SLD Eligibility using A Pattern of Strengths and Weaknesses: A Simple Solution

Jack A. Naglieri, Ph.D.
www.jacknaglieri.com jnaglieri@gmail.com
Research Professor, Univ. of Virginia
Senior Research Scientist Devereux

Disclosures

JACKNAGLIERI.COM

Assessment Tools for Psychologists and Educators

This site was created to provide tools and resources for both psychologists and educators alike
Jack A. Naglieri; PhD. is a Research Professor at the University of Virginia, Senior Research Scientist at the Devereux Center for Resilient Children, and Emeritus Professor of Psychology at George Mason University. Wit application using the Cognitive Assessment System and Cognitive Assessment System-Second Edition.

WHAT'S NEW?

Resources

FOR MORE INFORMATION please go to my web page

The BIG picture

- The comprehensive assessments we provide can alter the course of a student's life; making this one of the most important tasks we have.
- We want Intellectual assessment that
- Is consistent with IDEA and state regulations regarding SLD determination
- Helps us understand WHY a student fails
- Informs us about academic strengths \& weaknesses and interventions
- Is fair for students from diverse populations
- These goals can be achieved if we use second-generation intelligence tests that measure the way students THINK to LEARN
- The definition of THINKING should be based on BRAIN function
- PASS theory is a way of defining THINKING
- Use the Cognitive Assessment System-2 ${ }^{\text {nd }}$ Edition to measure a student's ability to think

Introduction

$>$ Interest in

- How people learn
- Why some people learn better than others
- Which is often described of a cognitive ability and
- Experiences as a school Psychologist brought me to develop my PASS theory of intelligence and a way to measure the theory called the Cognitive Assessment System
> Because we change lives

Intelligence as Neurocognitive Functions

$>$ In my first working meeting with JP Das (February 11, 1984) we proposed that intelligence was better REinvented as neurocognitive processes andwe began development of the Cognitive Assessment System (Naglieri \& Das, 1997).
$>$ We conceptualized intelligence as Planning, Attention, Simultaneous, and Successive (PASS) neurocognitive processes based on Luria's concepts of brain function.

PASS Neurocognitive Theory

\Rightarrow Planning $=$ THINKING ABOUT HOW YOU DO WHAT YOU DECIDE TO DO

- Attention = BEING ALERT AND RESISTING DISTRACTIONS
\Rightarrow Simultaneous $=$ GETTING THE BIG PICTURE
PSuccessive $=$ FOLLOWING A SEQUENCE
PASS = 'basic psychological processes'
NOTE: Easy to understand concepts!

CAS2, CAS2-Espanol, CAS2: Brief \& CAS2 Rating Scale

$>$ This book is the most complete discussion of PASS theory and its measurement
$>$ Chapters cover all versions of the CAS2 as well as the online scoring and report writer
> Administration, scoring, interpretation
$>$ Reliability, validity (PASS profiles, evidence of test fairness,
$>$ Discrepancy Consistency Method for SLE
> Intervention planning and clinical case studies

PASS Comprehensive System

(Naglieri, Das, \& Goldstein, 2014)

- CAS2 Core \& Extended English \& Spanish for comprehensive
- Assessment
- CAS2 Brief for re-evaluations, instructional planning, gifted screening
- CAS2 Rating Scale for teacher ratings

CAS2 for (Ages 5-18 yrs.)

PASS Theory: Planning

$>$ Planning is a term used to describe a neurocognitive function similar to metacognition and executive function
$>$ Planning is needed for setting goals, making decisions, predicting the outcome of one's own and others actions, impulse control, strategy use and retrieval of knowledge
> Planning helps us make decisions about how to solve any kind of a problem from academics to social situations and life in general

PASS Theory: Attention

\Rightarrow Attention is a basic psychological process we use to

- selectively attend to some stimuli and ignores others
- Focus our cognitive activity
- Selective attention
- Resistance to distraction
- Listening, as opposed to hearing

RED	RED	BLUE
YELLOW	YELLOW	RED
BLUE	RED	YELLOW
BLUE	BLUE	BLUE
YELLOW	BLUE	YELLOW

PASS Theory: Successive

- Successive processing is a basic psychological process we use to manage stimuli in a specific serial order
- Stimuli form a chain-like progression
- Word Series
- Sentence Repetition \& Questions
> Academic tasks
- Decoding words
- Letter-sound correspondence
- Phonological tasks
- Understanding the syntax of sentences
- Sequence of words, sentences, paragraphs
- Remembering the sequence of events
- Learning motor movements

Recall of Numbers in Order Successive Processing

PASS Theory: Simultaneous

$>$ Simultaneous processing is used to integrate stimuli into groups

- Each piece must be related to the other
- Stimuli are seen as a whole
$>$ Academics:
- Reading comprehension
- geometry
- math word problems
- whole language
- verbal concepts

Which picture shows a boy behind a girl?		

CAS2 Online Score \& Report

http://www.proedinc.com/customer/ProductView.aspx?ID=7277

- Enter data at the subtest level or enter subtest raw scores
- Online program converts raw scores to standard scores, percentiles, etc. for all scales.
- A narrative report with graphs and scores is provided

CAS2: Brief for Ages $4-18$ years

For special educators and others with some assessment training
>4 subtests (20 minutes)
> PASS and Total Scales provided

CAS2 Rating Scales (Ages 4-18 yrs.)

$>$ The CAS2: Rating measures behaviors associated with PASS constructs
$>$ Completed by teachers and can be used by psychologists, special educators and regular educators

SLD

Methods:
Old and New

A PSW Method for SLD

Discrepancy Consistency Method (DCM)

Why CAS2 \& PASS with DCM

- Research Update on 'g'
- Fair Assessment as a Social Justice Issue
- Intervention

Case of Paul: $4^{\text {th }}$ grade referral (Steve Feifer)

Case of Paul -A 9-year-old in $4^{\text {th }}$ grade

- Problems in reading and math
- Can't remember the sequence of steps when doing math and math facts
- Good memory for details
- Can't sound out words
- Poor spelling
- Poor reading comprehension

Paul - age 9 years

WISCV	SCORE
Verbal Comprehension	89
Visual Spatial	84
Fluid Reasoning	82
Working Memory	72
Processing Speed	76
FULL SCALE SCORE	81
WIAT III Reading	87
WIAT III Math	86
WIAT III Writing	94

- Presenting Concerns:
Reading, Math Word Problems, Anxiety
- Discrepancy? IQ and achievement test scores similar
- Paul does not qualify as SLD

Paul - age 9 years

CAS-2	STANDARD SCORE	Classification	
Planning	92	Average	
Simultaneous	92	Average	
Attention	$\mathbf{1 1 0}$	Average	
Successive	$\mathbf{7 5}$	Very Low	

Differences Between PASS Scale Standard Scores and the Student's Average PASS Score Required for
Significance for the CAS2 12-Subtest EXTENDED battery AGES 8-18 Years.

	Cognitive Assessment System - 2		Difference from PASS Mean of: 92.3	Significantly Different (at $p<.05$) from	Strength or Weakness	
	PASS Scales	Standard Score				
	Planning	92	-0.3	no		
	Simultaneous	92	-0.3	no		
	Attention	110	17.8	yes	Strength	
	Successive	75	-17.3	yes		Weakness

Achievement and PASS Processes

Requires Successive Processing	FAR index	Standard score ($95 \% \mathrm{CI}$)	Percentile		Qualitative descriptor
	Phonological Index	75	5\%	Mod	rately Below Average
	Fluency Index	92	30\%		Average
	Mixed Index	81	10\%		Below Average
	Comprehension Index	97	42\%		Average
	FAR Total Index	84	14\%		Below Average
Requires Successive	KEY INTERPRETATION		Score	Percentil e	Descriptor
Processing	Nonsense Word Decoding - requires the student to decode a series of nonsense words presented in order of increasing difficulty.		71	3\%	Moderately Below Average
Requires Simultaneous Processing	Irregular Word Reading Fluency - the student reads a list of phonologically irregular words arranged in order of increasing difficulty in 60 seconds.		f 95	37\%	Average

Discrepancy Consistency Method (Naglieri \& Otero, 2017)
INTERPRETATION 109

1. Determine if the PASS scores vary significantly from the examinee's average PASS score and the lowest score is below average (<90) (Table 3.5)
2. Determine if the high PASS scores are significantly different from the low achievement scores (Appendix A-F)
3. Determine if the LOW PASS score is or is not significantly different from the low achievement scores (Appendix A-F)

Discrepancy Consistency Method (DCM)

- Discrepancy between high and low processing scores
- Discrepancy between high processing and low achievement
- Consistency between low processing and low achievement

PASS Score Analyzers (free)

CAS2 FAR Analyzer Shows PSW for Paul

Intervention Protocol (Naglieri \& Kryza, 2019)

1. Help the student understand their PASS strengths and challenges (be intentional \& transparent)
2. Encourage Motivation \& Persistence (student's mindset)
3. Encourage strategy use (build skill sets)
4. Encourage independence and self efficacy (metacognition, self assessment \& self correction)

PASS Scales	Standard Score
Planning	92
Simultaneous	92
Attention	110
Successive	75

Intervention Plan for Paul

1. Be Intentional and Transparent

- Teach him about his brain and his PASS strengths and challenges

2. Encourage Motivation and Persistence (Mindsets)

- Teach him about Growth Mindsets.
- Discuss what will he say to himself when learning gets hard.

3. Strategies to Build on His Strengths to Manage Challenges (Skill Sets)

- Use his Attention, Planning and Simultaneous Strengths to support his learning challenges
- Develop strategies to manage challenges in Successive processing

4. Encourage independence and self-efficacy

- Have him self assess regularly and note what's working and what he needs to do differently.

PASS Scales	Standard Score
Planning	92
Simultaneous	92
Attention	110
Successive	75

How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work your plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan.

You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a

Think smart and use a plan!

It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is to look at the questions you have to answer about the story first. Then read the story to find the answers. Another plan is to make a picture of what you read so that you can see all the parts of the story. When you write you should also have a plan. Students who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be smarter about your work!

Be Intentional and Transparent

$>$ Give Paul the PASS handouts from Helping Children Learn
> Explain Strengths

- We're going to work on using your strengths in
 Attention, Planning, and Simultaneous processing to help you manage tasks that demand sequencing
> Explain Weakness
- The part of your brain that makes learning challenging for you is the part that is needed for recognizing sequences. (Successive Processing)

PASS Scales	Standard Score
Planning	92
Simultaneous	92
Attention	110
Successive	75

Intervention Protocol

(Naglieri \& Kryza, 2019)

$>$ Use Strengths in Planning and Simultaneous

Using Plans to Overcome Anxiety

Some children feel very anxious when they approach a new situation, and they are not sure what to do. Anxiety is a very common emotion for anyone, especially children, and it can be particularly

Graphic Organizers for Connecting and Remembering Information

Remembering and relating information is a common part of learning and daily life. Students are often expected to learn large amounts of new and unfamiliar information. Learning facts requires the student to see how information is connected or related. Students often remember this informave Graphic organizers are designed to help students (and teachers) present and organze infor have. Graph is

Graphic Organizers
New information is better remembered if it is connected to information the students already know. Graphic organizers are visual representations of information that shows the links of new information to other new and existing information. This makes the new information easier to understand and learn. Frne, dents understand the connections between information parts. For example, a graphic organker might be used to teach young children about different animals. A child learning about dirierent ganize whales sharks, and dolphins. They all live undervater but sharks have gills and are fish ganize whales, shaks, and lolins. They a ind one way to map this graphically
ocaan
> To overcome problems with tasks that demand sequencing (Successive processing)

Segmenting Words for Reading/Decoding and Spelling

Decoding a written word requires the person to make sense out of printed letters and words and to translate letter sequences into sounds. This demands understanding the sounds that letter

Chunking for Reading/Decoding

How t
Segmer
into gro
to one
chunks

Reading/decoding requires the student to look at the sequence of the letters in words and understand the organization of specific sounds in order. Some students have difficulty with long sequences of letters and may benefit from instruction that helps them break the word into smaller, more manageable units, called chunks. Sometimes the order of the sounds in a word is more easily organized if the entire word is broken into these units. These chunks can be combined into units for accurate decoding. Chunking for reading/decoding is a strategy designed to do that.

How to Teach Chunking for Reading/Decoding

Teachers should first teach the children what it means to chunk or group information so that it can be remembered more easilv. Use number seauences and letters for illustration (e, a how tele-

Ideas to
 Consider

A PSW Method for SLD

- Discrepancy Consistency Method (DCM)

Why CAS2 \& PASS with DCM

- Research Update on 'g'
- Fair Assessment as a Social Justice Issue
- Intervention

Sheme Wechsler (1939)

$>$ His definition of intelligence does not mention verbal or nonverbal abilities: "The aggregate or global capacity of the individual to act purposefully, to think rationally, and to deal effectively with his environment (1939)"

Support for 'g': Research on CHC

> John Carroll's three-stratum theory ... is foundational to the contemporary practice of intellectual assessment.
$>$ The results of this study indicate that most cognitive abilities specified in three-stratum theory have little-to-no interpretive relevance above and beyond that of general intelligence.
> Thus, it is likely best to focus score interpretations on measures of general intelligence when engaging in the practice of intellectual assessment.

Revisiting Carroll's Survey of Factor-Analytic Studies: Implications for the Clinical Assessment of Intelligence

Nicholas F. Benson and A. Alexander Beaujean Baylor University

Ryan J. McGill
College of William \& Mary Caroll's work: specification, reproducucibility with more moder m methods, and interpetive relevance. We reanalyzed select data sets from Caroll's survey of factor analytic studies using confirmatory factor analysis as well as modem indicess of interpertive relevance. For the majomity of dala sests, we found thal Caroll Iikely extracted too many factors reppresenting Statum III abilites. Moreover, almost all factorn
 relevance and dinical wility of scorse refecting coenitive bibilies atall strata of the thre-stratum theory and offer some directions for future research.

$$
\begin{aligned}
& \text { Pubbic Significance Statement } \\
& \text { Pater }
\end{aligned}
$$ measures of general inteligence when engaging in the practice of intellectual assessment.

Research Supports 'g' but little More

Benson, N. F., Beaujean, A. A., McGill, R. J, \& Dombrowski, S. C. (2018). Revisiting Carroll's Survey of Factor-Analytic Studies: Implications for the Clinical Assessment of Intelligence. Psychological Assessment, 30, 8, 1028-1038.
Canivez, G. L., Watkins, M. W., \& Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29, 458-472.
Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. http://dx.doi.org/10.1037/pas0000279
Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. https://doi.org/10.1037/pas0000279

Canivez, G. L. (2008). Orthogonal higher order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition for children and adolescents. School Psychology Quarterly, 23, 533-541.
Dombrowski, S. C., Canivez, G. L., \& Watkins, M. W. (2017, May). Factor structure of the 10 WISC-V primary subtests across four standardization age groups. Contemporary School Psychology. Advance online publication.
Dombrowski, S. C., McGill, R. J., \& Canivez, G. L. (2017). Exploratory and hierarchical factor analysis of the WJ IV Cognitive at school age. Psychological Assessment, 29, 394-407.

McGill, R. J., \& Canivez, G. L. (2017, October). Confirmatory factor analyses of the WISC-IV Spanish core and supplemental Subtests: Validation evidence of the Wechsler and CHC models. International Journal of School and Educational Psychology. Advance online publication.
Watkins, M. W., Dombrowski, S. C., \& Canivez, G. L. (2017, October). Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children-Fifth Edition. International Journal of School and Educational Psychology.

Implications of ... only measure ' g '

\Rightarrow The Scales on our intelligence tests (with one exception) are irrelevant!

- That is, because ' g ' is the only empirically supported score, we should not interpret the different scales on the WISC-V nor on the WJ, DAS, SB5
- WHY do we have this problem?
- The tests we use are based on 100 year-old concept of Alpha and Beta
- THERE WAS and REMAINS NO THEORETICAL conceptualization that drove the creation of traditional intelligence tests
© 2011 American Psychological Association 1045-3830/II/\$12.00 DOI: 10.1037/a0025973

Hierarchical Factor Structure of the Cognitive Assessment System: Variance Partitions From the Schmid-Leiman (1957) Procedure

Gary L. Canivez
Eastern Illinois University

Abstract

Orthogonal higher-order factor structure of the Cognitive Assessment System (CAS Naglieri \& Das, 1997a) for the 5-7 and 8-17 age groups in the CAS standardization sample is reported. Following the same procedure as recent studies of other prominent intelligence tests (Dombrowski, Watkins, \& Brogan, 2009; Canivez, 2008; Canivez \& Watkins, 2010a, 2010b; Nelson \& Canivez, 2011; Nelson, Canivez, Lindstrom, \& Hatt, 2007; Watkins, 2006; Watkins, Wilson, Kotz, Carbone, \& Babula, 2006), three- and four-factor CAS exploratory factor extractions were analyzed with the Schmid and Leiman (1957) procedure using MacOrtho (Watkins, 2004) to assess the hierarchical factor structure by sequentially partitioning variance to the second- and first- order dimensions as recommended by Carroll (1993, 1995). Results showed that greater portions of total and common variance were accounted for by the second-order, global factor, but compared to other tests of intelligence CAS subtests measured less secondorder variance and greater first-order Planning, Attention, Simultaneous, and Successive (PASS) factor variance.

Keywords: CAS, construct validity, hierarchical exploratory factor analysis, Schmid-Leiman higher-order analysis, structural validity

Support for PASS Scales

"...compared to the WISC-IV, WAIS-IV, SB-5, RIAS, WASI, and WRIT, the CAS subtests had less variance apportioned to the higherorder general factor (g) and greater proportions of variance apportioned to firstorder (PASS...) factors.
\Rightarrow This is consistent with the subtest selection and construction in an attempt to measure PASS dimensions linked to PASS theory ... and neuropsychological theory (Luria)." (p. 311)

PASS Scales can be Interpreted and SHOULD be: Profiles

Profiles for SLD (reading decoding) \& ADHD

Looking at SLD and

 ADHD profiles on all these tests is very revealing...PASS works

School Psychology Quarterly, Vol. 15, No. 4, 2000, pp. 419-433

Can Profile Analysis of Ability Test Scores Work? An Illustration using the PASS Theory and CAS with an Unselected Cohort

Jack A. Naglieri
George Mason University

A new approach to ipsative, or intraindividual, analysis of children's profiles on a test of ability was studied. The Planning, Attention, Simultaneous, and Successive (PASS) processes measured by the Cognitive Assessment System were used to illustrate how profile analysis could be accomplished. Three methods were used to examine the PASS profiles for a nationally representative sample of 1,597 children from ages 5 through 17 years. This sample included children in both regular $(n=1,453)$ and special $(n=144)$ educational settings. Children with significant ipsatized PASS scores, called Relative

Identifying Students
With Learning Disabilities:
Composite Profile Analysis
Using the Cognitive
Assessment System

Leesa V. Huang ${ }^{1}$, Achilles N. Bardos ${ }^{2}$,
and Rik Carl D'Amato ${ }^{3}$

Abstract
The detection of cognitive patterns in children with learning disabilities (LD) has been a priority in the identification process. Subtest profile analysis from traditional cognitive assessment has Therefore, the purpose of this study is to use a new generation of cognitive tests with megacluster analysis to augment diagnosis and the instructional process. The Cognitive Assessment System uses a contemporary theoretical model in which composite scores, instead of subtest scores, are used for profile analysis. Ten core profiles from a regular education sample ($N=1,692$) and I
"Ten core profiles from a regular education sample ($N=1,692$) and 12 profiles from a sample of students with LD ($\mathrm{N}=367$) were found.

A PSW Method for SLD

- Discrepancy Consistency Method (DCM)

Why CAS2 \& PASS with DCM

Evidence: We CAN do BETTER

- Research Update on 'g'
- Fair Assessment as a Social Justice Issue
- Intervention

Cognitive Assessment as a Social Justice Issue

> According to the Standards for Educational and Psychological Testing (AERA, APA, NCME, 2014), if a person has had limited opportunities to learn the content in a test of intelligence, that test may be considered unfair if it penalizes students for not knowing the answers even if the norming data do not demonstrate test bias.
$>$ Neurocognitive processing tests that do not rely on knowledge are much preferred to traditional IQ because they measure thinking rather than knowing

PASS Scores for Hispanic Students

Both studies had very similar PASS and Full Scale scores obtained on the English and Spanish CAS versions AND there was at least 90\% agreement between PASS weakness \& strengths using English and Spanish versions of the CAS

Mean Score Differences in Total scores by Race by Intelligence Test.

Traditional IQ tests

Race \& IQ

$>$ Neurocognitive tests yield smaller differences

> CAS and CAS2 have the smallest differences

SB-IV (matched samples) 12.6
WISC-V (normative sample) 11.6
WISC-IV (normative sample) 11.5
WJ- III (normative sample) 10.9
WISC-IV (matched samples) 10.0
WISC-V (statistical controls normative sample) 8.7
RIAS-2 (normative sample) 8.0
Second Generation Intelligence Tests
K-ABC (normative sample) 7.0
K-ABC (matched samples) 6.1
KABC-2 (matched samples) 5.0
CAS-2 (normative sample) 6.3
CAS (statistical controls normative sample) 4.8
CAS-2 (statistical controls normative sample) 4.3

Note: The data for these results are reported for the Stanford-Binet IV from Wasserman (2000); Woodcock-Johnson III from Edwards \& Oakland (2006); Kaufman Assessment Battery for Children from Naglieri (1986); Kaufman Assessment Battery for Children-II from (Lichenberger, Sotelo-Dynega \& Kaufman, 2009); CAS from Naglieri, Rojahn, Matto \& Aquilino (2005); CAS-2 from Naglieri, Das \& Goldstein, 2014; Wechsler Intelligence Scale for Children - IV (WISC-IV) from O’Donnell (2009), WISC-1/ from Kaufman, Raiford \& Coalson (2020). Reynolds Intellectual Assessment Scale -2 Reynolds, C. R., \& Kamphaus, R. W. (2015)

IQ Tests That Demand Knowledge

- Stanford-Binet 5
- Verbal, Knowledge, Quantitative
- WISC-V
- Verbal Comprehension: Vocabulary, Similarities, Information \& Comprehension
- Fluid Reasoning: Figure Weights, Picture Concepts, Arithmetic
- WJ-IV and Batería-IV (including Cross Battery)
- Comprehension Knowledge: Vocabulary \& General Information
- Fluid Reasoning: Number Series \& Concept Formation
- Auditory Processing: Phonological Processing
- K-ABC-II
- Knowledge / GC: Riddles, Expressive Vocabulary, Verbal Knowledge

Main question: Does the District's gifted program unlawfully discriminate against Hispanic Students?

DANIEL, DINAH and DEANNA MCFADDEN,) minors, by their parent and next friend, Tracy McFadden; KAREN, RODOLFO and KIARA TAPIA, minors, by their parent and next friend, Mariela Montoya; JOCELYN BURCIAGA, minor,) by her parent and next friend, Griselda Burciaga;) and KASHMIR IVY, minors, by their parent and next friend, Beverly Ivy; KRISTIANNE SIFUENTES, minors, by her parent and next friend, Irma Sifuentes,

Plaintiffs,
v.

BOARD OF EDUCATION FOR ILLINOIS SCHOOL DISTRICT U-46,

Defendant.
students - Hispanic and Black students for SWAS. Judge Gettlemen found discrimination regarding (a) tests for screening and for identification, (b) designated cutoff scores for screening and identification, (c) use of both verbal and math scores at arbitrary designated levels for screening and for identification, (d) use of weighted matrix, as well as content and criteria in weighted matrices that favored achievement and traditional measures, (e) too little reliance on a nonverbal test (Naglieri Nonverbal Ability Test) for admission to

SWAS, (f) re-testing Hispanic students for middle school gifted program, (g) timing of testing, (h) use of parental referrals, and (i) use of teacher referrals (see Table 2).

1920 Army Testing (Yoakum \& Yerkes)

Verbal (Alpha) tests were problematic but Nonverbal (Beta) tests were important - it was a social justice issue.

METHODS AND RESULTS

Why Beta? Men who fail in alpha are sent to beta in order that injustice. by reason of relative unfamiliarity with English may be avoided. Men who fail in beta are referred for individual examination by means of what may appear to be the most suitable and altogether appropriate procedure among the varied methods available. This reference for careful individual examination is yet another attempt to avoid injustice either by reason of linguistic handicap or accidents incident to group examining.

Do we NEED Verbal Tests ?

The Myth of "Verbal Intelligence"

-The lack of a clear distinction between ability and achievement tests has corrupted the very concept of intelligence as measured using traditional tests

- A child who has not had an adequately enriched educational experience (ELL, SLD, etc.) will be at disadvantage when assessed with "ability" tests that demand knowledge

Correlations: We can do better!

Average correlations between IQ Scales with total achievement scores from Essentials of CAS2 Assessment Naglieri \& Otero (2017)

Correlations Between Ability and Achievement Test Scores			Average Correlation	
			All Scales	Scales without achievement
WISC-V WIAT-III $N=201$	Verbal Comprehension Visual Spatial		. 53	. 47
		. 46		
	Visual Spatial Fluid Reasoning	. 40		
	Working Memory	. 63		
	Processing Speed	. 34		
$\begin{aligned} & \text { WJ-IV COG } \\ & \text { WJ-IV ACH } \\ & \text { N=825 } \end{aligned}$	Comprehension Knowledge Fluid Reasoning Auditory Processing Short Term Working Memory Cognitive Processing Speed Long-Term Retrieval Visual Processing	. 50	. 54	
		. 71		
		. 52		
		. 55		
		. 55		
		. 43		
		. 45		50
KABC	Sequential/Gsm	. 43		
WJ-III ACH	Simultaneous/Gv	. 41		
$\mathrm{N}=167$	Learning/Glr	. 50		
	Planning/Gf	. 59		48
	Knowledge/GC	. 70	. 53	
CAS	Planning	. 57		
WJ-III ACH	Simultaneous	. 67		
$\mathrm{N}=1,600$	Attention	. 50		
	Successive	. 60		. 59
Note: WJ-IV Sc	ales Comp-Know= Vocabulary and	neral	formation;	Juid Reasoning =
Number Series	and Concept Formation; Auditory P	cessin	$\mathrm{g}=$ Phonolog	ical processing.
Note: All cor averaged wit	lations are reported in the ability in each ability test using Fisher z		manuals. V mations.	ues were

PASS theory of intelligence and academic achievement: A meta-analytic review

George K. Georgiou ${ }^{\mathrm{a}, *}$, Kan Guo ${ }^{\mathrm{b}, * *}$, Nithya Naveenkumar ${ }^{\mathrm{a}}$, Ana Paula Alves Vieira ${ }^{\text {c }}$, J.P. Das ${ }^{\text {a }}$

```
' }\mp@subsup{}{}{5}\mathrm{ Beijing Normal University, China
```

${ }^{\text {C State U University of Maringa, Brazi }}$

Articleinfo	AbStract
Keywords: Intelligence Mathematics Meta-analysis PASS processes Reading	Although Planning, Attention, Simultaneous and Successive (PASS) processing theory of intelligence has been argued to offer an alternative look at intelligence and PASS processes - operationalized with the Cognitive Assessment System - have been used in several studies, it remains unclear how well the PASS processes relate to academic achievement. Thus, this study aimed to determine their association by conducting a meta-analysis. A random-effects model analysis of data from 62 studies with 93 independent samples revealed a moderate-tostrong relation between PASS processes and reading, $r=0.409,95 \% \mathrm{CI}=[0.363,0.454])$, and mathematics, $r=0.461, \mathrm{CI}=[0.405,0.517]$. Moderator analyses further showed that (1) PASS processes were more strongly related with reading and math in English than in other languages, (2) Simultaneous processing was more strongly related to math accuracy and problem solving than math fluency, (3) Simultaneous processing was more strongly related to problem solving than Attention, and (4) Planning was more strongly related to math fluency than Simultaneous processing. Age, grade level, and sample characteristics did not influence the size of the correlations. Taken together, these findings suggest that PASS cognitive processes are significant correlates of academic achievement, but their relation may be affected by the language in which the study is conducted and the type of mathematics outcome. They further support the use of intervention programs that stem from PASS theory for the enhancement of reading and mathematics skills.

Georgiou, G., Guo, K., Naveenkumar, N., Vieira, A. P. A., \& Das, J. P. (2019) PASS theory of intelligence and academic achievement: A meta-analytic review. In press Intelligence.

PASS Research

>"The correlations are significantly stronger ... than the correlations reported in previous meta-analysis for other measures of intelligence..."
"if we conceptualize intelligence as .. cognitive processes that are linked to the functional organization of the brain" it leads to significantly higher relations with academic achievement."

- "...and [Pass] processes have direct implications for instruction and intervention..."

A PSW Method for SLD

- Discrepancy Consistency Method (DCM)

Why CAS2 \& PASS with DCM

Evidence:
 We CAN do BETTER

- Research Update on 'g'
- Fair Assessment as a Social Justice Issue
- Intervention

Planning Research

Planning Facilitation for Math Calculation

Math calculation is a complex activity that involves recalling basic math facts, following procedures, working carefully, and checking one's work. Math calculation requires a careful (i.e., planful) approach to follow all of the necessary steps. Children who are good at math calculation can move on to more difficult math concepts and problem solving with greater ease than those who are having problems in this area. For children who have trouble with math calculation, a technique that helps them approach the task planfully is likely to be useful. Planning facilitation is such a technique.

Planning facilitation helps students develop useful strategies to carefully complete math problems through discussion and shared discovery. It encourages students to think about how they solve problems, rather than just think about whether their answers are correct. This helps them develop careful ways of doing math.

How to Teach Planning Facilitation

Planning facilitation is provided in three 10-minute time periods: 1) 10 minutes of math, 2) 10 minutes of discussion, and 3) 10 more minutes of math. These steps can be described in more detail:

Step 1: The teacher should provide math worksheets for the students to complete in the first 10 -minute session. This gives the children exposure to the problems and ways to solve them. The teacher gives each child a worksheet and says, "Here is a math worksheet for you to do. Please try to get as many of the problems correct as you can. You will have 10 minutes." Slight variations on this instruction are okay, but do not give any additional information.

A Cognitive Strategy Instruction to Improve Math Calculation for Children With ADHD and LD: A Randomized Controlled Study

Jackie S. Iseman' and Jack A. Naglieri'

Abstract

The authors examined the effectiveness of cognitive strategy instruction based on PASS (Planning, Attention, Simultaneous, Successive) given by special education teachers to students with ADHD randomly assigned by classroom. Students in the experimental group were exposed to a brief cognitive strategy instruction for 10 days, which was designed to encourage development and application of effective planning for mathematical computation, whereas the comparison group receivedstandard math instruction. Standardized tests of cognitive processes and math achievement were given at pretest. All students completed math worksheets throughout the experimental phase. Standardized achievement tests (WoodcockJohnson Tests of Achievement, Third Edition, Math Fluency and Wechsler Individualized Achievement Test, Second Edition, Numerical Operations) were administered pre- and postintervention, and Math Fluency was also administered at I year follow-up. Large pre-post effect sizes were found for students in the experimental group but not the comparison group on math worksheets (0.85 and 0.26), Math Fluency (1.17 and 0.09), and Numerical Operations (0.40 and -0.14 , respectively). At I year follow-up, the experimental group continued to outperform the comparison group. These findings suggest that students with ADHD evidenced greater improvement in math worksheets, far transfer to standardized tests of math (which measured the skill of generalizing learned strategies to other similar tasks), and continued advantage I year later when provided the PASS-based cognitive strategy instruction.

Instructional Sessions

> Math lessons were organized into "instructional sessions" delivered over 13 consecutive days
> Each instructional session was 30-40 minutes
> Each instructional session was comprised of three segments as shown below

10 minutes	$10-20$ minutes	10 minutes
10 minute math worksheet	Planning Facilitation or Normal Instruction	10 minute math worksheet

Experimental Group

19 worksheets with Planning Facilitation

Control Group

19 worksheets with Normal Instruction

Planning (Metacognitive) Strategy Instruction

- Teachers facilitated discussions to help students become more selfreflective about use of strategies
- Teachers asked questions like:
- What was your goal?
- Where did you start the worksheet?
- What strategies did you use?
- How did the strategy help you reach your goal?
- What will you do again next time?
- What other strategies will you use next time?

Pre-Post Means and Effect Sizes for the Students with LD and ADHD

Worksheet Pre-Post Means

WJ Math Fluency Means

At 1-year follow-up, 27 of the students were retested on the WJ-III ACH Math Fluency subtest as part of the school's typical yearly evaluation of students. This group included 14 students from the comparison group and 13 students from the experimental group. The results indicated that the improvement of students in the experimental group ($M=16.08$, $S D=19, d=0.85$) was significantly greater than the improvement of students in the comparison group ($M=3.21$, $S D=18.21, d=0.09$).

Summary of PASS Intervention Research in Essentials of CAS2

WE CAN DO BETIER

Jose: Age 10, 5th Grade, Bilingual Student

History

Was previously found eligible for special education in areas of SP/L and SLD.

Goals:
In the areas of reading and writing. S/L Therapy includes increasing his articulation of the $/ r$ / sound and improving receptive and expressive language skills. His teachers observed weaknesses in the areas of vocabulary and grammar.

FastBridge Fall 2019 assessments

aReading- 4th percentile; CBM Reading- 6th percentile; aMath- Score41st percentile; CBMmath CAP- 56th percentile

Fall 2019 MAP Reading assessment (Measure of Academic Progress)

Reading, 2nd percentile which is in the Low range.

Test Scores

Math- 7th percentile

Jose is reading at a guided reading level M (English), 5th-grade students should be at a level T.

Concerns - phonemic awareness, reading fluency, reading comprehension, math problem-solving, spelling, and written expression.

Jose also receives ELL services and his current ACCESS scores are as follows: Listening 5.8, Speaking 1.9, Reading 2.8, Writing 3.5.

KTEA-III

Batería-IV

How to help José?

Remember to check how well you are attending. If you are having a problem, look at this.

Think smart and look at the details!

Figure 1. A graphic that reminds students to focus on information being discussed.

Results!

Teacher reported that José has increased his reading accuracy by at least 80%. He is able to read 16 words correctly out of a list of 20.
He has done this over the last 3. sessions.

Fluency continues to be slower than peers.

IT DOESN’T HAVE TO BE SO... COMPLICATED All you need is PASS

