Nova Analytic Labs Tomorrow's Testing \boldsymbol{P} Today

CERTIFICATE OF ANALYSIS

CLIENT: TASTEFULLY BAKED // BATCH: PASS

BATCH NO.: TB - GORILLA CHEESE - 0324^{1}
MATRIX: FLOWER ${ }^{1}$
SAMPLE ID: NAL-240314-002
COLLECTED ON: MAR 14, 2024
RECEIVED ON: MAR 14, 2024
SAMPLE SIZE: 4.8 G ${ }^{1}$
SAMPLED BY: JANELLE LAPLANTE
RECEIVED BY: TORI DANES

1 ENTERED BY CLIENT

CANNABINOID OVERVIEW

THCA:	25.8%
CBGA:	1.15%
TOTALCANNABINOIDS:	27.6%

BATCH RESULT: PASS

POTENCY	TESTED
MICROBIAL	PASS
PESTICIDES	PASS
TERPENES	TESTED

CAN.1: POTENCY \& CANNABINOID PROFILE BY HPLC-UV PREPARATION: MAR 15, 2024 // ANALYSIS: MAR 18, 2024

** TOTAL CBC $=($ CBDA $\times 0.877)+C B D$
** TOTAL THC $=($ THCAX 0.877$)+$ THC
Reported on an as received basis
$1000 \mu \mathrm{~g} / \mathrm{g}=1 \mathrm{mg} / \mathrm{g}$

AUTHORIZED BY:
ZACHARY SMITH LABORATORY MANAGER, NOVA

ANALYTIC LABS MAR 19, 2024

ANALYTE	AMT	AMT	LOD/LOQ (mg/g)	PASS/FAIL	ANALYTE
TOTAL TERPENES	2.13%	$21.3 \mathrm{mg} / \mathrm{g}$		N/A	FARNESENE
D-LIMONENE	0.781 \%	$7.81 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	FARNESOL
$\beta-\mathrm{MYRCENE}$	0.607 \%	$6.07 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	FENCHONE
β-CARYOPHYLLENE	0.265 \%	$2.65 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	y-TERPINENE
β-PINENE	0.107 \%	$1.07 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	GERANIOL
GUAIOL	0.0980 \%	$0.980 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	GERANYL ACETATE
$\boldsymbol{\alpha - H U M U L E N E ~}$	0.0882 \%	$0.882 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	ISOBORNEOL
ENDO FENCHYL ALCOHOL	0.0738 \%	$0.738 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	ISOBORNYL ACETATE
TERPINEOL	0.0556 \%	$0.556 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	ISOPULEGOL
a-PINENE	0.0541 \%	$0.541 \mathrm{mg} / \mathrm{g}$	$0.151 / 0.302$	N/A	LINALOOL
BORNEOL	< LOQ	$<\mathrm{LOQ}$	$0.151 / 0.302$	N/A	M-CYMENE
(-)-VERBENONE	ND	ND	$0.151 / 0.302$	N/A	MENTHOL
2-PIPERIDONE	ND	ND	$0.151 / 0.302$	N/A	MENTHONE
$\alpha-$ BISABOLOL	ND	ND	$0.151 / 0.302$	N/A	NEROL
a-CEDRENE	ND	ND	$0.151 / 0.302$	N/A	O-CYMENE
a-PHELLANDRENE	ND	ND	$0.151 / 0.302$	N/A	OCTYL ACETATE
$\alpha-T E R P I N E N E$	ND	ND	$0.151 / 0.302$	N/A	P-CYMENE
a-THUJONE	ND	ND	$0.151 / 0.302$	N/A	PHYTANE
CAMPHENE	ND	ND	$0.151 / 0.302$	N/A	PIPERITONE
CAMPHOR	ND	ND	$0.151 / 0.302$	N/A	PULEGONE
CARVACROL	ND	ND	$0.151 / 0.302$	N/A	SABINENE
CARYOPHYLLENE OXIDE	ND	ND	$0.151 / 0.302$	N/A	SABINENE HYDRATE
CEDROL	ND	ND	$0.151 / 0.302$	N/A	SAFRANAL
CIS- $\boldsymbol{\beta - O C I M E N E}$	ND	ND	$0.151 / 0.302$	N/A	TERPINEN-4-OL
CITRAL	ND	ND	$0.151 / 0.302$	N/A	TERPINOLENE
CITRONELLOL	ND	ND	$0.151 / 0.302$	N/A	THYMOL
D-CARVONE	ND	ND	$0.151 / 0.302$	N/A	TRANS- $\boldsymbol{\beta}$-OCIMENE
Δ^{3}-CARENE	ND	ND	$0.151 / 0.302$	N/A	VALENCENE
E-NEROLIDOL	ND	ND	$0.151 / 0.302$	N/A	Z-NEROLIDOL
EUCALYPTOL	ND	ND	$0.151 / 0.302$	N/A	

AMT	AMT	LOD/LOQ (mg/g)	PASS/FAIL
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A
ND	ND	$0.151 / 0.302$	N/A

PST.2: PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY LC-HRMS PREPARATION: MAR 15, 2024 // ANALYSIS: MAR 15, 2024
ANALYT
ABAMECTIN
ACEPHATE
ACEQUINOCYL
ACETAMIPRID
ALDICARB
AZOXYSTROBIN
BIFENAZATE
BIFENTHRIN
BOSCALID
CARBARYL
CARBOFURAN
CHLORANTRANIL-
IPROLE
CHLORFENAPYR
CHLORPYRIFOS
CLOFENTEZINE
CYFLUTHRIN
CYPERMETHRIN
DAMINOZIDE
DIAZINON
DICHLORVOS
DIMETHOATE
ETHOPROPHOS
ETOFENPROX
ETOXAZOLE
FENOXYCARB
FENPYROXIMATE
FIPRONIL
FLONICAMID
FLUDIOXONIL
HEXYTHIAZOX
IMAZALIL
IMIDACLOPRID
KRETALAXYL
METHYL
MALATHION
MEXI
CI

LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$2000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 844$	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 422$	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 422$	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 422$	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 422$	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/422	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/422	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/422	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS

LIMIT AMT ($\mu \mathrm{g} / \mathrm{kg}$) LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$) PASS/FAIL

METHIOCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
METHOMYL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
M G K-264	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND		PASS
M G K-264 I		ND	$77.2 / 77.2$	N/A
M GK-264 II		ND	49.4/49.4	N/A
MYCLOBUTANIL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
NALED	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
OXAMYL	$\begin{array}{r} 1000 \\ \mu \mathrm{~g} / \mathrm{kg} \end{array}$	ND	127/422	PASS
PACLOBUTRAZOL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
PARATHIONMETHYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
PERMETHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND		PASS
PERMETHRIN CIS		ND	54.4/54.4	N/A
PERMETHRIN TRANS		ND	$72.2 / 72.2$	N/A
PHOSMET	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
PIPERONYLBUTO-	2000	ND	$127 / 844$	PASS
XIDE	$\mu \mathrm{g} / \mathrm{kg}$	ND	127184	PAS
PRALLETHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
PROPICONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
PROPOXUR	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
PYRETHRINS	$\begin{array}{r} 1000 \\ \mu \mathrm{~g} / \mathrm{kg} \end{array}$	ND		PASS
PYRETHRINS CINERIN I		ND	84.3/84.3	N/A
PYRETHRINS CINERIN II		ND	86.1/86.1	N/A
PYRETHRINS JASMOLIN I		ND	68.4/68.4	N/A
PYRETHRINS JASMOLIN II		ND	$53.2 / 53.2$	N/A
PYRETHRINS PYRETHRIN I		ND	392/392	N/A
PYRETHRINS PYRETHRIN II		ND	2321232	N/A
PYRIDABEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
SPINOSAD	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
SPIROMESIFEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
SPIROTETRAMAT	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$127 / 127$	PASS
SPIROXAMINE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
TEBUCONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/169	PASS
THIACLOPRID	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
THIAMETHOXAM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS
TRIFLOXYSTROB-	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	127/127	PASS

ANALYTE LIMIT AMT (CFU/g) LOD/LOQ (CFU/g) PASS/FAIL
YEAST \& MOLD 10000 CFU/g $1000 / 1000$ PASS

NOTES

ZACHARYSMITH POTENCY \& CANNABINOID PROFILE BY HPLC-UV

MAR 19, 2024
THE STANDARD LAB UNCERTAINTY FOR POTENCY IS 5% OF THE REPORTED VALUE.

PRODUCT IMAGES

> * FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE.

END OF REPORT

