Planning, Attention, Simultaneous and Successive (PASS): A Neurocognitive Approach to Defining and Measuring Intelligence

Jack A. Naglieri, Ph.D.

Senior Research Professor, University of Virginia, Senior Research Scientist, Devereux Center for Resilient Children, Emeritus Professor of Psychology, George Mason University

jnaglieri@gmail.com www.jacknaglieri.com

PASS: A new way to think about and measure intelligence

Topical Outline

- Traditional IQ
- PASS neurocognitive perspective on thinking
- Using PASS to uncover learning strengths and weaknesses
- Illustrative Cases with validity
- Conclusions

From Alpha/Beta to Wechsler IQ

IQ as Neurocognitive Abilities 1986

- Das and Naglieri proposed a neurocognitive theory of intelligence called PASS and a way to measure it (Cognitive Assessment System (Naglieri & Das, 1997) and the CAS2 (Naglieri, Das, & Goldstein, 2014.)
 - The CAS was the first intelligence *test* to be built on a specific *theory* of intelligence.

Defining Neurocognitive Abilities How did we identify 'basic psychological processes'? We used research from cognitive and neuropsychology to construct a model to test We did not assign new labels to traditional IQ. subtests • We recognized the limitations of ST THEO FOR A NEV developing a theory from factor ENERATION OF TESTS analysis – "a research program dominated by factor analyses of test intercorrelations is incapable of producing an explanatory theory of human intelligence" (Lohman & Ippel, 1993, p. 41)

Supplemental Scales									
➤We have these	- Supplemental Comp	osite S	cores						
scores so you can	Subtest	EF w/o WM	S EF w/ WM	caled Scor	vc	NvC			
relate findings on	Planned Codes					7			
CAS2 to other tests	Planned Connections	8	в						
	Matrices					10			
Executive Function	Verbal-Spatial Relations		ш	11	11				
 Working Memory 	Figure Memory					10			
 Verbal 	Expressive Attention	9	9						
Nonverbal	Receptive Attention				9				
Nonverbai	Sentence Repetition/Questions		7	7	7				
 Visual - Auditory compari 	son								

CAS2: Brief (Ages 4-18 years) for Teachers

WISCV	COMPOSITE SCORE	RANGE	PERCENTILE RANK
Verbal Comprehension	89	Below Average	23%
Visual Spatial	84	Below Average	14%
Fluid Reasoning	82	Below Average	12%
Working Memory	72	Very Low	3%
Processing Speed	76	Very Low	6%
FULL SCALE SCORE	81	Below Average	10%
WIAT III Reading	87	Below Average	19%
WIAT III Math	90	Average	25%
WIAT III Writing	94	Average	34%

P	Paul – age 9	year	'S			
FAR index	Standard score I (95% CI)	ercent	ile	Qualitative descriptor		
Phonological Index	75	5%	Mode	erately Below Avera		
Fluency Index	30%		Average			
Mixed Index	10%		Below Average			
Comprehension Index	97	42%		Average		
FAR Total Index	84	14%		Below Average		
KEY INTERPRETATION		Score	Percentil e	Descriptor		
Nonsense Word Decoding decode a series of nonsense increasing difficulty.	71	3%	Moderately Below Average			
Irregular Word Reading Fl list of phonologically irregul	of 95	37%	Average			

Paul – age 9 years								
CAS-2					STANDARD SCORE	Cla	ssification	
Pl	anning				92		Average	
Si	multaneous				92		Average	
At	tention				110		Average	
	Successive						low Low	
Su	iccessive				75		Very Low	
Su Fu	ICCESSIVE Ill Scale is not re Differences Betwee Significance for the	eported en PASS Scale Stand e CAS2 12-Subtest E)	ard Scores and the s	Student's Av	7 5 erage PASS Sco rs.	re Req	uired for	
Su Fu	Il Scale is not re Differences Betwee Significance for the Cognitive Assess	eported en PASS Scale Stand c CAS2 12-Subtest E2 sment System - 2	ard Scores and the s (TENDED battery AU Difference from PASS Mean of:	Student's Ave State Significan Different	rage PASS Sco rs. tly (at Stren	re Req	uired for Weakness	
Su Fu Su	Differences Betwee Significance for the Cognitive Assess PASS Scales	eported en PASS Scale Stand c CAS2 12-Subtest ED sment System - 2 Standard Score	ard Scores and the I (TENDED battery A Difference from PASS Mean of: 92.3	Student's Avo State State State Significan Different p < .05) fr	erage PASS Sco rs. tly (at Stren om	re Req	uired for Weakness	
Su Fu	Ill Scale is not re Differences Betwee Significance for the Cognitive Assess PASS Scales Planning	eported en PASS Scale Stand e CAS2 12-Subtest E2 sment System - 2 Standard Score 92	ard Scores and the 1 (TENDED battery A Difference from PASS Mean of: 92.3 -0.3	Student's Ave Significan Different p < .05) fr no	rage PASS Sco rs. tly (at Stren om	re Req	uired for Weakness	
Fu Fu Su	Ill Scale is not re Differences Betwee Significance for the Cognitive Assess PASS Scales Planning Simultaneous	eported en PASS Scale Stand c CAS2 12-Subtest ED sment System - 2 Standard Score 92 92	ard Scores and the 1 CTENDED battery A Difference from PASS Mean of: 92.3 -0.3 -0.3	Student's Ave State Significan Different p < .05) fr no no	rage PASS Sco rs. tly (at Stren om	re Req	uired for Weakness	
Su Praks Se 18 YEARS	Differences Betwee Significance for the Cognitive Assess PASS Scales Planning Simultaneous Attention	eported en PASS Scale Stand c CAS2 12-Subtest ED sment System - 2 Standard Score 92 92 110	ard Scores and the 1 CTENDED battery Au Difference from PASS Mean of: 92.3 -0.3 -0.3 -0.3 17.8	Student's Avo State Significan Different p < .05) fr no no yes	rage PASS Sco rs. tly (at Stren om Strength	re Req	uired for Weakness	

Naglieri & Goldstein (2011)

GROUP PROFILES BY ABILITY TEST

Because ability tests play such an important role in the diagnostic process, it is crucial to understand the sensitivity each test may have to any unique characteristics of those with an SLD or attention deficit. Clinicians need to know if an adolescent or adult has a specific deficit in ability that is related to a specific academic learning problem. There has been considerable research on, for example, Wechsler subtest profile analysis, and most researchers conclude that no profile has diagnostic utility for individuals with SLD or ADHD (Kavale & Forness, 1995). The failure of subtest profiles has led some to argue (e.g., Naglieri, 1999) that scale, rather than subtest, variability should

1. We need to know if intelligence tests yield distinctive profiles

2. Subtest profile analysis is UNSUPPORTED so use scale profiles instead

PASS Profiles and Educational Placement

Students receiving special education were more than four times as likely to have at least one PASS weakness and a comparable academic weakness than those in regular education School Psychology Quarterly, Vol. 15, No. 4, 2000, pp. 419-43/3

Can Profile Analysis of Ability Test Scores Work? An Illustration using the PASS Theory and CAS with an Unselected Cohort

Jack A. Naglieri George Mason University

A new approach to ipsative, or intraindividual, analysis of children's profiles on a test of ability was studied. The Planning, Attention, Simultaneous, and Successive (PASS) processes measured by the Cognitive Assessment System were used to illustrate how profile analysis could be accomplished. Three methods were used to examine the PASS profiles for a nationally representative sample of 1,597 children from ages 5 through 17 years. This sample included children in both regular (n = 1.453) and special (n = 144) educational settings. Children with significant ipsatized PASS scores, called Relative

53

PASS: A new way to think about and measure intelligence

Johnson, Bardos & Tayebi, 2003

 "this study suggests that the CAS...yields information that contributes to the differential diagnosis of students suspected of having a learning disability in writing" Journal of Psychoeducational Assessment 2003, 21, 180-195

DISCRIMINANT VALIDITY OF THE COGNITIVE ASSESSMENT SYSTEM FOR STUDENTS WITH WRITTEN EXPRESSION DISABILITIES

Judy A. Johnson University of Houston - Victoria

Achilles N. Bardos University of Northern Colorado Kandi A. Tayebi

Sam Houston State University

55

This study explored the PASS cognitive processing theory in junior high students (aged 11-15 years) with and without written expression disabilities. Ninety-six students with (n = 48) and without (n = 48) written expression disabilities were administered the Das-Naglieri: Cognitive Assessment System (DN-CAS; 1997) and the writing subtests of the Wechsler Individual Achievement Test (WIAT; 1992). Discriminant analyses were utilized to identify the DN:CAS subtests and composites that contributed to group differentiation. The Planning composite was found to be the most significant contributor among the four composite scores. Subsequent efficiency of classification analyses provided strong support for the validity of the obtained discriminant functions in that the four DN:CAS composite scale scores correctly identified 83% of the students as members of their respective groups.

Canivez & Gaboury (2010)

• "the present study demonstrated the potential of the CAS to correctly identify students who demonstrated behaviors consistent with ADHD diagnosis." glcanivez@eiu.edu

Gary L. Canivez Eastern Illinois University Allison R. Gaboury Puyallup School District, Puyallup, WA

Paper presented at the 2010 Annual Convention of the American Psychological Association, San Diego, CA

ting this paper should be addressed to Gary L. Canivez, Ph.D., Department of Psycholo Avenue, Charleston, IL. 61920-3099. Dr. Canivez can also be connected via F-mail at glo at http://www.uxl.eiu.edu/-gloanivez». This handout is based on a monuscript press thout per on so please do not reference wit

ADHD hav

56

57

Georgiou & Das (2013)

Article

University Students With Poor Reading Comprehension: The Hidden Cognitive Processing Deficit

George K. Georgiou, PhD¹ and J. P. Das, PhD¹

HAMMILL INSTITUTE ON DISABILITIES

Journal of Learning Disabilities XX(X) 1–11 © Hammill Institute on Disabilities 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0022219413513924 (\$)SAGE

Abstract

The present study aimed to examine the nature of the working memory and general cognitive ability deficits experienced by university students with a specific reading comprehension deficit. A total of 32 university students with poor reading comprehension but average word-reading skills and 60 age-matched controls with no comprehension difficulties participated in the study. The participants were assessed on three verbal working memory tasks that varied in terms of their processing demands and on the Das-Naglieri Cognitive Assessment System, which was used to operationalize intelligence. The results indicated first that the differences between poor and skilled comprehenders on working memory were amplified as the processing demands of the tasks increased. In addition, although poor comprehenders as a group had average intelligence, they experienced significant difficulties in simultaneous and successive processing. Considering that working memory and general cognitive ability are highly correlated processes, these findings suggest that the observed differences between poor and skilled comprehenders are likely a result of a deficient information processing system.

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- Alejandro is not a slow learner.
- He has good scores in basic psychological processes:
 - Simultaneous = 96 and Planning = 102
- He has a "disorder in one or more of the basic psychological processes"
 - Attention = 67 and Successive = 84
- And he has academic failure which equals an SLD determination.

PASS scores – English and Spanish

Bilingual Hispanic Children's Performance on the English and Spanish Versions of the Cognitive Assessment System

Jack A. Naglieri George Mason University

Tulio Otero Columbia College, Elgin Campus

Brianna DeLauder George Mason University

Holly Matto Virginia Commonwealth University

This study compared the performance of re on the Planning, Attention, Simultaneous, sured by English and Spanish versions of (CAS; Naglieri & Das, 1997a). The results su on both English and Spanish versions of the CAS, the bilingual children earned their low regardless of the language used during test ences were noted between the means of the E Simultaneous and Successive processing scale

School Psychology Quarterly 2007, Vol. 22, No. 3, 432-448

Engl	lish	&	Spa	nish	CAS

Means, *SD*s, *d*-ratios, Obtained and Correction Correlations Between the English zSpanish Version of the CAS (N = 55).

	CAS English		CAS Sp	anish	<i>d</i> -ratio	Correlations		
	Mean	SD	Mean	SD	d	Obtained	Corrected	
Planning	92.6	13.1	92.6	13.4	.00	.96	.97	
Simultaneous	89.0	12.8	93.0	13.7	30	.90	.93	
Attention	94.8	13.9	95.1	13.9	02	.98	.98	
Successive	78.0	13.1	83.1	12.6	40	.82	.89	
Full Scale	84.6	13.6	87.6	13.8	22	.96	.97	
		4					1	
DA			. A. N	Jaglieri, I	Ph.D. Geo	rge	66	

Otero, G	onzales, Naglieri (2012)
 SLD and PASS scores 	APPLIED NEUROPSYCHOLOGY: CHILD, 0: 1-9, 2012 Copyright © Taylor & Francis Group, LLC ISSN: 2162-2965 print/2162-2973 online DOI: 10.1080/21622965.2012.670547 The Neurocognitive Assessment of Hispanic English-Language Learners With Reading Failure
	Tulio M. Otero Departments of Clinical Psychology and School Psychology, Chicago School of Professional Psychology, Chicago, Illinois Lauren Gonzales George Mason University, Fairfax, Virginia
	Jack A. Naglieri University of Virginia, Fairfax, Virginia This study examined the performance of referred Hispanic English-language learners (N = 40) on the English and Spanish versions of the Cognitive Assessment System (CAS; Naglieri & Das, 1997). The CAS measures basic neuropsychological processes based on the Planning. Attention, Simultaneous, and Successive (PASS) theory (Naglieri & Das, 1997; Naglieri & Otero, 2011c). Full Scale (FS) scores as well as PASS processes. In any of the PASS processes. The CAS FS scores on the English (M = 864, SD = 8.73) and Spanish (M = 87.1, SD = 7.94) versions correlated. 94 (uncorrected) and. 99 (corrected for range restriction). Students carned their lowest score in Successive processing regardless of the language in which the test was administered. PASS cognitive profiles were similar on English and Spanish versions of the PASS scales. These findings suggest that students scored similarly on both versions of the CAS and that the CAS may be a useful measure

US and Italian Samples- Mean Scores

Table 5

Means and SDs for Italian Children (N = 809) on the CAS Subtests and PASS and Full Scales Using U.S. Norms and Comparisons to U.S. Sample (N = 1,174), Matched by Age

		Italian			U.S.				
Subtests and scales	М	SD	п	М	SD	n	F	р	d-ratio
CAS composite scales									
Planning	97.7	13.4	809	100.5	15.4	1,174	18.1	<.01	-0.19
Simultaneous	103.0	13.9	809	101.1	14.1	1,174	9.3	<.01	0.14
Attention	104.2	13.7	809	100.6	14.4	1,174	32.2	<.01	0.26
Successive	99.0	12.5	809	100.5	14.5	1,174	5.1	.02	-0.11
Full Scale	100.9	12.9	809	100.5	14.8	1,174	2.3	.13	0.03
<i>Note.</i> CAS = Cognitive Assessment Designations for <i>d</i> -ratios are as follower for Speech Rate (1, 1219) and Se	Syster SS	5 = Planr (.2), S = ((762).	ning, Atte small (.2)	ention, Sim), M = mee	ultaneous dium (.5),	s, and Succ and L = la	essive. U. rge (.8). F	S. sample for all F va	Ns vary due lues the dfs a
Italian mean = 10	0.9 &	US r	nea	n = 1	00.5	i usin	ig US	S NO	RMS

PASS: A new way to think about and measure intelligence

Race Differences Table 1.6 Standard Score Mean Differences by Race on Traditional and Nontraditional Intelligence Tests Test Difference **Traditional IQ Tests** SB-IV (matched samples) 12.6 WISC-IV (normative sample) 11.5 WJ-III (normative sample) 10.9 WISC-IV (matched samples) 10.0Nontraditional Tests K-ABC (normative sample) 7.0 K-ABC (matched samples) 6.1 KABC-II (matched samples) 5.0 CAS2 (normative sample) 6.3 CAS (demographic controls of normative sample) 4.8 CAS2 (demographic controls of normative sample) 4.3 CAS2 Note: The data for these results are reported for the Stanford-Binet IV from Wasserman Assessment (2000); Woodcock-Johnson III from Edwards and Oakland (2006); Kaufman Assessment Battery for Children from Naglieri (1986); Kaufman Assessment Battery for Children II from Lichenberger, Sotelo-Dynega, and Kaufman (2009); CAS from Naglieri, Rojahn, Matto, and Aquilino (2005); CAS2 from Naglieri, Das, and Goldstein (2014a); and Wechsler Intelligence Scale for Children IV (WISC-IV) from O'Donnell (2009). WILEY

METHODS AND RESULTS

19

74

Why Beta? Men who fail in alpha are sent to beta in order that injustice by reason of relative unfamiliarity with English may be avoided. Men who fail in beta are referred for individual examination by means of what may appear to be the most suitable and altogether appropriate procedure among the varied methods available. This reference for careful individual examination is yet another attempt to avoid injustice either by reason of linguistic handicap or accidents incident to group examining.

Note there is no mention of measuring verbal and nonverbal intelligences – **it was a social justice issue.**

Spearman's q Foreword of nonverbal assessment many paces forward. In addition, the emphasis in the WNV Manual that the Full Scale measures general ability nonverbally-and not nonverbal ability-is an important distinction that further ties the WNV to Dr. Wechsler. Although his intelligence tests in the 1930s and 1940s departed from the one-score Stanford-Binet by offering separate Verbal and Performance IQs as well as a profile of scaled scores, Dr. Wechsler remained a firm believer in Spearman's g theory throughout his lifetime. He believed that his Verbal and Performance Scales represented different ways to access g, but he never believed in nonverbal intelligence as being separate from g. Rather, he saw the Performance Scale as the most sensible way to measure the general intelligence of people with hearing impairments, language disorders, or limited proficiency in English. And that is precisely what the WNV is intended to do. Alan S. Kaufman, PhD Clinical Professor of Psychology Yale Child Study Center Yale University School of Medicine

SLD Eligibility: We can do better

				Average	e Correlation
Average	Correlations	Between Ability and Achieveme	Scales w		
 Average 	Test Scores			All Scales	achievement
correlations	WISC-V	Verbal Comprehension	.74		
conclations	WIAT-III	Visual Spatial	.46		
between IO	N = 201	Fluid Reasoning	.40		
		Working Memory	.63	E2	47
Scales with total		Processing Speed	.34	.55	.47
	WJ-IV COG	Comprehension Knowledge	.50		
achievement	WJ-IV ACH	Fluid Reasoning	.71		
scores from	N = 825	Auditory Processing	.52		
300103110111		Short Term Working Memory	.55		
Naglieri & Otero		Cognitive Processing Speed	.55		
		Long-Term Retrieval	.43	54	50
(2017)	KARG	Visual Processing	.45		.50
X Y	KABC	Sequential/Gsm	.43		
	WJ-III ACH	Simultaneous/GV	.41		
	10 = 107	Dianning/Gir	.50		.48
		Knowledge/GC	.70	.53	
Note: All correlations are	CAS	Planning	.57		
reported in the ability tests'	WJ-III ACH	Simultaneous	.67		
manuals. Values per scale	N=1.600	Attention	.50		
were averaged within each		Successive	.60		.59
ability test using Fisher z	Note: WI-IV So	cales Comp-Know= Vocabulary and Ge	neral li	nformation: F	luid Reasoning =
transformations.	Number Series	s and Concept Formation; Auditory Pr	ocessin	g = Phonolog	ical processing.
					70
					/8

Social Justice

- Does the removal of Verbal and Quantitative tests make the CAS2 less valid?
- Profiles work
- PASS scores are very similar across race, ethnic, and cultural boundaries
- And correlation to achievement is ...
- And INTERVENTION ...

PASS: A new way to think about and measure intelligence

Iseman & Naglieri (2010) http://www.jacknaglieri.com/cas2.html

A Cognitive Strategy Instruction to Improve Math Calculation for Children With ADHD and LD: A Randomized Controlled Study

Jackie S. Iseman¹ and Jack A. Naglieri¹

Abstract

The authors examined the effectiveness of cognitive strategy instruction Successive) given by special education teachers to students with ADH experimental group were exposed to a brief cognitive strategy instruct development and application of effective planning for mathematical con standard math instruction. Standardized tests of cognitive processes students completed math worksheets throughout the experimental Johnson Tests of Achievement, Third Edition, Math Fluency and Wecht Numerical Operations) were administered pre- and postintervention, follow-up. Large pre-post effect sizes were found for students in the ex math worksheets (0.85 and 0.26), Math Fluency (1.17 and 0.09), and N At 1 year follow-up, the experimental group continued to outperform

Journal of Learning Disabilities 44(2) 184–195 @ Hammill Institute on Disabilities 2011 Reprints and permission: sagepub.com/journals/Permissions.nav DOI: 10.1177/022219410391190 http://journaloflearningdisabilities sagepub.com @SAGE

HAMMILL INSTITUTE ON DISABILITIES

Take Away Messages

- All traditional IQ tests are contaminated by knowledge which distort the IQ score
- We can do better with the PASS neurocognitive approach to defining and measuring intelligence because research shows
 - Profiles for special populations
 - Smaller differences across race, ethnic and culture

84

Clear relevance to intervention

