## PASS Neurocognitive Theory of Intelligence: Assessment, Eligibility <br> Determination and Intervention using the CAS2

Jack A. Naglieri, Ph.D.
Emeritus Professor, GMU
jacknaglieri.com
jnaglieri@gmail.com naglierigiftedtests.com


## Let's Get Ready to Learn



Mindful Breathing



4


5

## The BIG picture

- The comprehensive assessments we provide can alter the course of a student's life; making this one of the most important tasks we have.
- We want Intellectual assessment that
- Is consistent with IDEA and state regulations regarding SLD determination
- Helps us understand WHY a student fails
- Informs us about academic strengths \& weaknesses and interventions
- Is fair for students from diverse populations
- These goals can be achieved if we use second-generation tests that measure the way students THINK to LEARN
- The definition of THINKING should be based on BRAIN function
- PASS theory is a way of defining THINKING and the Cognitive Assessment System$2^{\text {nd }}$ Edition a way to measure a student's ABILITY to think



## Case of Paul: gr. 4 Dyslexia (Steve Feifer)

## Case of Paul -A 9-year-old in $4^{\text {th }}$ grade

- Problems in reading and math
- Can't remember the sequence of steps when doing math and math facts
- Good memory for details
- Can’t sound out words
- Poor spelling
- Poor reading comprehension



## Paul - age 9 <br> Presenting Concerns: Reading, Math Word Problems, Anxiety



## Paul - age 9 years




11

## PASS Score Analyzer for WIAT-IV

|  |
| :--- |
| Discrepancy Consistenty Method (DCM) for comparing PASS scores |
| from the Cognitive Assessment System (CAS2; Extended \& Core |
| battery) with the WIAT-IV |
| Jack A. Naglieri, Ph.D. |

## HOW TO USE THIS WORKBOOK:

1. Click on tab for the CAS2 Extended (12-subtests) or Core (8-subtests) with the WIAT-IV Subtests and Composites
2. Enter the PASS scores in the column labeled "Standard Scores" in BOX \#1. 3. Enter the achievement test standard scores in BOX \#2.

Note: Once the PASS and WIAT-IV scores are entered the discrepancies and consistencies between neurocognitive and achievement scores will be noted. Follow the Flow-Chart (see Figure 3.2 included here) but for a complete discussion of this method and related issues see Essentials of CAS2 Assessment).

The information contained in this spreadsheet follows that taken in part from Essentials of CAS2 Assessment by Jack A. Naglieri \& Tulio M. Otero (2017). See that book for more information on the interpretation of the CAS2 measures of PASS neurocognitive processes. The values needed for significance between the CAS2 with the WIAT-III appear in the Essentials of CAS2 Assessment book, as is a discussion of the methodology used and related topics. That discussion similarly applies to the WIAT-IV


Page 1 Instructions Page 2 CAS2 Ext $w$ Composites Page 3 CAS2 Core $w$ Composites Page 4 CAS2 Ext $w$ Subtests Page 5 cas2 Core $w$ Subtests Tech info v

PASS Theory \& CAS2
12
12

CAS2 PSW Analyzer for WJ4, KTEA3, FAR, FAM, Bateria
Enter PASS and Achievement test standard scores and all comparisons are evaluated


FREE - on www.jacknaglieri.com

## Paul's Discrepancy Consistency Results

- Discrepancy between high and low processing scores
- Discrepancy between high processing and low achievement
- Consistency between low processing and low achievement



## Intervention Protocol (Naglieri \& Kryza, 2019)

1. Help child understand their PASS strengths and challenges (be intentional \& transparent)
2. Encourage Motivation \& Persistence (student's mindset)
3. Encourage strategy use (build skill sets)
4. Encourage independence and self efficacy (metacognition, self assessment \& self correction)

## Be Intentional and Transparent

> The test results showed that your brain is strong at

- Noticing details (Attention),
- seeing how things go together (Simultaneous)
- And figuring out how to do things (Planning)
> The results also showed that
- It is very hard for you to follow a sequence (Successive)
But we can help you with that...

- Handouts for students to manage sequences


## Four Ways to Think Smart!

Think smart
and use a plan!


Think smart and put the pieces together!


Think smart and
look at the details!

## L〇〇 $\mathrm{K}_{\text {at the details. }}$

Think smart and follow the sequence!


CAS2
17

## Step 1 - Talk with Students

## How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

## What Does Being Smart Mean?

One ability that is very important is called Planning. The ability to plan helps you figure out how to do things. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

## Step 1 - Talk with Students

## How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work your plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan.
You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.
Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a plan for studying that works best for you.


It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is to look at the questions you have to answer about the story first. Then read the story to find the answers. Another plan is to make a picture of what you read so that you can see all the parts of the story. When you write you should also have a plan. Students who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be smarter about your work!

## Sted 1 - Talk with Students

## How to Be Smart: Attention


#### Abstract

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.


## What Does Being Smart Mean?

Attention is a very important ability that everyone has. Everything we do requires the ability to focus on some things and ignore others. The ability to pay attention is what makes us able to focus our thoughts on one thing and resist distractions. No one can learn without the ability to attend. We cannot attend to all the information our brain is receiving. In order to focus, we must resist attending to some things so we can focus on others. In school there is much to attend to and many things that are distracting. Students hear others talking, a noise in the hallway, or the beep of a computer; they see a flash of light from the window; and so forth. Schoolwork requires a lot of focus of attention.

## Step 1 - Talk with Students

## How Can You Be Smarter?

You can be smarter if you carefully use your ability to attend. Remember to be aware of how well you are attending. Be sure to notice if you are being distracted. If you are having a problem, do something to help you pay attention. You will be able to do more if you remember to "Think smart and look at the details!" (see Figure 1). Remember to think about how well you are attending when you do your work.

## Think smart and look at the details!



Figure 1. Picture reminder to attend to the details.

It is smart to be aware of your level of attention. Also remember to notice if you are being distracted. Ask yourself, "Am I losing my ability to focus?" or "Am I getting distracted?" If so, change your seat, take a short break, stand up and stretch, or do something to help you attend better. Remember that you can't learn if you can't pay attention.

You should remember that Attention can be disrupted by loud noises or seeing something distracting. It is important to notice when your ability to attend is good or bad. If you are having trouble attending, figure out what you need to do to attend better.

STheory \& CAS2

## Ston 1 - Talk wsith Ctuidontc

## How to Be Smart: Simultaneous

When we say someone is smart, we usually mean that they know a lot of information. Yet, being smart also means having a lot of ability to learn new things. Being smart at learning new things includes knowing and using thinking abilities. There are ways to use your abilities better when you are learning.

## What Does Being Smart Mean?

Simultaneous ability is what you use to see how things fit together. This ability helps you see the big picture. This ability is what helps you understand the meaning of a sentence and a story. It is also very important for seeing patterns in numbers, word spellings, or themes in a story. It also lets you judge distances. For example, when you throw a ball you have to judge the distance to your target and how high you have to aim to get it there.

## How Can You Be Smarter?

You can be smarter if you look to see how things are connected. Sometimes people say, "Get the big picture." This saying is about using your Simultaneous ability. When you stop and think about how things fit together to make the "big picture," you are using your Simultaneous ability.

## Ston 1 - Talk wsith Stıidentc

You will be able to learn more if you remember to see patterns and themes in all you do. An easy way to remember to do this is to look at the picture "Think smart and put the pieces together!" (Figure 1). You should always use your ability to see how parts go together to make a whole when reading; studying vocabulary, spelling, or science; and solving math problems.

It is smart to use your ability to see the big picture when doing all schoolwork. When you read, you should draw a picture of the characters and story line. Use a series of drawings that shows what happens in the story. Creating a story by using pictures is an excellent way to organize the information. Simultaneous ability is used when you do that, and it is a good way to be smarter about your work!

You can improve your math skills if you use Simultaneous ability. Think about the problem, see what information is needed and what is not, figure out what is related to what, and use esti-
Figure 1. Picture for remembering to see the big picture.

## Step 1 - Talk with Students

## How to Be Smart: Successive

When we say people are smart, we usually mean they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

## What Does Being Smart Mean?

Successive ability is what you use to put information in order. It is what you use when you have to remember the sequence of information, such as a telephone number. When you tie your shoe you have to do all the steps in the right order. When you are sounding out a word you haven't seen before, you are using your Successive ability to say the sounds in the correct order. When you repeat a word you have never heard before, especially if it is in a different language, you are using Successive ability. This ability also helps you put sounds together to say words, and words together to make sentences. Sequential ability is very important for reading, math, and all of your subjects.

## Step 1 - Talk with Students

## How Can You Be Smarter?

You can be smarter if you pay attention to the sequences in which things must be done. There are ways of making the sequence easier to remember. For example, group letters when spelling words. Find out if writing the words 10 times each helps you. Do flashcards work better for you? It is smart to find out how you learn sequences best and then to use what works best for you. Thinking about the sequences of things is a good way to be smarter about your work!


## Remembering to Follow the Sequence

Remember that sometimes when you are anxious, tired, or just doing too many things at one time, you might forget to look at the order in which information is presented. When you see that you are not using your Successive ability, say to yourself, "Think smart and follow the sequence!" (see Figure 1). Looking closely at the sequences of things will make you smarter!


26

## Shift from Traditional Wensere, etal To Second Generation Intelligence Tests <br> Cognitive Assessment System $2^{\text {nd }}$ Edition

## Intelligence as Neurocognitive Functions

$>$ In my first working meeting with JP Das (February 11, 1984) we proposed that intelligence was better REinvented as neurocognitive processes andwe began development of the Cognitive Assessment System (Naglieri \& Das, 1997).
> We conceptualized intelligence as Planning, Attention, Simultaneous, and Successive (PASS) neurocognitive processes based on Luria's concepts of brain function.


28


## Neuropsychological Correlates of PASS

Naglieri, J. A., \& Otero, T. M. Redefining Intelligence as the PASS Theory of Neurocognitive Processes.


30

## CAS2 Measures Thinking (PASS) not Knowing

What does the student have to know to complete a task?

- This is dependent on educational opportunity (e.g., Vocabulary, Arithmetic, phonological skills, etc.)

How does the student have to think to complete a task?

This is dependent on the brain's neurocognitive processes


## PASS Neurocognitive Theory



Planning $=$ THINKING ABOUT HOW YOU DO WHAT YOU DECIDE TO DO
$\Rightarrow$ Attention = Focused THINKING and RESISTANCE TO DISTRACTIONS
$>$ Simultaneous $=$ THINKING about how things go together

- Successive $=$ THINKING about A SEQUENCE

PASS = 'basic psychological processes'
NOTE: Easy to understand concepts!

## PASS Provides a Common Language

Psychologists, teachers, parents, and students can all use a common language to describe abilities without the esoteric terms we have used for years - NO psychobabble


Figure I. 2 Three Functional Units and Associated Brain Structures From: Essentials of CAS2 Assessment. Naglieri \& Otero, 2017

## Frankie was struggling in school at age 11



None of the images of students are real pictures of the person

Referred by parents after a history of reading and self esteem problems

High level of anxiety

- he was too anxious to look closely at the words, and he would rather get the task completed and move on.
- Frankie could not attend to the details of the sequence of letters for correct spelling, and the order of sound-symbol associations


Figure 3.4. Frankie's self-portrait.

## Frankie’s Discrepancy Consistency Results

- Discrepancy between high and low processing scores
- Discrepancy between high processing and low achievement
- Consistency between low processing and low achievement



## Frankie: Then

- I informed Frankie of his PASS scores, and everything changed
- He learned to manage his attention problem by using good Planning which helped him
- recognize when he is off task
- Think of possible ways to manage his attention
- recognize when he needed a change in the environment to reduce distractions
- Perhaps most importantly: He was given hope - that he could succeed


## and Now

$>$ Is married and has a Frankie graduated High School and went to college

- few children
$>$ He is a graphic designer
He uses his knowledge and good Planning, Simultaneous and Successive processing to manage any obstacles he may still have with attention



## PASS Theory: Planning

Planning is a term used to describe a neurocognitive function similar to metacognition and executive function
$>$ Planning is needed for setting goals, making decisions, predicting the outcome of one's own and others actions, impulse control, strategy use and retrieval of knowledge
> Planning helps us make decisions about how to solve any kind of a problem from academics to social situations and life in general Math calculation, written expression, etc

## CAS2: Rating Scale Planning

Directions for Items $\mathbf{1 - 1 0}$. These questions ask how well the child or adolescent decides how to do things to achieve a goal. They
also ask how well a child or adolescent thinks before acting and avoids impulsivity. Please rate how well the child or adolescent creates
plans and strategies to solve problems.
During the past month, how often did the child or adolescent ...

1. produce a well-written sentence or a story?
2. evaluate his or her own actions?
3. produce several ways to solve a problem?
4. have many ideas about how to do things?
5. have a good idea about how to complete a task?
6. solve a problem with a new solution when the old one
did not work?
7. use information from many sources when doing work?
8. effectively solve new problems?
9. have well-described goals?
10. consider new ways to finish a task?


41


## Planned Codes Page 1

> Jack Jr. at age 5

- Child fills in the codes in the empty boxes
- After being told the test requirement, examinees are told: "You can do it any way you want"


## Planned Codes Page 2 Jack Jr age 10



## 20 Years Later Planning is the Key to Success

$\leftarrow \rightarrow$ C epanther.com/blog/security-automation-panther-tines/


panther
Product $\sim$ Integrations

All Posts Announcements Insights Product
product I IDec, 2020
Automated
Detection and
Response with
Panther
Q) Jack vegieici


45

## Planning Learning Curves

> Learning depends upon many factors especially PASS
$>$ When a task is practiced and learned it requires less thinking (PASS) and becomes a skill
> At first, PASS plays a major role in learning


Note: A skill is the ability to do something well with minimal effort (thinking)

## Math strategies stimulate thinking



This work sheet encourages the child to use strategies (plans) in math such as: "If $8+$ $8=16$, then $8+$ 9 is 17 "

Note to the Teacher: When we teach children skills by helping them use strategies and plans for learning, we are teaching both knowledge and processing. Both are important.


## The case of Rocky

Rocky ${ }^{1}$ went to school in a large middle-class district - In first grade Rocky was significantly below grade benchmarks in reading, math, and writing.

- He received group reading instruction weekly and six months of individual reading instruction but minimal progress $\rightarrow$ retained
- By the middle of his second year in first grade he still struggling
- decoding, phonics, and sight word vocabulary; math problems, addition, problem solving activities and focusing and paying attention."
After two years of special team meetings and special reading instruction he is now working two grade levels below his peers in reading, writing, and math



50

## Interventions for Rocky



51


## Instructional Sessions

> Math lessons were organized into "instructional sessions" delivered over 13 consecutive days
> Each instructional session was 30-40 minutes
> Each instructional session was comprised of three segments as shown below

| 10 minutes | $10-20$ minutes | 10 minutes |
| :---: | :---: | :---: |
| 10 minute <br> math <br> worksheet | Planning <br> Facilitation or <br> Normal <br> Instruction | 10 minute <br> math <br> worksheet |
|  |  |  |
|  |  |  |

## Experimental Group

19 worksheets with Planning Facilitation

Control Group
19 worksheets with Normal Instruction

## Planning (Metacognitive) Strategy Instruction

Teachers Asked

- Teachers facilitated discussions to help students become more selfreflective about use of strategies
- Teachers asked questions like:
- What was your goal?
- Where did you start the worksheet?
- What strategies did you use?
- How did the strategy help you reach your goal?
- What will you do again next time?


## Students Responded

>"My goal was to do all of the easy problems on every page first, then do the others."
$>$ "I do the problems I know, then I check my work."
$>$ "I draw lines to keep the columns straight"
"I did the ones that took the least time"

## Pre-Post Means and Effect Sizes for the Students with LD and ADHD



WIAT Numerical Operation Means


WJ Math Fluency Means


At 1-year follow-up, 27 of the students were retested on the WJ-III ACH Math Fluency subtest as part of the school's typical yearly evaluation of students. This group included 14 students from the comparison group and 13 students from the experimental group. The results indicated that the improvement of students in the experimental group ( $M=16.08$, $S D=19, d=0.85$ ) was significantly greater than the improvement of students in the comparison group $(M=3.21$, $S D=18.21, d=0.09)$.

55

## Pre-Post Changes for the Students with LD and ADHD

The students with a weakness in Planning, Simultaneous or Successive processing scales benefited from the Planning Facilitation method
$>$ Importantly, the students with a weakness in Planning improved the most
$>$ This has been the case in all the studies of Planning Facilitation
> COGNITION PREDICTS RESPONSE TO INTERVENTION


## Summary of PASS Intervention Research in Essentials of CAS2



57

## Jessica

Previous diagnoses of ADHD, ODD, Anxiety and Depression.
Received OT since 1st grade.
Since 3rd grade the OT focus was helping the teacher to teach strategies for self monitoring, attention, visual sequencing, and organization

> Problems following verbal directions, inefficient work, struggles to work in a noisy setting, is distractable, fiddles with objects, inflexible, and frustrates easily.
$>$ She receives speech and language services for language processing issues.
$>$ Currently takes medications to manage her diagnoses, she takes Clonidine 0.2 mg to help with sleep and anger issues. She also takes Ritalin 40 mg ER in the am and 10 mg booster at lunch time.

Jessica 4th grade


| Composite/Subtest | Standard <br> Scores | Percentile <br> Rank | Descriptive <br> Category |
| :--- | :---: | :---: | :---: |
| Reading Composite | 74 | 4 | Below average |
| Letter \& Word Recognition | 73 | 4 | Below average |
| Reading Comprehension | 76 | 5 | Below average |
| Math Composite | 68 | 2 | Low |
| Math Concepts \& Applications | 65 | 1 | Low |
| Math Computation | 74 | 4 | Below average |
| Written Language Composite | - | - | - |
| Spelling | 66 | 1 | Low |



Comprehensive Executive Function Inventory- CEFI


## FREE PASS and KTEA-III Score Analyzer



## Impressions

$>$ This case is an example of the behaviors (CEFI) that are consistent with a low planning score on CAS2.
$>$ Based on the data and teacher reports/observations, I see her low performance is driven by Low planning, $E F$, and Attention. She can't get to the point where she can fully recruit Simultaneous and Successive processes.

## Core Group Activity

## - QUESTIONS:

- We have looked at a few case studies, what is you impression of this approach to assessment?
- What are the possible advantages?




## Attention Subtests

Expressive Attention
Number Detection

| Find the numbers that look like this: 1 | 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 1 | 4 | 2 | 2 | 5 |

Receptive Attention

| Nn | Tr | bt |
| :--- | :--- | :--- |
| TR | nb | Aa |



Cognitive Assessment System Second Edition

Examiner Record Form Jack A. Nagliefi 1.P. Das Sam Goldstein


## PASS Theory: Attention

-Attention is a basic psychological process we use to

- selectively attend to some stimuli and ignores others
- Focus our cognitive activity
- Selective attention
- Resistance to distraction
- Listening, as opposed to hearing
BLU VERDE GIALLO

| 빨강 | 파랑 | 초록 | 노랑 |
| :--- | :--- | :--- | :--- |


| RED | RED | BLUE |
| :---: | :---: | :---: |
| YELLOW | YELLOW | RED |
| BLUE | RED | YELLOW |
| BLUE | BLUE | BLUE |
| YELLOW | BLUE | YELLOW |
|  | PASSTheory\&CAS2 |  |
|  |  |  |



67


68

## CAS2 and KTEA-III Scores (January 2020)




69

## Discrepancy Consistency Method for Jose

- Discrepancy between high and low processing scores
- Discrepancy between
 high processing and low achievement
- Consistency between low processing and low achievement

Spelling $=73$
Reading Comp $=71$ Letter Word Rec =73

Attention $=79$

Consistency

## Intervention Protocol (Naglieri \& Kryza, 2019)

1. Help child understand their PASS strengths and challenges (be intentional \& transparent)
2. Encourage Motivation \& Persistence (student's mindset)
3. Encourage strategy use (build skill sets)
4. Encourage independence and self efficacy (metacognition, self assessment \& self correction)

## Jose was given this simple intervention

| Remember to check <br> how well you are <br> attending. If you are <br> having a problem, | Think smart <br> and look |
| :--- | :---: |
| at the details! |  | use a plan and look at this

(taped to his desk).
From: Naglieri, J. A., \& Pickering, E. B. (2010). Helping Children Learn: Intervention Handouts for Use at School and Home (Second Edition). Baltimore, MD: Brookes Publishing.

## R

Figure 1. A graphic that reminds students to focus on information being discussed.

## Two weeks later!

- Teacher reported that José has increased his reading accuracy by at least 80\%.
- He read 16 words correctly out of a list of 20.
- He has done this over the last 3. sessions.




## Simultaneous Subtests

## Matrices

Verbal Spatial Relations
Figure Memory


Cognitive Assessment System Second Edition

Examiner Record Form Jack A. Nagliefi 1.P. Das Sam Goldstein


## PASS Theory: Simultaneous

Simultaneous processing is used to integrate stimuli into groups

- Each piece must be related to the other
- Stimuli are seen as a whole

Academics:

- Reading comprehension
- geometry
- math word problems
- whole language
- verbal concepts



78


## 

$>$ Neil (9 year-old $4^{\text {th }}$ grader)

- Difficulty with spelling and written language math facts, and inconsistent with reading comprehending skills.
- Difficulty keeping pace with his peers and often failed to complete his work in a timely manner.
- The Child Development Team (CDT)
 recommended a comprehensive psychological evaluation.


## Case: Neil $4^{\text {th }}$ grade -CAS2

| CAS-2 | STANDARD | RANGE |
| :--- | :---: | :---: |
| Slanning: | 94 | Average |
| Attention: | $\mathbf{9 8}$ | Average |
| Simultaneous the <br> ability to reason and <br> problem solve by <br> integrating separate <br> elements into a <br> conceptual whole, <br> and often requires <br> strong visual-spatial <br> problem solving <br> skills. | $\mathbf{7 4}$ | Very Low |
| Successive | $\mathbf{9 0}$ | Average |
| CAS-2-Fullscale | $\mathbf{8 9}$ | Below <br> Average |


| FAR index | Standard score |
| :--- | :---: |
| Phonological Index | 90 |
| Fluency Index | 73 |
| Mixed Index | 81 |
| Comprehension Index | 97 |
| FAR Total Index | $\mathbf{8 4}$ |

80



82


83


84


85

## Successive Subtests



Cognitive Assessment System Second Edition

## Word Series

Sentence Repetition or Sentence Questions

Visual Digit Span
Examiner Record Form
Jack A. Nagliefi 1.P. Das Sam Goldstein


## PASS Theory: Successive

- Successive processing is a basic psychological process we use to manage stimuli in a specific serial order
- Stimuli form a chain-like progression
- Recall a series of words
- Decoding words
- Letter-sound correspondence
- Phonological tasks
- Understanding the syntax of sentences
- Comprehension of written instructions

Recall of Numbers in Order
Successive Processing


## Successive and Syntax

## > Sentence Repetition

- Child repeats sentences exactly as stated by the examiner such as:
- The red greened the blue with a yellow.


## > Sentence Questions

- Child answers a question about a statement made by the examiner such as the following:
- The red greened the blue with a yellow. Who got greened?


## CAS2: Rating Scale Successive



## PASS and Handwriting

$>$ Acquisition of handwriting demands Successive processing


The First Amendment, 1791
"Congress shall make no law respecting an cstablistment of religion, of prosibibiting the free exectise
 assemble, and the petition the government for a redress of grievances."

Prompt:
After reading the Case Background and the First Amendment - Do you think the school has the right to censor symbolic specth or do people have the right to use symbolic specht to protest government?
Please support your answer with cited evidence from the Case Background and complete a 3 paragraph nesponsear answer wila


## CASE by Tulio Otero: Alex (c.a. 6 -7 grade 1)

## REASON FOR REFERRAL

Is classified as Intellectual Disability. Team is interested in changing eligibility

Academic:
Limited skill to identify letters sounds
Possible ASD

- Conversationally Bilingual
> Behavior:
- Difficulty following directions
- Attention concerns


Note: this is not a picture of Alex


92

## KTEA 3 and CAS2 Scores for Alex



## PASS Strengths \& Weakness with KTEA



## Alex and PASS (by Dr. Otero)

- Alex's profile is revealing

He has good processing scores:

- Simultaneous = 91 and Planning = 98
- He has a "disorder in one or more of the basic psychological processes
- Attention = 85 and Successive = 79
- Using the Discrepancy Consistency Method $(1999,2017)$ he meets criteria for
 SLD (see Naglieri \& Otero, 2017).


## Intervention Protocol (Naglieri \& Kryza, 2019)

## 1. Help child understand their PASS strengths and challenges (be intentional \& transparent)

2. Encourage Motivation \& Persistence (student's mindset)
3. Encourage strategy use (build skill sets)
4. Encourage independence and self-efficacy (metacognition, self-assessment \& self-correction)

## Be Intentional and Transparent

> Give Alex the PASS handouts

- "The test showed that your brain is strong in seeing the BIG PICTURE (Simultaneous Processing) and
- Recognizing strategies to use. (Planning Processing) Does that make sense to you?

Explain to him the PASS areas that are challenges for him

- The part of your brain that makes learning challenging for you is the part that helps pay close attention, not get distracted by things
 around you, and keep all kinds of information in sequence (in order).
- We're going to work on using your strengths and helping you develop more skills.


## Heteromodal Association Cortex (Gooldeerg, 2006)

$>$ Our brains merge stimuli coming in from the senses (unimodal association cortex) into one stream of information in the Heteromodal association cortex
> (green areas)


98

## Core Group Activity

- QUESTIONS:
- What are the advantages of using PASS theory as measured by the CAS2
- What are the obstacles?



100

## PASS Comprehensive System

(Naglieri, Das, \& Goldstein, 2014)


101


102

## CAS2 Online Score \& Report <br> http://www.proedinc.com/customer/ProductView.aspx?ID=7277

- Enter data at the subtest level or enter subtest raw scores
- Online program converts raw scores to standard scores, percentiles, etc. for all scales.
- A narrative report with graphs and scores is provided



104

## CAS2: Brief

CAS2: Brief takes 20 minutes to administer
$>$ It is intended to be used for instructional planning during Tier 2
> It is also used as a screening tool for a fast evaluation of PASS neurocognitive ability scores

Also helpful for re-evaluations


| CAS2: Brief Standard Scores |  |  |  |
| :---: | :---: | :---: | :---: |
| Planning | Attention | Simultaneous | Successive |
| 133 | 91 | 103 | 125 |
| 94 | 82 | 94 | 78 |
| 61 | 91 | 90 | 100 |
| 91 | 92 | 97 | 100 |
| 70 | 83 | 100 | 70 |
| 65 | 75 | 66 | 50 |
| 40 | 89 | 68 | 80 |
| 87 | 87 | 87 | 85 |
| 89 | 85 | 90 | 70 |
| 96 | 103 | 101 | 85 |
| 59 | 61 | 62 | 55 |
| 99 | 98 | 105 | 125 |
| 56 | 82 | 92 | 85 |
| 103 | 83 | 92 | 80 |
| 97 | 99 | 100 | 115 |
| 94 | 89 | 99 | 90 |
| 95 | 76 | 97 | 122 |
| 81 | 98 | 70 | 75 |
| 96 | 105 | 100 | 95 |
| 75 | 89 | 98 | 55 |
| 81 | 79 | 104 | 110 |
| 77 | 85 | 100 | 80 |
| 52 | 81 | 80 | 65 |
| 94 | 82 | 82 | 100 |
| 56 | 145 | 106 | 115 |
| 86 | 95 | 75 | 80 |
| 80 | 74 | 82 | 75 |
| 134 | 89 | 107 | 85 |
| 96 | 83 | 85 | 100 |
| 88 | 79 | 73 | 80 |
| 64 | 129 | 98 | 121 |
| 98 | 118 | 85 | 75 |
| 85 | 97 | 75 | 80 |
| 98 | 107 | 102 | 83 |
| 64 | 91 | 90 | 65 |
| 83 | 91 | 93 | 60 |
| 83.8 | 91.2 | 90.2 | 86.5 |
| 20.1 | ${ }^{15.6}$ PAS | heory: ${ }^{12 .}$ CAS | 20.4 |

105

## CAS2 Rating Scales

 (Ages 4-18 yrs.)> The CAS2: Rating measures behaviors associated with PASS constructs

Completed by teachers and can be used by psychologists, special educators and regular educators


CAS2, CAS2 Online Score and Report Write, CAS2Espanol, CAS2: Brief, CAS2 Rating Scale
> This book is the most complete discussion of PASS theory and its measurement
> Chapters cover all versions of the CAS2 as well as the online scoring and report writer

$>$ Administration, scoring, interpretation
> Reliability, validity (PASS profiles, evidence of test fairness,
Discrepancy Consistency Method for SLD
$>$ Intervention planning and clinical case studies



108


109

## PASS Scores for Hispanics

Naglieri, Rojahn, Matto (2007)


## $\%$ ScienceDirect




Hispanic and non-Hispanic children's performance on PASS cognitive processes and achievement

Jack A. Naglieri ${ }^{\text {a, }}$, Johannes Rojahn ${ }^{\text {a }}$, Holly C, Matto ${ }^{\text {b }}$



## Abluract







Hispanic White difference on CAS Full Scale of 4.8

WJ-III and ELL Hispanic Students
(Sotelo-Dynega, Ortiz, Flanagan \& Chaplin, 2013)

| Table 1 <br> WJ III GIA and Test Performance Differences Between LEPs and the WI III Standardization Sample Mean |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WJ Ill Test | Sample |  | WJ III <br> Sample |  | Difference | $t$ | ${ }^{4}$ |
|  | M | SD | M | $s p$ |  |  |  |
| General Intellectasl Ability | 89.34 | 11.78 | 100 | 15 | -1064 | $-7.0{ }^{*}$ | $-90$ |
| - Vertal Comprebensioe | 80.38 | ${ }^{14.09}$ ( 100 |  | 15 | -19.62 | $-10.87 \cdots$ | -140 |
| Concept Formation | 87.16 | 12.20 |  | 15 | -12.84 | -8.22** | - Los |
| Numbers Reversed | ${ }^{95} 23$ | 12.46 |  | 15 | $-4.77$ | $-296^{\circ}$ | -038 |
| Visual-Auditry Learning | 95.62 |  |  | 15 | -4.38 | -239** | -030 |
| Sound Blending | 97.82 |  |  |  | $-2.18$ | -1.47 | -0.19 |
| Visual Matching Spatial Relations | 11-point mean score |  |  |  | $-1.07$ | -0.85 | -0.11 |
|  |  |  |  |  |  |  | $-0.82$ | -0.758 | -0.10 |
| ${ }^{*} p<005 . * p<01 . \cdots \cdots$ | difference in GAI |  |  |  |  |  |  |
| Differences Among the NYSESLAT Proficiency Group's WJ III, GIA Mean Score, and the WJ III Standandization Sample Mcan |  |  |  |  |  |  |  |
| NYSESLAT Proficiency Group | Sample |  | wJ III |  | As English skills |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | M | sD |  |  | As English skills |  |  |
| Beginer | 71.75 | 3.958.669.17 | 100 |  | go down so |  | 5 |
| Internodiate Advanced | 8229 8955 |  | $100$ |  | does the GAl |  |  |
| Proficient | 101 |  |  |  | does the GA |  |  |
| * $<$ < 0001. |  |  |  |  |  |  |  |
| rass meuty a Lases |  |  |  |  |  |  |  |
|  |  |  |  |  | 110 |  |  |

110

## PASS scores - English and Spanish

## Bilingual Hispanic Children's Performance on the

 English and Spanish Versions of the Cognitive Assessment System School Psychology QuarterlyJack A. Naglieri
George Mason University
Tulio Otero
Columbia College, Elgin Campus Brianna DeLauder
George Mason University
Holly Matto
Virginia Commonwealth Universily


This study compared the performance of referred bilingual Hispanic children
on the Planning. Attention, Simultaneous, Successive (PASS) theory as meaon the Planning, Attention, Simultaneous, Successive (PASS) theory as measured by English and Spanish versions of the Cognitive Assessment System (CAS; Naglieri \& Das, I997a). The results suggest that students scored similarly
on both English and Spanish versions of the CAS. Withtin each version of the CAS, the bilingual children earned their lowest scores in Successive processing CAS, the bitmgual chuldren earned their lowest sco. in successive processing ences were noted between the, Simultaneous and Successive, were similar. Speciffic sublest were found to contribute to versions of the CAS. Compan ness on borne CAS Cof the $\frac{\text { seswerder bilingual assessment, it }}{\text { iter }}$ Keywordat bilingual assessmt
tem, non-biased assessment Very similar scores in English and Spanish versions of CAS
>90\% agreement between PASS weakness \& strengths using English and Spanish CAS in BOTH studies

CPPLED NEUROB YCHOLOGY CH
Coprizish O Toplor \& Franci Given LL
SSN: 2162.2965 priew 2102.2973 cellin
The Neurocognitive Assessment of Hispanic English-Language Learners With Reading Failure

Tulio M. Otero
Tulio M. Otero
Departments of Clinical Psychology and School Psychology: Chicago School of Professional Psychologv: Chicago. Illinoois
Lauren Gonzales George Mason University, Fairfax, Virginia

Jack A. Naglieri
University of Virginia, Fairfax, Virginia

This study examined the performance of referred Hispanic Englibh-language learnen
$\mathrm{V}=40$ ) on the Engit). Naglieri \& Das, 1997). The CAS measures basic neuropachological processes based on
the Phanning. Attention, Simultancous and Suscessive (PASS) theory (Naglieri \& Das S) wores as well as PASS processing salk English ( $M=86.4, S D=8.73$ ) and $S$ punish (unconrected) and 99 (corrected for range
s in Suceessive processing regardless of the Sin Successive processing regarsless of the
PMSS cognitive profiles were similar on akes These findings suggest that students and that the CAS may be a wefful mearur a with underdeveloped Englibh-language [......................

## CAS in Italy

Psychological Assessment

Multigroup Confirmatory Factor Analysis of U.S. and Italian Children's Performance on the PASS Theory of Intelligence as Measured by the Cognitive Assessment System
Using US norms, Italian sample ( $\mathrm{N}=809$ ) CAS Full Scale was 100.9 and matched US sample ( $\mathrm{N}=$ 1,174 ) was 100.5 and factorial invariance was found


Stefano Taddei
Jack A. Naglieri
Jack A. Naglieri
University of Virginia and Devereux Center for Resilient
Children

University of Florence

Kevin Williams
Multi-Health Services, Toronto, Ontario, Canada
This study examined Italian and U.S. children's performance on the English and Italian versions, respectively, of the Cognitive Assessment System (CAS; Naglieri \& Conway, 2009; Naglieri \& Das, 1997), a test based on a neurocognitive theory of intelligence entitled PASS (Planning, Attention, Simultaneous, and Successive; Naglieri \& Das, 1997; Naglieri \& Otero, 2011). CAS subtest, PASS scales, and Full Scale scores for Italian $(N=809)$ and U.S. $(N=1,174)$ samples, matched by age and gender, were examined. Multigroup confirmatory factor analysis results supported the configural invariance of the CAS factor structure between Italians and Americans for the 5- to 7-year-old (root-mean-square error of approximation $[$ RMSEA $]=.038 ; 90 \%$ confidence interval $[\mathrm{Cl}]=.033, .043$; comparative fit index $[C F I]=.96$ ) and 8 - to 18 -year-old (RMSEA $=.036 ; 90 \% \mathrm{CI}=.028, .043 ; \mathrm{CFI}=$ 97) age groups. The Full Scale standard scores (using the U.S. norms) for the Italian ( 100.9 ) and U.S.
( 100.5 ) samples were nearly identical. The scores between the samples for the PASS scales were very (100.5) samples were nearly identical. The scores between the samples for the PASS scales were very similar, except for the Attention Scale ( $d=0.26$ ), where the ltalian sample s mean score was sightly higher. Negigible mean differences were found for 9 of the 13 subtest scores, 3 showed small $d$-ratios subtest variances were foumd. These findings suggest that the PASS .Seory as measured by CAS, yields sumilar mean scores and showed factorial invariance for these samples of Italian and American children similar mean scores and showed factorial invariance for these samples of latian and American children, who differ on cultural and linguistic characteristics

## Measuring Thinking using CAS

> White children earned similar scores on the Verbal and Performance scales
> Black children earned lower VIQ than PIQ scores due to language / achievement tasks $\rightarrow$ low Full Scale
> Black children earned higher Full Scale scores on CAS than whites
> Fewer Black children would be identified as having intellectual disability based on Full Scale scores using CAS than WISC-III
$\rightarrow$ THIS IS A SOCIAL JUSTICE ISSUE.

## Intellectual Classification of Black and White Children in Special Education Programs Using the WISCIII and the Cognitive Assessment System

Jack A. Naglieri<br>George Mason University<br>Johannes Rojahn<br>The Ohio State University



## Research on Interpretation of Test Scores and PSW



116

## Research Supports 'g' but little More

Benson, N. F., Beaujean, A. A., McGill, R. J, \& Dombrowski, S. C. (2018). Revisiting Carroll's Survey of Factor-Analytic Studies: Implications for the Clinical Assessment of Intelligence. Psychological Assessment, 30, 8, 1028-1038.
Canivez, G. L., Watkins, M. W., \& Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29, 458-472.
Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. http://dx.doi.org/10.1037/pas0000279
Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. https://doi.org/10.1037/pas0000279

Canivez, G. L. (2008). Orthogonal higher order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition for children and adolescents. School Psychology Quarterly, 23, 533-541.

Dombrowski, S. C., Canivez, G. L., \& Watkins, M. W. (2017, May). Factor structure of the 10 WISC-V primary subtests across four standardization age groups. Contemporary School Psychology. Advance online publication.

Dombrowski, S. C., McGill, R. J., \& Canivez, G. L. (2017). Exploratory and hierarchical factor analysis of the WJ IV Cognitive at school age. Psychological Assessment, 29, 394-407.
McGill, R. J., \& Canivez, G. L. (2017, October). Confirmatory factor analyses of the WISC-IV Spanish core and supplemental Subtests: Validation evidence of the Wechsler and CHC models. International Journal of School and Educational Psychology. Advance online publication.
Watkins, M. W., Dombrowski, S. C., \& Canivez, G. L. (2017, October). Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children-Fifth Edition. International Journal of School and Educational Psychology.

PASS Theory \& CAS2


118

## Papadopoulos, et al., 2023


$>$ Our results unambiguously support the notion that intelligence is not a unidimensional entity but a composite of distinct cognitive processes...which posits separate cognitive domains for Planning, Attention, Simultaneous and Successive processing... [these] emerged as the most fitting representation of intelligence [and] the best fit to the data. $>$ This outcome reinforces the notion that intelligence is a multifaceted construct, with various cognitive abilities working in concert, corroborating previous findings (e.g., Das \& Kirby, 2022; Naglieri, 2015; Papadopoulos et al., 2018).


## PASS Scales can be Interpreted and SHOULD be: Profiles




122

## Research on PASS Profiles

Students receiving special education were more than four times as likely to have at least one PASS weakness and a comparable academic weakness than those in regular education

| entifying Stud |  |
| :---: | :---: |
| With Learning Disabilities: | - |
| Composite Profile Analysis |  |
| Using the Cognitive | GE |
| Assessment System |  |
| Leesa V. Huang', Achilles N. Bardos ${ }^{2}$, and Rik Carl D'Amato ${ }^{1}$ |  |
| Abstrace |  |
| The decection of cognitive putcerns is chidren with lean in the idencticuion process. Sibseetr protile analyis fro drawn starp cribcium for inaccurate identificionn und we Therefore, the purpose of thin zudy is to uve a new tentir ter amalpis to aumment dagnosis aed the instructiond proce uses a contemporary sworescal mosel in which compos used for profie masinis. Ten core profles from a regiar | Ities (DD) tuas been a priority ond cogiove asessment har koses to docuasoms pluming Cogition Assesment Spreem insees of wheet kores.ari mande $\left(\mathrm{N}=1 . \mathrm{M}_{2}\right)$ and 12 |

"Ten core profiles from a regular education sample ( $\mathrm{N}=1,692$ ) and 12 profiles from a sample of students with LD $(N=367)$ were found.

## Research on PASS Profiles

>"the CAS...yields information that contributes to the differential diagnosis of students suspected of having a learning disability in writing"

| Cognitive Assessment System Construct and |
| :---: |
| Diagnostic Utility in Assessing ADHD |
| Cary L Caniver Alison. R. Gaboury |
| Eastem Illinois Viniersity $\quad$ Proallup School District, Proallip. Wha |

Paper presented at the 2010 Annual Convention of the American Psychological Association, San Diego, CA






- "the present study demonstrated the potential of the CAS to correctly identify students who demonstrated behaviors consistent with ADHD diagnosis."

PASS Theory \& CAS2

## Intelligence Tests and Prediction

$>$ Intelligence tests are one of the primary tools for identifying children with Intellectual disability, specific learning disabilities, and giftedness

- The goal is to determine if there is a cognitive explanation for academic successes or failure
$>$ The correlations between intelligence and achievement tests and the profiles of scores these tests measure tell us the value these test scores have for both predication and explanation of specific academic success and failure


## Correlations: We can do better!



126


## Twice Exceptional

Tests of general ability are not sufficient for assessment of students who may be gifted and have a specific learning disability (SLD), autism, ADHD, etc.

Most defensible way to assess for a SLD, for example, is to use the Cognitive Assessment System-Second Edition (CAS2) for the following reasons

- CAS2 measures 'basic psychological processes' - the key to uniting the definition of SLD with the method of detecting it, it yields the smallest race difference, yields profiles for special populations, predicts achievement better than any other tests and has implications for instruction


## A Study of Gifted Students

$\mathrm{N}=142$

- Similar numbers of girls and boys in Grade 4, 5 and 6.
- all native speakers of English
- came from families of middle to upper-middle socioeconomic background


## $>$ Identified according to this definition:

- "Giftedness is exceptional potential and/or performance across a wide range of abilities in one or more of the following areas: general intellectual, specific academic, creative thinking, social, musical, artistic and kinesthetic" (Alberta Education, 2012, p. 6).


## A Study of Gifted Students

## $>$ Tests given

- WASI -II (Vocabulary and Matrix Reasoning)
- Woodcock-Johnson III (WJ-III; Woodcock, McGrew, \& Mathers, 2001) Broad Reading score from: Letter-Word Identification, Reading Fluency, and Passage Comprehension
- Cognitive Assessment System (CAS; Naglieri \& Das, 1997) to measure PASS neurocognitive processes


## A Study of Gifted Students

| WASI-II FSIQ slightly higher than CAS FS - but CAS shows more variability | Table 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Descriptive Statistics for WASI-II, WJ-III Achievement, and Cognitive Assessment System (CAS) Scores ( $N=142$ ) |  |  |  |  |
|  | Variable | Mean | SD | Min | Max |
|  | WJ-III Achievement |  |  |  |  |
| > Average WASI-III Full | Broad Reading | 125 | 14 | 97 | 166 |
|  | Broad Math | 116 | 13 | 91 | 162 |
|  | Mean WJ | 117 | 10 | 94 | 152 |
|  | WASI-II FSIQ | 123 | 8 | 105 | 145 |
| Scale and CAS Full scale | CAS Full Scale | 118 | 12 | 91 | 148 |
| were similar but CAS | Planning | 110 | 12 | 77 | 146 |
| standard deviation and | Simultaneous | 121 | 16 | 88 | 152 |
| range was higher | Attention | 113 | 13 | 79 | 141 |
|  | Successive | 111 | 11 | 81 | 137 |
| PASS Theory \& CAS2 |  |  |  |  |  |
|  |  |  |  |  | 131 |

## A Study of Gifted Students



|  | PASS Theory \& CAS2 |
| :--- | :---: |
| 132 |  |

132

Two Types of PASS Profiles
Two sets of PASS scores
were studied

- Significant variation in relation
to student's average has
instructional relevance
- Significant variation in relation
to student's average AND a
standard score less than $90(<$

| 25 th \%tile) supports |
| :--- |
| designation as SLD |

## Research on PASS Profiles

Students receiving special education were more than four times as likely to have at least one PASS weakness and a comparable academic weakness than those in regular education

School Pyychology Quatety, Vol. 15, No. 4, 2000, pp. 419-43p

"Ten core profiles from a regular education sample ( $N=1,692$ ) and 12 profiles from a sample of students with LD ( $\mathrm{N}=367$ ) were found.

## Haung, Bardos, D’Amato (2010)

## PASS Profiles from standardization sample

TABLE 4. PASS PROFILES FOR THE GENERAL EDUCATION SAMPLE.

| Cluster | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Planning | 120 | 116 | 105 | 103 | 100 | 111 | 102 | 87 | 93 | 79 |
| Simultaneous | 118 | 103 | 114 | 99 | 114 | 102 | 86 | 101 | 92 | 82 |
| Attention | 119 | 121 | 96 | 107 | 106 | 106 | 99 | 87 | 96 | 81 |
| Successive | 115 | 102 | 117 | 113 | 100 | 89 | 99 | 103 | 82 | 81 |
| Average PASS | 118 | 110 | 108 | 106 | 105 | 102 | 96 | 94 | 91 | 81 |
| Range | 5 | 19 | 21 | 14 | 14 | 23 | 15 | 16 | 14 | 3 |

Note: PASS scores less than 90 are in bold font Range of PASS scores within each group greater than 10 are in bold.



136

## Naglieri (2001) Regular and Special Ed Groups

CW = Significant difference between any PASS score and the student's average PASS score and one of the PASS scores is below 80,85 or 90.
$>$ CWAW $=$ There is a significantly low PASS score AND a similarly low $\Delta$ rhiavamont tact crnro
TABLE 6. Number and Percentages of Children in Reguar Education ( $n=1,453$ ) and Special Educaioo ( $n=144$ ) with PASS Relative Weakness and Cognitive Weaknesses at Three Levels and Cognitive and Academic Weaknesses at Three Levels

|  | CW<80 |  | CW < 85 |  | CW<90 |  | RW |  | CWAW < 80 |  | CWAW < 85 |  | CWAW < 90 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n$ | \% |
| Regular Education | 196 | 13.5 | 304 | 20.9 | 423 | 29.1 | 610 | 42.0 | 94 | 6.5 | 172 | 11.8 | 281 | 19.3 |
| Special Education | 46 | 31.9 | 52 | 36.1 | 60 | 41.7 | 74 | 51.4 | 40 | 27.8 | 47 | 32.6 | 56 | 38.9 |
| $\chi^{2}$ Value | 40.54* |  | 17.45* |  | 9.79* |  | 4.73 |  | 77.39* |  | 48.6* |  | 30.1* |  |

Note: Percentages are based on the Regular: Eduction and Special Education samples sizes of 1,453 and 144 , respectively. $\chi^{2}$ values markedwith an asterisk are sigy ficant at 0.05 using Bonferroni correction.

## A Study of Gifted Students

## 54\% of gifted students had a PASS score that was significantly

 different from that student's average PASS score- That means the students has a specific neurocognitive processing strength or weakness (i.e., learning profile)

Table 3.
Percentages of Gifted Students with Significant Variability in PASS Standard Scores ( $\mathrm{N}=142$ ).

|  |  | Planning |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PASS Weakness | n | 25 | 6 | 18 | 28 | 77 |  |
|  | $\%$ | $18 \%$ | $4 \%$ | $13 \%$ | $20 \%$ | $54 \%$ |  |
| PASS Strength | n | 7 | 58 | 13 | 12 | 90 |  |
|  | $\%$ | $5 \%$ | $41 \%$ | $9 \%$ | $8 \%$ | $63 \%$ |  |

## A Study of Gifted Students

> The number of gifted students who have a PASS score that is significantly different from that student's average PASS score AND the score is < 90; and with low achievement score.

```
These students have a
specific PASS processing
weakness less than 90;
suggesting instructional
modifications
```

Percentages of Gifted Students with Significant Variability in PASS and
Achievement Test Scores ( $\mathrm{N}=142$ ).

|  |  | Planning |  |  |  |  |  | Simultaneous | Attention | Successive | PASS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PASS $<90$ | n | 4 | 0 | 4 | 4 | 12 |  |  |  |  |  |
|  | $\%$ | $3 \%$ | $0 \%$ | $3 \%$ | $3 \%$ | $8 \%$ |  |  |  |  |  |
| PASS \& Skills $<90$ | n | 3 | 0 | 2 | 1 | 6 |  |  |  |  |  |
|  | $\%$ | $2 \%$ | $0 \%$ | $1 \%$ | $1 \%$ | $4 \%$ |  |  |  |  |  |

These students with low PASS scores AND low WJ-III achievement indicates a Specific Learning Disability


140

## Core Group Activity

## - QUESTION:

- Which research findings was most impactful?
- What questions do you still have?



142

# Answering the <br> Question: "Why the student struggles?" 

## How to Determine a Disorder

$>$ Two criteria for a disorder

- Significant variation in relation to student's average has instructional relevance
- Significant variation in relation to student's average AND a standard score less than 90 ( $<25^{\text {th }}$ \%tile) supports designation as SLD



## Online Scoring and Report Writer



## CAS2 Achievement Analyzer for PSW



Note: These FREE analyzers can be downloaded from www.jacknaglieri.com


146
146


## Administration Details

Core Battery is the first 2 subtests in each of the PASS scales
$>$ Order of administration is IMPORTANT

- Why is Planning first and Successive last?

Should you use parts of the CAS2?
Demonstration, Example, and Provide Help option

| Table 1.2 <br> of Administration |  |
| :--- | :--- |
| Scale | Subtests |
| Planning | Matching Numbers (MN) <br> Planned Codes (PCd) <br> Planned Connections (PCn) |
| Simultaneous | Nonverbal Matrices (NvM) <br> Verbal-Spatial Relations (VSR) <br> Figure Memory (FM) |
| Attention | Expressive Atrention (EA) <br> Number Detection (ND) <br> Receptive Actention (RA) |
| Successive | Word Serics (WS) and or Sentence Repetition (SR) <br> Spech Rate (SpR, ages 5-7 years) or Sentence Questions (SQ, ages <br> 8-17 years) |

Expose Example A and say, , Draw a line from the number 1 to the number 2,2 to 3,3 to 4 , and 4 to 5 . Provide help if ber 1 to the
necessary.
With Example A still exposed, say,
I'm going to give you some more of these to do. You should always start from the number 1 (point to the number 1 in the bold box in Example A) and draw a line from one number to the next until you get to the last number (point to the number 5). Work as quickly as you can without making a mistake, and tell me when you're finished.
Ready? (Provide a brief explanation if necessary.)

## FULL SCALE

Tony earned a Cognitive Assessment System, Second Edition (CAS2) Full Scale score of 95 , which is within the Average classification and is a percentile rank of 37 . This means that his performance is equal to or greater than that of $37 \%$ of children his age in the standardization group. There is a $90 \%$ probability that Tony's true Full Scale score falls within the range of 91 to 99. The CAS2 Full Scale score is made up of separate scales called Planning, Attention, Simultaneous, and Successive cognitive processing. Because there was significant variation among the PASS scales, the Full Scale will sometimes be higher and other times lower than the four scales in this test. The Planning Scale was found to be a significant cognitive weakness. This means that Tony's Planning score was a weakness both in relation to his average PASS score and when compared to his peers. This cognitive weakness has important implications for diagnosis, eligibility determination, therapeutic and educational programming. The Simultaneous Scale was found to be a significant cognitive strength. This means that Tony's Simultaneous score was a strength both in relation to his average PASS score and when compared to his peers. This cognitive strength has important implications for instructional and educational programming.


## Interpretation Details

## 124 ESSENTIALS OF CAS2 ASSESSMENT

PLANNING SCALE

Tony's Planning score was significantly lower than his average PASS score and below the average range. This means that Tony performed particularly poorly on tests that required strategies for solving the problems on the Planning tests. He had trouble with development and use of good strategies, control of behavior, self-monitoring, and self-correction when completing these tests. Tony earned a CAS2 Planning Scale score of 84 which is within the Below Average classification and is a percentile rank of 14. The percentile rank indicates that Tony did as well as or better than $14 \%$ of others his age in the standardization group. There is a $90 \%$ probability that Tony's true Planning score is within the range of 79 to 92 . This cognitive weakness has important implications for diagnosis, eligibility determination, and educational and therapeutic programming because children who are weak on the Planning Scale often have problems with tasks requiring strategies, completing schoolwork and other tasks on time, impulse control, self-monitoring, and social situations. There was no significant variation among his three subtest scores in the Planning Scale.

## Interpretation Details

INTERPRET EACH SCALE FROM PASS THEORY



152

## NASP Professional Standards 2020

## GUIDING PRINCIPLE I. 3 FAIRNESS, EQUITY, AND JUSTICE

In their words and actions, school psychologists promote fairness and social justice. They use their expertise to cultivate school climates that are safe, welcoming, and equitable to all persons regardless of actual or perceived characteristics, including race, ethnicity, color, religion, ancestry, national origin, immigration status,

socioeconomic status, primary language, gender, sexual orientation, gender identity, gender expression, disability, or any other distinguishing characteristics.

## Standard I.3.2 Correcting Discriminatory Practices

School psychologists strive to ensure that all children and youth have equal opportunity to participate in and benefit from school programs and that all students and families have access to and can benefit from school psychological services. They work to correct school practices that are unjustly discriminatory or that deny students or others their legal rights. School psychologists take steps to foster a school climate that is supportive, inclusive, safe, accepting, and respectful toward all persons, particularly those who have experienced marginalization in educational settings.
School psychologists function as change agents, using their skills in communication, collaboration, and consultation to advocate for necessary change at the individual student, classroom, building, district, state, and national levels.

## Summary: PASS theory and CAS2 ${ }_{\text {(see Naglieiris otero, 2017) }}$

1. The PASS scales on the CAS2 measure thinking (i.e. basic psychological processing) rather than knowing (e.g., vocabulary, arithmetic etc.), making the test good for assessment of diverse populations and those with limited educational opportunity.
2. PASS scores can be easily obtained in 20 minutes (using the 4 -subtest CAS2 Brief), 40 minutes (using the 8 -subtest Core Battery) or 60 minutes (using the $\mathbf{1 2}$-subtest Extended Battery), scored and a narrative reports provided using the online program. (Digital CAS2 is in final stages of development.)
3. PASS results are easy for teachers, parents and the students themselves to understand because the concepts can be explained in non-technical language.
4. The PASS theory and the CAS2 provide a way to both define and assess 'basic psychological processes' so that practitioners can obtain scores that are consistent with state and federal IDEA guidelines.
5. The PASS scores are strongly correlated to achievement, show distinct patterns of strengths and weaknesses, are very useful for intervention planning.
6. The CAS2 in combination with achievement (especially the FAR, FAM and/or FAW) provides examiners with a reliable and defensible Discrepancy Consistency Method to identify students with SLD.
7. Research has shown that PASS scores have relevance to instruction and intervention

154


## Questions and Thoughts Please



156
156


Jack A. Naglieri, Ph.D. jnaglieri@gmail.com
www.jacknaglieri.com

