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Abstract

Although several studies have shown that planning, at-

tention, simultaneous, and successive (PASS) cognitive

processes—operationalized with the cognitive assessment

system (CAS; Naglieri & Das, 1997)—are significant pre-

dictors of academic performance in the general population,

little is known about their role among children with su-

perior academic skills. Thus, the purpose of this study was

to examine whether PASS processes can predict superior

performance in reading and mathematics. We used the

standardization sample of CAS (n = 1210) and further

identified children with superior reading (n = 62) and

mathematics (n = 73) performance on Woodcock–Johnson

Tests of Achievement–Revised (Woodcock & Johnson,

1989). Results of the initial regression analyses showed

that the PASS processes were significant predictors of

superior reading and mathematics performance. Next, a

classification and regression tree approach showed that

the PASS scores could classify superior or not‐superior
readers and mathematicians with 89% and 82% accuracy,

respectively. Theoretical and practical implications of our

results are discussed.
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1 | INTRODUCTION

Several studies have established that planning, attention, simultaneous, and successive (PASS) neurocognitive processes

as measured by the cognitive assessment system (CAS; Naglieri & Das, 1997) are significant predictors of academic

achievement across languages (e.g., English: Das et al., 2008; Greek: Papadopoulos, 2001; Chinese: Wang et al., 2012),

ethnicities (e.g., Naglieri et al., 2007), and developmental levels (e.g., Naglieri & Rojahn, 2004). Importantly, Georgiou

et al. (2020) reported meta‐analytic results showing correlations between PASS scores and reading or math that were

significantly stronger than correlations reported in previous meta‐analyses for other measures of intelligence. They

concluded that “there are significant benefits if we conceptualize intelligence as a constellation of cognitive processes

that are linked to the functional organization of the brain” (p. 10). However, their study, like those noted above, did not

study individuals with very high levels of academic achievement. Thus, the purpose of this study was to examine

whether PASS processes are related to superior performance in reading and mathematics.

This is important for both theoretical and practical reasons. From a theoretical point of view, any test of

intelligence—particularly if it claims to predict academic achievement better than other tests of intelligence—

should explain individual differences in reading or mathematics at different levels of their distribution. To date,

most research on PASS theory has focused on the low ends of the reading or mathematics distributions (see Cai

et al., 2013; Huang et al., 2010; Naglieri & Reardon, 1993). In addition, in today's educational climate, attention to

the learning needs of children with superior academic achievement is too often pushed aside, and additional

research focused on theoretical models, such as PASS could help to remind everyone of this subgroup's experi-

ences and needs. In what follows, we briefly describe the PASS theory of intelligence, then we review previous

studies on PASS and superior reading or mathematics performance, and finally we present the rationale of the

present study.

2 | THE PASS THEORY OF INTELLIGENCE

PASS theory is based on the conceptualization of brain function presented by Alexander R. Luria, a Russian

neuropsychologist. In his influential book, The working brain: An Introduction to neuropsychology, Luria (1973) de-

scribed four neurocognitive processes associated with different parts of the brain. The first is Planning, which is a

mental activity that provides cognitive control; use of processes, knowledge, and skills; intentionality; organization;

and self‐regulation. This processing ability is closely aligned with frontal lobe functioning (third functional unit).

Attention is the ability to demonstrate focused, selective, sustained, and effortful activity over time and resist

distraction associated with the brain stem and other subcortical aspects (first functional unit). Simultaneous

processing ability provides a person the ability to integrate stimuli into interrelated groups or a whole usually

found in tasks with strong visual‐spatial demands. Finally, Successive processing ability involves working with

stimuli in a specific serial order including the perception of stimuli in sequence and the linear execution of sounds

and movements.

This theory of brain function provided a blueprint for test development, which excluded traditional,

academically‐laden subtests that demand knowledge (e.g., Vocabulary, Arithmetic) and allowed more equitable

measurement. Although the evidence of validity and reliability as well as clinical utility of PASS scores is beyond

the scope of this study, Naglieri and Otero (2017) have reported that PASS scores (a) are more predictive of

achievement test scores than any other ability test (see also Georgiou et al., 2020, for recent evidence from a

meta‐analysis); (b) show distinctive profiles for different children with different disabilities; (c) can be used for

specific learning disabilities eligibility determination consistent with Federal Law using the discrepancy consistency

method of analyzing a pattern of strengths and weaknesses in PASS and achievement scores; (d) can be readily

used for instructional planning and interventions and, perhaps most importantly for gifted students, (e) offer the

most equitable way to measure diverse populations (Naglieri & Otero, 2017).
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One of the greatest differences between traditional intelligence tests and the CAS, is its reliance on the

PASS theory and the inclusion of subtests that were developed explicitly to measure basic neurocognitive

processes in a way that does not rely on verbal and quantitative knowledge (e.g., vocabulary, similarities,

information, arithmetic). The composition of the two ability tests most often used to identify gifted students

(CogAT and Wechsler intelligence scale for children, fifth edition [WISC‐V]; Kurtz et al., 2019) influences

which students are selected. Ford (2013) and Naglieri and Ford (2003) have argued that the verbal and

quantitative content of such tests are an avoidable obstacle to traditionally underrepresented populations in

gifted education. Naglieri and Otero (2017) estimated that approximately 750,000 Black, Hispanic, and English

Language Learner students in grades K‐12 in US would qualify for gifted programs but were not, in part,

because the most widely used tests for the identification of gifted students demand verbal and quantitative

knowledge. It is important to note that according to the Standards for Educational and Psychological Testing

(AERA APA NCME, 2014) a test can be considered socially unjust for a person who has had limited oppor-

tunities to learn the content of the test questions. Moreover, that test may be considered unfair because it

penalizes students for not knowing the answers even if there is no evidence of psychometric test bias. This

issue is a fundamental problem for equitable identification of gifted students.

Researchers have also found a mean difference of about 12–15 points between African Americans and Whites

on measures of IQ that include verbal, quantitative, and nonverbal tests (Kaufman & Lichtenberger, 2006), which

has had considerable impact on the composition of students in gifted programs. In contrast, Naglieri et al. (2005)

reported a CAS full scale mean score difference of only 4.8 between African Americans and Whites, and Naglieri

et al. (2007) found a 4.8‐point difference between Hispanic and White children. Finally, small differences between

PASS full scale scores and factorial invariance were reported using the Italian and English versions of the CAS

(Naglieri et al., 2013). These findings suggest that PASS theory provides an option for fair assessment of students

for gifted programs while remaining highly correlated with achievement without having tests that measure vo-

cabulary, knowledge, and quantitative skills.

Importantly, researchers have proposed specific links between the PASS processes and academic achievement.

In regard to reading, Das et al. (1994) proposed that Successive processing contributes to word reading through

the effects of phonological recoding and Simultaneous processing contributes to word reading through the effects

of orthographic knowledge. Planning and Attention are supposed to play an auxiliary role in that they enable the

deployment of phonological recoding and orthographic knowledge. In regard to mathematics, Das and Janzen

(2004) proposed that change in strategies (e.g., shifting from counting with fingers to conceptualizing basic op-

erations in mental arithmetic) or flexibility in strategy use is a central requirement of planning. Likewise, they

proposed that seeing similarities between two problems and transferring procedures learned from one problem to

another, falls into the realm of Simultaneous processing. Finally, Das and Janzen (2004) argued that Successive

processing is important when information has to be processed in a certain order, as in counting.

3 | PASS PROCESSES AND SUPERIOR READING
OR MATHEMATICS PERFORMANCE

To date, the majority of studies on the relationship between PASS scores with reading and mathematics perfor-

mance have been conducted either with typically developing children (e.g., Cai et al., 2018; Das et al., 2008;

Georgiou et al., 2015; Kroesbergen et al., 2010; Papadopoulos, 2001; Wang et al., 2012) or with children ex-

periencing reading or mathematics disabilities (e.g., Cai et al., 2013; Das et al., 2007; Iglesias‐Sarmiento & Deaño,

2011; Joseph et al., 2003; Kroesbergen et al., 2003). For example, in a study with Grade 3 English‐speaking
children, Das et al. (2007) reported that the probability of a child being a poor reader if his or her standard score in

successive processing was below 80 was 0.76. The corresponding probability for simultaneous processing was 0.50.

In a study with Grades 6 to 8 Chinese children, Cai et al. (2013) also found that children with mathematics learning
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disabilities (MLD) were performing lower than their chronological‐age controls on all PASS processes. However,

only Planning and Simultaneous processing significantly predicted their group membership (MLD vs. no MLD).

The first study to examine the association between PASS processes and superior academic performance was

part of the standardization of CAS (Naglieri & Das, 1997). More specifically, Naglieri and Das (1997) reported

descriptive statistics on the PASS processes from 173 gifted children ages 8 to 15. The children were identified as

gifted on the basis of state and federal definitions of giftedness by multidisciplinary teams in their schools. These

teams used teacher referrals, achievement test scores (Italics added by authors to give emphasis), and intelligence

test scores as the criteria for identification. As a group, the gifted children obtained a standard score of 111.9 in

Planning, 111.0 in Attention, 117.7 in simultaneous processing, and 115.8 in Successive processing. Naglieri and

Das (1997) pointed out that the high scores in Simultaneous and Successive processing scales could be attributed

to the fact that these CAS scales are most similar to the traditional IQ tests used to identify these children.

Studies on PASS processes with superior readers are scarce (see Dunn et al., 2019; Papadopoulos et al., 2020,

for exceptions). Dunn et al. (2019) compared a group of children with superior reading performance (standard

score on Broad Reading1 higher than 130) to a group of children with average reading performance (standard score

on Broad Reading between 85 and 115) and found that the two groups differed significantly in Simultaneous and

Successive processing. Papadopoulos et al. (2020), in turn, conducted a study with precocious readers (kinder-

garten children who were reading words before receiving any formal reading instruction) in Greek and found that

they also performed better than controls in Simultaneous and Successive processing. Although both aforemen-

tioned studies suggest that Simultaneous and Successive processing are key predictors of superior reading, they

did not specify what scores in Successive and Simultaneous processing would have to be achieved for a child to be

correctly identified as a superior reader.

To our knowledge, only one study has examined the PASS processes in children with superior mathematics

performance. More specifically, Iglesias‐Sarmiento et al. (2020) compared the performance of high achieving

children in mathematics (n = 26) on PASS processes to that of a group of average performing children (n = 58) and

children with math difficulties (n = 26). Children with math difficulties obtained significantly lower scores than the

high achieving children in Planning, Simultaneous processing, and Successive processing. The group of average

performing children performed more poorly than the high achieving group only in Simultaneous processing.

Certainly, more research is needed on PASS and superior mathematics performance.

4 | THE PRESENT STUDY

The present study aimed to answer the following three research questions:

(1). What PASS processes explain individual differences in reading and mathematics performance? Addressing this

study question will allow us to establish the relationship between PASS processes and student performance in

reading and mathematics. On the basis of previous studies with superior readers (Dunn et al., 2019;

Papadopoulos et al., 2020), we expected that Simultaneous and Successive processing would predict superior

reading performance. In addition, we expected that Simultaneous processing and Planning would predict

superior mathematics performance.

(2). What combination of PASS processing scores predicts superior academic performance? No specific hypothesis

could be formulated for this question because this is the first time the classification and regression tree

(CART) approach (see below for details) is used to predict superior academic performance.

1Broad Reading is a cluster score derived from Letter‐Word Identification, Reading Fluency, and Passage Comprehension (Woodcock, McGrew, &

Mather, 2001).
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(3). How accurate a model with PASS processes is in predicting membership to superior reading or mathematics

groups? Based on the findings of previous studies highlighted above, we hypothesized that the model with

PASS processes would accurately differentiate children with and without superior reading or mathematics

performance.

We chose to examine these questions using the standardization and validity study data from the original

version of the CAS because of (a) the size and representative nature of the sample (n = 1,210); and (b) the fact that

this is the largest study on PASS and academic achievement conducted thus far. Despite the publication of the

second edition of the CAS2 (Naglieri et al., 2014), the correlation between the first and second edition is very high

(r = .88; Naglieri et al., 2014).

The findings of the present study are expected to contribute to the literature in three important ways.

First, examining the role of PASS processes in superior reading or mathematics performance fills an im-

portant gap in research on PASS theory that has focused mostly on the lower end of the reading or

mathematics performance continuum (see Naglieri & Otero, 2018, for a review). In light of evidence that

intelligence—operationalized as a set of neurocognitive processes—plays an important role in learning dis-

abilities (e.g., Naglieri & Reardon,1993), we have good reasons to believe that a similar role may be played in

superior academic performance. Second, our findings can provide direction to instructional programming of

children with superior academic performance because PASS theory has direct links to intervention (e.g., Das

& Misra, 2015; Naglieri & Otero, 2017). Obviously, this is not the place to discuss how gifted children are

identified (see e.g., Pfeiffer, 2012, for a discussion on this issue), but to the extent such identification is

influenced by potential to learn (e.g., PASS) and children's scores in reading or mathematics,2 then our

findings can give direction to educational programming of these children.

5 | METHODS

5.1 | Participants

The participants for this study were 1,210 children and adolescents (590 males, 620 females) ages 8 to 17

years, who participated in the CAS standardization sample (Naglieri & Das, 1997). The sample was re-

presentative of the general population in US on the basis of gender, race, parental education, geographic

region, and the community setting they came from (see Naglieri & Das, 1997, for details). To be included in

this study, participants had to have been individually administered the reading and math subtests of the

Woodcock–Johnson Tests of Achievement—Revised (WJ‐R; Woodcock & Johnson,1989) by a trained ex-

aminer, following the administration of the CAS.

6 | MATERIALS

6.1 | Academic achievement

To measure academic achievement the WJ‐R (Woodcock & Johnson, 1989) was administered. For the purpose of

this study two cluster scores were of interest: Broad reading which is composed of scores from the letter‐word

2For example, in Alberta (Canada), Code 80 suggests that gifted children can be identified, among other criteria, on the basis of their academic

achievement (Alberta Education, 2014).
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identification and passage comprehension subtests, and broad math which is composed of scores from the

calculation and applied problems subtests.

6.2 | PASS processes

PASS processing scores were obtained using the CAS (Naglieri & Das, 1997). This individually administered

test of neurocognitive functioning was standardized for use with children and adolescents ranging from 5 to

17 years of age. The four PASS scales have a mean of 100 and a standard deviation of 15. Scores from the

CAS Standard Battery which consists of all 12 subtests (three for each PASS scale) were used. A description

of these subtests can be found in the Appendix. The average internal consistency (i.e., coefficient alpha)

values for the PASS Standard (all 12 subtest) battery are as follows: Planning = 0.88; attention = 0.88;

simultaneous = 0.93; and successive = 0.93.

6.3 | Data analysis

To answer our first research question, we performed multiple regression analyses in which the WJ‐R Broad

Reading and Broad Math scores were used as dependent variables and the PASS standard scores were used as

predictor variables. This regression model can be written as:

εY b b X b X b X b X= + + + + + ,i iPL iAT iSM iSC i0 1 2 3 4 (1)

where Yi is person i's Broad Reading (or Broad Math) score; XiPL, XiAT , XiSM, and XiSC are person i's standard scores in

Planning, Attention, Simultaneous and Successive processing, respectively; b0is the intercept, b1to b4 are the

regression weights for the PASS processing standard scores; and εi is the error term for person i. The multiple

regression models were estimated using the R software program (R Core Team, 2019). Statistical significance,

magnitude, and direction of the estimated regression coefficients and the total variance explained by the models

(i.e., R2) were evaluated.

To answer the second research question, we first identified individuals from the whole sample with a standard

score in Broad Reading and Broad Math at or above 130 (indicating superior reading/math performance). This

resulted in 62 superior readers and 73 superior mathematicians. Then, a CART approach was used to predict

superiority status for individuals (1 = superior, 0 = not superior). CART is a widely used data mining technique that

employs a set of independent variables for predicting a dependent variable characterized as either continuous or

categorical. This approach relies on binary splitting of a prediction space into a number of smaller and non-

overlapping branches of the data, which are also known as decision nodes. Then separate predictions (i.e., re-

gressions) are made by going through the branches of a decision tree and a prediction is made for the dependent

variable in the final nodes, which is also known as leaf nodes. The estimated CART model yields a tree‐like
structure with many branches created based on the predictors (see Loh (2011) for a detailed review).

In the current study, the standard scores of the four PASS processes were used to create a series of

branches in the decision tree model and the final nodes were used to predict whether individuals were

superior in reading and math based on their WJ‐R scores. Separate decision trees were built for reading and

mathematics. The CART models were estimated using the rpart (Therneau & Atkinson, 2019) and rpart. plot

(Milborrow, 2019) packages in R (R Core Team, 2019). The resulting CART models were subsequently

evaluated based on their classification accuracy, sensitivity, and specificity (this answers our third research

question). Table 1 demonstrates a 2 × 2 table of binary classification categories required to compute

accuracy, sensitivity, and specificity indices.
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7 | RESULTS

7.1 | Multiple regression analysis

Before conducting multiple regression analyses, the linear relationships among the broad reading, broad math, and

PASS standard scores were visually inspected. Figure 1 depicts a scatterplot matrix that contains all the pairwise

scatterplots of the scores in a matrix format. The lower triangular portion shows the pairwise relations among the

scores, the diagonal portion shows a histogram showing the distribution of each score, and the upper triangular

portion shows the Pearson correlations among the scores. The scatterplots suggest that the PASS processes had a

positive, linear relation with Broad Reading and Broad Math. The correlations among the scores were mostly

moderate to strong.

TABLE 1 Evaluating the accuracy of a binary classification model

Predicted classification

Actual classification

Gifted in reading (or math) Not gifted in reading (or math)

Gifted in reading (or math) True positive (TP) False positive (FP)

Not gifted in reading (or math) False negative (FN) True negative (TN)

Note: Sensitivity = TP/TP+FN; specificity = TN/TN+FP; accuracy = TP+TN/(TP+TN+FN+FP).

F IGURE 1 A scatterplot matrix of the pairwise relationships among broad reading, broad math, and planning,
attention, simultaneous, and successive (PASS) sores
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After inspecting the pairwise correlations, we performed multiple regression analyses to answer our first

research question. Tables 2 and 3 show the results from the multiple regression models for reading and mathe-

matics, respectively. The regression model for broad reading was statistically significant (F(4, 1203) = 223.36,

p < .001) and explained a large proportion of variance (43%). In the model, the effects of all PASS standard scores

were positive and statistically significant at the significance level of α = .01. Based on the standardized regression

coefficients (β), Simultaneous and Successive processing were stronger predictors of Broad Reading than the other

two PASS processes.

TABLE 2 Results for the regression model predicting Broad Reading

Predictor b b95% CI β β 95% CI sr2 sr2 95% CI Fit

Intercept 3.14 (−3.56, 9.85)

Planning 0.21** (0.15, 0.28) .18 (0.13, 0.24) 0.02 (0.01, 0.03)

Attention 0.11** (0.05, 0.18) .10 (0.04, 0.16) 0.01 (−0.00, 0.01)

Simultaneous 0.34** (0.28, 0.40) .29 (0.24, 0.34) 0.06 (0.04, 0.08)

Successive 0.33** (0.28, 0.39) .28 (0.24, 0.33) 0.06 (0.04, 0.09)

R2 = .426**

95% CI (0.39, 0.46)

Note: A significant b‐weight indicates the beta‐weight and semi‐partial correlation are also significant. b represents

unstandardized regression weights. β indicates the standardized regression weights. sr2 represents the semi‐partial
correlation squared. 95% CI indicates the lower and upper limits of a confidence interval.

Abbreviation: CI, confidence interval.

**p < .01.

TABLE 3 Results for the regression model predicting Broad Math

Predictor b b95% CI β β 95% CI sr2 sr2 95% CI Fit

Intercept −3.53 (−10.68, 3.62)

Planning 0.36** (0.29, 0.43) 0.29 (0.23, 0.35) 0.05 (0.03, 0.06)

Attention 0.08* (0.01, 0.15) 0.06 (0.01, 0.12) 0.00 (−0.00, 0.01)

Simultaneous 0.43** (0.37, 0.49) 0.34 (0.29, 0.39) 0.08 (0.06, 0.11)

Successive 0.20** (0.14, 0.26) 0.16 (0.11, 0.21) 0.02 (0.01, 0.03)

R2 = .437**

95% CI (0.40, 0.47)

Note: A significant b‐weight indicates the beta‐weight and semi‐partial correlation are also significant. b represents

unstandardized regression weights. β indicates the standardized regression weights. sr2 represents the semi‐partial
correlation squared. 95% CI indicates the lower and upper limits of a confidence interval.

Abbreviation: CI, confidence interval.

*p < .05.

**p < .01.
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The multiple regression model predicting Broad Math scores also explained a significant proportion of total

variance (44%); F(4, 1201) = 233.26, p < .001. The effects of all PASS standard scores were positive and statistically

significant at the significance level of α = .05. Based on the standardized regression coefficients (β), simultaneous

processing and planning appeared to be the strongest predictors of broad math. Overall, these findings suggest

that the PASS processes can be used as predictors of students' performance in reading and mathematics.

7.2 | Classification and regression trees

To answer our second research question, we performed CART analyses. Figures 2 and 3 show the classification

trees generated for reading and math, respectively. Each tree starts with a root at the top and then splits into

multiple branches based on a PASS scale's score. The leaf nodes (i.e., colored boxes) show predicted superior status

(1 = superior; 0 = not superior) and the probability of that status for the predicted status. Each red box represents

1 = superior; whereas each blue box represents 0 = not superior. Within the boxes, the values at the bottom

indicate the probability of a student falling into either superior or not superior category given the PASS score

conditions in the branches (e.g., simultaneous ≥113 in Figure 2). Furthermore, each tree splits into multiple

branches where the left branches indicate the PASS score condition being met; whereas the right branches indicate

the PASS score condition not being met. For example, the branches on the left‐hand side of Figure 2 show that a

student whose scores in successive processing and simultaneous processing are larger than 111 and 113, re-

spectively would have an 92% probability of being superior in reading (shown as “1” in the figure). A similar

interpretation can be made for the left‐hand side of Figure 3. An individual whose scores in simultaneous

F IGURE 2 Decision tree of the PASS scores in predicting gifted students in reading. Note: 1 = superior; 0 = not
superior; the values at the bottom of red and blue boxes are the probability of a student falling into 1 = superior or
0 = not superior status, respectively. PASS, planning, attention, simultaneous, and successive processing [Color
figure can be viewed at wileyonlinelibrary.com]

GEORGIOU ET AL. | 9

http://wileyonlinelibrary.com


processing and planning are larger than 107 and 99, respectively would have an 80% probability of being “superior”

in mathematics (shown as “1” in the figure).

To examine how accurate a model with PASS processes is in predicting membership to superior reading or

mathematics groups, we inspected the classification accuracy indices for the CART models generated for reading

and math (see Table 4). The overall accuracy of the classification was rather similar between the two academic

domains (89% for reading and 82% for math). The CART model for reading had high values for both sensitivity and

specificity, suggesting that the model performs quite well at detecting both “superior” status and “not superior”

status. The CART model for math was stronger in detecting the “superior” status (i.e., higher sensitivity) than in

detecting the “not superior” status (i.e., specificity). Overall, both CART models had a decent rate of accuracy in

classifying “superior–not superior” readers and mathematicians given that we had only a limited number of pre-

dictors (notice that similar coefficients have been reported in the literature when predicting membership to poor/

at‐risk vs. not‐poor/not at‐risk readers' groups; see Adlof et al., 2010; Catts et al., 2016). Further analysis of the

CART models indicated that successive and simultaneous processing were the strongest predictors of superior

reading performance, while the other two processes were relatively less influential. For math, simultaneous

F IGURE 3 Decision tree of the PASS scores in predicting gifted students in math. Note: 1 = superior; 0 = not
superior; the values at the bottom of red and blue boxes are the probability of a student falling into 1 = superior or
0 = not superior status, respectively. PASS, planning, attention, simultaneous, and successive processing [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Classification evaluation indices for the estimated CART models for reading and math

Subject Accuracy Sensitivity Specificity Kappa

Reading 0.89 0.92 0.86 0.77

Math 0.82 0.91 0.74 0.64

Abbreviation: CART, classification and regression tree.
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processing and planning were the strongest predictors while the other two processes (attention and successive

processing) seemed to be less important in the prediction process. These findings align well with the previous

findings from the multiple regression analyses.

8 | DISCUSSION

The objective of this study was to examine whether PASS processes could be used to predict superior academic

performance. This is important in light of the dispute around the role of IQ in high achievement (e.g., Naglieri, 2008;

Rowe et al., 2012) and the ever‐increasing attention of research to the role of neurocognitive processes (e.g.,

Naglieri & Otero, 2018). Our results showed that the four PASS processes were significantly related to both

reading and mathematics and could accurately classify the children in the superior or non‐superior categories.

Simultaneous and successive processing were the strongest of the four neurocognitive processes in predicting

superior reading performance (see Dunn et al., 2019, for similar findings) and simultaneous processing and plan-

ning were the strongest of the four in predicting superior mathematics performance (simultaneous processing was

important in Iglesias‐Sarmiento et al.'s, 2020, study as well).

The same set of cognitive processes has been found to predict individual differences in reading or mathematics

performance in the general population (e.g., Das et al., 2008; Georgiou et al., 2015; Kroesbergen et al., 2010;

Papadopoulos, 2001) and in children with reading or math disabilities (e.g., Cai et al., 2013; Das et al., 2007; Joseph

et al., 2003; Kroesbergen et al., 2003). This suggests that the same cognitive processes can explain individual

differences across the continuum of reading or mathematics performance. At the same time, these findings suggest

that there is diversity in the role of PASS processes in reading and mathematics. Obviously, successive processing

is important in decoding and simultaneous processing is important in seeing the whole picture when reading

passages, which then supports reading comprehension. In turn, planning is important in problem solving where

children must come up with a plan on how to answer the problem (and revise it if it proves to be ineffective), and

simultaneous processing is important in seeing similarities between problems and in integrating information from

different problems into a whole.

The fact that simultaneous processing predicted both Broad Reading and Broad Math is interesting in view of

discussions around the role of fluid‐crystallized abilities in academic achievement (see Cattell, 1971; Kaufman

et al., 2009; Zaboski et al., 2018). We argue here that the fluid‐crystallized division has less explanatory power than

Simultaneous and Successive processing, if only because the concept of crystallized intelligence is confounded

mostly by knowledge. In addition, from PASS theory we posit that Simultaneous processing predicts both Broad

Reading and Broad Math because the essential characteristic of Simultaneous processing is processing of logi-

cal–grammatical relationships that is integral to both reading comprehension and problem solving (Das

et al., 1979).

Our results have significant psychoeducational implications. First, given that CAS offers a culturally fair way of

assessing cognitive abilities (e.g., Das et al., 2013; Naglieri et al., 2013), this means we can assess children of diverse

linguistic backgrounds and predict their group membership without being constrained by the verbal demands of

popular IQ tests (e.g., WISC). Second, assuming superior academic performance is one way of identifying gifted and

talented children (see Footnote 2), our results suggest that scores in the four PASS processes can be used to

identify students who would likely do very well in reading and math. Clearly, this is an area of future research using

the most recent editions of CAS and WJ. Finally, given that encouraging students to more effectively use their

PASS cognitive processes is associated with improved academic performance (e.g., Iseman & Naglieri, 2011;

Mahapatra et al., 2010; Naglieri & Johnson, 2000), knowing the PASS scores of superior readers or mathematicians

may have instructional implications. Cognitive stimulation has been at the forefront of many intervention studies

with gifted children (e.g., Smutny, 2003; Venville & Oliver, 2015). If we know that Simultaneous Processing and

Planning are important predictors of mathematics in high achieving children, then we can develop programs to
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stimulate children's Simultaneous Processing and Planning. Naglieri and Johnson (2000), for example, showed that

engaging children in self‐reflection and verbalization of strategies about how an arithmetic computation problem

could be solved improved both their planning and arithmetic computation performance.

Some limitations of the present study are worth mentioning. First, our study is correlational and any

associations do not imply causation. Here, the term prediction refers to the statistical relationship of scores

obtained at the same period of time, not prediction over time. Second, we used the data that were collected

as part of the standardization of CAS in 1997 (Naglieri & Das, 1997). Although a few changes have been

made to both CAS and WJ since then, our goal here was to examine the utility of the PASS constructs

notwithstanding which version was used. Notice also that the scores in CAS and CAS2 correlate 0.88 with

each other. Third, our findings are based on data collected in US and may not generalize in other countries or

languages. Finally, another limitation to consider is the complexity of using PASS as opposed to traditional

IQ, such as the WISC‐V to inform gifted eligibility determination when an individually administered test of

intelligence is desired. Naglieri et al. (2009) described gifted students as those who have potential (i.e., high

intellect) and could achieve advanced academic skills if they were afforded the opportunity to learn, re-

gardless of the amount of knowledge they may have at the time. The current results suggest that students

with very high PASS scores would likely also have high achievement, but we anticipate that those from

disadvantaged background would likely have poor academic skills but could still have high PASS scores. This

would likely result in lower scores on measures of vocabulary, information, word similarities and arithmetic

word problems included in traditional IQ tests. In these instances, PASS and traditional IQ scores could be

very different (see Naglieri & Rojahn, 2001) and would require careful interpretation. We suggest that a

gifted student with high PASS scores would indicate potential to learn and gifted instruction tailored to the

student's needs would be appropriate. This is a topic for future research.

To conclude, our findings add to a growing body of research on the role of PASS cognitive processes in

academic performance (e.g., Das et al., 2008; Georgiou et al., 2015; Joseph et al., 2003; Kroesbergen et al., 2010;

Papadopoulos, 2001) suggesting that they can predict superior performance at least as good or better than other

intelligence tests (e.g., Rowe et al., 2012; see also Hodges et al., 2018). However, using PASS scores to predict

superior reading or mathematics performance has an added benefit; that PASS processes are rooted to a theory of

intelligence (Luria, 1966) with close links to instruction (see Das & Misra, 2015). A future study may explore the

effects of a cognitive intervention study based on PASS processes in children with superior reading and mathe-

matics performance.
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APPENDIX

Below we describe the 12 measures used to operationalize the four PASS processes in CAS (Naglieri & Das, 1997).

Planning

Planning was measured with matching numbers, planned codes, and planned connections. In matching numbers,

children were presented with four pages comprised of eight rows of numbers that increased in length. For each

row, children were instructed to underline the two numbers that looked alike, as quickly as possible. In Items 1–3,

children were allowed 150 s to complete the task and in Item four 180 s. One point was given for each correct pair

of matched numbers with a maximum score of eight on each item. The time and number of correct matches for

each item was added and converted to a ratio score to obtain a subtest score. In planned codes, children were

asked to fill in as quickly as possible, and by using any strategy of choice (e.g. left to right, top to bottom, randomly),

empty boxes with a combination of O's and X's printed on top of an empty box that each corresponded to a letter

(e.g. A = XO, B = XX, C =OX, D =OO). The task contained two pages, each with a distinct set of codes arranged in

seven rows and eight columns. A legend located at the top of each page indicated the combination of O's and X's

that corresponded to each letter. Children were given 60 s to fill in as many empty boxes as possible. The time and

number correct for each page were recorded and combined to obtain a ratio score. The ratio score was then

converted to a subtest scaled score. In planned connections, children were asked to connect sequential stimuli. In

Items 1 and 2, children were asked to connect numbers (1–25) that were semi‐randomly arranged on a page. In

Item 3, children were asked to connect 25 numbers (1–25) and 25 letters (A–Z) in successive order (1, A, 2, B, 3, C).

The subtest score was the total time to complete all three items.

Attention

Attention was measured with expressive attention, number detection, and receptive attention. In expressive

attention, children were given 180 s to complete ach item on three consecutive pages of increasing difficulty. On

the first page, children were asked to read a sequence of color words (i.e., Blue, Yellow, Green, and Red) arranged

in quasi‐random order. On the next page, children were asked to name the color of a series of blocks printed as the

colors mentioned on the previous page. On the final page, color words were printed in a color different from the

word's name (e.g., the word green may appear in yellow ink). Children were then required to name the color of ink

in which the word was presented (e.g., Blue appearing in red ink is read as “Red”). The time and number correct for

each page were recorded and combined to obtain a ratio score. The ratio score was then converted to a subtest

scaled score. In number detection, children were asked to identify as quickly as possible target numbers (i.e., the

numbers 1, 2, and 3 printed in an open font) among distractors (i.e., the same numbers printed in a different font).

The task contained two pages each with a 150 s time limit to complete. On the first page, children were asked to

underline the target numbers 1, 2, and 3 arranged on a page that contained numbers 1 to 6 written in various fonts.

Those numbers that were different from 1, 2, and 3 or the incorrect font were to be ignored. On the second page,

children were required to underline the same numbers among distractors—4, 5, and 6 written in bold font. The

time and number correct (total number correct minus the number of false detections) for each page were recorded

and combined to obtain a ratio score. The subtest ratio score was then converted to a subtest scaled score. In

receptive attention, children were asked to identify as quickly as possible target pairs of letters among distractors

(i.e., the same letters printed in a different font). The time and number correct (total number minus the number of

false detections) for each page were recorded and combined to obtain a ratio score. The subtest ratio score was

then converted to a subtest scaled score.
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Simultaneous processing

Simultaneous processing was measured with nonverbal matrices, verbal‐spatial relations, and figure memory. In

nonverbal matrices, children were presented with a variety of shapes and geometric designs that were spatially

and logically interrelated within a visual matrix. For each item, children were required to decode the relationships

and choose from a list of six possible answers to complete the picture. The task consisted of 33 items and was

discontinued after four consecutive errors. The subtest score was the total number of correct answers. In verbal‐
spatial relations, children were presented with six drawings (pictures of objects and shapes) and with a printed

question that was dictated by the examiner (e.g. Which picture shows a circle to the left of a cross under a triangle

above a square?). Given a 30 s time limit to respond to each item, children were instructed to identify the correct

drawing from a selection of six choices. The test consisted of 27 items and was discontinued after four consecutive

errors. The subtest score was the total number correct. In figure memory, children were presented with geometric

designs, such as a triangle or a square, one at a time for a period of five seconds each. Following the presentation of

a target design the child was given a more complex design in which the target design was embedded. The child then

was asked to use his color pencil to outline the original target. The test consisted of 20 items and was discontinued

after four consecutive errors. The subtest score was the total number of items correctly reproduced.

Successive processing

Successive processing was measured with word series, sentence repetition, and sentence questions. In Word

Series, children were read a series of single‐syllable, high frequency words, varying in length from four to nine

words: “Book,”“Car,”“Cow,”“Dog,”“Girl,”“Key,”“Man,”“Shoe,” and “Wall,” and then asked to repeat the words in the

same order. The test consisted of 27 items and was discontinued after four consecutive errors. The subtest score

was the total number of correctly repeated word series. In sentence repetition, participants were read 20 sen-

tences aloud and then required to repeat each sentence verbatim. The sentences consisted of color words (e.g., the

blue is yellowing) and increased in length from 4 to 19 words. The number of sentences repeated correctly was

recorded. The test consisted of 20 items and was discontinued after four consecutive errors. The subtest score

was the total number of correctly repeated sentences. Finally, in sentence questions, children had to answer

questions about the same nonsensical sentences that were used in the Sentence Repetition task (e.g., The blue is

yellowing red. Who is yellowing red?). The children could use syntactic cues but no semantic cues to answer the

questions. The task was discontinued after four consecutive errors. The subtest score was the total number of

correctly answered questions.
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