
& \text { accurately and diverse populations fairly and provide research based } \\
& \text { interventions related to cognitive processing strengths and needs. In this } \\
& \text { one day session, Dr. Naglieri will share information about these exciting new } \\
& \text { opportunities that can greatly enhance the psychologist's ability to diagnose } \\
& \text { and recommend interventions. }
\end{aligned}
$$

> The Case of AlejandroDiscrepancy Consistency Model example
> From assessment to intervention

Topical Outline

Understanding tradition IQ

- A brain-based view of abilities
- Cognitive Assessment System Second Edition
- Deciding Which Tests to Use
- Diagnosis of SLD
- Neurocognitive abilities and ADHD
- Neurocognitive abilities and ASD
- Final case studies
CASE STUDY: ALEJANDRO
C.A. 7-0 GRADE 1
REASON FOR REFERRAL
- Academic:
- Could not identify letters/sounds
- October 2013: Could only count to 39
- All ACCESS scores of 1
- Behavior:
- Difficulty following directions
- Attention concerns
- Refusal/defiance

WISC-IV SUBTESTS

Interpretation of CAS2

Apply Discrepancy/Consistency

 model for AlejandroThere is a
significant
difference
between the
Attention score of
67 and the PASS
mean of 87.3 and
the Attention
scores is well
below Average
range

Section 5. CAS2 Interpretive Worksheet				
PASS Scale Comparisons				
Compare each PASS scale index score to the child's mean PASS score using Tables A. 1 and A. 2 (Extended Battery) or A. 3 and A. 4 (Core Battery) of the Interpretive Manual.				
	Score	d-value	Significant	Strength Weakness
Planning	102	14.8	yes	
Simultaneous	96	8.8	no	
Attention	67	-20.3	yes	yes
Successive	84	-3.3	no	
PASS mean	87.3			

COGNITIVE ASSESSMENT

Wechsler Scale

- The Wechsler is the most widely used IQ test
- Is it sufficient?
- Is the Wechsler detecting the cognitive problem that leads to a specific learning disability?
- Is Wechsler useful for instructional planning?
- What DOES it measure?
- Let's review the history of Wechsler.

Origins of Traditional IQ

- On that day same a group of psychologists held a meeting in Harvard University's Emerson Hall to discuss the possible role psychologists could play with the war effort (Yerkes, 1921).
> Yerkes, Thorndike, Seashore, Terman, Otis and others...

Origins of Traditional IQ

- By July of 1917 they showed that the Alpha and Beta tests could
- "aid in segregating and eliminating the mentally incompetent, classify men according to their mental ability; and assist in selecting competent men for responsible positions" (p. 19, Yerkes, 1921).
- Thus, July 20, 1917 is the birth date of the verbal, quantitative, nonverbal IQ test format.

Origins of Traditional IQ

- April 6, 1917 is remembered as the day the United States entered World War I.

Origins of Traditional IQ

- The goal was to find tests that could efficiently evaluate a wide variety of men, be easy to administer and easy to score.
- The tests were tried out in a study and the data analyzed by Woodworth, Thorndike (Chief Statistician), Otis, and Thurstone

1920 Army Testing

- Army Alpha	Army Beta Synonym- Antonym - Maze
Disarranged	Cube Imitation
Sentences	Cube Construction
. Number Series	- Digit Symbol
- Arithmetic Problems	- Pictorial Completion
- Analogies	- Geometrical
- Information	Construction

Verbal and Nonverbal

- Now you will take the Information subtest from the original Alpha (Verbal) IQ test
- There will be 10 questions
- Write your answers to each question
- You will have 60 seconds...
- Ready?
- BEGIN

The First IQ TEST: Alpha

1. Bull Durham is the name of tobacco
2. The Mackintosh Red is a kind of fruit
3. The Oliver is a typewriter
4. A passenger locomotive type is the Mogul
5. Stone \& Webster are well know engineers
6. The Brooklyn Nationals are called Superbas
7. Pongee is a fabric
8. Country Gentleman is a kind of corn
9. President during the Spanish War Mckinley
10. Fatima is a make of cigarete

Erom: Psychological Examining the United States Army (Yerkes, 1921, ${ }^{\text {Conclysijns }}$

Army Mental Tests \rightarrow Arithmetic on WISC

Get the answers to these examples as quickly as you can.
Use the side of this page to figure on if you need to.
SAMPLES $\begin{cases}1 & \text { How many are } 5 \text { men and } 10 \text { men?. }\end{cases}$
 How many are 40 guns and 6 guns? If you save $\$ 6$ a month for 5 months, how much will you save?
If 32 men are divided into squads of 8 , how many squads will there be?
Mike had 11 cigars. He bought 3 more and then smo
Mike had 11 cigars. He bought 3 more and then smoked 6. How many
cigars did he have left?.
5 A company advanced 6 miles and retreated 3 miles. How far was it then from its first position?.
6 How many hours will it take a truck to go 48 miles at the rate of 4 miles an hour?...
8 A regiment marched 40 miles in five days. The first day they marched 9 miles, the second day 6 miles, the third 10 miles, the fourth 9 miles. How many miles did they march the last day?
9 If you buy 2 packages of tobaceo at 8 cents each and a pipe for 55 cents, how Answer () much change should you get from a two-dollar bill? a pipe for 55 cents, ho
 dig it in half a day?. ...

BUT WAIT ! How do IQ and Achievement Tests Differ?

The TRUTH about IQ and achievement tests..

Conclusions

VIQ is Achievement

"A boy had twelve books and sold five. How many books did he have left?"

Stanford-Binet $5^{\text {th }}$ Ed. Quantitative items

Peter counted seventeen lily pads at the pond. There were frogs sitting on five of the lily pads, and the rest were empty. How many lily pads were empty?

$$
\text { (a) } 22 \text { (b) } 13 \text { (c) } 12
$$

Stanford Achievement
Test Math item

VIQ is Achievement

What does scared mean?
(The child answers orally)

Wechsler or Binet Vocabulary item presented orally by the examiner:

Someone who is glad is
(a) tall
(b) proud
(c) happy
(d) alone

Stanford Achievement
Test Reading Vocabulary

Quantitative Ability or Achievement?

- "Neal had five marbles. , "How many stars are Then his mother gave there all together?" him three more marbles. How many marble did he have then?"

Wechsler Individual Achievement Numerical Operations Subtest

Stanford-Binet 5 Quantitative ns Reasoning

Quantitative Ability or Achievement?

The Same Arithmetic Item!

Stanford-Binet 5 Quantitative Reasoning

Numerical Operations (continued) Numerical Operations (continued)

a	3	$8+5=$
(B	3	

Woodcock Johnson-III Achievement Math Fluency subtest

subtest
Numerical
Operations

Ability or Achievement ?

Effect of Achievement in IQ

- There is under-representation of minorities in gifted (Ford, 1998).
- Black, Hispanic, and Native American students by 50\% to 70\% (U.S. Department of Education, 1993)
- The over-representation of minorities in special education is a significant problem (Naglieri \& Rojahn, 2000).
This problem must be addressed by elimination of test questions that require verbal (e.g., vocabulary, information, comprehension, similarities) and quantitative knowledge

Which is Ability and which is Achievement?

Army Mental Tests \rightarrow WISC Digit Symbol (Coding) \& Mazes

```
Test 7.-Digit Symbol
```

record sheet, points to blank below 2 mbol for 2 at top of page, writes in s me way with the other parts of the il, points to space below 3 in the to

3 312321121314754416 Man Min

Test 8.-The Maze
onstration maze (a), and with his penc shortest way out. At critical points h l in wrong direction without marking, tinues to work in the right direction maze A, gives S . pencil, points to st

Army Mental Testing \rightarrow WISC Picture Completion

Connecting the Army Alpha

 \& Beta with Wechsler 28
Origins of Traditional IQ

Army Beta

- The Performance tests on the Beta are referred to as nonverbal

Back to the Origins of Traditional IQ

- One of the Enlisted men in the Medical Corps trained in the School for Military Psychology was the 22 year old DAVID WECHSLER (Jan 12, 1896 - May 2, 1981)

```
\vara, Emerson U.
Watkins, Clarcuce i
```

Wechsler, David....
Wells. Corneilus L .
Wells. Cornelius L.....
Werner, Helmuth C.J
Werner, Helmith
West, Robert W. . 3.
Westcott, Ralph
Whitehead, Guy.....
Westcott, Ralph W.
Whitehead, Guy...

- , vay.....................
:....do....

Corpo......
Private.
Private.
Cofporal.

Army Testing Program?

- David Wechsler got an idea....make a version of th Army tests for use by clinical psychologists

The Psychological Corporation

Cattell, Thorndike and Woodworth all have portraits at corporate headquarters of The Psychological Corporation (now Pearson) in San Antonio, Texas. They were on the board of the and instrumental in the formation of the company.

Wechsler-Bellevue (1939)

Verbal Nonverbal Intelligence?

- Verbal / Nonverbal is a practical division
- Advantages of Verbal tests
-they correlate with achievement because they have achievement in them $>$ Information, Vocabulary, Arithmetic
- Advantages of Nonverbal Tests
- they correlate with achievement without having achievement in them
- Why NONVERBAL?

What a Nonverbal Test Measures

- nonverbal assessment describes the content of the tests used to measure general intelligence not a theoretical construct of "nonverbal ability" (Bracken \& McCallun, 1998)
- There is no assumption that nonverbal, as opposed to verbal, abilities are being measured

1927 Army Testing

METHODS AND RESULTS

Men who fail in alpha are sent to beta in order that injustice by reason of relative unfamiliarity with English may be avoided. Men who fail in beta are referred for individual examination by means of what may appear to be the most suitable and altogether appropriate procedure among the varied methods available. This reference for careful individual examination is yet another attempt to avoid injustice either by reason of linguistic handicap or accidents incident to group examining.

- Nonverbal (beta) tests were intended to avoid injustice by reason of limited educational background

General Intelligence

- The meaning of general intelligence
- "we did not start with a clear definition of general intelligence. [but] borrowed from every-day life a vague term implying all-round ability and... we [are] still attempting to define it more sharply and endow it with a stricter scientific connotation" (p. 53)".
- Intelligence Testing: Methods and Results by Roudolf Pintner (1923)

Army Alpha and Beta

- The Army Alpha - Verbal and Quantitative tests became the Verbal IQ scale
- The Army Beta became the Performance IQ scale (AKA Nonverbal)
- Did this mean Wechsler believed in Verbal and Nonverbal intelligences?

General ability

2009)

- General ability is what allows us to solve many different kinds of problems
- The problems may involve
- reasoning, memory, sequencing, verbal and math skills, patterning, connecting ideas across content areas, insights, making connections, drawing inferences, analyzing simple and complex ideas.

Conclusions

Wechsler's Definition

- Definition of intelligence:
"The aggregate or global capacity of the individual to act purposefully, to think rationally, and to deal effectively with his environment (1939)"

What a Nonverbal Test Measures

wrote: "the subtests are different measures of intelligence, not measures of different kinds of intelligence" (p. 64). Similarly, Naglieri (2003) further clarified that "the term nonverbal refers to the content of the test, not a type of ability" (p. 2). Wechsler (1975) included all of his intelligence tests under the umbrella term called general ability. He wrote "... the attributes and factors of intelligence, like the elementary particles in physics, have at once collective and individual properties" (p. 138). Even though a test may have questions that are verbal, quantitative, or nonverbal, they can be combined under the concept of general ability.

Group Think...

-What is most surprising about this information?
-What thoughts do you have?
-Your questions?

Take Away Message

- It is time to consider options other than traditional IQ
- Wechsler Scales
- Stanford-Binet
- Woodcock-Johnson
- Differential Ability Scales
- OLSAT
- cogat
- It is time to consider a view of ability that is based on how the brain functions

Topical Outline

- Understanding tradition IQ

A brain-based view of abilities

- Cognitive Assessment System Second Edition
- Deciding Which Tests to Use
- Diagnosis of SLD
- Neurocognitive abilities and ADHD
- Neurocognitive abilities and ASD
- Final case studies

A Brain-based view of ability called PASS

And their instructional implications

IQ defined by BRAIN function

PASS theory is a modern way to define 'ability' based on measuring neurocognitive abilities

- Planning = THINKING ABOUT THINKING
- Attention = BEING ALERT
- Simultaneous = GETTING THE BIG PICTURE
- Successive = FOLLOWING A SEQUENCE

Learning and Intelligence (PASS)

- Teachers know a lot about instructional methods
- But to help children learn, we have to know HOW CHILDREN LEARN
- Difference instructional methods have different learning demands
- We have to understand how the brain functions to understand learning, and the role of PASS learning styles

Brain, Cognition, \& Intelligence

- The brain is the seat of abilities called PASS
- These neurocognitive processes are the foundation of learning (Naglieri \& Otero, 2011)

Naglieri, J. A. \& Otero, T. (2011). Cognitive Assessment System: Redefining Intelligence from A Neuropsychological Perspective. In A. Davis (Ed.). Handbook of Pediatric Neuropsychology (320-333). New York: Springer Publishing.

More on PASS and its Assessment

The Cognitive Assessment System
Jack A. Naglieri, Cara Conway

Theory Underlying THE CAS

What is a Cognitive Process?

- How are the processes identified?
- Use factor analysis to discover ability?
- Assign new labels to traditional IQ test subtests
- Use the experimental literature to define the constructs of interest?
- Rely on neuropsychological constructs

What is a Cognitive Process?

- The term cognitive process is a modern term for concepts like ability or intelligence
- The term cognitive process describes a foundational neuropsychologically identified ability
- Cognitive processes lead to the acquisition of knowledge and skills
- Skills, like reading decoding or math calculation, are not examples of cognitive process
- these are sets of specific knowledge and skills acquired and/or performed by the application of cognitive processes

Conclusions

What is a Cognitive Process?

- A specific cognitive process provides a unique kind of function (ability)
- A variety of cognitive processes is needed to meet the many demands of our complex environment
- A variety of cognitive processes gives us away of achieving the same goal using different types of or different combinations of processes (this is important for intervention planning).
$>$ A pure neurocognitive test requires little knowledge

Ask Two questions

- What does the student have to know to answer that question?
- That means knowledge (i.e. academic skills) is required
- What kind of thinking is required to answer the question?
- This is neurocognitive processing required to determine the answer

What is a Cognitive Process?

- We must assess ability and achievement separately
- Assess achievement with tests that adequately evaluate the domain of interest (e.g., reading, math, etc.)
- Assess cognitive abilities using questions that are as free of academic content as possible

PASS For Teachers (www.kathleenkryza.com)

The Brain and Intelligence as PASS

PASS: A neuropsychological approach to intelligence based on three Functional Units described by A. R. Luria (1972)

The average 18 year old as rated by a teacher gets a raw score of 30

PASS Theory: Planning

- Planning is a neurocognitive ability that a person uses to determine, select, and use efficient solutions to problems
- problem solving
- developing plans and using strategies
- retrieval of knowledge
- impulse control and self-control
- control of processing

Time to do a test of Planning

- You have a page called PC1 in your packet, please find it.
- Look at the boxes at the top of the page. The letter A has XX, the letter B has OX, the letter C has XX (point to the XX), and the letter D has 00 . These are the codes that correspond to each letter
- Now look at the rest of the page where there are the letters A, B, C, and D, but there are no codes written under them. There are many boxes for you to complete. Fill in as many of these as you can, as fast as you can, using the answers shown at the top of the page.
- You will have 60 seconds. Ready? Begin.

Time to do a test of Planning

- Now turn to the second page (PC2) in your packet.
- Look at this page. We're different answers for each letter. boxes at the top of the page. The letter A has OX, the letter B has XO, the letter C has $O O$ (point to the XX), and the letter D has XX.
- Fill in as many of the boxes on the rest of the page as fast as you can, using the answers shown at the top of the page
- You can do it any way you want. Let's see how many you can do. You will have 60 seconds.
- Ready, begin.

Conclusions

Planned Codes

Child fills in the codes in the empty boxes
Children are encouraged to think of a good way to complete the page

Planned Codes

Page 2
What is a good plan to complete this page?
Note orientation

Planned Codes Page 2

Conclusions

Planned Codes 1

Conclusions

Math Strategies

Can a 13 month old Plan?

Age 19 mos: Knowledge \& Planning

PASS Theory: Planning

Planning

- Evaluate a task
- Select or develop a strategy to approach a task
- Monitor progress during the task
- Develop new strategies when necessary

Examples of classroom problems related to Planning using the same strategy even if it is not effective
Struggling with how to complete tasks

- Not monitoring progress during a task - Misinterpretation of what is read

Naglieri, J. and Pickering, E., Helping Children Learn, 2003

www.efintheclassroom.net

$>$ Start with
Awareness of thinking about thinking

Dweck's Mindsets

Fixed mindset:
\diamond Effort will not make a difference
\diamond You either get it or you don't

Growth mindset: * Enjoy effort and process of learning

* You can always grow and learn

A Nation of Adults Like This?

Antwerp train Station (2009)

STEP 3 - Share your ideas
Planning Lesson

Phrase of the week: What is your plan?
http://www.youtube.com/watch?v=bQLCZOG202k

1. What had to happen so that the people could dance together in this video?
2. What are the parts of a good plan?
3. How do you know if a plan is any good?
4. What should you do if a plan isn't working?
5. How do we use planning in this class?

Planning Lesson Student responses

- Q: What would you have to plan out?
- They had to learn the dance steps (knowledge)
- Someone had to start dancing (initiation)
- Permission from train station (planning)

Q: What are the parts of a good plan?

- Think of possible problems (strategy generation)
- Organize the dance (organization)
- Practice the dance steps (initiation)
- Have a good idea of what to do (knowledge)

Planning Lesson Student responses

Q3: How do you know if a plan is any good?

- Put the plan in action and see if it works (selfmonitoring)
- Give it a try (perhaps learn by failing)

Q4: What should you do if a plan isn't working? 1.Fix it. (self-correction)
2.Go home! (a bad plan)

Q5: How do you use planning in this class?
1.We don't plan in this class
2.Mrs. XXX does all the planning in this class so you don't have to think about planning

Step 1 - Talk with Students

How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

Encourage Planning

Helping Children Learn Intervention Handouts for Use in School and at Home, Second Edition
By Jack A. Naglieri, Ph.D., \& Eric B. Pickering, Ph.D.,

Spanish handouts by Tulio Otero, Ph.D., \& Mary Moreno, Ph.D.

Step 1 - Talk with Students

How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you the ability to plan. When you stop and think about how to study, you are using your ability to plan
You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a

Think smart and use a plan!

plan for studying that works best for you.
It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is to look at the questions you have to answer about the story first. Then read the story to find the answers. Another plan is to make a picture of what you When you write you should also have a plan Students who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be doing as they write. Using a plan is a good way to be
smarter about your work!

Mindsets = Planning from PASS

- Planning is about how we do what we decide to do
- We can decide to have a growth mind set and think smart!
- Does teaching students to Think Smart and use a Plan work?

Winning Formula for Success

Group Think...
 -Discuss children you have seen or worked with who were good and/or bad in Planning as just defined
 -What methods helped them
 -What methods did not help
 - Your thoughts
 - Report to the audience

PASS Theory

- Attention is a basic neurocognitive ability we use to selectively attend to some stimuli and ignores others
- focused cognitive activity
- selective attention
- resistance to distraction

Directions for Items 21-30. These questions ask how well you pay attention and resist distractions. The questions also ask about how well someone attends to one thing at a time. Please rate how well you pay attention.

During the past month, how often did you...

21. work well in a noisy area?

22. stay with one task long enough to complete it?
23. not allow the actions or conversations of others to
interrupt his or her wor
24. stay on task easily?
25. concentrate on a task untili t was done?
26. listen carefully?
27. work without getting distracted?
28. have a good attention span?
29. listen to instructions or directions without getting off task?
30. pay attention in class?

The average 18 year old as rated by a teacher gets a raw score of 26

Expressive Attention: 5-7 years

The child tells if the animal is large or small, regardless of the relative size on the page.

Conclusions

Number
 Detection

Items 1 - 4 have 180 numbers on each page
Each child is given two pages
Targets appear at the top of the page
Score for targets
found and
false detections

Attention

This

sheet has a strong Attention demands because of the similarity of the options
II. A 3:15 A.M

B 3:30 p. . e3:15 PM D $3: 15 \mathrm{Am}$.

12 Trent began studying at 5:00 P.M. and finished 1 hour and 22 minutes later. What time did he finish?
A 6:22 A.M. B 5:22 P.M. C 6:10 P.M. D 6:22 P.M.
13. Maura began basketball practice at $3: 00$ P.M. and finished 50 minutes later. What time did she finish?
A 3:50 P.M. B $3: 05$ A.M. C $4: 05$ P.M. \quad D $4: 50 \mathrm{A.M}$.
14. Lance fished from 6:00 A.M. to 9:45 A.M. How long did he fish?
A 3 hours
C 3 hours and 45 minutes D 4 hours and 45 minutes

PASS Theory: Attention

Attention

- Focus on one thing and ignore others
- Resist distractions in the learning environment

Examples of classroom problems related to Attention
Trouble focusing on what ís important
Difficulty resisting distractions

- Difficulty working on the same task for very long - unable to see all the detaíls

Providing incomplete or partially wrong answers

Naglieri. J. and Pickering. E.., Helping Children Learn, 2003

Frankie - Attention CW

- Referred by parents (at age 11) after a history of reading difficulties and self esteem problems
- Cognitive Assessment System
- WJ-R, WRAT-3, PPVT-III
- Behavioral/Emotional
- Devereux Scales of Mental Disorders
- Self Concept
- Bracken Multidimensional Self Concept Scale

Frankie

Tests	Score	\%tile
Letter-Word Id	81	10
Passage Comp	86	17
Word Attack	85	16
Spelling	83	13
Calculation	104	60
PPVT-III	111	82

Frankie

Severe Attention Problem with poor academics and anxiety

Inattentive Type of ADHD

Frankie

- High level of anxiety
- he was too anxious to look closely at the words, and he would rather get the task completed and move on.
- Frankie could not attend to the details of the sequence of letters for correct spelling, and the order of sound-symbol associations

Frankie

- Attention Handouts

- Teaching Students About Attention (p.58)
- Overcoming Problems with Inattention (p. 67)
- Improving Attention (p. 76)
- These handouts encourage the teacher and Frankie's parents to help him understand him options for overcoming his attention weakness

Frankie

- Frankie has weaknesses in PASS \& achievement which are consistent with a Specific Learning Disability
".... a disorder in one or more of the basic psychological processes (Attention from CAS)...[with an] impaired ability to...read, write, spell..." (IDEA, 1997).
- Also - Inattentive Type of ADHD

Frankie - Intervention

- Level I: Help child understand the deficit
- Attention, resistance to distraction,
- Recognition of how the deficit affects daily functioning
- Level II: Improve Motivation \& Persistence
- Promote success via small steps
- Ensure success at school and at home
- Allow for oral responses to tests to circumvent reading when possible

Frankie - Intervention

- Teach rules for approaching tasks
- Define tasks accurately
- Assess child's knowledge of the problem
- Consider ALL possible solutions
- Evaluate value of all possible solutions
- Checking work carefully is required
- Correct your own test strategy (see

Pressley \& Woloshyn, 1995, p. 140).

Frankie - Intervention

- Discourage passivity / encourage independence
- Teacher should only provide as much assistance as is needed
- Discourage exclusive use of teacher's solutions
- Child needs to correct own work
- Child needs to learn to be self-reliant (Scheid, 1993).

Frankie - Intervention

- Level III: Problem-Solving Strategies

1. Teach strategies that increase inhibition and organization

- encourage the use of date books
$>$ teach the child to count to 10 before answering

2. Teach strategies to increase the level of alertness
3. Teach other relevant strategies
$>$ mnemonic devices (Mastropieri \& Scruggs, 1991)
> reading or math strategies (Pressley \& Woloshyn, 1995)

Mastropieri \& Scruggs (1991)

- Mnemonics are strategies: for learning for improving memory
- Topics include: vocabulary, science, reading, spelling, math

Teaching Students
Ways to Remeneer
Strategies for Learning Mnemonlcally
 ThamusE Scricoss
nuwum noluctinemity

Frankie

- Spelling
- Strategies for Spelling (pp.102-103)
- Segmenting Words for Reading/Decoding and Spelling (p. 89)
- These are designed to help him perform better when tasks require a lot of Successive processing.

Frankie - Use Planning Strength

- This strategy helps him organize the sequence of sounds and letters thereby focus is achieved

Group Think...

- Discuss children you have seen or worked with who were good and/or bad in Attention as just defined
-What methods helped them
-What methods did not help
- Your thoughts
- Report to the audience

PASS Theory

- Simultaneous processing is a basic neurocognitive ability which we use to integrate stimuli into groups
- Stimuli are seen as a whole
- Each piece must be related to the others
- Wechsler Nonverbal Scale
- KABC Simultaneous Scale

Directions for Items 11-20. These questions ask how well you see how things go together. They also ask about working with diagrams and understanding how ideas fit together. The questions involve seeing the whole without getting lost in the parts. Please rate how well you visualize things as a whole.

```
During the past month, how often did you...
```

11. like to draw designs?
12. figure out how parts of a design go together?
13. classify things into groups correctly?
14. work well with patterns and designs?
15. see how objects and ideas are alike?
16. work well with physical objects?
17. like to use visual materials?
18. see the links among several things?
19. show interest in complex shapes and patterns?
20. recognize faces easily?

The average 18 year old as rated by a teacher gets a raw score of 31

PASS Theory

- Simultaneous processing is what Gestalt psychology was based on
- Seeing the whole

CAS2 Matrices

CAS2 Verbal-Spatial Relations

Which picture shows a boy behind a girl?		

Numbers

Name
 \qquad

 Sereet numberfrom 1 to 100How is ...
Simultaneous
processing
facilitated by this work sheet?

Simultaneous Processing at Work!

Conclusions

PASS Theory: Simultaneous

Simultaneous Processing

- Relate separate pieces of information into a group
- See how parts related to whole
- Recognize patterns

Examples of classroom problems related to simultaneous

- Difficulty comprehending text
- Difficulty with math word problems
- Trouble recognizing sight words quickly

Trouble with spatial tasks
often miss the overall idea Processing

Jeremy

- Likable social fifth grade student
- Paid attention, worked hard
- Sometimes he got confused
- Had problems finding his way at school
- Missed the main idea
- Integration of ideas was difficult
- Trouble grasping new concepts
- Couldn't pick out important parts of problems
- Did not use context cues

Jeremy

- Story Grammar for Reading Comprehension (p. 77)
- Story Grammar for Writing (p. 101)
- Seven Step Strategy for Math Word Problems (p. 121)

Group Think...
 - Discuss children you have seen or worked with who were good and/or bad in Simultaneous processing as just defined
 -What methods helped them
 -What methods did not help
 - Your thoughts
 - Report to the audience
 Conclusions

153

PASS Theory: Successive

- Successive processing is a basic neurocognitive ability which we use to manage stimuli in a specific serial order
- Stimuli form a chain-like progression
- Stimuli are not inter-related

Directions for Items 31-40. These questions ask how well you remember things in order. The questions ask about working with numbers, words, or ideas in a series. The questions also ask about doing things in a certain order. Rate how well you work with things in a specific order.

During the past month, how often did you...
31. recall a phone number after hearing it?
32. remember a list of words?
33. sound out hard words?
34. correctly repeat long, new words?
35. remember how to spell long word
35. remember how to spell long words after seeing them once?
36. imicate a long sequence of sounds?
33. recall a summary of ideas w
38. repeat long words easily?
38. repeat long words easily?
40. follow three to four directions given in order?

The average 18 year old as rated by a teacher gets a raw score of 27

Word Series

- The child repeats a series of words in the same order the examiner says them

1. Wall-Car
2. Shoe-Key
3. Cow-Wall-Car-Girl
4. Dog-Car-Girl-Shoe-Key
5. Cow-Dog-Shoe-Wall-Man-Car-Girl-Key-Book

Sentence Repetition (Ages 5-7) or Sentence Questions (Ages 8-17)

- Sentence Repetition Child repeats sentences exactly as stated by the examiner such as: The red greened the blue with a yellow.

Sentence Questions
Child answers a question about a statement made by the examiner such as:
The red greened the blue with a yellow. Who got greened?

CAS2

- Visual Digit Span subtest allows for a Visual Auditory comparison

537


```
4 3 8 6 1
```


Successive

The sequence of the sounds is emphasized in this work sheet

Learning Math Facts

PASS Theory: Successive

Successive Processing

- Use information in a specific order
- Follow instructions presented in sequence

Examples of classroom problems related to Successive

- Trouble blending sounds to make words

Difficulty remembering numbers in order
Reading decoding problems
Difficulty remembering math facts when they are taught using rote learning ($4+5=9$).

Naglieri, J. and Pickering, E., Helping Children Learn, 2003

The Case of Larry - Age 8 Years 8 months

Linda M. Einhorn-Marcoux, M.A., Examiner \& Intervention Instructor

[^0] in School Psychology (Fifth Edition). Bethesda: NASP.

Case of Larry

- Larry is a third grader who was evaluated at the request of his parents because of their concern about his chronic problems with spelling and written language
- Larry likes to read but he has spelling problems
- Larry frequently confused the letters b and d and often writes his numbers backwards and reads words backwards (mop as pom)
- Larry says certain words within his sentences out of order

Larry

- Low achievement test scores

- Letter Word Recognition

83

- Written Expression 81
- Word Attack 86
- Decoding Fluency 81
- Meets the definition of SLD
- "... a disorder in 1 or more of the basic psychological processes involved in understanding or in using language, spoken or written, which disorder may manifest itself in the imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations."

PREP Intervention

- Larry attended nine one-hour sessions three times a week over the course of approximately 3 weeks
- During this time Larry received individualized instruction designed to improve the use of Successive processing strategies.
- Larry completed several homework assignments as a way of practicing the various rules and skills being taught

Larry's Problem with Successive

- Teach him to use his strength in Planning

How to Be Smart: Planning

[^1]
Larry's Problem with Successive

- Teach him to recognize sequences

How to Teach Successive Processing Ability
The first step in teaching children about their own abilities is to explain what Successive processing ability is. In Figure 1 (which is included in the PASS poster on the CD), we provide a fast and

Think smart and follow the sequence!

simple message: "Think smart and follow the sequence!" We should begin by helping children real-
ize that they have many different types of abilities ize that they have many different types of abilities and that Successive processing is one of them. During appropriate times during the day, remind students to closely attend to the sequence of informa-tion-when reading, presenting information in written text, examining the sequence of letters when doing spelling, solving math equations, and so forth We need to teach children to approach all of their work with an understanding of how the information is sequenced. Throughout the day, the teacher should do the following:

Larry's Problem with Successive

- Teach him to recognize sequences

How to Teach Successive Processing Ability

1. Teach children that most information is presented in a specific sequence so that it makes sense.
2. Encourage children by asking, "Can you see the sequence of events here?" or "Did you see how all of this is organized into a sequence that must be followed?"
3. Remind the students to think of how information is sequenced in different content areas, such as reading, spelling, and arithmetic, as well as in sports, playing an instrument, driving a car, and so forth.
4. Teach children that the sequence of information is critical for success.
5. Remind students that seeing the sequence requires careful examination of the serial relationships among the parts.

Larry's Problem with Successive

- Teach him to use strategies

Chunking for Reading/Decoding

$\substack{\text { Readi } \\ \text { send } \\ \text { nenen }} \quad$ Segmenting Words for Reading/Decoding and Spelling

Decoding a written word requires the person to make sense out of printed letters and word How to translate letter sequences into sounds. This demands understanding the sounds that let represent and how letters work together to make sounds. Sometimes words can be segm Teach into parts for easier and faster reading. The word into is a good example because it contai be rer words that a child may already know: in and to. Segmenting words can be a helpful strated reading as well as spelling

How to Teach Segmenting Words
How to Teach Segmenting Words
Chunking \& Spelling

Larry's Pre-Post skills scores

Larry's Pre-Post skills scores

Teach Children about their Abilities

Helping Children Learn Intervention Handouts for Use in School and at Home, Second Edition By Jack A. Naglieri, Ph.D., \& Eric B. Pickering, Ph.D.
Spanish handouts by Tulio Otero, Ph.D., \& Mary Moreno, Ph.D.

Group Think...

- Discuss children you have seen or worked with who were good and/or bad in Successive processing as just defined -What methods helped them
-What methods did not help
- Your thoughts
- Report to the audience

Step 1 - Talk with Students

How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do

Sted 1 - Talk with Students How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work your plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan.
You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Inter net to learn? Do you ask the teacher or another student for help? You can learn more by using a

Think smart and use a plan!

plan for studying that works best for you.
It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is the story first Then read the story to find the answers. Another plan is to make a picture of what read so that you can see all the parts of the story When you write you should also have a plan Stu dents who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be doing as they write. Using a plan is a good way to be

Step 1 - Talk with Students

How to Be Smart: Attention

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

Attention is a very important ability that everyone has. Everything we do requires the ability to focus on some things and ignore others. The ability to pay attention is what makes us able to focus our thoughts on one thing and resist distractions. No one can learn without the ability to at tend. We cannot attend to all the information our brain is receiving. In order to focus, we must resist attending to some things so we can focus on others. In school there is much to attend to and many things that are distracting. Students hear others talking, a noise in the hallway, or the beep of a computer; they see a flash of light from the window; and so forth. Schoolwork requires a lot of focus of attention.

Sted 1 - Talk with Students

How Can You Be Smarter?

You can be smarter if you carefully use your ability to attend. Remember to be aware of how well you are attending. Be sure to notice if you are being distracted. If you are having a problem, do something to help you pay attention. You will be able to do more if you remember to "Think smart and look at the details!" (see Figure 1). Remember to think about how well you are attending when you do your work.

Think smart and look at the details!

It is smart to be aware of your level of attention. Also remember to notice if you are being distracted. Ask yourself, "Am l losing my ability to focus?" or "Am I getting distracted? If so, change your seat, take a short break, stand up and stretch, or do something to help you attend better. Remember that you can't earn if you can't pay attention

You should remember that Attention can be disrupted by loud noises or seeing something distracting. It is important to notice when your ability to attend is good or bad. If you are having trouble attending, figure out what you need to do to attend Figure 1. Picture reminder to altend to the detalis. better.

Step 1 - Talk with Students

How to Be Smart: Simultaneous

When we say someone is smart, we usually mean that they know a lot of information. Yet, being smart also means having a lot of ability to learn new things. Being smart at learning new things includes knowing and using thinking abilities. There are ways to use your abilities better when you are learning.

What Does Being Smart Mean?

Simultaneous ability is what you use to see how things fit together. This ability helps you see the big picture. This ability is what helps you understand the meaning of a sentence and a story. It is also very important for seeing patterns in numbers, word spellings, or themes in a story. It also ets you judge distances. For example, when you throw a ball you have to judge the distance to your target and how high you have to aim to get it there.

How Can You Be Smarter?

You can be smarter if you look to see how things are connected. Sometimes people say, "Get the big picture." This saying is about using your Simultaneous ability. When you stop and think about how things fit together to make the "big picture," you are using your Simultaneous ability.

Step 1 - Talk with Students

You will be able to learn more if you remember to see patterns and themes in all you do. An easy way to remember to do this is to look at the picture "Think smart and put the pieces together!" (Figure 1). You should always use your ability to see how parts go together to make a whole when reading; studying vocabulary, spelling, or science; and solving math problems.
Think smart and put the pieces together!

Figure 1. Picture tor remembering to see the big picture.

It is smart to use your ability to see the big picture when doing all schoolwork. When you read, you should draw a picture of the characters and story line. Use a series of drawings that shows what happens in the story. Creating a story by using pictures is an excellent way to organize the information. Simultaneous ability is used when you do that, and it is a good way to be smarter about your work!

You can improve your math skills if you use Simultaneous ability. Think about the problem, see what information is needed and what is not, figure out what is related to what, and use esti-

Step 1 - Talk with Students

How to Be Smart: Successive

When we say people are smart, we usually mean they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

Successive ability is what you use to put information in order. It is what you use when you have to remember the sequence of information, such as a telephone number. When you tie your shoe you have to do all the steps in the right order. When you are sounding out a word you haven't seen before, you are using your Successive ability to say the sounds in the correct order. When you repeat a word you have never heard before, especially if it is in a different language, you are using Successive ability. This ability also helps you put sounds together to say words, and words together to make sentences. Sequential ability is very important for reading, math, and all of your gubjects.

Sted 1 - Talk with Students

How Can You Be Smarter?

You can be smarter if you pay attention to the sequences in which things must be done. There are ways of making the sequence easier to remember. For example, group letters when spelling words. Find out if writing the words 10 times each helps you. Do flashcards work better for you? It is smart to find out how you learn sequences best and then to use what works best for you. Thinking about the sequences of things is a good way to be smarter about your work!

Remembering to Follow the Sequence

Remember that sometimes when you are anxious, tired, or just doing too many things at one time, you might forget to look at the order in which information is presented. When you see that you are not using your Successive ability, say to yourself, "Think smart and follow the sequence!" (see Figure 1). Looking closely at the sequences of things will make you smarter!

Step 1 - How to Teach about Planning

Topical Outline

- Understanding tradition IQ
- A brain-based view of abilities

Cognitive Assessment System Second Edition

- Deciding Which Tests to Use
- Diagnosis of SLD
- Neurocognitive abilities and ADHD
- Neurocognitive abilities and ASD
- Final case studies

Opearationalizing Basic Psycholgoical Processes using PASS Theory

CAS2 Development Goals

- CAS2
- New norms
- Strengthen reliability of the scales by modifying subtest formats
- Improve factor structure
- Add/delete items
- Add a visual Successive subtest
- Add new scales beyond PASS
- Retain Administration format of > Examiner demonstrates, -Child does a sample
$>$ Directions for remaining items is given
> And opportunity to Provide Help is given

Item Set 1

Expose liem Set 1 and syy,

Look at this page. There are many boxes lor you to fill in point lo the portion of the page with the empty boxes, but do not poinf In a sweeping motion to the rows or columns). Fill in as many of hese as you can, as last as you can, using these answers poont Io the coded boxes, and puse for $3-5$ seconds to allow the examinee to hook at the puge). You can do it any way you want. Lets see how many you can do.
Readyl (Provide a brief explanation if necessary)
Begin. Start timing. Allow 60 seconds (1:20 minute). Record the tine to completion and strategy use.
If the examinee stops or spends more than 1 or 2 seconds erasing, immediately say, Keep going.
If the examinee is still working after the tine limit expires, sid: Stop. Record the time in seconds. Note strategy use

CAS2 Scale and Subtest Structure

CAS2

- Supplementary Scales: Executive Function, Working Memory, Verbal, Nonverbal
- Added: A Visual and Auditory comparison

CAS2 Online Score \& Report

http://www.proedinc.com/customer/ProductView.aspx?ID=7277

- Enter data at the subtest level or enter subtest raw scores
- Online program converts raw scores to standard scores, percentiles, etc. for all scales.
- A narrative report with graphs and scores is provided

CAS2: Brief for Ages 4-18 years

CAS2: Brief

- Give in 20 minutes
- Good for reevaluations
- Yields PASS and Total standard scores (Mn 100, SD 15)
- All items are different from CAS2
- Planned Codes
- Simultaneous Matrices
- Expressive Attention

New Subtest

- Successive Digits (forward only)

CAS2: Brief Simultaneous Matrices

Administration
 Materials: CASZ Breef So
Objective:
Caminess thods elect the eptoin that best completer the matic
 tem adminser pevevas trems in tevesse adder unt wo consective appropiste column and then score the reponse 10 - correct, $0=$ arrect foc eachitem Discontinue Rule Dixod Directions for All Examinees:

 This sthe right one becasse is ally ylow p f feecesax, provide br Directions for Examinees Ages 4-11:

CAS2: Brief Planned Codes \& Successive Digits

- Planned Codes has 8 items using numbers not letters and has different patterns
- Successive Digits uses numbers (not words)

pns

CAS2: Brief Scale

- Expressive Attention (Stroop) used
- Big/Little animals (ages 4-7 years)
- Color Words (ages 8-18)

CAS2: Rating Scale

For TEACHERS

CAS2 Rating Scales

- The CAS2: Rating form contains 40 items
- 10 items for each PASS scale
- PASS and Total scales are set to have a mean of 100 and standard deviation of 15

CAS2 Rating

 Scales- The CAS2: Rating Scale scores can be used as part of a larger comprehensive evaluation or for instructional planning

CAS2 Rating Scales (Ages 4-18 yrs.)

- The CAS2: Rating measures behaviors associated with PASS constructs
- Normed on a nationally representative sample of 1,383 students rated by teachers

CAS2 Rating Scales

- The rater is given a description of what each scale is intended to measure.
- This informs teachers about PASS

Directions for Items 1-10. These questions ask how well the child or adolescent decides how to do things to achieve a goal. They also ask how well a child or adolescent thinks before acting and avoids impulsivity. Please rate how well the child or adolescent creates plans and strategies to solve problems.
Directions for Items 11-20. These questions ask how well the child or adolescent sees how things go together. They also ask about working with diagrams and understanding how ideas fit togethes. The questions involve seeing the whole without getting lost in the parts. Please rate how well the child or adolescent visualizes things as a whole.
Directions for Items 21-30. These questions ask how well the child or adolescent pays attention and resists distractions. The questions also ask about how well someone attends to one thing at a time. Please rate how well the child or adolescent pays attention.
Directions for Items 31-40. These questions ask how well the child or adolescent remembers things in order. The questions ask about working with numbers, words, or ideas in a series. The questions also ask about doing things in a certain order. Please ate how well the child or adolescent works with things in a specific order.
\qquad

PASS: Across the Three Measures

	CAS2 Rating Scale Items ask how well the child...	CAS2	CAS2 Brief
Planning	thinks before acting, creates plans, uses strategies to achieve a goal.	Planned Codes	Planned Codes
		Planned Connections	
		Planned Number Matching	
Attention	can focus attention to one thing at at time and resists distractions.	Expressive Attention	Expressive Attention
		Number Detection	
		Receptive Attention	
Simultaneous	understands how parts combine to make a whole and see the big picture.	Matrices	Simultaneous Matrices
		Verbal-Spatial Relations	
		Figure Memory	
Successive	works with numbers, words or ideas that are arranged in a specific series.	Word series	Successive Digits
		Sentence Repetition/Questions	
		Visual Digit Span	

PASS Comprehensive System

(Naglieri, Das, \& Goldstein, 2014)

Topical Outline

- Understanding tradition IQ
- A brain-based view of abilities
- Cognitive Assessment System Second Edition

Deciding Which Tests to Use

- Diagnosis of SLD
- Neurocognitive abilities and ADHD
- Neurocognitive abilities and ASD
- Final case studies

PASS Comprehensive System

- At Tier 1 CAS2: Rating Scale can be completed by a teacher and depending upon those results...
- At Tier 2 the CAS2: Brief scale could be given to inform instruction and for screening
- At Tier 3 the CAS2: Extended Battery could be given for full evaluation of his neurocognitive abilities
- This PASS Comprehensive System provides three ways to learn about a student's learning strengths and weaknesses

Naglieri \& Goldstein (2011)

GROUP PROFILES BY ABILITY TEST

Because ability tests play such an important role in the diagnostic process, it is crucial to understand the sensitivity each test may have to any unique characteristics of those with an SLD or attention deficit. Clinicians need to know if an adolescent or adult has a specific deficit in ability that is related to a specific academic learning problem. There has been considerable research on, for example, Wechsler subtest profile analysis, and most researchers conclude that no profile has diagnostic utility for individuals with SLD or ADHD (Kavale \& Forness, 1995). The failure of subtest profiles has led some to argue (e.g., Naglieri, 1999) that scale, rather than subtest, variability should

1. We need to know if intelligence

 tests yield distinctive profiles2. Subtest profile analysis is UNSUPPORTED so use scale profiles instead

Test Comparison: Reading Decoding

Comparison of Profiles: ADHD

SLD Profiles on CAS

(Huang, Bardos, D'Amato, 2010)

Identifying Students

With Learning Disabilities:
Composite Profile Analysis
Using the Cognitive
Assessment System

Leesa V. Huang', Achilles N. Bardos ${ }^{2}$,
and Rik Carl D'Amato'

Abstract
The detection of cognitive patterns in children with learning disabilities (LD) has been a priority in the identification process. Subtest profile analysis from traditional cognitive assessment has Therefore, the purpose of this study is to use a new generation of cognitive tests with megaclus. ter analyssis to augment diagnosis and the instructional processs. The Cognitive Assessmment Systern Wes a contemporary theoretical model in which composite scores, instead of subtests scores. are used for profie analysis Ten core profiles from a regular education sample $(N=1.692)$ and 1
profiles from a sample of students with $L \mathrm{~L}(\mathrm{~N}=367)$ were found. The majority of the $L \mathrm{LO}$ profiles were unique compared with profiles obtained from the general education sample. The implica(enss of this study substantiate the usefuliness of profile analysis on composite scores as a criticai

Johnson, Bardos \& Tayebi, 2003

- "this study suggests that the CAS...yields information that contributes to the differential diagnosis of students suspected of having a learning disability in writing"

DISCRIMINANT VALIDITY OF THE COGNITIVE SSESSMENT SYSTEM FOR STUDENTS WITH WRITTEN ASSESSMENT SYSTEM FOR STUDENTS WITH WRITIE

 Judy A. Johnson
Liversity of Houston. Wictoria of Houston - Victoria
Achilles N. Bardos Achilles N. Bardos
of Northem Colorado Kandi A. Tayebi Sam Houston State University

Canivez \& Gaboury (2010)

- "the present study demonstrated the potential of the CAS to correctly identify students who demonstrated behaviors consistent with ADHD diagnosis." glcanivez@eiu.edu

Ability \& Achievement

- IQ scores correlate about .5 to .55 with achievement Intelligence (Brody, 1992)
- But traditional tests have achievement in them
- Naglieri (1999) summarized the correlations between several tests and achievement
- The median correlation between each test's overall score and all achievement variables was obtained

Ability \& Achievement (Naglieri, 1999)

	WISC-III	DAS	WJ-R	K-ABC	CAS
	FSIQ	GCA	Cog	MPC	FS
Median r	.590	.600	.625	.630	.700
\% of Var	35%	36%	39%	40%	49%
Increase over					
WISC-III	-	3%	12%	14%	41%
N	1,284	2,400	888	2,636	1,600

WISC-3: WIAT Manual Table C. 1 ages 6-16; WJ-R Technical Manual; CAS Interpretive Handbook; K-ABC Interpretative Manual; DAS Handbook. Increase $=\left(r^{2}{ }_{1}-r^{2}{ }_{2}\right) / r^{2}$, where $r^{2}{ }_{1}=$ WISC -3 WIAT correlation

CAS and Achievement

Cryens.
Construct Validity of the PASS Theory and CAS: Correlations
With Achievement
Jack A. Naglieri and Johannes Rojiahn

Race Differences

Evolution of IQ (Goldstein, \& Naglieri, 2015)

Hundred Years of Intelligence 20
Testing:Moving from Traditional
IQ to Second-Generation
Intelligence Tests
Jack A Naglieri

Context

Conclusions
Jack A. Naglieri, Ph.D.
Conclusions
231

Table 20.1 Mean score differences in standard scores by

 IQ (Naglieri, 2015)	Table 20.1 Mean score differences in standard scores by race on traditional IQ and second-generation intelligence tests	
	Test	Difference
	Traditional	
	SB-IV (matched)	12.6
Brainbased PASS measured by CAS and CAS2 is most fair	WISC-IV (normative sample)	11.5
	WJ-III (normative sample)	10.9
	WISC-IV (matched)	10.0
	Second generation	
	KABC (normative sample)	7.0
	KABC (matched)	6.1
	KABC-2 (matched)	5.0
	CAS2 (normative sample)	6.3
	CAS (demographic controls)	4.8
	CAS2 (demographic controls)	4.3

Hispanic ELL Students with Reading Problems

Bilingual Hispanic Children's Performance on the English and Spanish Versions of the Cognitive

Assessment System

Jack A. Naglieri
George Mason University
Tulio Otero
Columbia College, Elgin Campus
Brianna DeLauder
Holly Matto
Holly Matto
Virginia Commonwealth University
School Psychology Quarterly 2007, Vol. 22, No. 3, 432-448

This study compared the performance of referred bilingual Hispanic children on the Planning, Attention, Simultaneous, Successive (PASS) theory as measured by English and Spanish versions of the Cognitive Assessment System (CAS; Naglieri \& Das, 1997a). The results suggest that students scored similarly
on both English and Spanish versions of the CAS. Within each version of the CAS, the bilingual children earned their lowest scores in Successive processing regardless of the language used during test administration. Small mean differences were noted between the means of the English and Spanish versions for the Simultaneous and Successive processing scales; however, mean Full Scale scores were similar. Specific subtests within the Simultaneous and Successive scales
were found to contribute to the differences between the English and Spanish were found to contribute to the differences between the English and Spanish
versions of the CAS. Comparisons of the children's profiles of cognitive weakness on both versions of the CAS showed that these children performed consistently despite the language difference.

そ
"

English Spanish CAS

Means, SDs, d-ratios, Obtained and Correction Correlations Between the English : Spanish Version of the CAS $(N=55)$.

	CAS English		CAS Spanish		d-ratio	Correlations	
	Mean	SD	Mean	SD	d	Obtained Corrected	
	92.6	13.1	92.6	13.4	.00	.96	.97
Planning	Simultaneous	89.0	12.8	93.0	13.7	-.30	.90
.93							
Attention	94.8	13.9	95.1	13.9	-.02	.98	.98
Successive	78.0	13.1	83.1	12.6	-.40	.82	.89
Full Scale	84.6	13.6	87.6	13.8	-.22	.96	.97

Otero, Gonzales, Naglieri (2012)

- SLD

and The Neurocognitive Assessment of Hispanic English-Language
PASS scores Learners With Reading Failure
 School Pyydiology: C

Jack A. Naglieri

English Spanish CAS Summary

- The PASS cognitive weakness profiles on both the Spanish and English versions of the CAS were studied
The percentage of children who had a cognitive weakness on the English AND Spanish versions of the CAS:

Planning	92.7%
Simultaneous	89.1%
Attention	100%
Successive	78.2%

Conclusions

Van Luit, et al (2002) Dutch

- 186 Dutch Children

Utility of the PASS Theory and
Cognitive Assessment System
for Dutch Children With
and Without ADHD
Johannes E. H. Van Luit, Evelyn H. Kroesbergen, and Jack A. Naglieri

Abstract
This study examined the utility of the Planning. Attention, Simultaneous, Successive (PASSS) theory of intelligence as measured by the
Cisnititie Assessment System (CAS) for evaluation of children with attention-deficit/hyperactivity disorder (ADHD). The CAS scores of 51 Dutch children without ADHD were compared to the scores of a group of 20 Dutch children with ADHD. The scores of the Dutch children were also compared to American standardization samples of children with and without ADHD. The findings showed that chil-
dren with ADHD in both countries demonstrated relatively low scores on the Planning and Attention scales of the CAS but average dren with ADHD in both countries demonstrated relatively low scores on the Planning and Attention scales of the CAS, but average
scones on the Simultaneous and Successive scales. These findings are similar to previously published research suggesting that the PASS scores on the Simultaneous and Successive scales. These findings are similar to previously published research suggesting that the 1 .
theory, as operationalized by the CAS, has sensitivity to the cognitive processing difficulties found in some children with ADHD.

[^2]
Take Away Message

- The brain-based approach to defining important neurocognitive abilities is very different from traditional IQ
- PASS yield profiles for students with different exceptionalities
- PASS yields the smallest race/ethnic differences
- PASS scales are useful for instructional planning
- PASS helps us better understand gender differences

SLD \& Basic Psychological Processes
 Connecting IDEA 2004 with practice

Hale, Naglieri, Kaufman, \& Kavale (2004)

- In the US, the Federal definition of SLD is
- "... a disorder in 1 or more of the basic psychological processes involved in understanding or in using language, spoken or written, which disorder may manifest itself in the imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations. (2004; IDEA)"
- Neither the IQ/achievement discrepancy model used in the past nor RTI evaluates basic psychology processes

Topical Outline

- Understanding tradition IQ
- A brain-based view of abilities
- Cognitive Assessment System Second Edition
- Deciding Which Tests to Use

Diagnosis of SLD

- Neurocognitive abilities and ADHD
- Neurocognitive abilities and ASD
- Final case studies

Hale, Naglieri, Kaufman, \& Kavale (2004)

Old Discrepancy Model for SLD

What is a 'disorder in processing'

- Use the Discrepancy Consistency Model to identify a "disorder in one or more of the basic psychological processes"
- Identify a weakness with otherwise average or above scores in basic psychological processes along with academic failure
- A disorder should have two components -A score on a multi-dimensional measure of processes that is significantly lower than the student's average > The low score(s) need to be at least below the Average range (e.g., less than 90)

Discrepancy Consistency Model for SLD

What is a 'disorder in processing'
\rightarrow Sisinicant wk \quad Sognitive w_{k} Sigificant Weakness Is low relative to the child's mean score Cognitive Weakness Is a Significant weakness and the score falls in the Low Average range ($80-89$) or lower

The case of Rocky

- Rocky ${ }^{1}$ is a real child with a real problem
- He lives in a large middle class school district
- a wide variety of services are available
- In first grade Rocky was performing significantly below grade benchmarks in reading, math, and writing.
- He received group reading instruction weekly and six months of individual reading instruction from a reading specialist
- He made little progress and was retained

The case of Rocky

- By the middle of his second year in first grade Rocky was having difficulty with
- decoding, phonics, and sight word vocabulary;
- working with math problems that involve money, addition, fact families, and problem solving activities;
- and focusing and paying attention."

The case of Rocky

- After two years of special team meetings and special reading instruction he is now working two grade levels below his peers and is having difficulty in reading, writing, and math
- Rocky has failed to respond to intervention so what now?
- Identify him as having a learning disability?
- Give him more intensive instruction?
-What treatment would be appropriate?
- Do we know enough about him?

The case of Rocky

- Rocky has a "disorder in one or more of the basic psychological processes"
- Planning $=72$
- Successive = 76
- Simultaneous $=100$, Attention $=98$
- Rocky has documented academic failure
- He has intra-individual differences in cognitive processes that underlie his academic problems

The case of Rocky

- Rocky meets the definition of SLD in IDEA
- He requires specialized instruction that takes into account his learning needs
- Instruction should emphasize the use of strategies and plans in all content areas
- Instruction should include ways to better work with serial information
- Rote memory and phonics instruction are illadvised

The case of Rocky

The case of Rocky

- These children experience
- academic failure that may be exacerbated by poor instruction, but it is not caused by it
- they may benefit from frequent progress monitoring, but this is not enough
- They may do poorly in the regular classroom but their problem is not an instructional failure
- They need instruction that is tailored to their individual strengths and limitations in processing
- The only way to know is to carefully evaluate the child's basic psychological processes

Topical Outline

- Understanding tradition IQ
- A brain-based view of abilities
- Cognitive Assessment System Second Edition
- Deciding Which Tests to Use
- Diagnosis of SLD

Neurocognitive abilities and ADHD

- Neurocognitive abilities and ASD
- Final case studies

Group Think...
 Does this method make sense?
 Does it help you understand the problem and guide instruction?
 -What is most surprising about this information?
 - Report to the audience

Christopher
A Case study

Case of Chris - Is He ADHD?

- Problems
behavior problems impulsive \& disorganized forgets assignments can't stay on task poor grades
- Clinical Observations anxious about testing used simple strategies did sloppy work
control problems (threw pencil when frustrated) impulsive choices made

CBCL Externalizing = 68
failure in control, impulsivity problems, arguing, attentiongetting behaviors.

- Met DSM criteria for ADHD Combined type

Case of Christopher (continued)

- WISC-IV (FS = 106)
$\mathrm{VC}=114 \quad \mathrm{PO}=102$
$W M=96 \quad$ PS $=94$
- Achievement Reading $=106$
- Comprehension $=117$

Word Attack $=108$ Dictation $=82$ Math = 100

- Applied Problems $=93$

Calculation $=86$

ADHD Characteristics

- ADHD children may have difficulty with 'executive functions' which has been associated with the prefrontal lobes (e.g., Roth \& Saykin, 2004)
- If ADHD is a failure of self-control within the context of prefrontal lobe functions (see Goldberg, 2001)
- then a connection between the disorder and the PASS theory described by Naglieri and Das (2005) based on A. R. Luria's work can be made

Paolitto, 1999

- $N=66$ (6-14 years)
- All subjects met DSMIV criteria for ADHD
- No comorbid diagnoses
- Results suggest behavioral disinhibition and attention problems are related to ADHD

Milt Dehn (2000)

- Paper presented at NASP (New Orleans, 4/2000)
, $N=25$
Documented ADHD No comorbidity 21 males Ages 6-16 Not on medication on the day of testing

ADHD Characteristics

- There is considerable research that suggests that children with ADHD have a specific profile of abilities on the Planning, Attention, Simultaneous, Successive (PASS) theory
- Dehn, 2000; Paolitto, 1999; Iseman, 2005; Naglieri, Goldstein, \& Iseman, 2003; Naglieri, Salter \& Edwards, 2004; VanLuit, Kroesbergen \& Naglieri, 2005
- A look at the research

Conclusions

Naglieri, Salter \& Edwards (2001)

Naglieri, Goldstein, Iseman \& Schwebach (2003)
, 25 Children who DSM-IV criteria for ADHD
All referred for evaluation

Van Luit, Kroesbergen \& Naglieri (2005)
20 Dutch
Children

- DSM-IV criteria met (Hyper/Imp)
- Age = 10.6 years (SD = 0.9)

Teaching Students to use their Planning Ability

IT WORKS ! !

Encourage Planning

- Helping Children Learn

Intervention Handouts for Use in School and at Home, Second Edition
By Jack A. Naglieri, Ph.D., \& Eric B. Pickering, Ph.D.,

Spanish handouts by Tulio Otero, Ph.D., \& Mary Moreno, Ph.D.

Step 1 - Talk with Students

How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?
One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

Step 1 - Talk with Students

How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work your plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan
You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a

Think smart and use a plan!
 plan for studying that works best for you.
It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is the story first Then read the story to find the answers. Another plan is to make picture of what read so that you can see all the parts of the story When you write you should also have a plan. Stu dents who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be smarter about your work!

Planning

Planning Facilitation for Math Calculation

Math calculation is a complex activity that involves recalling basic math facts, following procedures, working carefully, and checking one's work. Math calculation requires a careful (i.e., planitu) approach to follow all of the necessary steps. Children who are good at math callutation can move on to more difficutt math concepts and problem solving with greater ease than those who are having problems in this area. For children who have trouble with math calculation, a techniqu
that helps them approach the task plantuly is likely to be useful. Planning facilitation is such a that helps them approach the lask plantuly is likely to be useful. Planning faciltation is such tectinique
Marning faciltation helps students develop usefur strategies to carefully complete math problems through discussion and shared discovery. It encourages students to think about how they solve moble rather than ust think about whether their answers are correct. This helps them develop careful ways of doing math.

How to Teach Planning Facilitation

Planning faciltation is provided in three 10 -minute time periods: 1) 10 minutes of math, 2) 10 min Utes of discussion, and 3) 10 more minutes of math. These steps can be described in more detai: Step 1: The teacher should provide math worksheets for the students to complete in the first 10-minute session. This gives the children exposure to the problems and ways to solve them. The
teacher gives each child a worksheet and syys, "Here is a math worksheet for you to do. Please teacher gives each child a worksheet and says, "Here is a math worksheet for you to do. Please
try to get as many of the problems correct as you can. You vil have 10 minutes." Slight variations try this instruction are okay, but do not give ary additional information.

Planning Facilitation in Math Naglieri \& Gottling (1995)
, 4 boys with LD

Naglieri \& Gottling (1997) Mathematics instruction and PASS cognitive processes: An intervention study. Journal of Learning Disabilities, 30, 513-520.

Math intervention for children with low Planning

Planning Facilitation in Math -

Naglieri \& Gottling (1997)
, 6 females; 6 males; (24\% minority)

- Aged 9 to 12 years
- Attended a private school that specializes in treating children with significant learning problems
All met LD criteria
- Two regular teachers gave instruction in group setting
- They did not know the children's PASS scores
Teachers were instructed in an initial one-hour session with weekly follow-up

Planning Facilitation in Math
 Naglieri \& Gottling (1997)

- Students were encouraged to
- determine how they did the pages
- verbalize and discuss their methods
- be self-reflective
- Teachers asked questions to facilitate
- How did you do the problems \& why?
-What will you do next time?
-What did you notice on this page?

Planning Facilitation in Math -

Naglieri \& Gottling (1997)

- 28 Math work sheets constructed by computer to match pages used in class
- Subtraction sheets 54 problems; 6 rows $X 9$ columns; numbers with 1 to 3 digits (no decimals); with and without regrouping.
- Multiplication problems whole numbers by a two-digit number ranging from 10-99; with and without carrying

Planning Facilitation in Math -
 Naglieri \& Gottling (1997)

- Students said:
- When I get distracted I move my seat
- I have to remember to borrow
- I'll do the easy ones first
- I do them row by row
- Keep the columns straight
- Be sure to do them right not just get it done

Planning Facilitation in Math -
 Naglieri \& Gottling (1997)

Planning Facilitation in Math -
 Naglieri \& Gottling (1997)

Planning Facilitation in Math -

Naglieri \& Gottling (1997)

- Simultaneous high / low \% difference was small (4\%) Successive high / low \% difference was slight (23\%)
Wechsler FSIQ high / low \% difference was slight (16\%)

Pre-Post \% Change over Baseline

Effectiveness of a Cognitive

 Strategy Intervention in Improving Arithmetic Computation Based on the PASS Theory```
Jack A. Naglieri and Deanne Johnson
```

Abstract
The purpose of this study was to determine if an instruction designed to facilitate planning, given by teachers to their class as a group
The purpose of this study was to determine if an instruction designed to facilitate planning, given by teachers to their class as a group,
would have differential effects depending on the specific Planning, Attention, Simultaneous, Successive (PASS) cognitive characteristics
of each child. A cognitive strategy instruction that encouraged planning was provided to the group of 19 students with learning disabil-
ities and mild mental impairments. All students completed math worksheets during 7 baseline and 14 intervention sessions. During the
intervention phase, students engaged in self-reflection and verbalization of strategies about how the arithmetic computation worksheets
should be completed. The sample was sorted into one experimental and four contrast groups after the experiment was completed. There
were four groups with a cognitive weakness in each PASS scale from the Cognitive Assessment System and one group with no cognitive
weakness. The results showed that children with a cognitive weakness in Planning improved considerably (large effect size of 1.4), in
contrast to those with a cognitive weakness in Attention (small effect size of 0.3 ), Simultaneous weakness (as slight deterioration and effect
size of -0.2 ), Successive weakness (medium effect size of 0.4 ), and no cognitive weakness (small effect size of .2). These data showed that
chidren with a Planning weakness benefitted from the instruction designed to help them be more plaful.
the planning-based instruction who were not low inplanning did not show the same level of improvement.

## Children with PASS Profiles

21 children with LD and mild mental impairments
Teachers followed Planning Facilitation method described by Naglieri and Gottling (1997, 1997)
Students were given instruction that facilitated the use of Planning


## Children with PASS Profiles

,Naglieri \& Johnson (1998)
Seven 10-minute Baseline sessions
Fourteen 10-minute Intervention sessions
Children completed math computation worksheets
that came from the curriculum
Children with a cognitive weakness in each of the PASS areas were identified
Cognitive Weakness = significant PASS ipsative score and the weakness must be a score $<90$.

## Children with PASS Profiles



Note: Total number correct for all 7 sessions. 7 baseline, 14 intervention sessions (intervention number correct was weighted by .5). The \% change = (Int - Base) /Base. Effect sizes are averages across subjects using (mean Int mean Base) / SD baseline.

Groups by PASS Weakness
Naglieri \& Johnson (2000)


## Children with PASS Profiles

|  | \# Correct | Inter- | \% | Effect |
| :--- | :---: | :---: | :---: | ---: |
| Baseline | vention | Change | Size |  |
| Suc | 28 | 39 | 39 | 0.5 |
| NoCW | 26 | 29 | 11 | 0.2 |

Note: Total number correct for all 7 sessions. 7 baseline,
14 intervention sessions (intervention number correct was weighted by .5). The \% change $=($ Int - Base) $/$ Base. Effect sizes are averages across subjects using (mean Int mean Base) / SD baseline.

## Children with PASS Profiles

|  | \# Correct | Inter- | \% | Effect |
| :--- | :---: | :---: | ---: | ---: |
| Baseline | vention | Change | Size |  |
| Sim | 33 | 29 | -11 | -0.2 |
| Att | 16 | 24 | 50 | 0.3 |
| Suc | 28 | 39 | 39 | 0.5 |
| NoCW | 26 | 29 | 11 | 0.2 |

Note: Total number correct for all 7 sessions. 7 baseline, 14 intervention sessions (intervention number correct was weighted by .5). The \% change = (Int - Base) $/$ Base. Effect sizes are averages across subjects using (mean Int mean Base) / SD baseline.

## Children with PASS Profiles

|  | \# Correct | Inter- | \% | Effect |
| :--- | :---: | :---: | :---: | ---: |
| Baseline | vention | Change | Size |  |
| Att | 16 | 24 | 50 | 0.3 |
| Suc | 28 | 39 | 39 | 0.5 |
| NoCW | 26 | 29 | 11 | 0.2 |

Note: Total number correct for all 7 sessions. 7 baseline, 14 intervention sessions (intervention number correct was weighted by .5). The \% change = (Int - Base) /Base. Effect sizes are averages across subjects using (mean Int mean Base) / SD baseline.

## Children with PASS Profiles



## Design of the Study

Experimental and Comparison Groups


A Cognitive Strategy Instruction to Improve Math Calculation for Children With ADHD and LD:
A Randomized Controlled Study

Jackie S. Iseman' and Jack A. Naglieri

## Abstract

The authors examined the effectiveness of cognitive strategy instruction Successive) given by special education teachers to students with ADHD
experimental group were exposed to a brief cognitive strategy instructi experimental group were exposed to a brief cognitive strategy instruct
development and application of effective planning for mathematical comp standard math instruction. Standardized tests of cognitive processes a students completed math worksheets throughout the experimental $p$ Johnson Tests of Achievement, Third Edition, Math Fluency and Wechssld
Numerical Operations) were administered pre- and postintervention, a Numerical Oprations) were administered pre- and postintervention, a
follow-up. Large pre-post effect sizes were found for students in the exp math worksheets $(0.85$ and 0.26 ). Math Fluency ( 1.17 and 0.09 ), and Nu At I year follow-up, the experimental group continued to outperform t students with ADHD evidenced greater improvement in math works (which measured the skill of generalizing learned strategies to other sil
when provided the PASS-based cognitive strategy instruction.

## Instructional Sessions

- Math lessons were organized into "instructional sessions" delivered over 13 consecutive days
, Each instructional session was 30-40 minutes
, Each instructional session was comprised of three segments as shown below

| 10 minutes | $10-20$ minutes | 10 minutes |
| :---: | :---: | :---: |
| 10 minute <br> math <br> worksheet | Planning <br> Facilitation or <br> Normal <br> Instruction | 10 minute <br> math <br> worksheet conflusions |
|  |  |  |

## Planning (Metacognitive) Strategy Instruction

- Teachers facilitated discussions to help students become more selfreflective about use of strategies
- Teachers asked questions like:
-What was your goal?
-Where did you start the worksheet?
-What strategies did you use?
- How did the strategy help you reach your goal?
- What will you do again next time?
- What other strategies will you use next ${ }^{\text {Conclusions }}$


## Student Plans

- "My goal was to do all of the easy problems on every page first, then do the others."
- "I do the problems I know, then I check my work."
- "I do them (the algebra) by figuring out what I can put in for X to make the problem work."
- "I did all the problems in the brain-dead zone first."
" "I try not to fall asleep."


Worksheet Means and Effect Sizes for the Students with ADHD


WIAT Numerical Operation Means and Effect Sizes for Students with ADHD

$\square$ Baseline
$\square$ Intervention
<. $2=$ no effect
$.2-.5=$ small
$.6-.8=$ medium
> .8 l large
Conclusions

WJ Math Fluency Means and Effect Sizes for the Students with ADHD


## $\square$ Baseline

$\square$ Intervention

Reminder
$.2=\frac{\text { no effect }}{}$
$.2-.5=$ small
$.6-.8=$ medium
.80acllarges

## Iseman (2005)

- Baseline Intervention means by PASS profile
Different response to the same intervention



## Instructional Implications

- Planning Strategy Instruction is easily implemented in the classroom
- The method yields substantial results within a minimal of time ( 10 half-hour sessions over 10 days)
- Planning Strategy Instruction can be applied in math as well as other content areas (e.g., reading comprehension)



## Topical Outline

- Understanding tradition IQ
- A brain-based view of abilities
- Cognitive Assessment System Second Edition
- Deciding Which Tests to Use
- Diagnosis of SLD
- Neurocognitive abilities and ADHD

Neurocognitive abilities and ASD

- Final case studies


## Free Trial of the ASRS



## Autism Spectrum Rating Scales



## Importance of a National Norm

- The way we calibrate a psychological test or rating scale score has a direct impact on the reliability and validity of the instrument
- The composition of the comparison and characteristics of the group is especially important whenever diagnostic decisions are being made.
- What is the current state of the art?


## Importance of a National Norm

Psychometric Issues and Current Scales for Assessing Autism Spectrum Disorder

Jack A. Naglieri
Kimberly M. Chambers
$T_{\text {he study of any psychological disorder is dependent upon the tools that }}$ are used, as these tools directly influence what is learned about the sub-
ject in research as well as clinical practice. As in all areas of science, what we discover depends upon the quality of the instruments we use and the information they provide. Better-made instruments yield more accurate and reliable information. Instruments that uncover more information rel-

Importance of A National Norm

- Psychometric issues for Autism rating scales is provided in the chapter by Naglieri \& Chambers in Assessment of Autism Spectrum Disorders (Goldstein, Naglieri, \& Ozonoff, 2009)



## Importance of a National Norm

TABLE 3.2. Comparison of Essential ASD Rating Scale Characteristics

| Behavior rating <br> scale | $\begin{gathered} \text { No. on } \\ \text { items } \end{gathered}$ | $\begin{gathered} \text { Age } \\ \text { range } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Comparison } \\ & \text { sample size } \end{aligned}$ | Comparison sample | Representative standardization sample | Scores <br> for total <br> scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Autism <br> Diagnostic <br> Interview- <br> Revised <br> (ADI-R) | 93 | $\begin{aligned} & 2-x \\ & \text { years } \end{aligned}$ | Exact $N$ not given | Children with and without ASD, studies conducted <br> $\sqrt[b y]{W e}$ don't know the ages of | No | $\begin{aligned} & \text { Raw } \\ & \text { score } \end{aligned}$ |
| Childhood Autism Rating Scale (CARS) | 15 | Exact ages not given | 1,600 | comparison group | No | Raw <br> score |
| Social <br> Communication <br> Questionnaire <br> (SCQ) | 40 | $\begin{gathered} 4-x \\ \text { years } \end{gathered}$ | $200$ | A wide variety of individuals (persons with autism, atypical autism, Asperger syndrome, fragile X syndrome, Rett syndrome, conduct disorder, language delay, mental retardation, and other clinical diagnoses) | No | Raw <br> score |
| Social <br> Responsiveness <br> Scale (SRS) | 65 | $\begin{aligned} & 4-18 \\ & \text { years } \end{aligned}$ | 1,636 | Cases from five studies, combined into one sample (74\% white, 11\% black, 11\% Hispanic, 2\% Asian, $2 \%$ other) | No | $T$ score |




## Importance of a National Norm

- What is the problem with not having a national norm?
- You don't know how typical children perform > Typical means a wide variety of individuals who vary on important demographic variables
- What is the problem with not having a standard score like a T-score (mean of 50 and $S D$ of 10 )?
- You don't know how similar a child's behavior is in relation to the norm
- Let's look at some data


## CARS2 (2010)

- Norms are not based on a sample of individuals representative of the US population.


## Diagnostic Reference Groups

- Naglieri, J. A. (2012). Psychological Assessment by School Psychologists: Opportunities and Challenges of A Changing Landscape. In K. Geisinger \& B. A. Bracken (Eds.) APA Handbook of Testing and Assessment in Psychology. Washington, D.C.: American Psychological Association.


## Diagnostic Reference Groups

- I studied the differences between results when using a nationally representative sample versus a sample of children identified as having Autism as a reference group
- Raw score to standard score (T-scores) conversion table was constructed based on two different reference groups
- Children with ASD
- Nationally representative sample


## Diagnostic Reference Groups

- The sample of children with ASD $(\mathrm{N}=243)$ were diagnosed with
- Autism ( $n=137$ ), Asperger Syndrome ( $n=80$ ), or Pervasive Developmental Disorder-Not Otherwise Specified ( $n=26$ ).
- comprised of individuals with a single primary diagnosis made by a qualified professional (e.g., psychiatrist, psychologist) according to the DSM-IV-TR (APA, 2000) or ICD-10 (WHO, 2007)) using appropriate methods (e.g., record review, rating scales, observation, and interview).


## Diagnostic Reference Groups

- Total Raw Scores on the ASRS for 6-18 Year olds rated by Teachers.

|  | Mean | SD | N |
| ---: | ---: | ---: | ---: |
| Autism | 157.1 | 47.9 | 137 |
| Asperger's | 123.1 | 42.4 | 80 |
| PDD-NOS | 151.5 | 53.6 | 26 |
| Total ASD Sample | 129.1 | 46.9 | 243 |

## Diagnostic Reference Groups

- The sample, representative of the US population, included males and females from each of the four geographic regions of the US and four racial-ethnic groups (Asian, Black, White-Not Hispanic and Hispanic Origin aged 6-18 years.
- The $N=1,828$ (See Goldstein \& Naglieri (2009) for more details about the normative sample of the ASRS and those identified with ASD.)


| Score | Raw Score | ASD Comparison | Natio Compa |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibrations | 170 | 59 | 82 | A Raw |
|  | 165 | 58 | 81 | A Raw |
|  | 160 | 57 | 80 | $90 \text { is a T }$ |
| A Raw Score of 130 is a $T$ of 50 based on ASD sample | 155 | 56 | 78 |  |
|  | 150 | 54 | 77 | of 42 based on |
|  | 145 | 53 | 75 |  |
|  | 140 | 52 | 74 | ASD |
|  | 135 | 51 | 73 | sample; but a T |
|  | $\xrightarrow{ } 130$ | 50 | 71 |  |
|  | 125 | 49 | 70 | score of 60 (1 SD |
| A Raw Score of 80 is a $T$ of 40 based on the ASD sample | 120 | 48 | 69 |  |
|  | 115 | 47 | 67 | above the national reference group |
|  | 110 | 46 | 66 |  |
|  | 105 | 45 | 64 |  |
|  | 100 95 | 44 43 | 63 |  |
|  | 90 | 42 | 60 | 2 |
|  |  | 41 | 59 |  |
|  |  | 40 | 57 |  |
|  | 75 | 38 | 56 |  |
|  | 70 | 37 | 55 | onciusions |
|  | 65 | 36 | 53 | 341 ${ }_{1}^{34}$ |

ASRS with GARS-2

|  | Rater | Age in <br> Years | Obt $r$ | Corr | $N$ | GARS-2 |  | ASRS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | M | SD | M | SD |
|  | Parent | 2-5 | . 83 | . 61 | 78 | 100.9 | 25.7 | 74.5 | 11.4 |
|  | Teacher | 2-5 | . 76 | . 41 | 53 | 100.1 | 30.5 | 75.3 | 12.7 |
| Autism Index | Parent | 6-18 | . 80 | . 63 | 104 | 93.9 | 24.4 | 69.3 | 10.0 |
|  | Teacher | 6-18 | . 82 | . 68 | 116 | 88.6 | 23.3 | 69.8 | 10.0 |

Note: GARS-2 standard scores are mean of
$100, S D$ of $15 ; 80+=$ concern.

[^3]
## GARS-2 and ASRS



# ASRS Standardization Samples 

Ages 2-5, 6-18 year groups

## Importance of a National Norm

## - Sample was stratified by

- Sex, age, race/ethnicity, parental education level (PEL; for cases rated by parents), geographic region
- Race/ethnicity of the child (Asian/Pacific Islander, Black/African American/African Canadian, Hispanic, White/Caucasian, Multiracial by the rater
- Parents provided PEL of both parents >the higher of the two levels was used to classify the parental education level of the child
- All raters completed the ASRS via the paper-andpencil or online methods.

Importance of a National Norm
ASRS Standardization Samples by Age and Rater

| Age Groups | Parent Raters |  | Teacher Raters |
| :---: | :---: | :---: | :---: |
| 2-5 Years | Note: All | 320 | 320 |
| 6-11 Years | (hese age | 480 | 480 |
| 12-18 Years |  | 480 | 480 |
| Sub Total n |  | 1,280 | 1,280 |
| TOTAL N |  |  | 560 |

Note: at ages 2-16 years there were 80 subjects ( 40 girls and 40 boys) per one year age group. At ages 17-18 there were 80 subjects ( 40 girls and 40 boys) across this two year interval.

## Importance of a National Norm

- Validity samples were collected
- a single primary diagnosis was indicated
- a qualified professional (e.g., psychiatrist, psychologist) had made the diagnosis
- Criteria were made using DSM-IV-TR or ICD-10
- Clinical samples include
$\Rightarrow$ ASD $(N=580)$
$>$ ADHD ( $N=250$ )
-Communication Delay ( $N=180$ )
$>$ Developmental Delay $(N=140)$
>Anxiety / Depression $(N=100)$


## ASRS \& Attention Difficulty

- Individuals with ASD have been described as having "difficulties in disengaging and shifting attention" (p. 214) (see Klinger, O’Kelley, \& Mussey's chapter 8 in Assessment of Autism Spectrum Disorders (Goldstein, Naglieri, \& Ozonoff, 2009)
- We tested this hypothesis using the Cognitive Assessment System (Naglieri \& Das, 1997)



## ASRS \& Attention Difficulty

- Sample Description



## ASRS \& Attention Difficulty

- the ASRS (6-1 8 Years) and Cognitive Assessment System (CAS; Naglieri \& Das, 1997) was administered to children diagnosed with an ASD who were rated by a parent $(\mathrm{N}=45)$ or a teacher $(\mathrm{N}=47)$
- The CAS provides measures of
- Planning, Attention, Simultaneous, and
- Successive cognitive abilities
- PASS is based on A. R. Luria's (1973) view of major brain functions


## ASRS \& Attention Difficulty

| Rater |  |  | Cognitive Assessment System (CAS) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Full Scale | Planning | Simultaneous | Attention | Successive |
| Parent | $\mu$ | 65.8 | 89.8 | 98.3 | 959 | 83.4 | 93.0 |
|  | SD | 9.8 | 25 | 27.6 | 17.5 | 17.7 | 20.5 |
|  | N | 45 | 45 | 45 | 45 | 45 | 45 |
| Teacher | $\mu$ | 66.5 | 88.8 | 97.8 | 95.0 | 83.5 | 92.1 |
|  | SD | 8.6 | 25.0 | 27.5 | 17.8 | 18.1 | 20.3 |
|  | N | 47 | 47 | 47 | 47 | 47 | 47 |

## ASRS \& Attention Difficulty



ASD - Italy
Psichiatria dell infanzia e dell adolescenza (2009), vol. 76: 687-700

Processi cognitivi e Disturbi Specifici dell'Apprendimento: il contributo diagnostico del Cognitive Assessment System

Evaluate the cognitive processes in the Specific Learning Disorders: the Cognitive Assessment System diagnostical contribution

Stefano Taddei, Francesca Vendittí, Sara Cartocci

Summary The diagnoris of the Specific Learning Disabilities (SLD), commonly referred to as
diserepancy criterion, is often based on instruments wbich bave an important connection to both
learning and IQ. Metbods inspired by diverpancy criterion don't seem suitable to indicate in-



## Autism and Asperger Syndrome

ASRS preliminary findings


## Differential Diagnosis: ADHD vs ASD



## Autism \& Asperger's



## Autism \& Asperger's

Average Autism Spectrum Rating Scale T-Scores for 6-18 Year Olds Diagnosed with Autism and Asperger's Syndrome


## Autism \& Asperger's

Effect Size Differences Between Autism Spectrum Rating Scale TScores for 6-18 Year Olds with Autism and Asperger's Syndrome


## Autism \& Asperger's

- Goldstein and Naglieri (2012) Conclusions
- Despite widely held belief that individuals with Asperger's have a better life outcome than those with Autism (Klin, Sparrow and Volkmar, 2000), the outcomes for youth with Asperger's may be better than those with Autism simply because their symptom profile is milder and they develop functional language at a much earlier age, typically demonstrating the ability to use language to communicate despite pragmatic problems.

[^4]
## Autism \& Asperger's

- Goldstein and Naglieri (2012) Conclusions
- These data strongly support the decision by the DSM-V committee to eliminate the Asperger's and Pervasive Developmental Disorder - Not Otherwise Specified diagnoses and instead provide a single diagnosis of Autism Spectrum Disorder.

[^5]:mix mion no


## Autism vs Asperger

- ASRS means for ages 2-5 years were typically somewhat higher for children with Autism than those with Asperger's syndrome
- Exception being Unusual Behaviors where the two groups were similar
- ASRS means for ages 6-18 years were consistently higher for children with Autism than those with Asperger's syndrome
- Both groups had their lowest scores on the CAS Attention Scale


## Conclusions

## Workshop Conclusions

- From assessment to intervention
- Cognitive processing scores can be used to select research based cognitive interventions based on a child's pattern of cognitive and academic strengths and weaknesses.
- Research with children who have SLD shows that teaching strategy use (Planning) has a significant effect on academic performance in the classroom and on standardized tests
- We can teach children to better use their PASS neuropsychological abilities
- This will improve their academic skills
- This will improve LIFE skills
- This will improve the child's self confidence


[^0]:    Naglieri, J. A. (2006). Best Practices in Linking Cognitive Assessment of Students with Learning Disabilities to Interventions in A. Thomas and J. Grimes (Eds.) Best Practices

[^1]:    When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

    ## What Does Being Smart Mean?

    One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

[^2]:    Why PASS works across race, ethnicity, language, and culture

    - It measures important basic neurocognitive processes
    - It does not measure ability by tests that involve academic skills, that is no
    - Vocabulary • Similarities
    - Arithmetic - Comprehension
    - All traditional IQ tests with verbal and quantitative tests are contaminated by knowledge
    - IS VERBAL IQ REAL?

[^3]:    Almost 1 SD
    below GARS mean $=$ ASRS T of $70(+2$ SD) ions

[^4]:    Autism and Asperger's: Two Distinct Disorders or One Disorder of Varying Symptom Severity

[^5]:    Autism and Asperger's: Two Distinct Disorders or One Disorder of Varying Symptom Severity

