

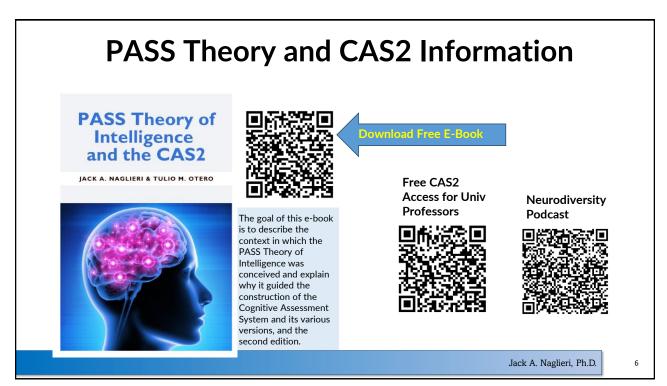
A Comprehensive Conceptualization of Executive Function from Assessment to Intervention

Jack A. Naglieri, Ph.D. jnaglieri@gmail.com www.jacknaglieri.com Naglierigiftedtests.com

CASP: California Association of School Psychologists

3.2K followers • 51 following

IACKNIAGI JERI CON


Jack A. Naglieri, Ph.D.

3

3

THE ACT OF MADE AND THE LOCATION OF THE STANDARD THE CONTROL AND T

Why this session on EF?

- Executive Function (EF) is the most important ability we have, because it provides us a way to decide
 - how to do what we choose to do to achieve a goal
- The best news is that EF can be taught
- Instruction that improves EF will affect a person's ability to learn, their behavior, and their social skills.
- Improving EF will change an individual's life

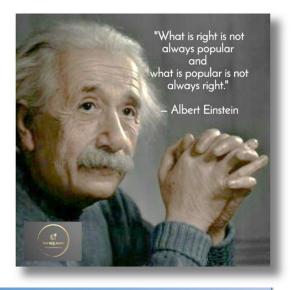
Jack A. Naglieri, Ph.D.

7

7

How do we determine how to interpret any test...

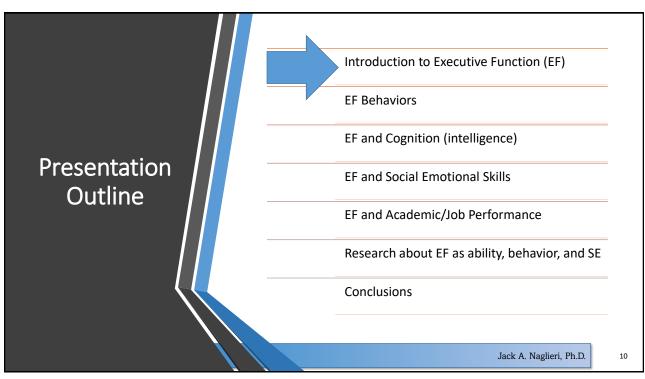
- What if the research is inconsistent with what we know?
- Do we have an obligation to follow the science???
- What is the role of Clinical Judgement?

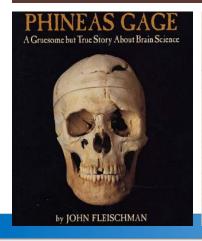


Jack A. Naglieri, Ph.D.

8

The BIG picture

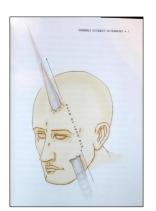

- We often use scores from a rating scale to evaluate Executive Function
- The scores can have a significant impact on that student's future
- We must fully understand the concept and how to interpret the scores
- How can we determine HOW to interpret scores from any test?


Jack A. Naglieri, Ph.D.

9

9

The Curious Story of Phineas Gage


- September 13, 1848 26
 year old Phineas Gage
 was in charge of a
 railroad track
 construction crew
 blasting granite bedrock
 near Cavendish,
 Vermont
- The job Phineas has is to use a "tamping iron" to set explosives
- The tamping iron is a rod about 3 ½ feet long weighing 13 ½ lbs pointed at one end

Jack A. Naglieri, Fil.D.

11

Fleishman (2002, p 70)

- From Damasio (1994) article in Science
- The rod passed through the left frontal lobe
- The damage was to the front of the frontal cortex more than the back, and the underside more than the top
- This diminished his planning and decision making, self monitoring, self correction, especially in novel settings

Fleishman (2002)

Jack A. Naglieri, Ph.D.

12

Before . . . & . . . After

Before the accident 'he possessed a well-balanced mind, was seen as a shrewd, smart business man, very energetic and persistent in executing all his plans of operation' (p 59)

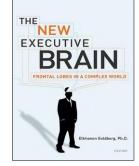
After the accident his ability to direct others was gone, he had considerable trouble with:

- Thinking
- Behaviors
- Work
- Social-emotional

Jack A. Naglieri, Ph.D.

13

13


Executive Functions

- In 1966 Luria first wrote and defined the concept of Executive Function (EF) and described the frontal lobes as "the organ of civilization"
- Luria's student, Nick Goldberg states that the frontal lobes are about ..."leadership, motivation, drive, vision, self-awareness, and awareness of others, success, creativity, sex differences, social maturity, cognitive development and learning..."

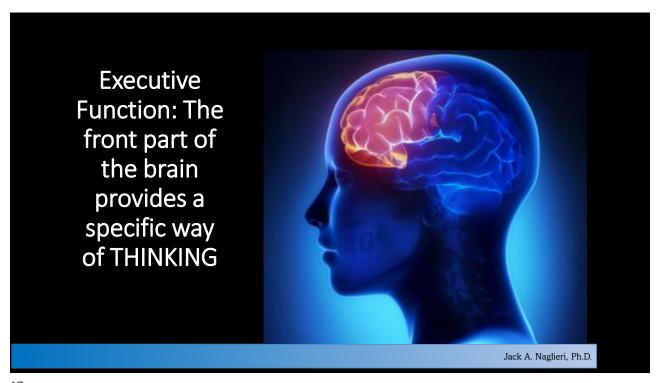
Jack A. Naglieri, Ph.D.

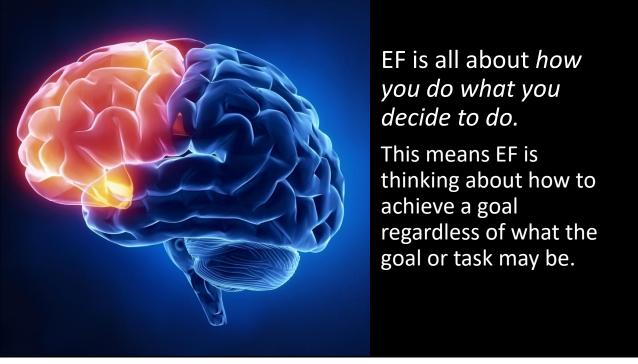
14

Frontal Lobes and Executive Function or is it Functions

What do we mean by the term Executive Function(EF)?


Jack A. Naglieri, Ph.D.


15


15

What is Executive Function(s)

- There is no formal excepted definition of EF
- Goldstein, Naglieri, Princiotta, & Otero (2013) found more than 30 definitions of EF!
 - EF is a unitary construct
 - EF is a unitary construct with many parts
 - EF has **three components**: inhibitory control, set shifting (flexibility), and working memory
 - EF is a multidimensional model with many independent abilities
- Critical Question: Is EF a unitary or multidimensional concept when measured by observable behaviors?

► EF in Academics

How to write a story, solve a math problem, evaluate the demands of any task.

► EF in SEL

 How to decide when to say something given what you think others want.

➤ EF in Life

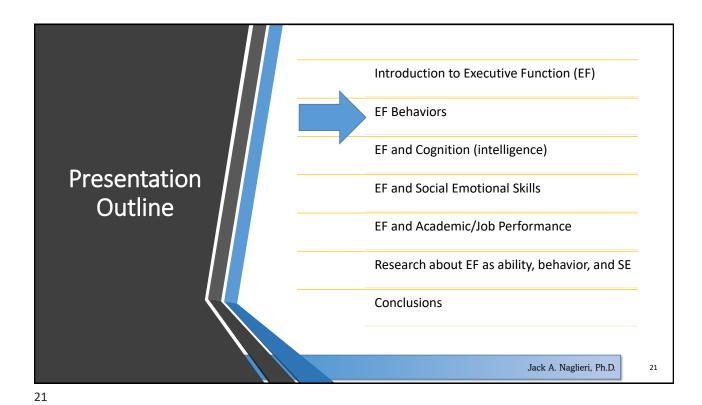
 How to conceive and manage your short- and longer-term goals.

19

Goal of this presentation

Describe a comprehensive approach to understanding and assessing EF

Behaviors related to Cognition

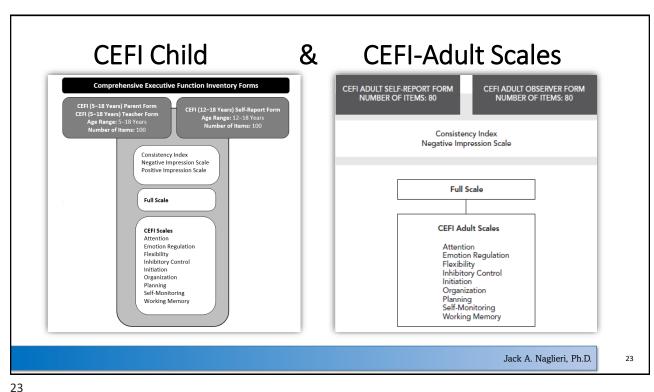

Behaviors related to Social-Emotional Skills

Academic and job skills

Neurocognitive Ability is the foundation

Jack A. Naglieri, Ph.D.

20


CEFI and the CEFI Adult

- Strength based EF measures
- Items are **positively** worded
- Higher scores = good behaviors related to EF
- Scores set at mean of 100, SD of 15
- CEFI: Ages 5-18 years rated by a parent, teacher, or the child/youth
- CEFI Adult: Ages 18+ years rated by the adult or an observer

Jack A. Naglieri, Ph.D.

22

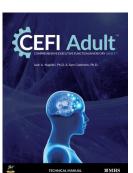
Behaviors Related to Executive Function(s)

- Given all the definitions of EF(s) we wanted to address the question... Executive Functions ... or **Executive Function?**
- One way to answer the question is to research the factor structure of EF behaviors
- Factor structure of the Comprehensive Executive Function Inventory (CEFI), and the Comprehensive Executive Function Inventory Adult (CEFI Adult)

Jack A. Naglieri, Ph.D.

CEFI

(Naglieri & Goldstein, 2012)



CEFI Adult

(Naglieri & Goldstein, 2017)

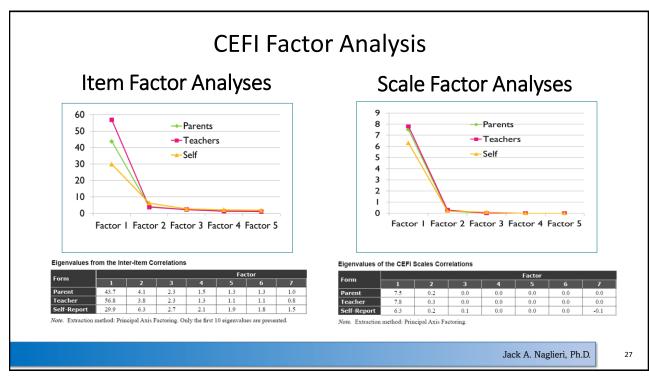
Jack A. Naglieri, Ph.D.

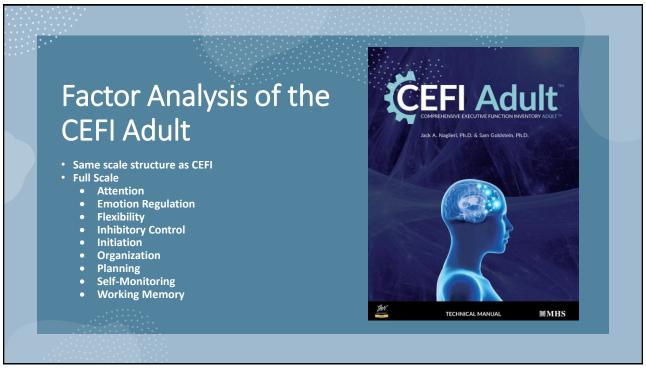
25

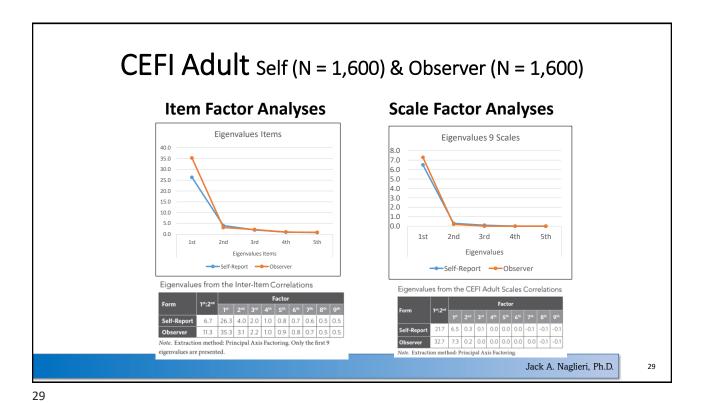
25

CEFI Factor Analysis

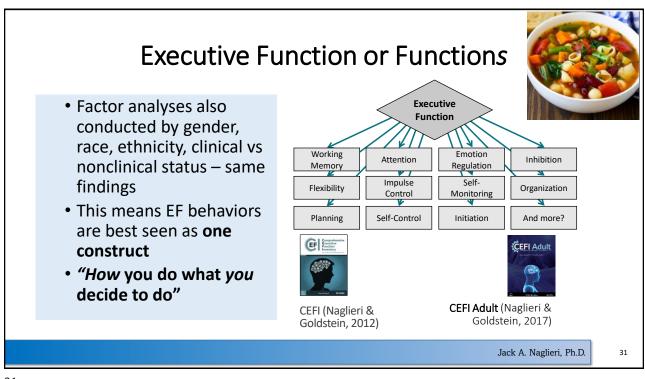
Scale Level Analysis • Using the second half of the


- Using the second half of the normative sample EFA was conducted using raw scores for the following scales:
 - Attention
 - · Emotion Regulation
 - Flexibility
 - Inhibitory Control
 - Initiation
 - Organization
 - Planning
 - Self-Monitoring
 - Working Memory


Jack A. Naglieri, Ph.D.


26

Item Level Analysis


 For the first half of the normative sample (Parent, Teacher and Self ratings') item scores (90 items) used in factor analysis

CEFI Parent (N=1,400), CEFI Adult Self (N = 1,600) Teacher (N=1,400) and Self (N=700) & Observer (N = 1,600)• Factor analytic studies using the CEFI and CEFI-Adult nationally representative standardization samples (N = 6,700) **Scale Factor Analyses Item Factor Analyses Item Factor Analyses Scale Factor Analyses** Eigenvalues 60 Eigenvalues Items Eigenvalues 9 Scales ←Parents 40.0 8.0 50 7.0 35.0 Teachers -Teachers 6.0 40 -Self l5.0 5 30 4.0 20.0 3.0 15.0 20 3 2.0 2 10.0 10 5.0 0.0 1st 2nd 3rd ٥ 2nd 3rd Factor I Factor 2 Factor 3 Factor 4 Factor 5 Factor | Factor 2 Factor 3 Factor 4 Factor 5 Eigenvalues Eigenvalues Items Self-Report → Observer Jack A. Naglieri, Ph.D. 30

Executive Function Involves

"How you do what you decide to do" demands...

 Initiation to achieve a goal, planning and organizing parts of a task, attending to details to notice success of the solution, keeping information in memory, having flexibility to modify the solution as information from self-monitoring is received and demonstrating emotion regulation (which also demands inhibitory control) to ensure clear thinking so that the task is completed successfully.

Jack A. Naglieri, Ph.D.

One Factor and 9 Scales?

- EF is a unidimensional concept
- Use the Full Scale to answer the question "Is the individual poor in EF or not?"
- Use the 9 scales to identify the specific groups of items that represent 9 different types of behaviors that can be addressed by Intervention

CEFI Scales

Attention Emotion Regulation Flexibility

Inhibitory Control Initiation Organization

Planning Self-Monitoring Working Memory **CEFI Adult Scales**

Attention

Emotion Regulation

Flexibility

Inhibitory Control Initiation

Organization Planning

Self-Monitoring Working Memory

Jack A. Naglieri, Ph.D.

33

33

Conclusion: EF is a unitary concept.

Are there other surprises?

Jack A. Naglieri, Ph.D.

34

These tests measure general ability (g) making the Full Scale score the *only* score to interpret

- **1. WISC-V** (Canivez, et al., 2017)
- 2. WAIS-IV (Canivez, et. A, (2010)
- 3. WISC-IV Spanish (McGill & Canivez, (2017)
- 4. Canadian WISC-V (Watkins, et al., 2017)
- 5. Stanford-Binet -Fifth Edition (Canivez, 2008)
- **6. British Ability Scales, 3rd ed** (Cucina & Byle, 2017)
- 7. Universal Nonverbal Intelligence Test (Benson, et al., 2020)
- 8. Differential Ability Scales-Second Edition (Canivez & McGill, 2016)
- 9. Woodcock-Johnson IV Cognitive (Dombrowski, McGill & Canivez (2017) exception
- 10. Kaufman Assessment Battery for Children-II (McGill & Spurgin, 2017)
- 11. CHC model Carroll's Factor-Analytic Studies (Benson, et al. (2018)

Jack A. Naglieri, Ph.D.

Conclusion: The subtests and

scales "have little-to-no

interpretive relevance above

and beyond that of general

intelligence"

Support for 'g'

ONLY

35

CAS is the

35

Are You OK with EF not EFs

36

Jack A. Naglieri, Ph.D.

36

If Executive Function Requires Thinking, is it a Skill?

EF= Thinking About How to do What You Decide to do?

Jack A. Naglieri, Ph.D.

3

37

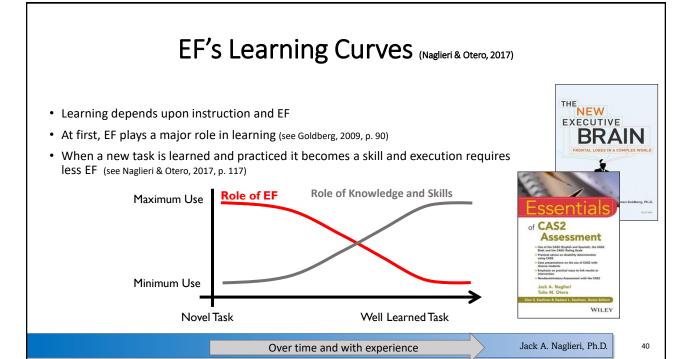
Executive Function and Skills

- What does the term SKILLS refer to?
 - A well practiced activity that can be executed automatically and with ease
 - This means there is fluency and little thinking involved
- What does the term Executive Function refer to?
 - Thinking About How You Do What You Decide To Do
 - · Therefore EF can NOT be described as a skill

Jack A. Naglieri, Ph.D.

EF's Learning Curves

(Goldberg, 2009; Naglieri & Otero, 2017)


Because MAKING
 DECISIONS about how to do
 what you decide to do is
 particularly demanded in
 novel situations, we need to
 fully engage our frontal
 lobes (EF) to be successful in
 our world today.

ATHLEENKRYZA.COM JACKNAGLIERI.COM

Jack A. Naglieri, Ph.D.

39

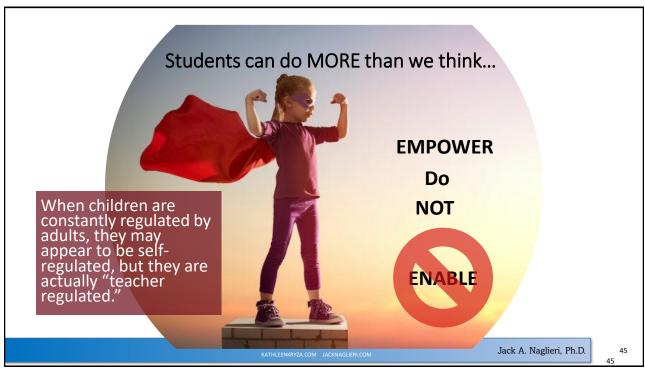
39

Jack A. Naglieri, Ph.D.

41

A Deeper View of Executive Function How you do what you decide to do which **EF STRATEGY: Graphic** demands...Especially in NOVEL situations Organizers help us make sense of big ideas. There is Select a Role of Skills Maximum Use a goal task is Is the completed Develop plan Minimum Use a plan O.K.? Well Learned Apply the working Over time and with experience Jack A. Naglieri, Ph.D. 43

43



Encourage Students to use EF to Self Regulate

- Self Regulation enables children to engage in mindful, intentional and thoughtful behaviors.
- Self-Regulation is a KEY to success.

ATHLEENKRYZA COM LIACKNAGLIERI COM

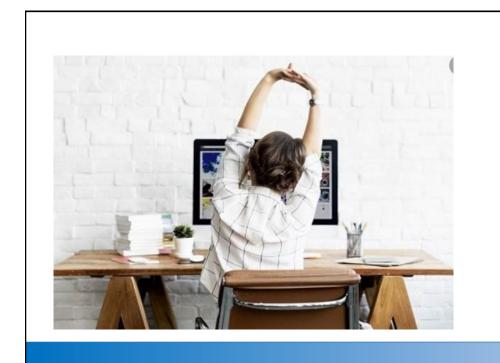
Jack A. Naglieri, Ph.D.

Don't Commit Assumicide

- Assuming that someone has taught students to use EF in the classroom
 - Teaching students how to think is as important as teaching them what to learn.

kathleenkryza.com jacknaglieri.com

Jack A. Naglieri, Ph.D.

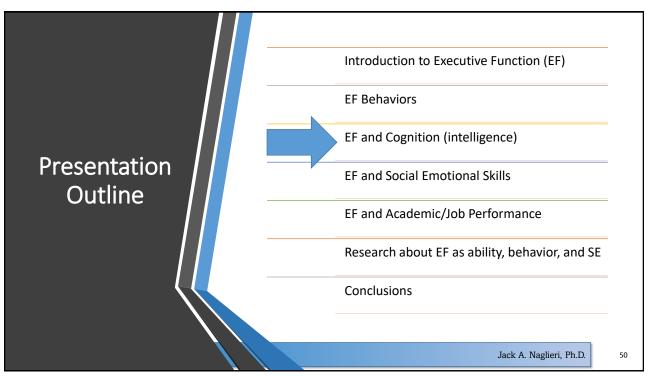

47

Planning (EF) and Skills

- Given that Planning (EF) demands intentionality, that means that planning processing is something that occurs over time and with effort.
- Skills are things we do with very little thinking. Automatic actions do not afford the time for thinking (planning) but rather immediate responding.
- Therefore, Planning and EF should not be described as 'skills'
- Your thoughts?

What do YOU think?

Jack A. Naglieri, Ph.D.



TIME TO STRETCH

Jack A. Naglieri, Ph.D.

49

49

Given the importance of EF, should EF be included in an intelligence test?

What do our intelligence tests measure?

Jack A. Naglieri, Ph.D.

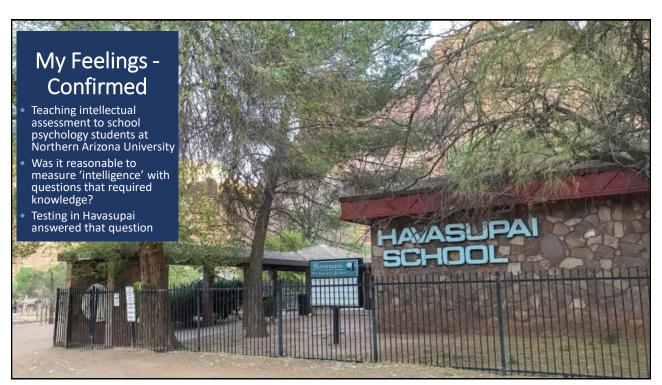
51

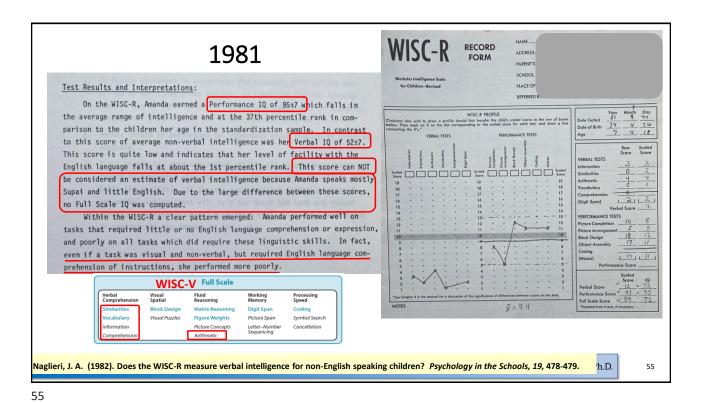
51

- Interest in intelligence and instruction
- Experiences as a school Psychologist

Jack A. Naglieri, Ph.D.

Traditional IQ and Achievement Tests


- When I started working as a school psychologist in 1975...I had concerns
 - Why did the WISC have Verbal and Performance (?) subtests?
 - What exactly did the scores mean?
 - Was the Stanford-Binet really different from the WISC?
 - Was there a theory behind the WISC and Binet that could guide my interpretation of the scores?



1975 Charles Champagne Elementary, Bethpage, NY

Jack A. Naglieri, Ph.D.

533

I realized that we should measure intelligence in a way that was not dependent on knowledge

My career as a test developer began with this goal

Naglieri's Nonverbal Tests: 1985 to Present

Research on Six Versions of the Naglieri Nonverbal Tests

NNAT -Individual.

NNAT -2 2008 NNAT3 2016

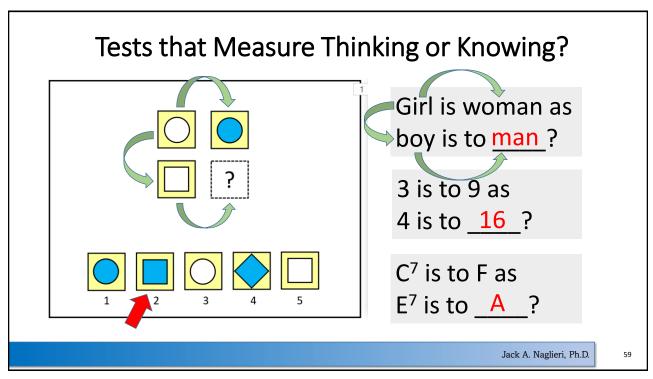
Each of these versions of the NNAT showed similar scores by RACE, ETHNICITY, & SEX and had strong correlation with achievement

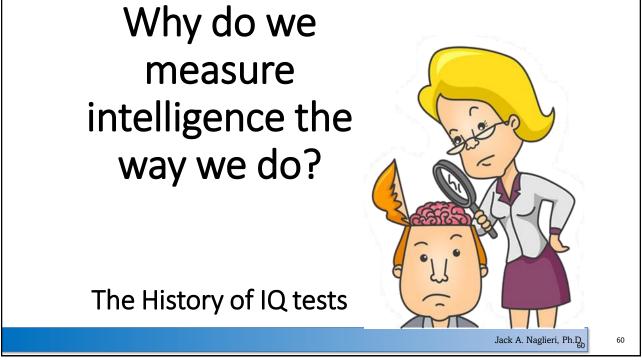
This research convinced me that measuring intelligence using test questions that measured how well a student can think was a valid and equitable way to measure general intelligence 'g'.

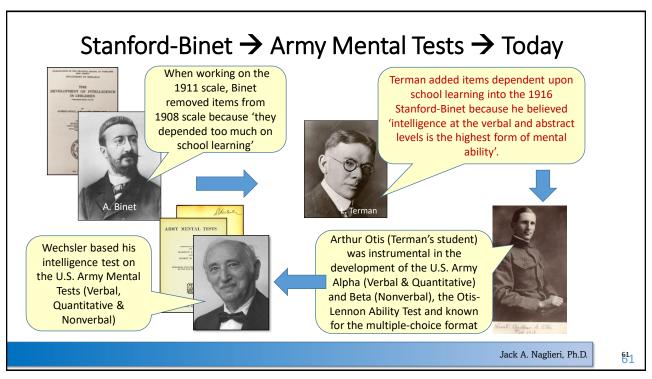
Jack A. Naglieri, Ph.D.

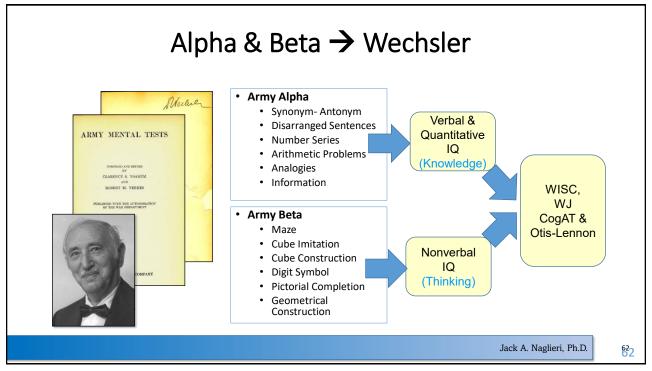
57

57


My Intelligence Tests Without Knowledge


- 1. Naglieri, J. A. (1985). Matrix Analogies Test Expanded Form. San Antonio: The Psychological Corporation.
- 2. Naglieri, J. A. (1985). Matrix Analogies Test Short Form. San Antonio: The Psychological Corporation.
- Naglieri, J. A. (1997). Naglieri Nonverbal Ability Test. San Antonio, TX: The Psychological Corporation.
- Naglieri, J. A., & Bardos, A. N. (1997). General Ability Scale for Adults. San Antonio, TX: Pearson.
- Naglieri, J. A. (2003). Naglieri Nonverbal Ability Test Individual Form. San Antonio, TX: Pearson.
- Wechsler, D., & Naglieri, J. A. (2006). Wechsler Nonverbal Scale of Ability. San Antonio, TX: Pearson.
- Naglieri, J. A. (2008). Naglieri Nonverbal Ability Test 2nd Edition. San Antonio, TX: Pearson.
- Naglieri, J. A. (2016). Naglieri Nonverbal Ability Test Third Edition. San Antonio, TX: Pearson.
- Naglieri, J. A., & Das, J. P. (1997). Cognitive Assessment System. Austin: ProEd
- 10. Naglieri, J. A., Das, J. P., Goldstein, S. (2014). Cognitive Assessment System Second Edition. Austin, ProEd.
- 11. Naglieri, J. A., Das, J. P., & Goldstein, S. (2014). *Cognitive Assessment System Second Edition Brief*. Austin, ProEd.
- 12. Naglieri, J. A., Moreno, M. A., & Otero, T. M. (2017). Cognitive Assessment System Español. Austin, ProEd.
- 13. Naglieri, J. A., Das, J. P., & Otero (2025). Cognitive Assessment System Digital. Austin, ProEd
- 13. Naglieri, J. A. (2022). Naglieri General Ability Test: Nonverbal. Markham, Canada: MHS.
- 14. Naglieri, J. A. & Brulles, D. (2022). Naglieri Ability Test: Verbal. Markham, Canada: MHS.
- 15. Naglieri, J. A. & Lansdowne, K. (2022). Naglieri Ability Test: Quantitative. Markham, Canada: MHS.


Jack A. Naglieri, Ph.D.


58

Second Generation

IQ Tests Defined Intelligence

Edwin Boring: The Stanford-Binet became the operational definition of intelligence

Edith Spaulding & William Healy

System State
An Experience of
Street or
Deconquery Wisers

F Cale Styre Speaking

The claim that we have measured hereditary intelligence has no scientific foundation

We cannot measure intelligence when we have never defined it.

A STUTE OF A THEOREM CARE OF THEM SHEETED STREETS AND STREETS AND

owere, in so one one of the thousand have we here able to discover decision of anisotral trademain in successing presentian without along inguiselying treather of a physical or mental nature, or such artifision of the control of the control of the control of the control says just had have no defective inheritance. In order to prove the intense of the first claus, we feel it shouldn't essential in order of the revisibance measured fraction is not discovered. Family claust alone, without detailed environmental and developmental history, we are defined proof of inherited estimations, no uter how many criminal histories they any contain. Studying the deep of criminalization belonders, which themselves may are thought

nutitee how many criminal histories they may contain. Studying the interpretable of the property of the studying the studying of the studying my of a large number of possible biologic, mental or social factors, is "Read before the American Academy of Medicine at its thirty-slight and meeting. Misrogenic, large 4: 10.13. Tublished there and in the Bullion of

rookwood, M. (2021). The Orphans of Davenport. New York: Norton & Company. See Chapter 4

Jack A. Naglieri, Ph.D.

.

63

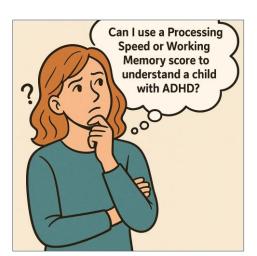
General Ability Defined by Pintner (1923)

"we did not start with a clear definition of general intelligence... [but] borrowed from every-day life a vague term implying all-round ability and... we [are] still attempting to define it more sharply and endow it with a stricter scientific connotation" (p. 53, Pintner, 1923)".

Jack A. Naglieri, Ph.D.

Intelligence testing over the last several decades

- How have we 'attempted to define [intelligence] more sharply and endow it with a stricter scientific connotation' as Pintner noted?
- We have developed many methods to interpret the scores beyond 'g' (i.e. the total score) including scale and subtests on both intelligence and rating scales of Executive Function(s).
- What does the science tell us about this practice?


Jack A. Naglieri, Ph.D.

65

65

Intelligence testing over the last several decades

- We have seen additional scales added to traditional intelligence tests to measure WORKING MEMORY, PROCESSING SPEED, etc.
- What does the science tell us?

Jack A. Naglieri, Ph.D.

66

Which intelligence test scores have enough specific variance to be interpreted?

There is a scientific way to answer this question

Bifactor analysis examines each subtest and scales' correlation with the general factor (g) and what each specific ability factor (subtests and scales) tells us beyond the Full Scale.

This method reveals whether subtests and scales should be used to understand intellectual strengths and weaknesses.

Jack A. Naglieri, Ph.D.

Conclusion: The Full

Scale (total) score is a

valid representation of

general intelligence"

67

67

The Validity of 'g' is Supported

- **1. WISC-V** (Canivez, et al., 2017)
- 2. WAIS-IV (Canivez, et. A, (2010)
- 3. WISC-IV Spanish (McGill & Canivez, (2017)
- Canadian WISC-V (Watkins, et al., 2017)
- **5. Stanford-Binet -Fifth Edition** (Canivez, 2008)
- 6. Cognitive Abilities Test (Cucina & Byle, 2017)
- 7. Universal Nonverbal Intelligence Test (Benson, et al., 2020)
- 8. Differential Ability Scales-Second Edition (Canivez & McGill, 2016)
- 9. Woodcock-Johnson IV Cognitive (Dombrowski, McGill & Canivez (2017)
- 10. Kaufman Assessment Battery for Children-II (McGill & Spurgin, 2017)
- 11. CHC model based on Carroll's Survey of Factor-Analytic Studies (Benson, et al. 2018)
- 12. Naglieri General Ability Tests: Verbal, Nonverbal, Quantitative (Naglieri, Brulles Lansdowne)

Jack A. Naglieri, Ph.D.

Each of these research studies indicate that the Full Scale score is the *only* score to interpret!

- **1. WISC-V** (Canivez, et al., 2017)
- 2. WAIS-IV (Canivez, et. A, (2010)
- 3. WISC-IV Spanish (McGill & Canivez, (2017)
- **4.** Canadian WISC-V (Watkins, et al., 2017)
- 5. Stanford-Binet -Fifth Edition (Canivez, 2008)
- **6. Cognitive Abilities Test** (Cucina & Byle, 2017)
- 7. Universal Nonverbal Intelligence Test (Benson, et al., 2020) Support for 'g'
- 8. Differential Ability Scales-Second Edition (Canivez & McGill
- 9. Woodcock-Johnson IV Cognitive (Dombrowski, McGill & Canivez (2017)
- 10. Kaufman Assessment Battery for Children-II (McGill & Spurgin, 2017)
- 11. CHC model Carroll's Factor-Analytic Studies (Benson, et al. 2018)
- 12. Reynolds Intellectual Assessment Scales (Nelson, et al, 2007)

Jack A. Naglieri, Ph.D.

Conclusion: The subtests and

scales "have little-to-no

interpretive relevance above

and beyond that of general

intelligence"

ONLY

Conclusion: The subtests and

scales "have little-to-no

interpretive relevance above

and beyond that of general

intelligence"

69

69

Each of these research studies indicate that the Full Scale score is the *only* score to interpret!

- **1. WISC-V** (Canivez, et al., 2017)
- **2. WAIS–IV** (Canivez, et. A, (2010)
- 3. WISC-IV Spanish (McGill & Canivez, (2017)
- 4. Canadian WISC-V (Watkins, et al., 2017)
- 5. Stanford-Binet -Fifth Edition (Canivez, 2008)
- 6. British Ability Scales, 3rd ed (Cucina & Byle, 2017)
- 7. Universal Nonverbal Intelligence Test (Benson, et al., 2020)
- 7. Offiversal Notiverbal Intelligence lest (Berison, et al., 2020)
- 8. Differential Ability Scales-Second Edition (Canivez & McGill,
- 9. Woodcock-Johnson IV Cognitive (Dombrowski, McGill & Canivez (2017 CAS is an
- 10. Kaufman Assessment Battery for Children-II (McGill & Spurgin, 2017) exception
- 11. CHC model Carroll's Factor-Analytic Studies (Benson, et al. (2018)

Jack A. Naglieri, Ph.D.

Support for 'g'

ONLY

School Psychology Quarterly 2011, Vol. 26, No. 4, 305-317

© 2011 American Psychological Association 1045-3830/11/\$12.00 DOI: 10.1037/a0025973

Hierarchical Factor Structure of the Cognitive Assessment System: Variance Partitions From the Schmid-Leiman (1957) Procedure

> Gary L. Canivez Eastern Illinois University

Orthogonal higher-order factor structure of the Cognitive Assessment System (CAS; Naglieri & Das, 1997a) for the 5-7 and 8-17 age groups in the CAS standardization sample is reported. Following the same procedure as recent studies of other prominent intelligence tests (Dombrowski, Watkins, & Brogan, 2009; Canivez, 2008; Canivez & Watkins, 2010a, 2010b; Nelson & Canivez, 2011; Nelson, Canivez, Lindstrom, & Hatt, 2007; Watkins, 2006; Watkins, Wilson, Kotz, Carbone, & Babula, 2006), three- and four-factor CAS exploratory factor extractions were analyzed with the Schmid and Leiman (1957) procedure using MacOrtho (Watkins, 2004) to assess the hierarchical factor structure by sequentially partitioning variance to the second- and first- order dimensions as recommended by Carroll (1993, 1995). Results showed that greater portions of total and common variance were accounted for by the second-order, global factor, but compared to other tests of intelligence CAS subtests measured less secondorder variance and greater first-order Planning, Attention, Simultaneous, and Successive (PASS) factor variance.

Keywords: CAS, construct validity, hierarchical exploratory factor analysis, Schmid-Leiman higher-order analysis, structural validity

Support for **PASS Scales**

- "...the CAS subtests had less variance apportioned to the higher-order general factor (g) and greater proportions of variance apportioned to first-order (PASS...) factors.
- This is consistent with the subtest selection and construction in an attempt to measure PASS dimensions linked to PASS theory ... and neuropsychological theory (Luria)." (p. 311)

Jack A. Naglieri, Ph.D.

71

71

Multidimensional Scaling of the Cognitive Assessment System-2

Ryan J. McGill William & Mary

Presented at the meeting of the Volumia Association of School Psychologists, Seame PA. Co-concerning this poster should be addressed to Ryan J. McGill, Associate Professor of Schoo Mary School of Education. P.O. Box 8795, Williamsburg, VA 23187 USA. E-mail: <u>proceil/03</u>

PASS Theory (Das et al., 1994), is often cited as providing foundational support for a panoply of clinical guidebooks and intervention materials used throughout school psychology training and practice (e.g., Naglieri & Pickering, 2010; Naglieri & Martin and State of the structure of various iterations of the Cognitive Assessment System, now in its second edition (CAS2; Naglieri et al., 2014). While questions remain about the structural validity of the original CAS which would seem to call into question the everacity of PASS theory, pertinent investigations on the matter have relied exclusively on the use of conventional forms of factor analysis (e.g., been argued that relying solely on factor analysis may be problematic and assessment researchers have been encuraged to consider using alternative multivariate techniques that may better disclose relationships among psychological variables (Revelle, 2024). One multivariate alternative that has been successfully applied to intelligence tests such as the CAS2 is multidimensional scaling (MDS).

MDS is used to represent variables in

(MDS).

MDS is used to represent variables in corresponding to MDS is used to represent variables in space with distances corresponding to proximities measured among the variables. These spatial relationships are mapped onto a two-dimensional or three-dimensional plane and visually inspected for theoretical consistency. If indicators that are assumed to measure a common psychological dimension (i.e., Processing Speed) are grouped together in a common space, that dimension may be regarded as a viable construct in the data. Additional features in the data may also be ascertained. For instance, variables that are located closer to the center of the figure are more cognitively complex than variables located farther away and rades structures are frequently applied to these data that permit these types of analyses (e.g., Marshalek et al., 1983). Published studies applying MDS to cognitive test scores have been relatively scarce in the school psychology literature and mostly limited to tests ascribing to CHC Theory (e.g., Meyer & Reynolds, 2017). The present study sought to apply MDS for the first time to explore relations among CAS2 three first time to explore relations among CAS2 further the common structure. The first time to explore relations among CAS2 further the common structure of the instrument as well as PASS theory and its proposed clinical applications.

Method and Data Analyses.

Method and Data Analyses

Method and Data Analyses

Participants were members of the

CAS2 standardization sample and included a

total of 1.342 (midvidual ranging in age from

5-18 years. The standardization sample
included startified proportional sampling
across demographic variables of age, gender,
race/ethnicity, parent educational level, and
geographic region and close correspondence
to 2011 U.S. census estimates across the
stratification variables. The theoretical
subtest alignment for CAS2 suggested by the
test publisher is outlined in Table 1.

Interpretation of PASS Scores is Supported: "The current study found that indicators were consistently aligned in the way that they are organized in the PASS derived composite scores on the CAS2."

Presented at the meeting of the National Association of School Psychologists, Seattle WA 2025. Correspondence concerning this poster should be addressed to Ryan J. McGill, Associate Professor of School Psychology, William & Mary School of Education. P.O. Box 8795, Williamsburg, VA 23187 USA. E-mail: rmcgill@wm.edu

Jack A. Naglieri, Ph.D.

Original Research Article

Unraveling the Multifaceted Nature of Intelligence: A Correlated Factor Model Approach Grounded in PASS Theory

Assessment
I-18
© The Aurthor(s) 2025
Article reuse guidelines:
sagepub com/journals-permissions
DOI: 10.1177/10731911251350735
journals.sagepub.com/home/asm
S Sage

Timothy C. Papadopoulos 6, George Spanoudis 1, Jack A. Naglieri 2, and Jagannath P. Das 3

ASSESSMENT WAS INCOME.

Papadopoulos, Spanoudis, Naglieri and Das (2025) concluded:

PASS scores have sufficient specific variance to be interpreted.

Intelligence, a subject of profound interest within psychology, has seen extensive exploration of its psychological and psychometric foundations. This study delves into the multifaceted nature of intelligence, using structural equation modeling techniques to examine theory-driven conceptualizations of the construct. We tested several models, including unidimensional, correlated, higher-order, and bifactor symmetrical and asymmetrical models. To enhance the reliability and generalizability of the findings, we used a large and diverse cohor based on the Planning, Attention, Simultaneous, Successive (PASS) theory and the Cognitive Assessment System 2 (CAS2), which was standardized in the United States. Results showed that the correlated factor model, which reflects relationships among cognitive domains, offers the most fitting representation of intelligence. This outcome aligns with the PASS theory's theoretical foundations, emphasizing intelligence's multifaceted nature. Also, our exploration of cultural relevance invariance underscores the importance of considering dengraphic-related differences in cognitive processes. By endorsing a correlated factor model, our study encourages a subtle understanding of intelligence that acknowledges the diversity and interconnectedness of cognitive processes, with potential implications for education and clinical assessment practices.

Keywords

intelligence, dimensionality, hierarchical models

Jack A. Naglieri, Ph.D.

73

73

Fröst, N., Jansson, B. & Partanen, P. (2025). Construct validity of the Scandinavian version of the Cognitive Assessment System 2nd Edition Manuscript submitted for publication

Research Findings:

This study evaluated the construct validity of the Scandinavian version of the CAS-2 using data from 614 children and adolescents in Sweden and Norway.

The bifactor model supported the multidimensional nature of the CAS-2. That is, CAS2 is more than g and PASS scores CAN BE INTERPRETED

Jack A. Naglieri, Ph.D.

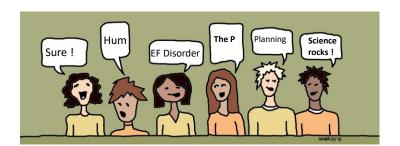
How do we Manage this Research? Your thoughts...

- What if the research is inconsistent with what we know?
- Do we have an obligation to follow the science???
- What is the role of Clinical Judgement?

Jack A. Naglieri, Ph.D.

75

75


Howard Garb (2013) on Clinical Judgement

- Clinical judgment is often less valid than statistical or actuarial methods, especially when clinicians rely on intuition over structured data.
- Confirmation bias, overconfidence, and selective attention distort clinical decision-making. Clinicians may unintentionally favor information that supports their initial impressions, leading to diagnostic errors.
- Structured interviews and standardized assessments methods improve reliability and reduce bias.
- He encouraged graduate programs to teach evidencebased assessment, critical thinking, and statistical reasoning as foundations for clinical competence.

Garb, H. N. (2013). Clinical judgment and decision making. In J. R. Graham & J. A. Naglieri (Eds.), APA Handbook of Testing and Assessment in Psychology: Vol. 2. Testing and Assessment in Clinical and Counseling Psychology (pp. 453–465). Washington, DC: American Psychological Association. https://doi.org/10.1037/14049-024

Are You OK with Measuring EF with the CA\$2?

Jack A. Naglieri, Ph.D.

7

77

Intelligence as Neurocognitive Functions

• In my first working meeting with JP Das (February 11, 1984) we proposed that intelligence was better REinvented as neurocognitive processes andwe began development of the Cognitive Assessment System (Maril 2018)

We conceptualized intelligence as Planning, Attention, Simultaneous, and Successive (PASS) neurocognitive processes based on Luria's concepts of brain function.

78

Neuropsychological Conceptualization of EF

- If a person's frontal lobes are impaired that person would likely get low scores on:
 - 1. Behaviors related to Executive Function
 - 2. Performance measures Executive Function
 - 3. Rating scales of social emotional behaviors
 - 4. Academic tasks that require HOW to do things
- If a person has problems in all of the above except cognitive processes related to EF, the cause is likely an environmental issue

VATHLEENVOVZA COMA LACVALACLIERI COM

Jack A. Naglieri, Ph.D.

79

79

PASS Theory

- The PASS Theory is operationalized using the CAS and CAS2
- This is the only test of its kind that was explicitly developed according to a THEORY of ability (intelligence)
- The theory is based on neuropsychology and cognitive psychology so we use the term "neurocognitive"
- The section that follows provides an explanation of each of these basic psychological processes, an example of how the neurocognitive process is measured and case studies

Jack A. Naglieri, Ph.D.

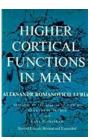
We Operationalized the CAS2 To Measure Thinking (PASS) not Knowing

What does the examinee have to **know** to complete a task?

• This is dependent on instruction

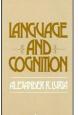
How does the examinee have to **think** to complete a task?

- This is dependent on the *brain 'basic psychological processes'*
- Some thinking involves executive function and some does not



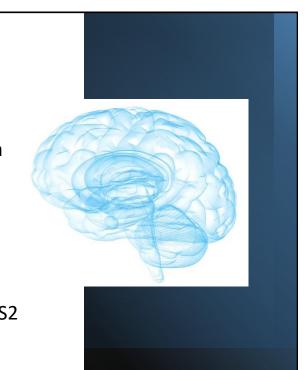
Jack A. Naglieri, Ph.D.

81

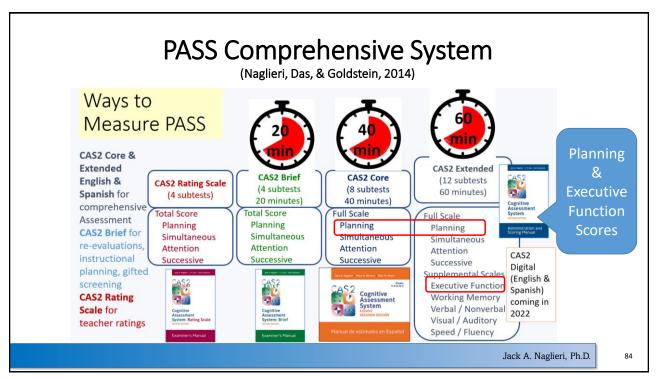

81

PASS Neurocognitive Theory

- Planning = THINKING ABOUT HOW YOU DO WHAT YOU DECIDE TO DO
- Attention = BEING ALERT AND RESISTING DISTRACTIONS
- **S**imultaneous = THINKING USED TO SEE HOW THINGS ARE RELATED (THE BIG PICTURE)
- Successive = THINKING THAT IS USED TO MANAGE A SEQUENCE


PASS = 'basic psychological processes'

NOTE: Easy to understand concepts!


Jack A. Naglieri, Ph.D.

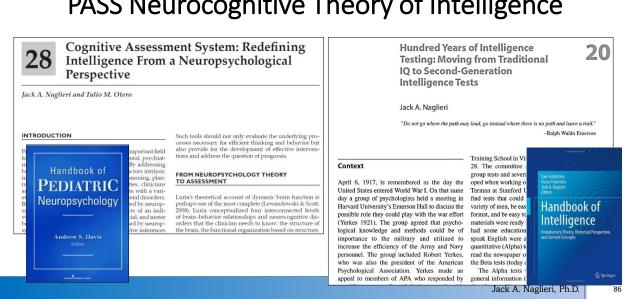
EF is a Brain-Based Ability

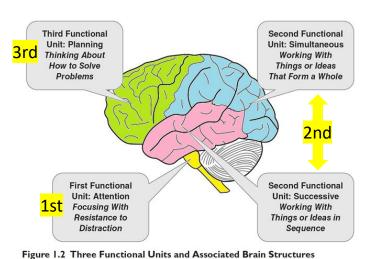
- If we define intelligence from a neurocognitive perspective
- EF is an ability (type of intelligence) by virtue of its relationship to the brain
- But EF is not measured by traditional IQ tests
- EF can be measured on the CAS2

83

CAS2 Online Score & Report Writer

http://www.proedinc.com/customer/ProductView.aspx?ID=7277


- Enter data at the subtest level or enter subtest raw scores
- Online program converts raw scores to standard scores, percentiles, etc. for all scales.
- A narrative report with graphs and scores is provided


Jack A. Naglieri, Ph.D.

85

PASS Neurocognitive Theory of Intelligence

PASS Theory Based on Luria's Concept of Functional Units

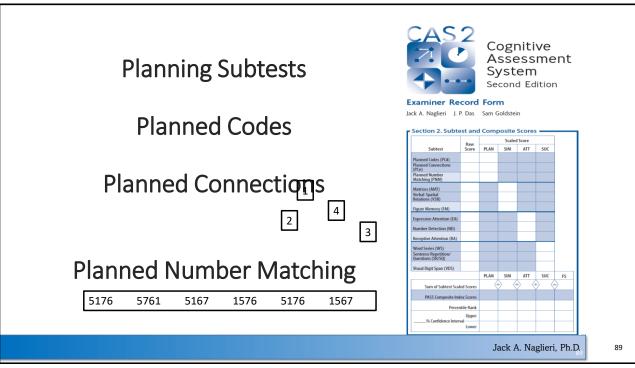
From: Essentials of CAS2 Assessment. Naglieri & Otero, 2017

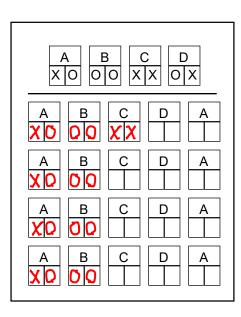
Jack A. Naglieri, Ph.D.

87

87

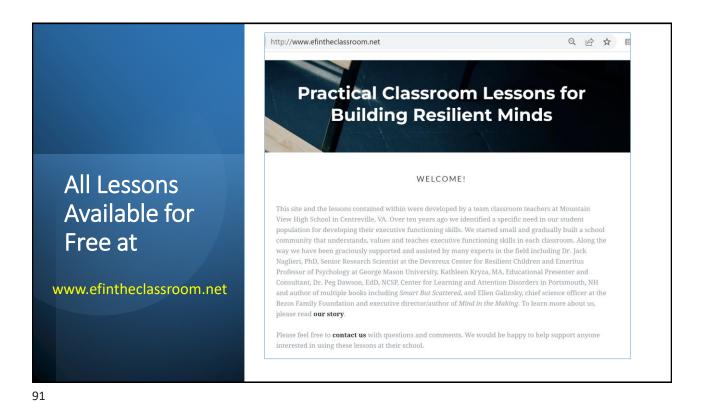
PASS Theory of Intelligence: Planning


Planning is a neurocognitive ability that a person uses to determine, select, and use efficient solutions to problems


- · problem solving
- developing plans and using strategies
- retrieval of knowledge
- impulse control and self-control
- · control of processing

Jack A. Naglieri, Ph.D.

88



Planned Codes Page 1

- ▶ Jack Jr. at age 5
- Child fills in the codes in the empty boxes
- ▶ After being told the test requirement, examinees are told: "You can do it any way you want"

Jack A. Naglieri, Ph.D.

90

www.efintheclassroom.net Interventions for EF Behaviors

CEFI Scales Efintheclassroom.net

Attention Sustained Attention

Emotion Regulation Emotional Control

Flexibility Cognitive Flexibility

Inhibitory Control Response Inhibition

Initiation Task Initiation

Organization Organization

Planning Planning

Self-Monitoring Response Inhibition Working Memory Working Memory

Practical Classroom Lessons for Building Resilient Minds

WELCOME!

This site and the Jessons contained within were developed by a seam classroom teachers at Mountain View High School in Comreville, VA. Over ton years ago we identified a specific need in our student population for developing their executive functioning likilit. We started mail and gradually built a school community that understands, values and seaches executive functioning likilit. We started mail and gradually built a school community that understands, values and seaches executive functioning its likil in each classroom. Along the way we have been graciously supported and assisted by Jamay expensit in the field including for jack. Naglent, PhD. Senitor Research Scientist at the Deverence Center for Resilient Children and Emeritian Protessor of Psychology at Gorge Masson Oriverity Schilden Ryaya, MA, Children May and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotectional Preventer and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotectional Preventer and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotectional Preventer and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotection of Psychology at Congress and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotection and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotection and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotection and Consultant Preventer and Consultant. Dr. Peg Devenor, Edit, NGEK Center for Learning and Almerian Biotection and Consultant Preventer and Consultant Psychology and Consultant Psychology

Jack A. Naglieri, Ph.D.

92

Planning Lesson Student Responses

Q 1: What would you have to plan out?

They had to learn the dance steps (knowledge)

Someone had to start dancing (initiation)

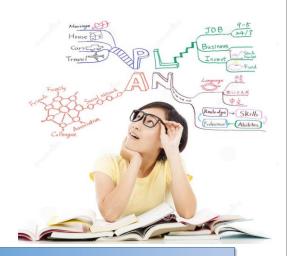
Q2: What are the parts of a good plan?

- Think of possible problems (strategy generation
- Organize the dance (organization)

Jack A. Naglieri, Ph.D.

93

93


Planning Lesson Student Responses

Q3: How do you know if a plan is any good?

- Put the plan in action and see if it works (self-monitoring)
- Give it a try (perhaps learn by failing)

Q4: What should you do if a plan isn't working?

- 1. Fix it. (self-correction)
- 2.Go home! (a bad plan)

Jack A. Naglieri, Ph.D.

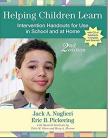
94

Planning Lesson Student Responses

Q5: How do you use planning in this class?

- 1. We don't plan in this class
- 2. Mrs. X does all the planning in this class so you don't have to think about planning

To encourage EF we have to stress thinking about how to do what you chose to do


Jack A. Naglieri, Ph.D.

95

95

Encourage Planning

- Helping Children Learn Intervention Handouts for Use in School and at Home, Second Edition By Jack A. Naglieri & Eric Pickering
- Spanish handouts by Tulio Otero & Mary Moreno

Step 1 – Talk with Students How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work your plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan

You will be able to do more if you remember to use a plan. An easy way to remember to use a plan is to look at the picture "Think smart and use a plan!" (Figure 1). You should always use a plan for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a plan for studying that works best for you.

Think smart and use a plan!

It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is to look at the questions you have to answer about the story first. Then read the story to find the answers. Another plan is to make a picture of what you read so that you can see all the parts of the story. When you write you should also have a plan. Students who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be smarter about your work!

Jack A. Naglieri, Ph.D.

Planning Facilitation for Math Calculation

Math calculation is a complex activity that involves recalling basic math facts, fol dures, working carefully, and checking one's work. Math calculation requires a c approach to follow all of the necessary steps. Children who are good at math ca move on to more difficult math concepts and problem solving with greater ease are having problems in this area. For children who have trouble with math calcul that helps them approach the task planfully is likely to be useful. Planning facilita technique.

Planning facilitation helps students develop useful strategies to carefully complet through discussion and shared discovery. It encourages students to think about problems, rather than just think about whether their answers are correct. This has careful ways of doing math.

How to Teach Planning Facilitation

Planning facilitation is provided in three 10-minute time periods: 1) 10 minutes o utes of discussion, and 3) 10 more minutes of math. These steps can be descrit

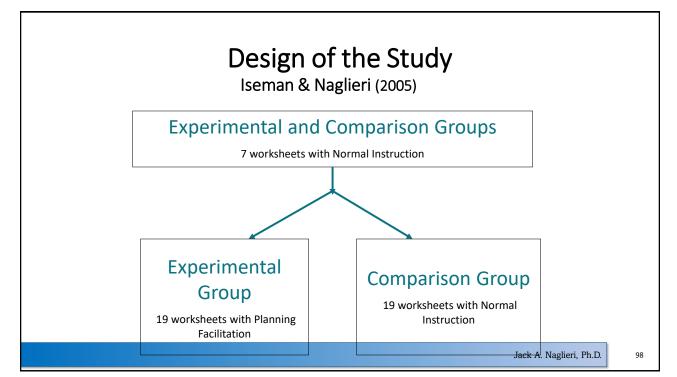
Step 1: The teacher should provide math worksheets for the students to compl 10-minute session. This gives the children exposure to the problems and ways teacher gives each child a worksheet and says, "Here is a math worksheet for y try to get as many of the problems correct as you can. You will have 10 minutes on this instruction are okay, but do not give any additional information.

A Cognitive Strategy Instruction to Improve Math Calculation for Children With ADHD and LD: A Randomized Controlled Study

Jackie S. Iseman and Jack A. Naglieri

A b - + - - +

The authors examined the effectiveness of cognitive strategy instruction based on PASS (Planning, Attention, Simultaneous, Successive) given by special education teachers to students with ADHD randomly assigned by classroom. Students in the experimental group were exposed to a brief cognitive strategy instruction for 10


experimental group were exposed to a brief cognitive strategy instruction for IG development and application of effective planning for mathematical computation, standard math instruction. Standardized tests of cognitive processes and math students completed math worksheets throughout the experimental phase. Stal Johnson Tests of Achievement, Third Edition, Math Fluency and Wechsler Individ Numerical Operations) were administered pre- and postintervention, and Math follow-up. Large pre-post effect sizes were found for students in the experimenta math worksheets (0.85 and 0.26), Math Fluency (1.17 and 0.09), and Numerical CA t I year follow-up, the experimental group continued to outperform the comp students with ADHD evidenced greater improvement in math worksheets, far (which measured the skill of generalizing learned strategies to other similar task when provided the PASS-based cognitive strategy instruction.

HAMMILL INSTITUTE
ON DISABILITIES

ournal of Learning Disabilities
44(2) 184–195
© Hammill Institute on Disabilities 26
Reprints and permission:
sagepub.com/journals/Permissions.nav
Doi:10.1177/002219410391190
http://journaloflearningdisabilities

sagepub.com

۵7

Strategy Instruction

Iseman & Naglieri (2005)

 Teachers facilitated discussions to help students become more selfreflective about use of strategies

- Teachers asked questions like:
 - What was your goal?
 - Where did you start the worksheet?
 - What strategies did you use?
 - How did the strategy help you reach your goal?
 - What will you do again next time?
 - What other strategies will you use next time?

eri, Ph.D.

Iseman & Naglieri (2005)

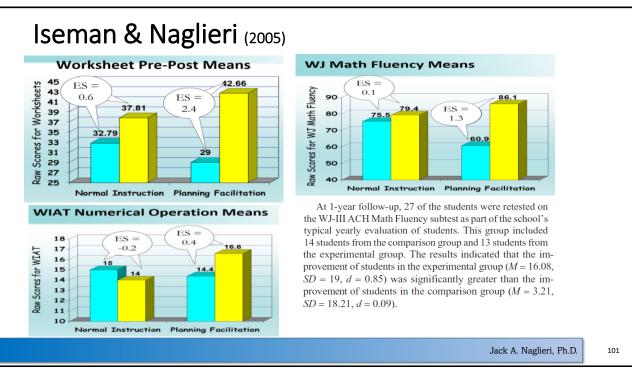
Table 3. Students' Comments During Planning Facilitation Sessions

- "My goal was to do all of the easy problems on every page first, then do the others."
- "To get as many correct as I can."
- "To get as many right as quickly as possible."
- · "To take time and make sure I get them correct."

Starting place

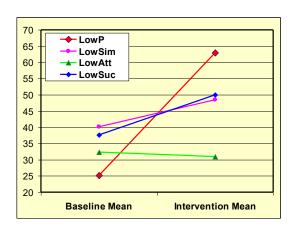
- · "I started on the first one.
- "I skipped around."
- "I look at the type of problem and the number of steps and decide which problems to do first."
- "I did all the easy problems on a page and went onto the next one."
- · "I do all the addition first, then the easy minus, and then I move onto the harder ones." "I do the problems I know, then I check my work."

- "I simplify fractions first.""Skip the longer multiplication questions."
- "The problems that have lots of steps take more time, so I skip them."
- "I do them [the algebra] by figuring out what I can put in for X to make the problem work."
- "I draw lines so I don't get my columns confused [on the multiplication]."
 "I stopped drawing lines because it slowed me down."
- "If a problem is taking a long time I skip it and come back to it if I have time."
- · "I did the ones that take the least time · "Remember that anything times 0 is 0."
- Noticing patterns in the worksheets


. "I did all the problems in the brain-dead zone first."

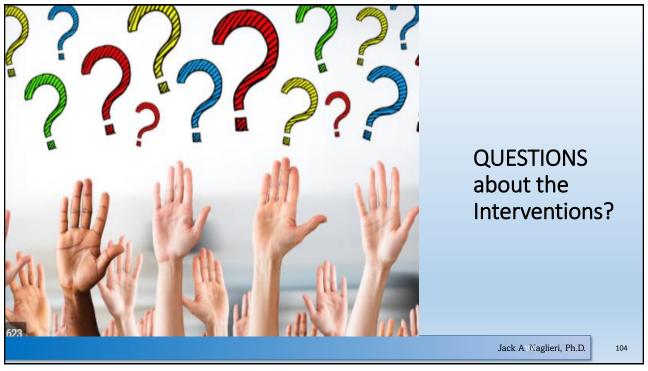
- "I started in the middle of the page, the problems on top take longer.
- . "Next time I'll skip the hard multiplication at the top of the first page."

- "My goal was to do all of the easy problems on every page first, then do the others."
- "I do the problems I know, then I check my work."
- "I did all the problems in the brain-dead zone first."



100

Iseman & Naglieri (2005)


- Baseline Intervention means by PASS profile
- Different response to the same intervention

Jack A. Naglieri, Ph.D.

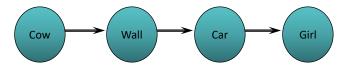
102

Brain Break - STAND AND STRETCH

Jack A. Naglieri, Ph.D.

PASS Neurocognitive Abilities that are NOT EF

Simultaneous and Successive processes


Jack A. Naglieri, Ph.D. 106

PASS Theory

Successive Processing

Successive processing is a basic cognitive ability which we use to manage stimuli in a specific serial order

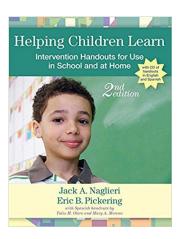
- Stimuli form a chain-like progression
- · Stimuli are not inter-related

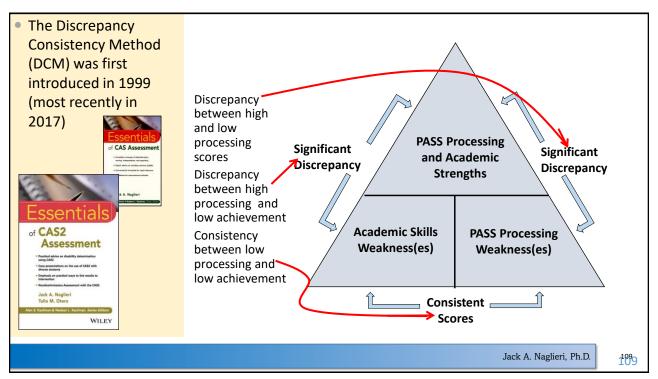
107

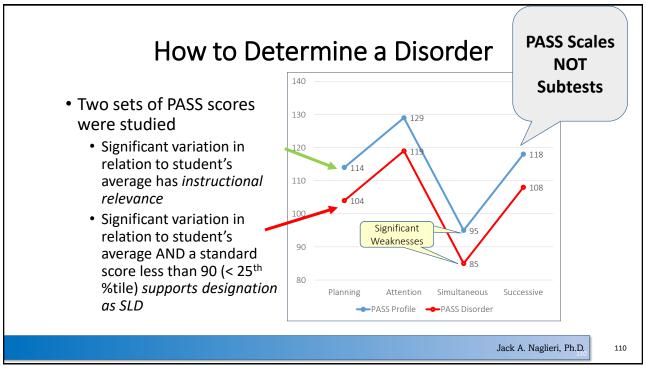
Using good EF to overcome a neurocognitive processing disorder

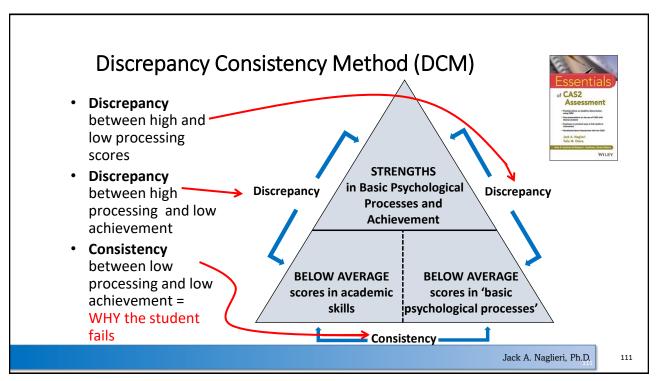
32

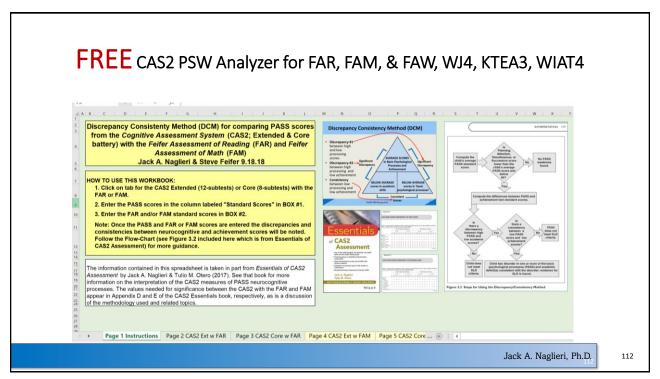
Helping Children Learn

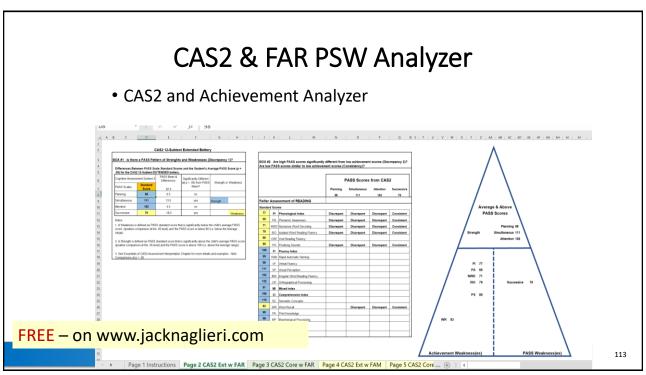

Ben's Problem with Successive Processing

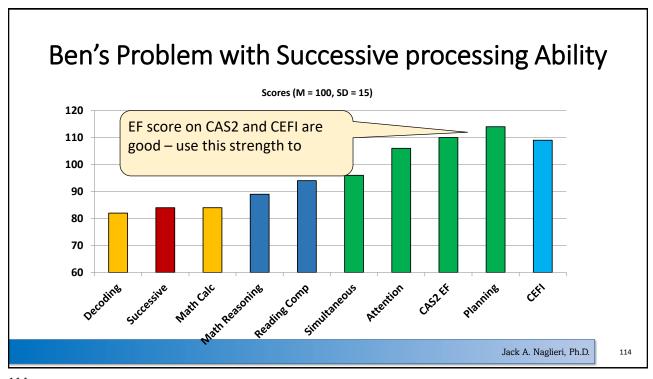



Ben was an energetic but frustrated third-grade student who liked his teachers, was popular with his peers, and fit in well socially at school. However, Ben said he did not like school at all, particularly schoolwork. Ben was good at turning in all of his work on time, and he worked hard, but he earned poor grades. He appeared to be getting more and more frustrated at school.

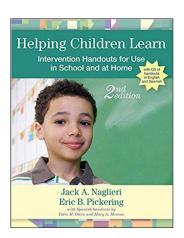

In general, Ben struggled to perform well because he had a lot of trouble following directions that were not written down, his writing often did not make sense, and he did not appear to comprehend what he read. Ben's teachers noticed that when directions for assignments and projects were given orally in class, he often only finished part of the task. Ben's teacher described an assignment in which students had to collect insects, label them, organize them into a collection, and then give a brief presentation about each in-


sect. Unlike any other student, Ben chose to make the labels for the insects first and then go look for the insects. He found only a few of the insects he had made labels for, and when he put them in the collection, they were not in the order that had been specified. He also had trouble with the spelling of the scientific names of the insects and made many errors in the sequence of letters in the words.





Ben's Problem with Successive Processing


- Ben has difficulty whenever ANY task requires sequencing
 - Academic or ability tests
 - Visual or auditory tests
 - · Math or spelling or reading
 - Tasks that require memory of seque
- How do we help him learn better?

115

Teach Children about their Abilities

- Helping Children Learn
 Intervention Handouts for Use in School and at Home, Second Edition (Naglieri, & Pickering, 2011)
- Spanish handouts by Tulio Otero & Mary Moreno

Jack A. Naglieri, Ph.D.

116

Ben's Problem with Successive Ability

Teach him to use his strength in EF (Planning)

How Can You Be Smarter?

You can be smarter if you PLAN before doing things. Sometimes people say, "Look before you leap," "Plan your work and work you plan," or "Stop and think." These sayings are about using the ability to plan. When you stop and think about how to study, you are using your ability to plan.

You will be able to do more if you remember to use a pian. An easy way to remember to use a pian is to look at the picture "Think smart and use a plan" (Figure 1). You should always use a pian for reading, vocabulary, spelling, writing, math problem solving, and science.

Do you have a favorite plan for learning spelling words? Do you use flashcards or go on the Internet to learn? Do you ask the teacher or another student for help? You can learn more by using a plan for studying that works best for you.

Think smart and use a plan!

It is smart to have a plan for doing all schoolwork. When you read, you should have a plan. One plan is to look at the questions you have to answer about the story first. Then read the story to find the answers. Another plan is to make a picture of what you read so that you can see all the parts of the story. When you write you should also have a plan. Students who are good at writing plan and organize their thoughts first. Then they think about what they are doing as they write. Using a plan is a good way to be smarter about your world.

How to Be Smart: Planning

When we say people are smart, we usually mean that they know a lot of information. But being smart also means that someone has a lot of ability to learn new things. Being smart at learning new things includes knowing and using your thinking abilities. There are ways you can use your abilities better when you are learning.

What Does Being Smart Mean?

One ability that is very important is called *Planning*. The ability to *plan* helps you figure out *how to do things*. When you don't know how to solve a problem, using Planning ability will help you figure out how to do it. This ability also helps you control what you think and do. It helps you to stop before doing something you shouldn't do. Planning ability is what helps you wait until the time is right to act. It also helps you make good decisions about what to say and what to do.

Jack A. Naglieri, Ph.D.

117

117

Ben's Problem with Successive Ability

Teach him to recognize sequences

How to Teach Successive Processing Ability

The first step in teaching children about their own abilities is to explain what Successive processing ability is. In Figure 1 (which is included in the PASS poster on the CD), we provide a fast and

- Teach children that most information is presented in a specific sequence so that it
 makes sense
- Encourage children by asking, "Can you see the sequence of events here?" or "Did you see how all of this is organized into a sequence that must be followed?"
- Remind the students to think of how information is sequenced in different content areas, such as reading, spelling, and arithmetic, as well as in sports, playing an instrument, driving a car, and so forth.
- 4. Teach children that the sequence of information is critical for success.
- Remind students that seeing the sequence requires careful examination of the serial relationships among the parts.

Jack A. Naglieri, Ph.D.

Solutions for Ben-Use EF

Teach him to use strategies

Chunking for Reading/Decoding

Reading/decoding requires the student to look at the sequence of the letters in words and under stand the organization of specific sounds in order. Some students have difficulty with long se-quences of letters and may benefit from instruction that helps them break the word into smaller, more manageable units, called *chunks*. Sometimes the order of the sounds in a word is more easily organized if the entire word is broken into these units. These chunks can be combined into units for accurate decoding. Chunking for reading/decoding is a strategy designed to do that.

How to Teach Chunking for Reading/Decoding

Teachers should first teach the children what it means to chunk or group information so that it can be remembered more easily. Use number sequences and letters for illustration (e.g., how telephone numbers are grouped). Then introduce words to be read and break the words into words to be read and break the words into units, such as re-mem-ber for remember or farther church.

Secret of the church.

Secret of the church.

Secret of the church.

Secret of the church.

Plan	Action			
Look at the word.	"I see the word beginning."			
Find the chunk.	"I see the chunk ginn in the middle			

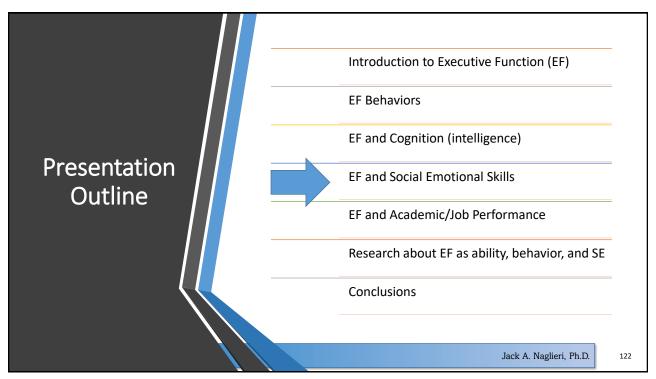
Segmenting Words for Reading/Decoding and Spelling

Decoding a written word requires the person to make sense out of printed letters and words and to translate letter sequences into sounds. This demands understanding the sounds that letters represent and how letters work together to make sounds. Sometimes words can be segmented into parts for easier and faster reading. The word into is a good example because it contains two words that a child may already know: in and to. Segmenting words can be a helpful strategy for reading as well as spelling.

How to Teach Segmenting Words

Segmenting words is an effective strategy to help students read and spell. By dividing the words into groups, students also learn about how words are constructed and how the parts are related to one another. Students should be taught that words can be broken down into segments or

Jack A. Naglieri, Ph.D.


119

119

Time for Turn and Talk

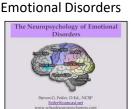
Jack A. Naglieri, Ph.D.

Phineas had Social Emotional Deficit

- Phineas had profound social emotional problems after his injury to the frontal lobes
- Phineas was
 - Insulting
 - · impulsively says things
 - uses vulgar language
 - can't manage his emotions
 - inconsistent in social situations
 - doesn't recognize he is offensive
 - · looses control in interactions with others

Jack A. Naglieri, Ph.D.

123


Frontal Lobes and Emotion

Goldberg (2011, p 116-117)

- the "emphasis in the classic studies of frontal lobe syndromes was on cognition [intelligence] rather than on affect [social emotional]"
- 'very few researchers have attempted to merge cognitive and emotional aspects of frontal lobe dysfunction'

· Feifer's Emotional Disorders book contains a collection of papers on the relationship between EF and

And see

Feifer@comcast.net

Jack A. Naglieri, Ph.D.

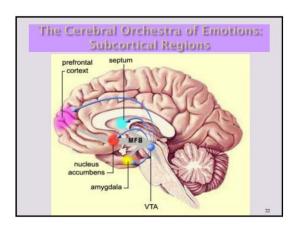
124

EF and Self Regulation (Feifer)

 Self-Regulation problems in Behavior, Emotion and Attention are neurocognitive expression of difficulty with Executive Function

ED and Self Regulation

*Children with emotional disturbances tend to be unsuccessful in school due in part to a lack self regulation skills in one or more of the following domains:



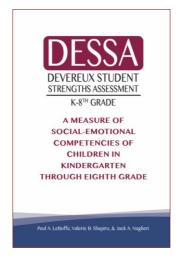
- a) <u>Behavioral Self-Regulation</u> poor inhibition of impulses and motor control.
- b) <u>Emotional Self-Regulation</u> and inability to selfregulate moods and reactions to social situations.
- c) <u>Attention Self-Regulation</u> an inability to modulate and sustain attention.
- A **neuropsychological approach** does not try to put semantic labels on observable behavior, but instead tries to identify core brain regions responsible for the dysfunction.

16

~-

125

The Cerebral Orchestra of Emotions: Cortical Regions

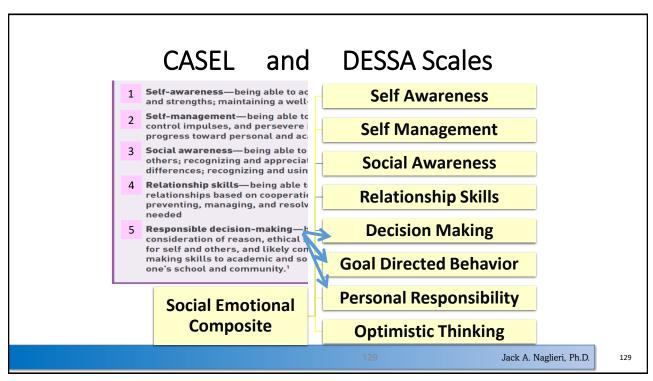

- (1) Orbitofrontal cortex region of the brain responsible for ascribing an emotional valence or value judgment to another's feelings. Often triggers an automatic social skills response (Rolls, 2004).
- * Has rich interconnections with the limbic system.
- Responsible for emotional executive functioning.
- Self-regulation of behavior as highest levels of emotional decision making dictated by this brain region.

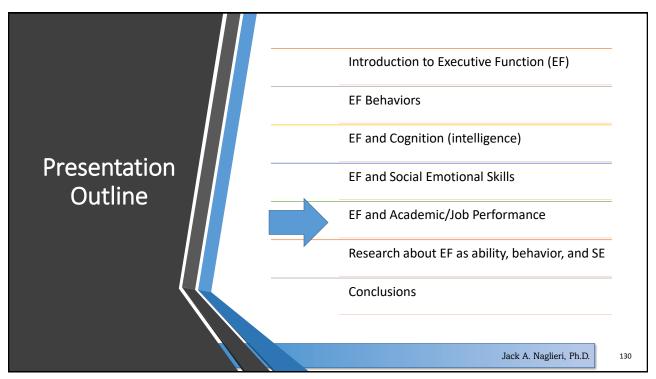
Emotions and the Frontal Lobe

Emotional Executive Functioning

The Devereux Student Strengths Assessment (DESSA)

- Based on the concept of resilience & SEL principles described by CASEL
 - Identify social-emotional strengths and needs of elementary and middle school children (for K-8th grade)
 - 72 items and 8 scales
 - Completed by parents, teachers, and/or after-school / community program staff
 - Takes 15 minutes to complete
 - On-line administration, scoring and reporting available


27

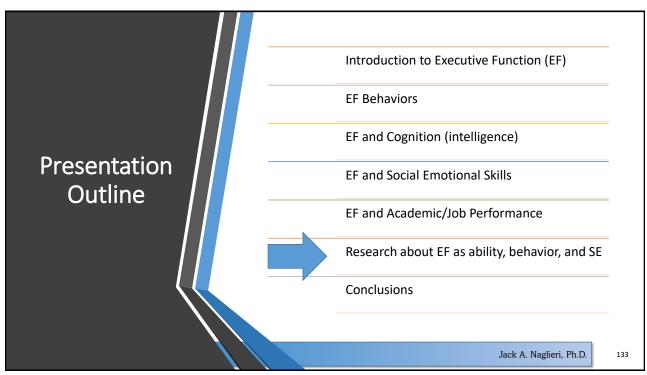

Jack A. Naglieri, Ph.D.

127

127

Child's Name: June School/Organization: Wilson Elementary Person Completing this Form: Mary Smith Item # During the past 4 weeks, how often did the child... Tem # During the past 4 weeks, how often did the child...

EF in the Classroom

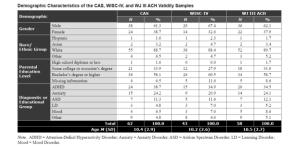

- Consider any task that requires the student to figure out HOW to complete a task such as:
 - Writing a story
 - Coming up with several ways of solving a math problem
 - Organizing a complex set of items, thoughts, tasks
 - Reading comprehension and inferential test questions
 - When strategies are needed for any academic task
 - How to study
 - How to prepare for a test
 - Etc.

Jack A. Naglieri, Ph.D. 131

131

• See www.jacknaglieri.com for papers on CAS2, Feifer Assessments of Reading, Math, and Writing

Correspondence of FAR and PASS	Planning	Attention	Correspondence of FAM and PASS	Planning	Attention
Phonemic Awareness - measures rhyming, blending, segmenting,	rianilling	Attention	Phonemic Awareness - measures rhyming, blending, segmenting, and	riaiiIIIIIg	Attention
and manipulating sounds.			manipulating sounds.		
Positioning Sounds - a phonemic localization task determining			Positioning Sounds - a phonemic localization task determining sound		
sound positions.			positions.		
Nonsense Word Decoding - the student decodes a series of			Nonsense Word Decoding - the student decodes a series of nonsense		
nonsense words.			words.		
Isolated Word Reading Fluency - the student reads a list of words			Isolated Word Reading Fluency - the student reads a list of words in 60		
in 60 seconds.			seconds.		
Oral Reading Fluency - the student reads a passage composed			Oral Reading Fluency - the student reads a passage composed of the		
of the same words as the Isolated Word Reading Fluency task.			same words as the Isolated Word Reading Fluency task.		
Rapid Automatic Naming - the student names either objects,			Rapid Automatic Naming - the student names either objects, letters, or		
letters, or stencils.			stencils.		
Visual Perception - the student identifies letters or words printed		x	Visual Perception - the student identifies letters or words printed		x
backwards from an array.			backwards from an array.		^
Verbal Fluency - the student retrieves words from a category, or	x	x	Verbal Fluency - the student retrieves words from a category, or items	x	x
items that start with a letter.			that start with a letter.	^	^
Orthographic Processing - the student recalls a letter, or group of		X	Orthographic Processing - the student recalls a letter, or group of		x
letters, from a target word.			letters, from a target word.		^
Irregular Word Reading Fluency - the student reads a list of			Irregular Word Reading Fluency - the student reads a list of		
phonologically irregular words.			phonologically irregular words.		
Semantic Concepts - the student identifies the correct antonym or	X		Semantic Concepts - the student identifies the correct antonym or	x	
synonym of a target word.			synonym of a target word.		
Word Recall - the student repeats back a list of words over two trials.	x	X	Word Recall - the student repeats back a list of words over two trials.	х	х
Morphological Processing - the student selects the correct prefix,			· ·	•	·
suffix, or stem that completes a target word.			Morphological Processing - the student selects the correct prefix, suffix,		
Silent Reading Fluency - the student answers questions after			or stem that completes a target word.		
reading a passage silently.	X	X	Silent Reading Fluency - the student answers questions after	Х	Х
reading a passage chemis.			reading a passage silently.		
			Note: The correspondence of PASS with FAR and FAM needs to be careful	ully examine	d for each stu


Executive Function Behaviors, Intelligence, and Achievement test scores

Jack A. Naglieri, Ph.D.

134

EF, WISC-IV, CAS, Achievement

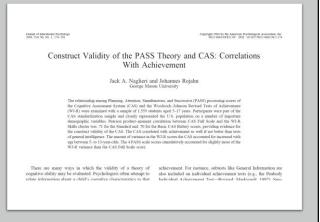
- Data from Sam Goldstein's evaluation center in Salt Lake City, UT
- Children given the WISC-IV (N = 43), CAS (N = 62), and the WJIII achievement (N = 58) as part of the typical test battery

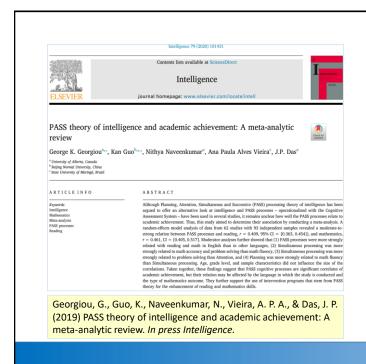
		CAS					
	FS	Plan	Sim	Att	Suc		
CEFI							
Full Scale	.45	.49	.43	.37	.32		

	WISC-IV				
	FS	VC	PR	WM	PS
CEFI					
Full Scale	.39	.44	.27	.30	.34

				Broad	
		Broad	Broad	Written	
CEFI Scales	Total	Reading	Math	Language	Median
Full Scale	.51	.48	.49	.47	.49

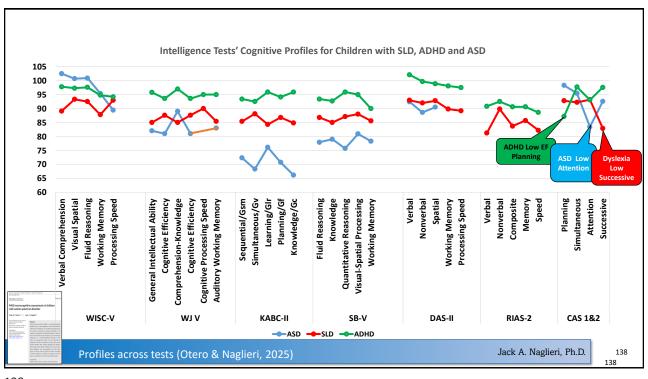
Jack A. Naglieri, Ph.D.

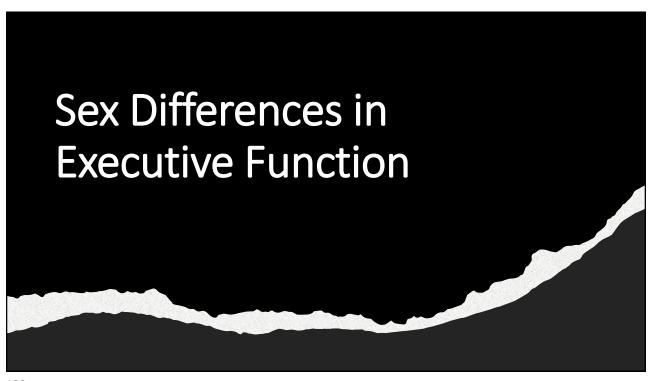

135

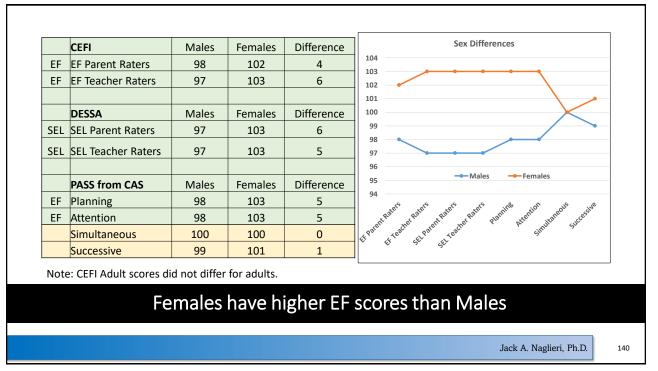

135

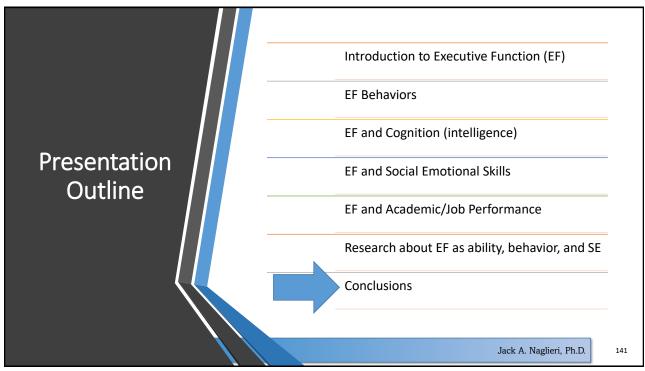
EF and Achievement (Naglieri & Rojahn, 2004)

- Correlation between Executive Function (Planning + Attention) with achievement = .51 (N = 1,559) is stable across 5–17-year range
- EF scores added significantly to the prediction of achievement after Simultaneous and Successive scores


PASS Research


- "The results clearly show that when CAS Full Scale is used it correlates .60 with reading and .61 with mathematics."
- "These correlations are significantly stronger ...
 than the correlations reported in previous
 meta-analysis for other measures of
 intelligence (e.g., Peng et al., 2019; Roth et al.,
 2015)...(e.g., WISC) that include tasks (e.g.,
 Arithmetic, Vocabulary)..."
- "if we conceptualize intelligence as ... cognitive processes that are linked to the functional organization of the brain" it leads to significantly higher relations with academic achievement."
 - "and these processes have direct implications for instruction and intervention..."


Jack A. Naglieri, Ph.D.


137

137

Conclusions

Assessment of EF should be comprehensive and include cognition, behavior and academic skills

We can encourage the use of EF

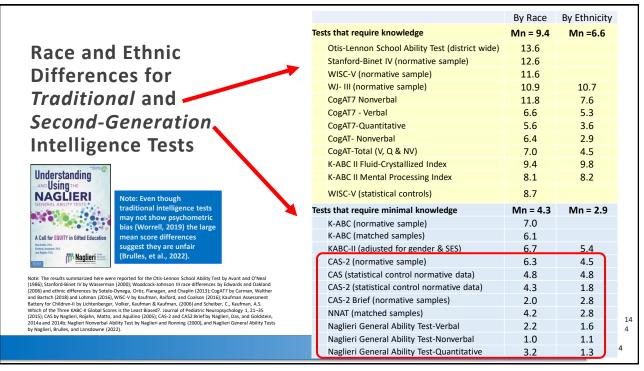
This is the gift of smarter thinking

This is a gift of optimism

This is a gift for life success

Jack A. Naglieri, Ph.D.

142


PASS theory and CAS2

- 1. PASS scores have sufficient unique variance to be interpreted
- 2. PASS profiles are different for students with ADHD, SLD and ASD
- 3. PASS scores predict achievement better than all other intelligence tests
- 4. PASS constructs are easily understood and linked to instruction
- 5. CAS2 is the most equitable measure of intelligence

Jack A. Naglieri, Ph.D.

143 143

143

Time for final Questions and Answers and a song

Jack A. Naglieri, Ph.D.

145

145

Maybe It's Time to Let the Old Ways Die

NYASP 2022 Legends in School Psychology Award Interview

Jack A. Naglieri, Ph.D.

146

