
Welcome

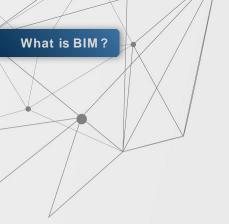
BIM Fundamentals By BIMInnovage Solutions

Purpose:

➤ Understanding the BIM process, advantages of BIM, common practices and brief understanding on implementation process and BIM dimensions.

Aim:

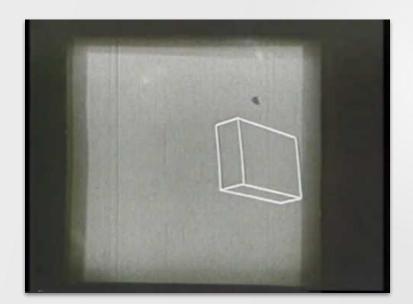
> Gain the completive edge



O1 What is BIM?

©BIMInnovage Solutions

Building Information Modeling is


BIM is a process we follow to create a digital record and a central source of shared knowledge of an asset from design through construction and into operation.

- BIM is more than a 3D visualisation of a project created by some design software.
- The Building Information Model is ALL the data pertaining to a project.
- A graphical representation of the project, which is commonly known as the 3D model.
- A database of information associated with the asset, this could be cost, performance or construction information.

Origins Of BIM

- In 1963 Ivan Sutherland develops SketchPad as a drawing assistant for part of his Ph.D dissertation.
- In 1970 BIM concepts was born.

BIM Concept

Aerospace Industry

Build Digitally on the computer!

Adopted in automotive company such as BMW, Porsche, Honda, Audi, Volkswagen, Volvo, Ford etc.

Automobile Industry

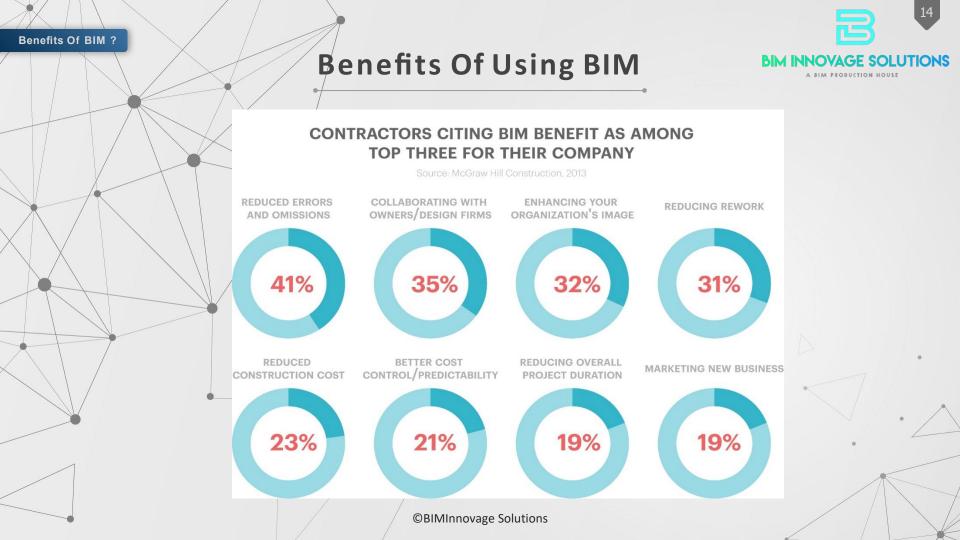
Used for car structures-door beams, IP support, bumper beams, roof rails, side rails, body components because CATIA capabilities in Computer Representation of surfaces.

Construction Challenges

- Inefficiency
- Poor coordination
- Poor value for money
- Lack ofunderstanding
- Reluctance tochange
- Lack of Proper Planning.
- Poor Decision Making.
- Lack of Mediation.

- Lack of Project Monitoring/ Program Monitoring.
- Reluctance in adoption of new technology.
- Lack in Value Engineering adoption.
- Lack of Integrated Project Delivery.

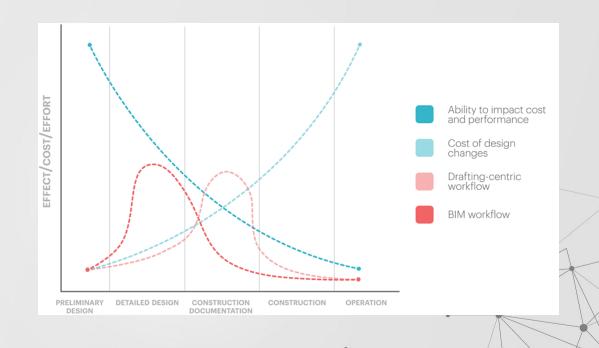
30% of projects do not meet original program or budget


92% of clients said that designers drawings are typically not sufficient for construction.

37% of materials used in construction become waste.

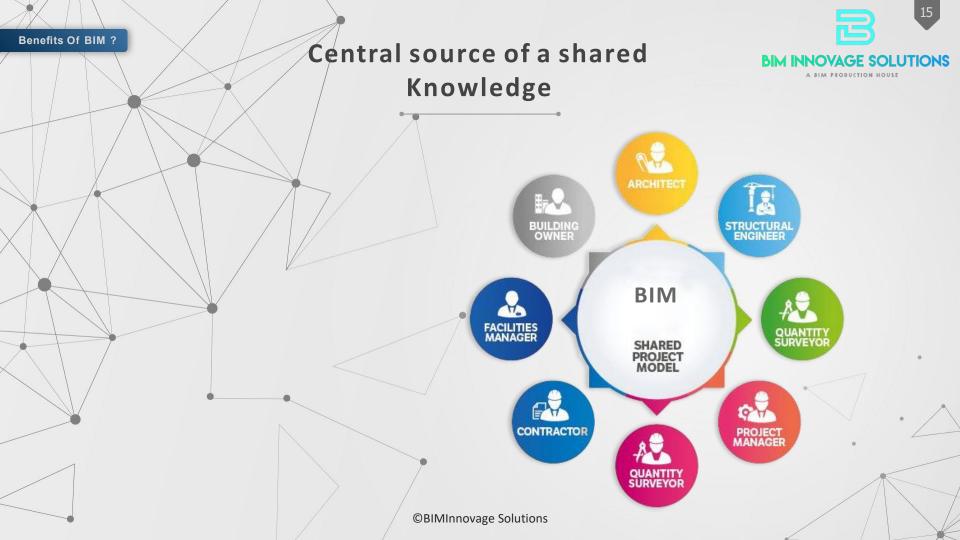
10% of the cost of a project is typically due to change orders.

38% of carbon emissions are from buildings not cars.


CMAA Owners survey, CMAA Industry Report, Economist Magazine

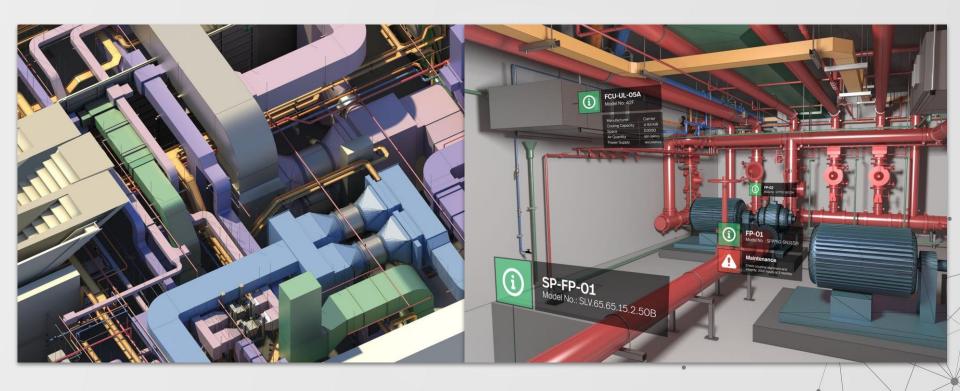
INNOVAGE SOLUTIONS

When to Implement BIM?

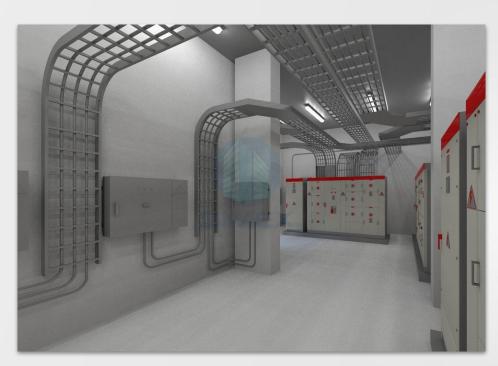

By dynamically connecting design, analysis, and documentation in a BIM workflow, most of the effort in a design project is shifted back into the detailed design phase when the ability to impact project performance is high and the cost of making design changes is low

BIM Schools?

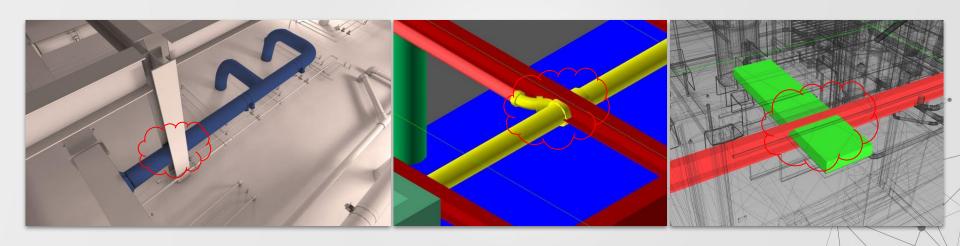
- Higher employability
- Higher Pay
- Helps you produce drawings more efficiently
- Allows you to access various visualization and analysis tools
- Easy collaboration in group work
- Clash detection
- Less duplication of work


3D Visualization

BIM's inherent 3D-rendering of the project views, which help understanding of what the project is all about, and how sophisticated the work is.


3D Visualization

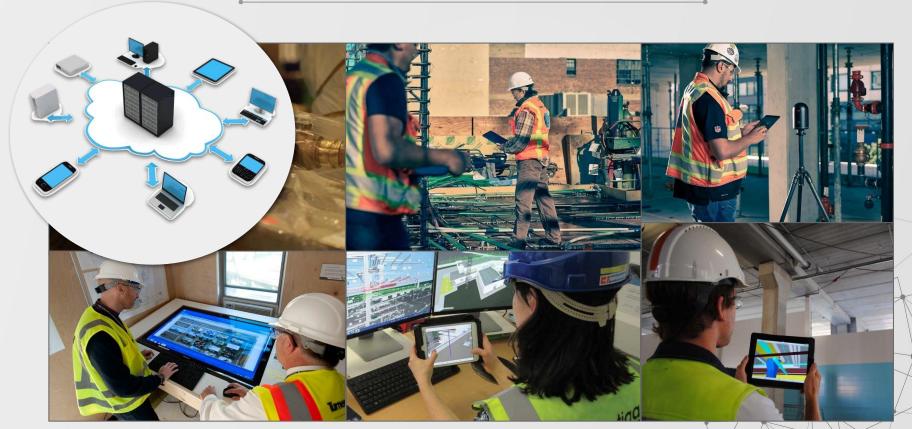
3D Visualization



Clash detection

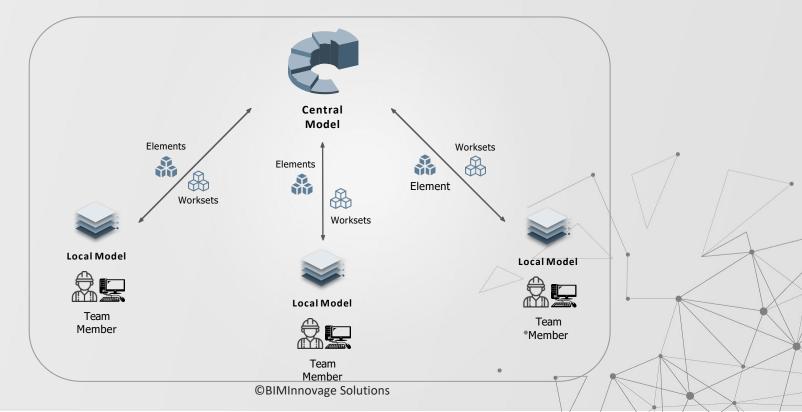

Coordination between the different disciplines leads to.

- Minimize conflicts between all systems.
- Minimize the overall cost of project at the installation and construction stages.


Construction simulation

Remote Access to Project Data

A BIM PRODUCTION HOUSE


Communication and Knowledge Exchange

2D Data Exchange BIM Interoperability BUILDING OWNER STRUCTURAL ENGINEER **BIM** FACILITIES MANAGER FACILITIES MANAGER QUANTITY SHARED PROJECT MODEL CONTRACTOR CONTRACTOR PROJECT MANAGER **QUANTITY** SURVEYOR **©BIMInnovage Solutions**

Team Collaboration.

Working Sharing among Team.

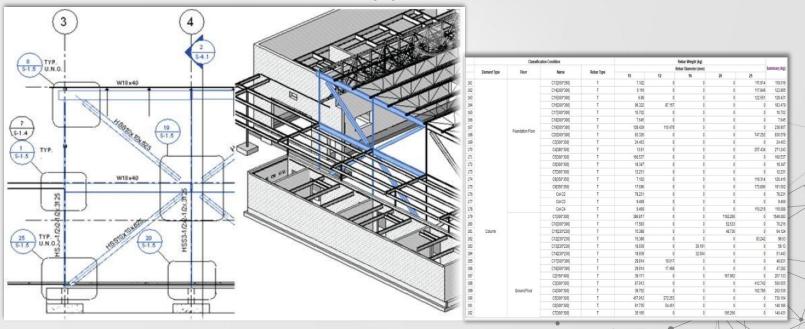
Interoperability "Integration"

BIM process provides the ability of two separate systems or software programs to communicate and exchange data with each other.

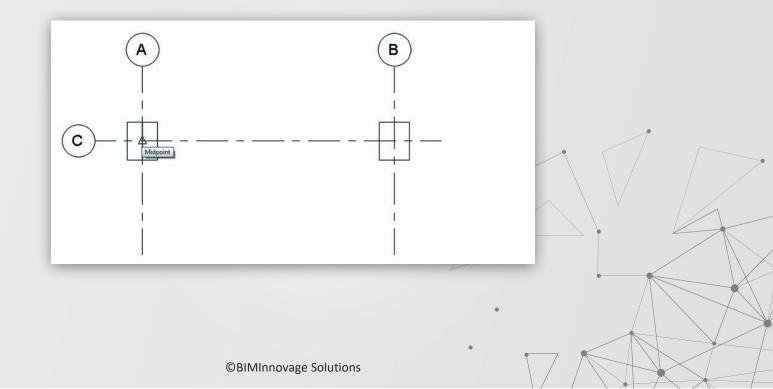
BIM INNOVAGE SOLUTIONS A BIM PRODUCTION HOUSE

Building Simulation

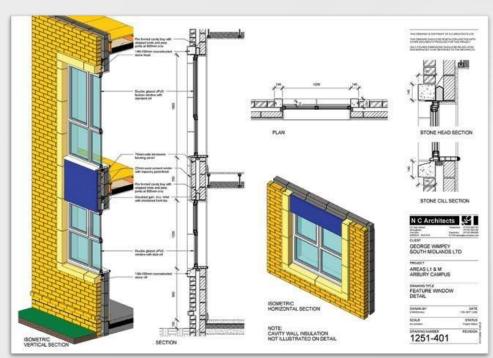
With a VIRTUAL MODEL you can run scenarios.

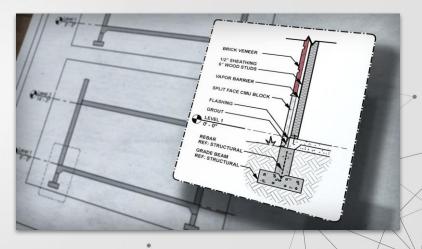


Bidirectional Associativity.


Since data is stored in a central place in a BIM model, any modification to the building design will be automatically replicated in each view, such as floor plans, sections, elevations and also the schedules.

This not only helps in creating the documentation faster, but also provides automatic coordination of different views.


Parametric Relationships.

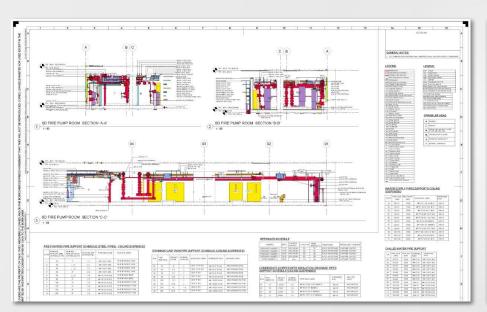


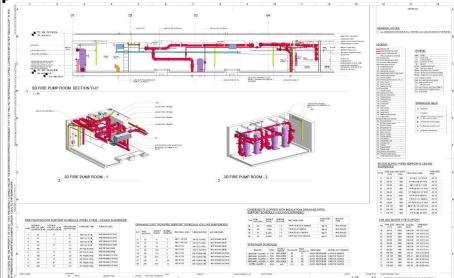
Detailed Drawings and Sections

BIM based software's takes no time to produce a section from the plan view.

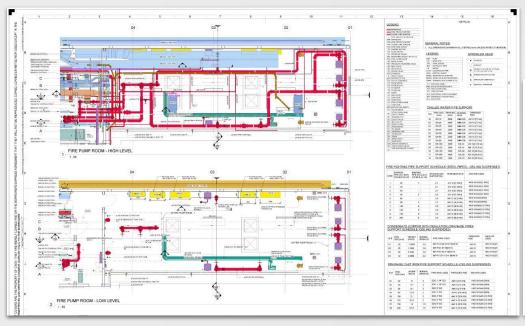
Material Quantity Take-off

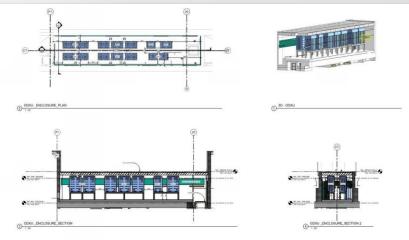
Material quantity take-off schedules are automatically extracted from the model and can be exported to excel spreadsheets.

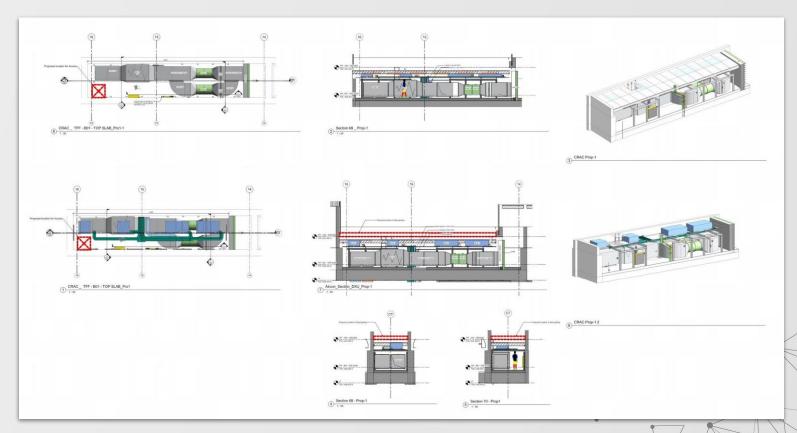

Floor: Ground Floor Total Weight: 27838.287kg												
Reb ar No.	Type	Dia mete r(mm)	Sha pe Cod e	Shape	Calculation Formula	Formula Description	Cutti ng- Off Len gth(mm)	Qua ntity	Total Wei ght (kg)	Reb ar Clas sifio atio n	CJ Zon	Remarks
Elem	ent 150	M550[1	1591	Position: <1+114,K><3-15	O,K> Rebar We	right of Current Eleme	nt: 145	.754	q			
1	т	10	195	500 100	2*(500+100)+24* d		144	40	35.5	Link		number 1 span number 1 span
No.1	т	12	0	4930 840	5270		527 0	2	9.35 7	Main		Top continuous bar
No.2	т	16	0	3675	3965		396 5	2	12.5 18	Main		Top continuous bar
No.3	т	25	0	49 <u>7938</u> ₁₈₅₀	8537		853 7	2	65.8	Main		Bottom continuous bar
No.4	т	16	1	2984	2984		298 4	2	9.42	Main		Bottom continuous bar
No.5	т	16	1	4165	4165		416 5	2	13.1 49	Main		Bottom continuous bar
Elem	ont 150	b600[1	0291	Position: <5+114,B+2398	><7,B+2398> F	tebar Weight of Curren	t Elen	nent	113.98	1949		
1	т	10	195	550 400	2*(550+100)+24* d		154	42	39.8 75	Link		number 1 span,number 1 span
No.1	т	12	0 :	3930 310	4240		424 0	2	7.52 9	Main bar		Top continuous bar
No.2	т	20	0	49 5856	6105		610 5	2	30.1 15	Main bar		Bottom continuous bar
No.3	т	20	1	3080	3080		308	2	15.1 93	Main bar		Top continuous bar
No.4	т	12	0	3580	3790		379 0	2	6.73	Main		Top continuous bar
No.5	т	16	0	4248 360	4608		460 8	2	14.5 47	Main		Bottom continuous bar
Elem	ent: 18	37 19	0x550	[1207] Position: <1b-157	0,J+149=<16-1570	K-74> Rebar Welg	est of 0	Durren	t Elon	nent i	52,62	3kg
1	т	10	195	500 400	2*(500+100)+24* d		144	20	17.7 55	Link		number 1 span
No.1	т	12		4645	5205		520	2	9.24	Main		Top continuous


		Cla	assification Conditio	Quantity						
Floor	Concrete Grade		Entity Type	Name		Section Shape	Volume(m3)	Area of formwork(m2)	Number(pc)	Girth(m)
				C5		Round	0.070	0.754	1	0.94
				C8		Round	0.071	0.801	1	0.9
				C1		Rectangular	0.090	0.693	1	1.3
				C10		Rectangular	0.023	0.325	1	1.3
				C11		Rectangular	0.023	0.325	1	1.3
				C12		Rectangular	0.024	0.400	1	1.0
				C13		Rectangular	0.024	0.400	1	1.0
				C14		L-a	0.086	1.198	1	1.8
				C15		Rectangular	0.050	0.715	1	1.3
				C17		Rectangular	0.030	0.430	1	1.3
				C18		Rectangular	0.044	0.600	1	1.5
		C25	Vertical	C19		Rectangular	0.049	0.780	1	1.8
oundation Floor	C25			C2		Rectangular	0.067	0.908	1	1.5
				C20		Rectangular	0.044	0.655	1	1.3
				C21		Rectangular	0.052	0.798	1	1.3
				C22		Rectangular	0.044	0.600	1	1.5
				C23		Rectangular	0.044	0.705	1	1.3
				C24		Rectangular	0.036	0.615	1	1.0
				C25		Rectangular	0.060	0.894	1	1.3
				C26		Rectangular	0.036	0.520	1	1.3
				C27		Rectangular	0.041	0.550	1	1.5
				C28		Rectangular	0.120	1.776	1	2.4
				C3		Rectangular	0.056	0.910	1	1.3
				C31		Rectangular	0.289	3.638	1	4.5
				C4		Rectangular	0.036	0.520	1	1.3
				C6		Rectangular	0.053	0.951	1	1.3
				C7		Rectangular	0.073	1.185	1	1.5
				C9		Rectangular	0.028	0.375	1	1.5

Coordinated Drawings


Facilitates the generation of 2D drawings of any part with any level of detail required.

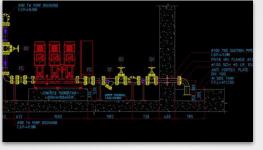



Coordinated Drawings

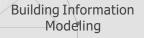
Coordinated Drawings

04

BIM Maturity




Evolution of Design Process



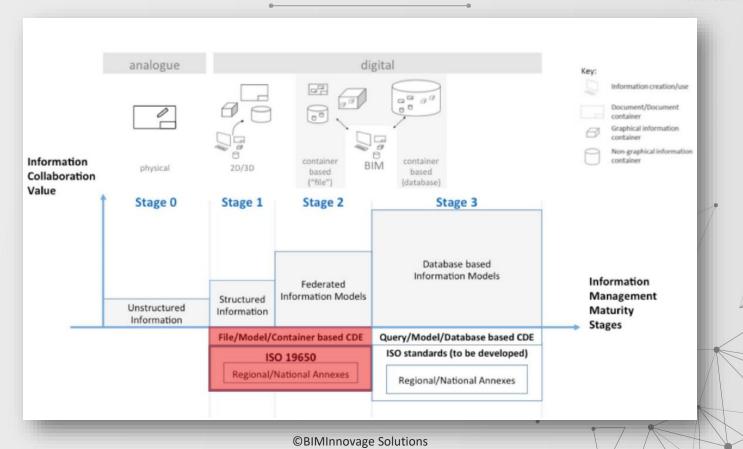
Hand Drafting

Computer Aided Drafting (CAD)

BIM Maturity

We have always had Building Information Modelled in some way or other.

The output from design teams have changed over the years from hand drawn plans and details to the use of computer aided design (CAD). CAD looked to replace drawing boards and improved drawing production.


CAD has more recently developed into 3D modelling design tools, improving the information output and also improving the ability to communicate, graphically the design to project stakeholder.

A Building Information Model is made up of **both graphical and non-graphical data**.

Objects contained in a model – a door being an object, a window, a ceiling and column etc. – can contain non graphical data such as specifications, dimensions and operational information. This graphical and non-graphical data can then be utilised by different project stakeholders.

BIM Maturity

BIM Dimensions

BIM INNOVAGE SOLUTIONS

A BIM PRODUCTION HOUSE

BIM is more than a 3D visualisation

2D

Documentation:

Construction plans, any kind of drawings and graphic representations

BIM Three-dimensional Model

3D

Visualization of the project Interdisciplinary coordination Quantities take off Workshop drawings

4D

Planning

Construction simulation Logistics of the execution Simulation of production processes

Costs control

Estimating expenses / cash flow Materials flow Operating Costs 5D

Sustainability

Energy analysis
Climate impact assessment
LEED and RESET monitoring

6D

Operation management

As-Built BIM Model
Operation strategy
And maintenance
Repair or demolition plan

7D

©BIMInnovage Solutions

ISO 19650 (in Series from 1 to 5)

- Published British Standard in International Organization for Standardization (ISO)
- Defining the standards of information management including principles, delivery (construction) phase, operational phase, as well as information exchanging and security of information

PAS 1192 (in Series from 1 to 6)

- The former version of ISO 19650, commonly recognize as superseded document
- Consist of various fundamental principles on how information management work flow is established.
- Also include the indication of various Level of Information

NBIMS-US V3

- United State National BIM Standards Version 3, an United State national standard
- Addressed various information management concerns including the referencing standards, Omni Class, Information Exchange Standards, as well as practical document samples

CIC BIM Protocol

- One of the British Guideline established by UK Construction Industry Council
- It defines various terminologies in use within BIM practices
- It also shown certain documentary samples to enable a smooth implementation of BIM by project team

NATSPEC National BIM Guide

- An Australian national BIM guide
- Mainly driven by the definition of BIM workflow
- Indicating various terminology and technology in-use
- Presented as a role model on how BIM information exchange

Belgium BIM Handbook

- Handbook for Belgium construction industry on BIM adoption
- Contents are mainly conceptual and principles definition of BIM
- Determining various BIM uses in construction industry
- Defining contents required to be exchanged during various phases of construction


AEC (CAN) BIM Protocol

- A Canada national BIM Protocol
- Defining detail operations of BIM implementation
- Addressed various BIM information exchange concerns
- Detailed expression on file naming convention and detail drawing requirements

HKI BIM Project Specification

- BIM project specification by Hong Kong Institute of BIM
- Indicating various examples of BIM projects processes
- Detailed exploration on various BIM process concerns
- Determined hardware and software specifications
- Specifically determine Level of Developments

Malaysia BIM Guide

- A Malaysia national BIM guide
- Mainly defining conceptual and principles of BIM application
- Separated into 4 modules
- Fundamentally indicating various BIM conceptual & principles
- 4th Module is an example of BEP

Public Work Department BIM Guide

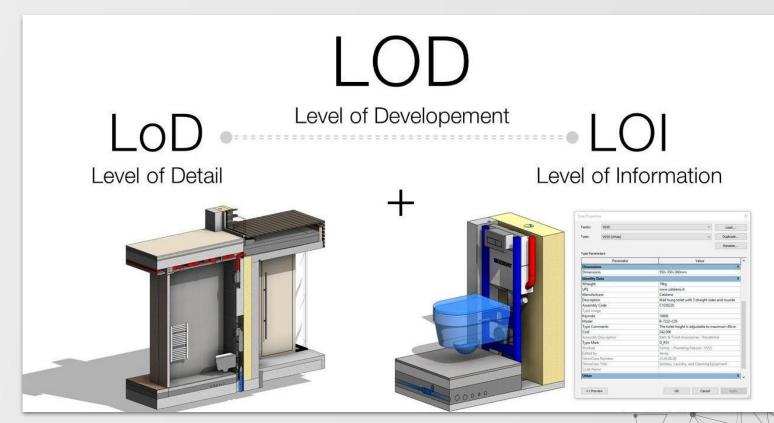
- A Malaysian government body internal BIM guide
- Indicating various BIM Uses
- Expressed different BIM processes
- Detail elaboration of each BIM Roles and responsibilities

Statsbygg BIM Manual

- National BIM Manual for Norway
- Mainly modelling driven
- Indicating various BIM Uses as in various modelling techniques

New Zealand BIM Handbook

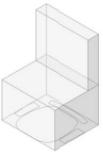
- A New Zealand national BIM guide
- Mainly defining conceptual and principles of BIM application
- Consist a subsection indicating BIM process flow
- Expressed along the ultimate use of information, operational asset management.


Singapore BIM Guide

- A Singapore national BIM guide
- Indicated various modelling guide for the aid of collaborations
- Determined various deliverables for easier project application
- Explanation for BIM workflows


Level Of Development

Level Of DeVELOPMENT


Level Of Details

LOD 100 **LOD 200 LOD 300** LOD 400 **LOD 500**

Concept (Presentation) Design Development

DESCRIPTION:

Office Chair

WIDTH:

DEPTH:

HEIGHT:

Arms, Wheels

700

450

MANUFACTURER: Herman Miller, Inc. MODEL: Mirra

100

LOD:

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

DEPTH:

HEIGHT: 1100

MANUFACTURER: Herman Miller, Inc. MODEL: Mirra

LOD: 200

Documentation

DESCRIPTION: Office Chair Arms, Wheels WIDTH:

700 DEPTH: 450

HEIGHT: 1100

MANUFACTURER: Herman Miller, Inc. MODEL:

Mirra LOD: 300

Construction

DESCRIPTION: Office Chair Arms, Wheels WIDTH:

685 DEPTH: 430

HEIGHT: 1085

MANUFACTURER: Herman Miller, Inc. MODEL:

Mirra LOD: 400

Facilities Management

DESCRIPTION: Office Chair Arms, Wheels WIDTH:

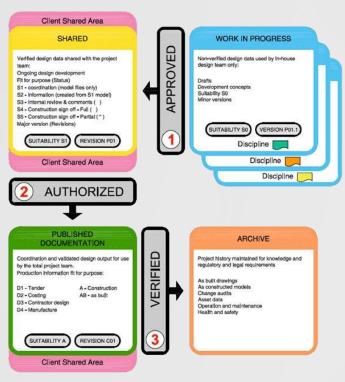
685 DEPTH: 430

HEIGHT: 1085

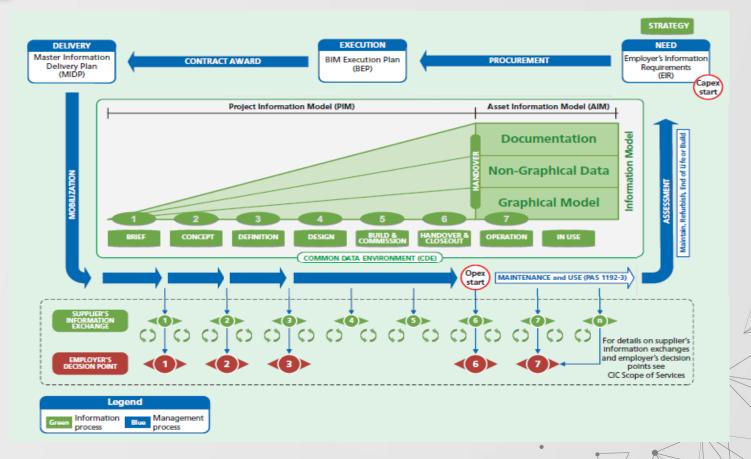
MANUFACTURER: Herman Miller, Inc

MODEL:

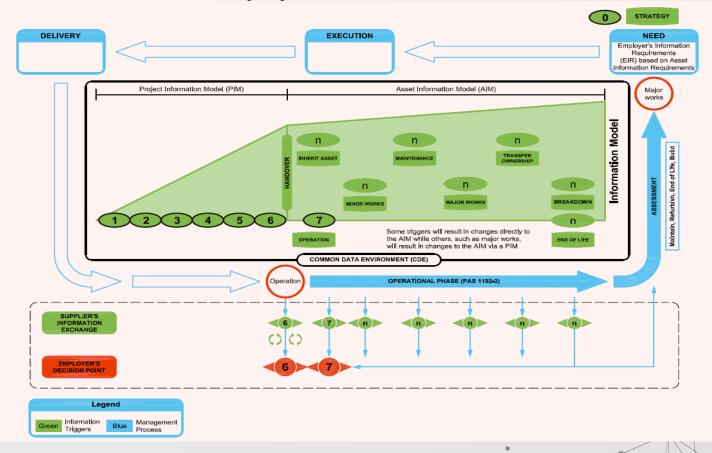
Mirra PURCHASE DATE: 01/02/2013


(Only data in red is useable)

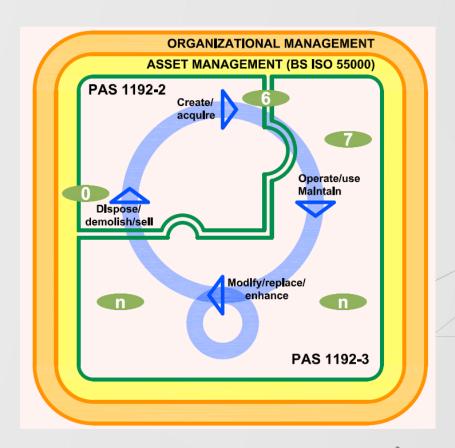
practicalBIM.net @ 2013


Common Data Environment (CDE)

The CDE is a means of providing a collaborative environment for sharing work and can be implemented in a number of ways. For the development of various forms of collaboration within organizations and across project teams



Information Delivery Cycle -PASS 1192-2



Information Delivery Cycle -PASS 1192-3

Relation Between PASS 1192-2 & 3

THANKS!

BIM INNOVAGE SOLUTIONS

A BIM PRODUCTION HOUSE

Contact us:

Phone: +60 1137422757

Email: biminnovagesolutions@gmail.com