Nutritional Treatment of Blood Pressure: Nonpharmacologic Therapy

L. Michael Prisant

Blood pressure is a continuous variable, like temperature and heart rate. ${ }^{1}$ The level of blood pressure gradually increases from birth to age 18 years. The dividing line between a normal and an abnormal blood pressure is arbitrary. However, there is a continuous relationship between the level of blood pressure and various cardiovascular events, including myocardial infarction, strokes, congestive heart failure, renal failure, and mortality. An optimal blood pressure is a systolic blood pressure less than 120 mmHg and diastolic blood pressure less than 80 mmHg . Hypertension is defined by the average of multiple measurements with either a systolic blood pressure $\geq 140 \mathrm{mmHg}$ or a diastolic blood pressure $\geq 90 \mathrm{mmHg}$.

The hallmark of hypertension is an elevated systemic vascular resistance. Hypertension may be caused by various adrenal tumors producing cortisol, aldosterone, and norepinephrine, hyperthyroidism, hypothyroidism, hyperparathyroidism with increased parathormone and calcium, acromegaly with increased growth hormone, renal failure, renal artery stenosis resulting in renal ischemia and increased renin, and various drugs that cause salt and water retention, increase renin, or activate the sympathetic nervous system. The majority of patients with arterial hypertension do not have a known cause.

Why the prevalence of essential hypertension increases with aging and what causes it remain an enigma. It is likely that what is called essential hypertension may be the result of diverse causes. Multiple factors alter the level of blood pressure. The sympathetic nervous system is important for modifying the tone of blood vessels. Circulating renin, angiotensin, aldosterone, norepinephrine, and endothelin are vasoconstrictors. The kidney is necessary to regulate sodium excretion and volume. Endothelial damage due to abnormal lipids, glucose intolerance, tobacco use, hyperhomocystinemia, hyperinsulinemia, and circulating vasoconstrictors is less responsive to local endogenous vasodilators such as nitric oxide. Essential hypertension is not a homogenous disease state; it is likely a polygenic trait.

Hypertension affects 24% of the U.S. adult population. Since essential hypertension accounts for 90 to 95% of all causes and the prevalence increases with each decade of life, there is an interest in the role of nutrients and foods for both the etiology and treatment of hypertension. A primary preventive approach is advocated by some epidemiologists and researchers.

Nutrients and Blood Pressure

Sodium

A large body of data relates salt intake to the level of blood pressure. In a study of chimpanzees that normally eat a fruit and vegetable diet (low sodium and high potassium intake), half had salt (up to $15 \mathrm{~g} / \mathrm{d}$) added gradually to their diet over 20 months. ${ }^{2}$ Sodium chloride resulted in a blood pressure increase of $33 / 10 \mathrm{mmHg}$, which could be reversed within six months of removing sodium chloride from the diet. Similar studies have convinced the medical community that salt may be responsible for the higher prevalence of hypertension in modern society compared to more primitive communities. However, sodium may not be the sole culprit. Studies suggest that the chloride anion with sodium is necessary for an increase in blood pressure, since giving sodium with other anions does not increase blood pressure. ${ }^{3,4}$

The INTERSALT (International Study of Salt and Blood Pressure) Cooperative group examined 10,079 men and women aged 20 to 59 by urine sodium excretion and blood pressure at 52 centers throughout the world. ${ }^{5}$ The average intake of sodium was 100 to 200 mmol (6 to 12 g NaCl or 2.5 to 5 g sodium). The relationship of sodium excretion and systolic blood pressure correlated positively in 33 of 52 centers after correcting for age, gender, body mass index (BMI), alcohol consumption, and urine potassium excretion, but was significant in only eight centers. Negative correlations were observed in 19 centers. For the entire cohort, the adjusted effect of sodium for systolic blood pressure was 2.17 mmHg per 100 mmol 24 hour sodium excretion ($\mathrm{p}<0.001$). There was not a significant adjusted effect for diastolic blood pressure. Among the centers with a low BMI (21.8 kg / m^{2}) and a low sodium intake (26.7 mmol), the mean prevalence of hypertension was 1.7%. For the sites with a low BMI ($22.2 \mathrm{~kg} / \mathrm{m}^{2}$) but with a high sodium intake (187.7 mmol), the prevalence of hypertension was $11.9 \% .{ }^{6}$ Alternatively, the Scottish Heart Health Study of 7354 men and women aged 40 to 59 years reported a weak positive correlation of urinary sodium excretion and either systolic or diastolic blood pressure. ${ }^{7}$ The correlation was not significant after adjustment for age, BMI, alcohol consumption, and urinary potassium excretion.

The implication of INTERSALT is that if the population reduces daily sodium intake by 100 mmol or 1 teaspoon of salt per day, systolic blood pressure would decrease 2 to 3 $\mathrm{mmHg} .{ }^{6}$ This could have the potential to reduce coronary deaths by 4 to 5%, stroke deaths 6 to 8%, and total mortality by 3 to 4%. The impact would be greater over a lifetime for a whole population, reducing total, coronary, and stroke mortality by 13,16 , and 23%, respectively. The public policy sodium intake goal is 6 g per day. ${ }^{8}$

Not every person's blood pressure increases with salt. Salt-sensitivity refers to those individuals whose blood pressure increases with increased salt intake and decreases with reduced salt intake. Up to 50% of hypertensives may be salt sensitive. The blood pressure response to sodium chloride is determined by genetic and environmental factors. African Americans, obese patients, low-renin hypertensives, chronic renal insufficiency patients, and the elderly may benefit more than other groups by reducing sodium intake.

To assess the impact of sodium chloride on blood pressure, trials have been conducted either by restricting or supplementing sodium to the diet. Sodium supplementation trials are conducted less commonly (Table 47.1). ${ }^{9}$ In the Study of Sodium and Blood Pressure, normotensive subjects participated in a trial, using a placebo or 96 mEq sodium capsules in 4 -week treatment periods separated by a 2 -week washout period. ${ }^{9}$ Overnight urinary sodium excretion decreased $51 \mathrm{mEq} / 8 \mathrm{hr}$ from baseline to $9 \mathrm{mEq} / 8 \mathrm{hr}$ after the low sodium

TABLE 47.1
Randomized Double-Blind Trials of Sodium Supplementation

Author, Year	Study Group	Design	n	Group Differences in $\mathrm{Na}+$ Excretion (mEq/24 hr)	Sodium Effect on Pressure Δ Systolic/ Δ Diastolic (mmHg)
Australian National Committee, 1989	Hypertensive	Parallel	103	43	+4.8/+2.8
Dodson, 1989	Hypertensive Type 2 Diabetes	Parallel	9	76	+9.7/+5.1
McCarron, 1997	Hypertensive	Crossover	99	55	+4.9/+2.9
MacGregor, 1982	Hypertensive	Crossover	19	146	+10/+5
MacGregor, 1989	Hypertensive	Crossover	20		
High intake				141	+16/+9
Moderate intake				59	+8/+4
Mascioli, 1991	Normotensive	Crossover	48	60	+3.6/+2.3
Palmer, 1989	Elderly	Crossover	7	-	+11.0/+8.6
Watt, 1983	Hypertensive	Crossover	18	56	+0.5/+0.4

Updated and modified from Mascioli et al., Hypertension 17: 121; 1991.
diet run-in period, before treatment periods were initiated. Differences in systolic and diastolic blood pressure between sodium and placebo treatment periods were significant. Sodium excretion increased $+20.4 \mathrm{mEq} / 8 \mathrm{hr}(\mathrm{p}<0.001)$. An increase of systolic and diastolic blood pressure with the salt capsules was experienced by 65 and 69% of study participants.

A number of meta-analyses have sought to summarize the impact of sodium restriction on blood pressure. ${ }^{10-15}$ One meta-analysis of 2635 subjects with 32 randomized trials on sodium reduction required random allocation, no confounding variables, an objective measure of a change in sodium intake (i.e., urine sodium excretion), and no adolescents, ${ }^{14}$ updating an earlier analysis by the same authors. ${ }^{11}$ The individual studies are listed in Tables 47.2 and 47.3. The largest meta-analysis of 4294 subjects included 58 trials of hypertensive and 56 trials of normotensive persons. ${ }^{15}$ The mean reduction of blood pressure by sodium restriction in hypertensive individuals was $-3.9 /-1.9 \mathrm{mmHg}$ ($\mathrm{p}<0.001$ for both) and in normotensives was $-1.2 /-0.26 \mathrm{mmHg}$ ($\mathrm{p}<0.001$ for systolic only). Tables 47.4 and 47.5 provide a comprehensive list of the trials used in that meta-analysis. The authors conclude that the cumulative blood pressure-lowering effect of individual sodium restriction trials in both normotensive and hypertensive populations has been stable since 1985. Future trials are unlikely to change the average treatment effect noted above.

The reduction of sodium intake for primary prevention as well as nonpharmacologic treatment of hypertension has become controversial in recent years. ${ }^{16-18}$ In one study, 2937 hypertensive men provided 24 -hour urine collections for sodium determination off medication for 3 to 4 weeks. ${ }^{16}$ After 3.8 years of average followup, 117 cardiovascular events (including 55 myocardial infarctions) occurred. There was an inverse relationship between baseline urinary sodium excretion and myocardial infarction rate. A recent meta-analysis indicated that renin, aldosterone, norepinephrine, total cholesterol, and low-density lipoprotein cholesterol increases with sodium restriction. ${ }^{15}$ Other hazards of moderate sodium restriction suggested include a potential increase in blood pressure in 15% of patients, increased sympathetic activity and sleep disturbances, the potential of simultaneous restriction of grain products, meat, poultry, and fish, and dairy products (which contain 50% of sodium intake), decreased iodine intake, decreased susceptibility of the elderly to respond to blood loss or heat stress, the potential for fetal growth retardation during pregnancy, and unknown effects of alternative food preservatives. ${ }^{19}$

TABLE 47.2
Descriptive Summary of Sodium-Reduction Trials in Normotensive Subjects*

Author, Year	n	Duration (mo)	Blinding	Δ Urinary Na $\mathrm{mmol} / 24 \mathrm{~h}$	(No)II Changes in Confounders	Δ Systolic mm Hg	Δ Diastolic mm Hg

Crossover Trials

Skrabal, 1981	20	0.5	NR	-170	Wt (K)	-2.7	-3.0
Cooper, 1984	113	2	BP obs	-68	Wt, (K)	-0.6	-1.4
Watt, 1985 (H)	35	1	DB	-74	(Wt), K	-1.4	1.2
Watt, 1985 (L)	31	1	DB	-60	(Wt), K	-0.5	1.4
Teow, 1985	9	0.5	BP obs	-210	(Wt), K	-0.6	-2.7
Myers, 1989	172	1	BP obs	-130	(Wt), (K)	-3.5 \dagger	$-1.9{ }^{+}$
Hargreaves, 1989	8	0.5	DB	-106	(Wt), (K)	-6.0+	-3.0^{+}
Mascioli, 1991	48	1	DB	-20.2/8h	NR	-3.6+	-2.3^{+}
Parallel Trials ${ }^{\ddagger}$							
Puska, 1983	19, 19 \ddagger	0.5	BP obs	-117	Wt, K, Alc, (P:S)	-1.5	-1.1
HPT, 1990	174, 177	36	BP obs (RZ)	-16	(Wt), K	0.1	0.2
Cobiac, 1992	26, 28	1	DB	-71	(Wt), (K)	-1.7	0.8
TOHP, 1992	327, 417	18	BP obs (RZ)	-44	$\begin{aligned} & (\mathrm{Wt}),(\mathrm{K}),(\mathrm{Ca}), \\ & (\mathrm{mg}),(\mathrm{alc}), \text { (fat) } \end{aligned}$	-1.7^{+}	$-0.9{ }^{+}$
Nestel, 993 (Females)	15,15	6	DB	-94	(Wt), (K)	-6.0^{+}	-2.0^{+}
Nestel, 993 (Males)	17, 19	6	DB	-76	(Wt), (K)	-2.0^{+}	-1.0^{+}

* NR, not reported; Wt, body weight; K, potassium excretion; BP obs, observers blinded; H, high blood pressure; L, low blood pressure; DB, double blind; Alc, alcohol intake; P:S, ratio of polyunsaturated to saturated fat; HPT, Hypertension Prevention Trial; RZ, random zero manometer; TOHP, Trials of Hypertension Prevention Collaborative; Ca, calcium intake; Mg, magnesium intake; fat, fat intake.
$+\mathrm{p}<0.05$.
\ddagger values are the number of subjects in the sodium-reduction treatment and control groups, respectively.
II Parentheses denote controlled factors; no parentheses denotes possible confounders
Modified from Cutler. ${ }^{11}$ Reproduced with permission from Am J Clin Nutr, 1997; 65(2):643S-651S. Copyright Am. J. Clin. Nutr., American Society for Clinical Nutrition.

TABLE 47.3

Descriptive Summary of Sodium-Reduction Trials in Hypertensive Subjects*

Author , Year	n	Duration (mo)	Blinding	Δ Urinary Na $\mathrm{mmol} / 24 \mathrm{~h}$	(No) ${ }^{\text {II }}$ Changes in Confounders	Δ Systolic mm Hg	Δ Diastolic
mm Hg							

Crossover Trials

Parijs,1973	15	1	NR	-98	(Wt)	-6.7	3.2
MacGregor, 1982	19	1	DB	-76	Wt, (K)	-10.0^{+}	-5.0^{+}
Watt,1983	18	1	DB	-56	(Wt), (K)	0.5	-0.3
Richards, 1984	12	1-1.5	NR	-105	(Wt), K	-5.2	-1.8
Grobbee, 1987	40	1.5	DB	-72	(Wt), (K)	-0.8	-0.8
MacGregor, 1989	20	1	DB	-82	(Wt), (K)	-8.0^{+}	-5.0^{+}
Dodson,1989	9	1	DB	-76	(Wt), (K)	$9.7{ }^{+}$	-5.1
ANHMRC,1989	88	2	DB	-67	(K)	$-2.6{ }^{+}$	$-2.1{ }^{+}$
Benetos, 1992	20	1	DB	-78	(Wt), (K), (Ca)	-6.5^{+}	$-3.7{ }^{\dagger}$
Parallel Trials \ddagger							
Morgan, 1978	31, 31 ${ }^{\ddagger}$	24	BP obs	-27	NR	-1.5^{+}	-6.9^{+}
Morgan,1981	6,6	2	BP obs	-98	K	NR	-6.02
Morgan, 1981	6,6	2	BP obs	-78	K	NR	-4.0
Costa, 1981	20, 21	12	NR	NR§	NR	-18.3^{+}	-5.9^{+}
Silman, 1983	10, 15	12	BP obs (RZ)	-53	(Wt), (K)	-8.7	-6.3
Puska, 1983	15, 19	1.5	BP obs	-117	Wt, K, Alc, (P:S)	1.8	0.5
Fagerberg, 1984	15, 15	2.3	NR	-89	(Wt), (K), (Alc)	$-13.3{ }^{+}$	-6.7^{+}
Maxwell,1984	18, 12	3	NR	-171	Wt	-2.0	2.0
Erwteman,1984	44, 50	6	BP obs (RZ)	-58	NR	-2.7	$-3.4{ }^{+}$
Chalmers,1986	48, 52	3	NR	-54	(K)	-5.1^{+}	-4.2^{+}
Logan,1986	37,38	6	BP obs	-32	Wt, (K)	-1.1	-0.2
Dodson, 1989	17, 17	3	BP obs	-59	(Wt). (K)	-13.0^{+}	-1.8
ANHMRC, 1989	50, 53	2	DB	-71	(Alc)	-5.5^{+}	$-2.8{ }^{+}$
Sciarrone, 1992	46, 45	2	DB	-84	(Wt), (K)	-6.0^{+}	-1.0
Parker,1990, low EtOH,	16, 15	1	DB	-80	(Wt), (Alc), (K), (Ca), (Mg)	2.2	0.5
Parker, 1990, norm EtOH	15, 13	1	DB	-52	(Wt), (Alc), (K), (Ca), (Mg)	-0.1	0.8

* NR, not reported; Wt, body weight; DB, double blind; K, potassium intake/excretion: ANHMRC, Australian National Health and Medical Research Council; Ca , calcium intake/excretion; BP obs, observers blinded: RZ, random zero manometer; Alc, alcohol intake; P:S, ratio of polyunsaturated to saturated fatty acid; Mg, magnesium excretion.
$+\mathrm{p}<0.05$.
$\ddagger \mathrm{n}$ values given for each study are the number of subjects in the sodium-reduction treatment and control groups, respectively.
§ -23% intracellular Na .
II Parentheses denote controlled factors; no parentheses denotes possible confounders
Modified from Cutler. ${ }^{11}$ Reproduced with permission from Am J Clin Nutr, 1997; 65(2): 643S-651S. Copyright Am. J. Clin. Nutr., American Society for Clinical Nutrition.

TABLE 47.4
Characteristics of Trials of Sodium Restriction and Blood Pressure in Normotensive Populations*

Author, Year	Design	Dur.	N	Age	NU	SR	$\begin{gathered} \text { Cum } \\ \text { SR } \end{gathered}$	Effect SBP	Effect DBP	Cum. SBP	$\begin{aligned} & \text { Cum } \\ & \text { DBP } \end{aligned}$	$\begin{gathered} \mathbf{Z} \\ \mathbf{S B P} \end{gathered}$	$\begin{gathered} \mathbf{Z} \\ \mathbf{D B P} \end{gathered}$
Sullivan, 1980	Op, CO	4	27	29	1	146	146	-7.1	-1.1	-7.1	-1.1	-2.2	-0.4
Skrabal, 1981	Op, CO	14	20	23	1	150	147	2.7	3.0	-2.7	0.7	-1.0	0.4
Myers, 1982	Op, CO	14	136	39	1	130	133	3.3	2.7	2.4	2.4	1.1	2.2
Puska, 1983	SB, P	72	38	40	3	90	123	1.5	2.1	2.4	2.2	1.1	2.2
Cooper, 1984	SB, CO	24	59	16	1	55	111	1.4	3.4	2.0	3.5	1.6	3.0
Cooper, 1984	SB, CO	24	54	16	1	72	107	-0.3	-0.7	1.3	2.7	1.3	2.6
Skrabal, 1984	Op, CO	14	30	23	1	137	109	-1.4	-0.8	1.2	2.3	1.0	2.2
Skrabal, 1984	Op, CO	14	22	23	1	167	113	7.7	4.6	1.5	2.4	1.9	2.7
Skrabal, 1985	SB, CO	14	34	23	1	144	115	0.1	0.6	0.9	1.9	1.9	2.8
Skrabal, 1985	SB, CO	14	28	23	1	163	118	5.8	3.3	1.4	2.0	3.3	3.9
Watt, 1985	DB, CO	28	31	23	4	60	114	0.5	-1.4	1.3	1.4	3.4	3.3
Watt, 1985	DB, CO	28	35	22	4	75	111	1.4	-1.2	1.3	0.9	3.7	2.8
Teow, 986	Op, CO	14	9	25	1	200	112	0.6	2.7	1.3	0.9	3.6	2.9
Richards, 1986	SB, CO	4	8	36	4	181	114	2.0	-7.0	1.3	0.9	3.5	2.2
Fuchs, 1987	Op, CO	9	6	20	3	99	113	5.8	-3.0	1.3	0.8	3.6	1.9
Fuchs, 1987	Op, CO	9	11	20	3	93	111	1.1	-1.0	1.3	0.8	3.5	1.8
El Ashry, 1987	SB, CO	14	13	24	1	222	111	0.0	4.0	1.3	0.8	3.4	1.9
El Ashry, 1987	SB, CO	14	13	27	1	232	115	0.0	1.0	1.3	0.8	3.3	1.9
Lawton, 1988	Op, CO	6	13	24	1	313	119	2.0	-2.0	1.3	0.8	3.3	1.7
Hargreaves, 1989	DB, CO	14	8	23	2	106	119	6.0	3.0	1.3	0.8	3.4	1.7
Mtabaji, 1990	Op, P	7	30	-	1	272	121	9.0	9.0	1.4	1.0	4.0	2.3
Friberg, 1990	Op, CO	13	10	33	3	117	120	0.0	1.0	1.4	1.0	4.0	2.4
Dimsdale, 1990	Op, CO	5	19	34	2	183	129	-1.4	-4.1	1.2	0.5	3.7	1.6
Dimsdale, 1990	Op, CO	5	23	34	2	178	132	-1.0	-4.4	1.2	0.3	3.6	1.0
HPT, 1990	SB, P	1100	228	40	1	23	125	-0.3	-0.1	1.1	0.3	3.5	0.9
Sharma, 1990	SB, CO	7	15	24	2	192	127	0.9	3.7	1.1	0.3	3.4	1.1
Schmid, 1990	SB, CO	7	9	32	1	190	128	3.0	0.0	1.1	0.3	3.5	1.0
Bruun, 1990	Op, CO	4	10	46	1	341	131	5.0	1.0	1.1	0.3	3.6	1.1
Ruppert, 1991	SB, CO	7	98	35	3	275	179	-0.3	-0.3	1.1	0.3	3.5	1.0
Ruppert, 1991	SB, CO	7	24	36	3	275	190	-6.0	-6.0	0.9	0.1	2.9	0.4
Ruppert, 1991	SB, CO	7	25	46	3	262	198	7.5	7.5	1.0	0.2	3.3	0.9

Sharma, 1991	SB, CO	6	13	25	3	246	198	3.0	-0.5	1.1	0.2	3.6	0.9
Sharma, 1991	SB, CO	6	10	24	3	247	198	6.4	5.9	1.1	0.2	3.7	1.1
Mascioli, 1991	DB, CO	28	48	52	5	70	197	3.6	2.3	1.3	0.4	4.3	1.5
Steegers, 1991	SB, P	140	36	27	5	63	195	-2.0	-2.0	1.3	0.4	4.1	1.4
Cobiac, 1992	DB, P	28	52	66	2	75	194	3.1	2.8	1.3	0.4	4.3	1.8
Cobiac, 1992	DB, P	28	54	67	2	73	192	2.7	-0.6	1.3	0.4	4.4	1.7
TOHP, 1992	SB, P	550	744	43	3	47	135	1.7	0.9	1.4	0.4	4.7	2.0
Burnier, 1993	Op, CO	6	16	29	1	186	136	1.0	-0.5	1.4	0.4	4.7	1.9
Burnier, 1993	Op, CO	6	7	29	1	218	137	1.0	-1.2	1.4	0.4	4.7	1.8
Ruppert, 1993	SB, CO	7	30	46	3	270	146	12.6	5.6	1.4	0.4	5.1	2.3
Ruppert, 1993	SB, CO	7	108	36	3	275	160	1.4	-1.2	1.4	0.4	5.2	2.1
Ruppert, 1993	SB, CO	7	25	35	3	280	165	-5.9	-8.0	1.4	0.3	4.9	1.5
Sharma, 1993	SB, CO	7	16	24	3	224	166	0.8	0.5	1.4	0.3	4.9	1.5
Fliser, 1993	SB, CO	8	8	25	2	190	167	1.3	1.3	1.4	0.3	4.9	1.5
Fliser, 1993	SB, CO	8	8	26	2	181	167	0.6	0.6	1.4	0.3	4.8	1.5
Nestel, 1993	DB, P	42	72	66	4	56	166	2.0	1.0	1.4	0.3	4.9	1.6
Nestel, 1993	DB, P	42	60	65	4	73	165	6.0	2.0	1.4	0.4	5.1	1.7
Donovan, 1993	SB, CO	5	8	36	1	152	164	2.0	-1.0	1.4	0.4	5.1	1.6
Grey, 1996	DB, CO	7	34	23	1	133	164	-1.0	-1.0	1.4	0.3	5.0	1.5
Feldmann, 1996	DB, CO	7	5	27	1	176	164	-5.0	-5.0	1.2	0.2	4.5	1.1
Schorr, 1996	DB, CO	28	16	64	2	61	162	1.0	0.0	1.2	0.2	4.4	1.0
Miller, 1997	Op, CO	7	12	23	2	182	163	1.0	1.0	1.2	0.2	4.5	1.1
Miller, 1997	Op, CO	7	10	-	2	194	163	-1.0	-1.0	1.2	0.2	4.4	1.1
Schorr, 1997	SB, CO	7	27	25	7	208	163	5.6	5.6	1.3	0.3	4.6	1.3
Schorr, 1997	SB, CO	7	76	25	7	208	165	-2.8	-2.8	1.2	0.3	4.5	1.2

* Dur.: duration of intervention, days; Op: open; SB: single blind; DB: double blind; P: parallel; CO: cross-over; N: number of persons in trial; Age: mean age of persons in trial; NU: number of urine collections per person per treatment period; SR: sodium reduction, mmol/24-h; Cum: cumulative; CI: 95% confidence interval of previous column. SBP: systolic blood pressure; DBP: diastolic blood pressure; Z: summary statistic; •: no data.
Personal Communication from NA Graudal of unpublished data from his manuscript. ${ }^{15}$

TABLE 47.5
Characteristics of Trials of Sodium Restriction in Hypertensive Populations*

Author, Year	Design	Dur.	N	Age	NU	SR	$\begin{gathered} \text { Cum } \\ \text { SR } \end{gathered}$	Effect SBP	Effect DBP	Cum. SBP	$\begin{aligned} & \text { Cum } \\ & \text { DBP } \end{aligned}$	$\begin{gathered} \mathbf{Z} \\ \text { SBP } \end{gathered}$	$\begin{gathered} \mathbf{Z} \\ \text { DBP } \end{gathered}$
Parijs, 1973	Op, CO	28	15	41	1	98	98	6.7	-3.2	6.7	-3.2	1.6	-1.2
Mark, 1975	Op, CO	10	6	28	1	305	216	13.1	7.7	9.8	-0.1	2.7	0.4
Morgan, 1978	SB, P	90	62	60	2	23	114	1.0	2.0	6.2	1.2	2.6	0.9
Sullivan, 1980	Op, CO	4	19	27	1	153	121	-1.2	1.2	4.6	1.2	2.2	0.9
Morgan, 1981	SB, P	56	12	38	2	67	106	-	4.0	-	1.9	-	1.1
Morgan, 1981	SB, P	56	12	40	2	92	104	-	8.0	-	3.0	-	1.7
Ambrosioni, 1982	SB, CO	42	25	23	6	60	91	2.2	0.4	3.9	2.6	1.3	1.7
MacGregor, 1982	DB, CO	28	19	49	2	76	89	10.0	5.0	5.4	3.0	2.0	2.2
Beard, 1982	Op, P	84	90	48	3	124	95	5.2	3.4	5.4	3.0	2.2	2.5
Watt, 1983	DB, CO	28	18	52	4	56	92	0.5	0.3	3.6	2.0	2.3	2.5
Silman, 1983	Op, P	90	28	55	4	63	91	-3.5	-0.5	3.5	1.9	2.1	2.4
Puska, 1983	SB, P	72	34	40	3	90	91	-1.8	-0.5	3.3	1.8	2.0	2.3
Koolen, 1984	Op, CO	14	20	41	2	213	97	6.5	4.9	3.4	1.9	2.2	2.5
Richards, 1984	SB, CO	28	12	36	2	100	97	4.0	3.0	3.4	2.0	2.4	2.7
Erwteman, 1984	SB, P	28	94	46	4	58	91	2.7	2.5	3.3	2.0	2.5	2.9
Maxwell, 1984	Op, P	84	30	46	4	161	92	2.0	-2.0	3.3	1.9	2.5	2.8
Fagerberg, 1984	Op, P	63	30	51	4	99	92	3.7	3.1	3.3	2.0	2.6	2.9
Resnick, 1985	Op, CO	5	12	\bullet	1	190	96	3.0	1.0	3.3	1.9	2.7	2.9
Logan, 1986	Op, P	180	86	47	1	43	92	1.1	0.2	3.1	1.9	2.8	2.9
Chalmers, 1986	SB, P	84	100	53	6	70	91	4.8	4.2	3.3	2.3	3.0	3.5
Grobbee, 1987	DB, CO	42	40	24	4	72	88	0.8	0.8	3.1	2.3	3.0	3.5
MacGregor, 1987	DB, CO	30	15	52	2	100	88	13.0	9.0	3.6	2.4	3.6	3.9
Kurtz, 1987	DB, CO	7	5	58	2	217	91	16.0	8.4	4.7	2.6	4.6	4.3
Morgan, 1987	SB, P	60	20	58	5	57	90	6.0	4.0	4.7	2.6	4.5	4.4
Morgan, 1988	SB, CO	14	16	63	1	50	89	3.0	4.0	4.5	2.7	4.7	4.6
Lawton, 1988	Op, CO	6	9	25	1	328	91	1.0	-4.0	4.4	2.6	4.7	4.4
Shore, 1988	SB, CO	5	6	-	5	97	91	9.0	5.6	4.5	2.6	4.8	4.4
ANHMRC, 1989	Op, P	48	103	58	4	63	89	5.5	2.9	4.6	2.7	5.2	4.8
MacGregor, 1989	DB, CO	30	20	57	2	150	91	16.0	9.0	4.8	2.8	5.6	5.2
Dodson, 1989	SB, P	90	34	62	3	44	90	13.0	1.8	4.8	2.8	5.8	5.2
Dimsdale, 1990	Op, CO	5	16	34	2	178	93	6.4	-2.0	4.9	2.7	6.0	5.0

Dimsdale, 1990	Op, CO	5	17	34	2	198	98	0.1	-0.8	4.6	2.6	6.0	4.9
Parker, 1990	DB, P	28	31	50	4	73	97	-1.9	0.1	4.3	2.4	5.8	4.9
Parker, 1990	DB, P	28	28	54	4	49	97	-1.9	-1.8	4.1	2.4	5.6	4.7
Schmid, 1990	SB, CO	7	9	36	1	181	99	6.0	1.9	4.1	2.4	5.7	4.7
Bruun, 1990	Op, CO	4	12	47	1	331	103	8.0	4.0	4.2	2.4	5.8	4.8
Egan, 1991	DB, CO	7	27	39	1	194	106	1.1	1.1	3.9	2.3	5.9	4.8
Carney, 1991	DB, CO	42	11	54	4	102	106	1.0	-1.0	3.9	2.3	5.8	4.8
Singer, 1991	DB, CO	30	21	54	2	91	106	9.0	3.0	4.0	2.3	6.1	4.9
Sciarrone, 1992	DB, P	56	91	54	1	82	104	5.8	0.4	4.0	2.2	6.4	4.9
Benetos, 1992	DB, CO	28	20	42	1	78	103	6.5	3.7	4.1	2.3	6.5	5.1
Del Rio, 1993	DB, CO	14	30	49	1	151	106	1.4	0.5	4.0	2.2	6.5	5.1
Ruilope, 1993	DB, P	21	19	\bullet	1	69	106	4.0	4.0	4.0	2.3	6.4	5.1
Redon-Mas, 1993	Op, P	28	418	55	1	104	105	-1.0	-1.9	3.5	1.6	6.3	4.7
Fotherby, 1993	DB, CO	35	17	73	2	79	105	8.0	0.0	3.6	1.5	6.5	4.7
Buckley, 1994	SB, CO	5	12	49	1	296	106	8.7	8.7	3.7	1.6	6.8	5.0
Jula, 1994	Op, P	365	76	44	3	57	105	6.7	3.8	3.7	1.7	6.9	5.2
Zoccali, 1994	SB, CO	7	15	45	1	163	106	14.0	8.0	3.8	1.7	7.2	5.6
Weir, 1995	SB, CO	14	11	60	5	146	106	9.0	7.0	3.8	1.8	7.2	5.7
Weir, 1995	SB, CO	14	11	60	5	127	106	-4.0	-5.0	3.8	1.7	7.1	5.5
Overlack, 1995	DB, CO	7	11	61	3	240	109	9.9	9.9	3.9	1.8	7.4	5.8
Overlack, 1995	DB, CO	7	27	40	3	249	114	0.8	0.8	3.8	1.8	7.3	5.8
Overlack, 1995	DB, CO	7	8	43	3	234	115	-6.0	-6.0	3.7	1.7	7.1	5.6
Ferri, 1996	DB, CO	14	61	47	2	264	120	7.4	3.5	3.9	1.8	7.6	5.9
Feldmann, 1996	DB, CO	7	8	27	1	178	120	-2.0	-2.0	3.8	1.8	7.4	5.7
Mühlhauser, 1996	DB, P	28	16	36	4	107	120	2.0	0.0	3.8	1.8	7.2	5.5
McCarron, 1997	DB, CO	28	99	52	1	56	119	4.9	2.9	3.8	1.8	7.4	5.7
Cappuccio, 1997	DB, CO	30	47	67	2	83	118	7.3	3.2	3.9	1.9	7.7	6.0

* Dur.: duration of intervention, days; Op: open; SB: single blind; DB: double blind; P: parallel; CO: cross-over; N: number of persons in trial; Age: mean age of persons in trial; NU: number of urine collections per person per treatment period; SR: sodium reduction, $\mathrm{mmol} / 24-\mathrm{h}$; Cum: cumulative; CI: 95% confidence interval of previous column. SBP: systolic blood pressure; DBP: diastolic blood pressure; Z: summary statistic; • : no data.
Personal Communication from NA Graudal of unpublished data from his manuscript. ${ }^{15}$

Potassium

Intracellular potassium is the major cation responsible for establishing the membrane potential. The blood pressure of normotensives increases with potassium depletion. ${ }^{20}$ Observational studies suggest an inverse relationship between potassium intake and blood pressure. ${ }^{21}$ Often there is an inverse relationship with dietary potassium and sodium or a positive relationship between urinary $\mathrm{Na}+/ \mathrm{K}+$ ratio and blood pressure. ${ }^{5,21}$ In the Scottish Heart Health Study, the relationship between blood pressure and the urinary $\mathrm{Na}+/ \mathrm{K}+$ ratio was stronger than the relationship between excretion of either sodium or potassium individually and blood pressure. ${ }^{7}$ After adjusting for age, gender, BMI, ethanol intake, and urinary sodium intake, it was observed in the INTERSALT study that the systolic blood pressure was 2.7 mmHg lower for each $60 \mathrm{mmol} / \mathrm{d}$ higher excretion of potassium. ${ }^{5}$ Since African Americans have a lower intake of potassium due to decreased consumption of fresh fruits and vegetables, this may explain the higher prevalence of hypertension in blacks compared to whites. ${ }^{21-24}$ Potassium supplementation ($80 \mathrm{mmol} / \mathrm{d}$) compared to placebo reduced systolic and diastolic blood pressure ($-6.9 /-2.5 \mathrm{mmHg}$) significantly in African Americans consuming a diet low in potassium for 21 days. ${ }^{25}$ Explanations for the hypotensive effects of potassium include direct vasodilatation, a direct natriuretic effect, altered baroreceptor function, increased urinary kallikrein, or suppression of the renin-angiotensin-aldosterone axis or sympathetic nervous system. ${ }^{8}$

Studies using the Dahl salt-sensitive rat show a protective effect of potassium supplementation, reducing mortality by 93% in the hypertensive rats. ${ }^{26}$ In a 12 -year prospective population study of 859 older persons, the relative risks of stroke-associated mortality in the lowest tertile of potassium intake, as compared with that in the top two tertiles combined, were $2.6(p=0.16)$ in men and $4.8(p=0.01)$ in women. ${ }^{27}$ A 10-mmol increase in daily potassium decreased stroke-associated mortality by 40% ($\mathrm{p}<0.001$) in a multivariate analysis. In the Health Professionals Follow-up Study, a multivariate analysis demonstrated the greater the potassium intake, the lower the relative risk of stroke ($\mathrm{p}=$ 0.007) (Figure 47.1). ${ }^{28}$ Furthermore, use of potassium supplements, especially among men

FIGURE 47.1
Multivariate adjusted relative risk of stroke of 43,738 United States men, 40 to 75 years by quintile of potassium intake: adjusted for age, total energy intake, smoking, alcohol consumption, history of hypertension and hypercholesterolemia, family history of premature myocardial infarction, profession, body mass index, and physical activity ($p=0.007$ for trend). Derived from Ascherio. ${ }^{28}$
taking diuretics, was also inversely related to the risk of stroke. However, after further adjustment for fiber and magnesium intake, the relative risk of stroke was no longer statistically significant.

The largest meta-analysis (see Tables 47.6 and 47.7) observed a significant reduction in both systolic and diastolic blood pressure ($-4.44 /-2.45 \mathrm{mmHg}, \mathrm{p}<0.01$ for both) for oral potassium supplementation. ${ }^{29}$ There was a greater decrease in blood pressure ($-4.91 /-2.71$ $\mathrm{mmHg}, \mathrm{p}<0.01$ for both) when trials were examined that achieved a net change in urinary potassium $\geq 20 \mathrm{mmol} / \mathrm{d}$. If trials excluded concomitant antihypertensive drugs, the change in blood pressure was $-4.85 /-2.71 \mathrm{mmHg}, \mathrm{p}<0.01$ for both). The change in blood pressure was lower for normotensives $(-1.8 /-1.0 \mathrm{mmHg})$ compared with hypertensives $(-4.4 /-2.5$ mmHg). The change for systolic blood pressure among black subjects was greater than white subjects (-5.6 mmHg versus $-2.0 \mathrm{mmHg}, \mathrm{p}=0.03$); however, the change for diastolic blood pressure was not significant (-3.0 mmHg versus $-1.1 \mathrm{mmHg}, \mathrm{p}=0.19$).

Interestingly, there was no overall association between 24 -hour urinary potassium excretion and change in systolic or diastolic blood pressure; however, the higher the urinary sodium excretion at followup (see Figure 47.2), the greater the decline in both systolic ($\mathrm{p}<0.001$) and diastolic blood pressure ($\mathrm{p}<0.001$). ${ }^{29}$ This explains the lack of benefit seen in a study that combined sodium restriction and potassium supplementation in patients. ${ }^{30}$ This randomized, placebo-controlled, double-blind trial of 287 men assessed the effect of 96 mmol of microcrystalline potassium chloride or placebo on a sodium-restricted diet. After the withdrawal of their antihypertensive medication at 12 weeks, there was no significant difference in either systolic or diastolic blood pressure between the two groups at any point in time up to an average of 2.2 years. ${ }^{30}$

Calcium

Most body calcium is found in the skeleton. Calcium is important for its role in smooth muscle relaxation and contraction, especially the vascular smooth muscle that alters peripheral vascular resistance directly. An inverse relationship between water hardness and blood pressure has stimulated an interest in the role of calcium supplementation on blood pressure. ${ }^{31}$ Paradoxically, data from the first Health and Nutrition Examination Survey found that daily calcium intake was lower in 1012 hypertensive vs. 8541 normotensive persons (608 mg vs. $722 \mathrm{mg}, \mathrm{p}<0.01$). ${ }^{32}$ However, it was not associated with blood pressure when age and BMI were controlled. For 58,218 female nurses with a calcium intake of at least $800 \mathrm{mg} /$ day, the reduction in the risk of hypertension was 22% when compared with an intake of less than $400 \mathrm{mg} /$ day. ${ }^{33}$ In men, calcium was inversely associated with baseline blood pressure but not with change in blood pressure; furthermore, intake of calcium in men was not inversely associated with an increased risk of stroke. ${ }^{28,34}$ Other observational studies have reported both positive and negative correlations with blood pressure, but many studies did not adjust for weight and alcohol, vitamin D, sodium, and other nutrient intake, and are based on dietary recall. ${ }^{35}$ Also, it has been suggested that calcium supplementation is important in African Americans, since intake of dairy products is especially low and the prevalence of hypertension much higher than in caucasians. In addition, sodium excretion and calcium intake interact in salt-sensitive individuals: increased ingested calcium facilitates sodium excretion. ${ }^{36}$ Calcium supplementation is associated with controversy because of the association of hyperparathyroidism and hypertension, the pressor effect of hypercalcemia in normotensives, and the direct relationship of calcium and blood pressure. ${ }^{37}$ However, responders to calcium supplementation may be a subset of hypertensives with a low renin level, high parathormone level, and low ionized calcium. ${ }^{36}$

TABLE 47.6
Participant and Study Design Characteristics in 33 Potassium Supplementation Trials

Author, Year	No. of Subjects	Age, y Mean	Age, y Range	\% Male	\% White	$\begin{gathered} \% \\ \text { HTN } \dagger \end{gathered}$	AntiHTN Medication	Study Design*	Study Duration wk
Skrabal, 1981									
(b)	20	...	21-25	100	\ldots	0	No	XO	2
MacGregor, 1982	23	45	26-66	52	78	100	No	XD	4
Khaw and Thom, 1982	20	...	22-35	100	...	0	No	XD	2
Richards, 1984	12	...	19-52	67	...	100	No	XO	4-6
Smith, 1985	20	53	30-66	55	90	100	No	XD	4
Kaplan, 1985	16	49	35-66	38	19	100	Yes \ddagger	XD	6
Zoccali, 1985	19	38	26-53	53	100	100	No	XD	2
Bulpitt, 1985	33	55	...	45	...	100	Yes \ddagger	PO	12
Matlou, 1986	32	51	34-62	0	0	100	No	XS	6
Barden, 1986	44	32	18-55	0	...	0	No	XD	4
Poulter and Sever,1986	19	...	18-47	100	0	0	No	XD	2
Chalmers, 1986									
(a)	107	52	...	85	...	100	No	PO	12
(b)	105	52	...	86	...	100	No	PO	12
Grobbee, 1987	40	24	18-28	85	...	100	No	XD	6
Siani, 1987	37	45	21-61	62	...	100	No	PD	15
Svetkey, 1987	101	51	...	74	88	100	No	PD	8
Medical Research Council, 1987	484	...	35-64	56	...	100	Yes \ddagger	PS	24
Grimm, 1988	312	58	45-68	100	...	100	Yes \ddagger	PD	12
Cushman and Langford, 1988	58	54	26-69	100	47	100	No	PD	10
Obell, 1989	48	41	23-56	44	0	100	No	PD	16
Krishna, 1989	10	...	20-40	100	100	0	No	XD	10d
Hypertension Prevention Trial, 1990	391	39	25-49	64	83	0	No	PO	3 y
Mullen and O'Connor, 1990									
(a)	24	25	22-31	100	9	0	No	XD	2
(b)	24	25	22-31	100	92	0	No	XD	2
Patki, 1990	37	50	...	22	...	100	No	XD	8
Valdes, 1991	24	50	...	54		100	No	XD	4
Barden ,1991	37	32	...	0		0	No	XD	4 d
Overlack, 1991	12	37	25-59	67	...	100	No	XS	8
Smith, 1992	22	67	- 60	57	71	100	No	XD	4 d
Fotherby and Potter, 1992	18	75	66-79	28	...	100	No	XD	4
Whelton, 1995	353	43	30-54	72	86	0	No	PD	24
Brancati, 1996	87	48	27-65	36	0	0	No	PD	3

* XO indicates crossover open; XS, crossover single blind; XD, crossover double blind; PO, parallel open; PS, parallel single blind; PD, parallel double blind; and ellipses, no data.
\dagger HTN indicates hypertensive, BP indicates blood pressure; SBP, systolic BP; and DBP, diastolic BP. Sitting BP was used in the studies by Khaw and Thom, Matlou, Poulter and Sever, Chalmers, Svetkey, Grimm, Hypertension Prevention Trial, Barden, and Overlack.
\ddagger Study participants were treated with thiazide or thiazide-like diuretics (hydrochlorothiazide [$25-75 \mathrm{mg} / \mathrm{d}$] or chlorthalidone [$50 \mathrm{mg} / \mathrm{d}$] and in addition, clonidine [0.1 mg twice daily] in 1 subject [Kaplan]; bendrofluazide [2.5-10 mg / d], cyclopenthiazide [$25-50 \mathrm{mg} / \mathrm{d}$], hydrochlorothiazide [$25 \mathrm{mg} / \mathrm{d}$], furosemide [$40-80 \mathrm{mg} / \mathrm{d}$], and chlorthalidone [$50-100 \mathrm{mg} / \mathrm{d}]$ [Bulpitt]) ; bendrofluazide [$5-10 \mathrm{mg} / \mathrm{d}$] [Medical Research Council]; chlorthalidone or hydrochlorothiazide [84\%], β-blockers [43\%], other medications, e.g., reserpine [6%], hydralazine [6%], and methyldopa [5%] [doses not specified] [Grimm]).
Table Modified from Whelton, PK. ${ }^{29}$ Reproduced with permission from May 28, 1997 JAMA 277(20):1624-32. Copyright 1997, American Medical Association.

TABLE 47.6
Participant and Study Design Characteristics in 33 Potassium Supplementation Trials

Intervention	Control	Baseline Supine BP, mm Hg \dagger SBP/DBP	Baseline Urinary Electrolytes, mmol/d $\mathrm{K}+$ /Na+	$\begin{gathered} \text { Baseline } \\ \mathrm{K}+ \\ \mathrm{mmol} / \mathrm{L} \end{gathered}$
200 mmol K from diet, 200 mmol NaCl	$80 \mathrm{mmol} \mathrm{KCl}, 200 \mathrm{mmol} \mathrm{NaCl}$/...	4.7
200 mmol K from diet, 50 mmol NaCl	$80 \mathrm{mmol} \mathrm{KCI,50} \mathrm{mmol} \mathrm{NaCl}$/...	4.6
64 mmol KCl	Placebo	154/99	68/152	4.0
64 mmol KCl	Placebo	118/74	73/138	\ldots
200 mmol K from diet, 180 mmol NaCl	$60 \mathrm{mmol} \mathrm{KCI}, 180 \mathrm{mmol} \mathrm{NaCl}$	140-180/90-105	.../...	3.8
$64 \mathrm{mmol} \mathrm{KCI}, 70 \mathrm{mmol} \mathrm{NaCl}$	Placebo,70 mmol NaCl	163/103	72/68	3.9
60 mmol KCI	Placebo	131/96	46/166	3.0
100 mmol KCI	Placebo	154/96	.../...	3.8
64 mmol KCl	Usual care	150/95	66/...	3.7
65 mmol KCl	Placebo	154/105	62/172	3.8
80 mmol KCl	Placebo	118/71	50/131	...
64 mmol KCl	Placebo	113/69	39/123	...
100 mmol K from diet	Normal diet	150/95	71/155	...
100 mmol K from diet, low Na	Low Na	152/95	68/148	\ldots
72 mmol KCI , low Na	Placebo, low Na	143/78	71/141	3.8
48 mmol KCI	Placebo	145/92	60/190	4.4
120 mmol KCI	Placebo	145/95	.../...	4.4
17-34 mmol KCl	Usual care	161/98	.../...	4.2
96 mmol KCI , low Na	Placebo, low Na	124/80	79/166	4.2
80 mmol KCl	Placebo	150/95	52/176	\ldots
64 mmol KCl	Placebo	174/100	59/171	4.0
90 mmol KCI	10 mmol KCl	120/77	70/164	3.2
100 mmol K from diet, low Na	Low Na	124/82	64/161	...
75 mmol KCI	Placebo	117/69	77/153	4.2
75 mmol K citrate	Placebo	117/69	77/153	4.2
60 mmol KCl	Placebo	155/100	62/196	3.6
64 mmol KCl	Placebo	147/96	57/155	3.8
80 mmol KCl	Placebo	105/63	53/105	...
120 mmol K citrate and bicarbonate	Placebo	150/100	62/169	4.4
120 mmol KCI	Placebo	152/87	70/192	3.9
60 mmol KCI	Placebo	187/96	63/115	4.2
60 mmol KCI	Placebo	122/81	59/153	...
80 mmol KCl	Placebo	125/78	47/147	...

Reproduced with permission from May 28, 1997 JAMA 277(20):1624-32. Copyright 1997, American Medical Association.

TABLE 47.7
Urinary Electrolyte Excretion, Body Weight, and Blood Pressure during Followup in 33 Potassium Supplementation Trials*
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { Mean Net } \\ \text { Change in Urinary } \\ \text { Electrolytes, mmol/d } \\ \text { K+/Na+ }\end{array} & \begin{array}{c}\text { Urinary Sodium } \\ \text { Excretion during } \\ \text { Followup, } \\ \text { mmol/d }\end{array} & \begin{array}{c}\text { Mean Net } \\ \text { Change } \\ \text { in Body } \\ \text { Weight, kg }\end{array} & \begin{array}{c}\text { Mean Net Change, } \\ \text { in Blood Pressure, }\end{array} \\ \text { me Hgstolic/Diastolic }\end{array}\right]$

* Ellipses indicate no data.

Table Modified from Whelton PK, He J, Cutler JA, et al. Reproduced with permission from May 28, 1997 JAMA 277(20):1624-32. Copyright 1997, American Medical Association.

In a randomized, double-blind study of 48 hypertensive persons and 32 normotensive persons, 1000 mg per day of calcium or placebo was given for 8 weeks. ${ }^{38}$ Supine blood pressure decreased significantly $3.8 / 2.3 \mathrm{mmHg}$ in the hypertensive subjects; 25,23 , and 13% of subjects achieved a blood pressure goal of systolic $<140 \mathrm{mmHg}$, diastolic <90 mmHg and both systolic $<140 \mathrm{mmHg}$ and diastolic $<90 \mathrm{mmHg}$, respectively. Calcium did not lower blood pressure in the normotensives. 44% of hypertensive and 19% of normotensive subjects lowered their standing systolic blood pressure $>10 \mathrm{mmHg}$. There have been at least 67 randomized trials of calcium supplements in nonpregnant study popula-

FIGURE 47.2
Effect of potassium supplementation on net blood pressure reduction according to urinary sodium excretion during followup: the greater the sodium excretion, the greater the blood pressure reduction with potassium supplementation ($\mathrm{p}<0.001$ for both systolic and diastolic blood pressure). Derived from Whelton PK, He J, Cutler JA, et al. JAMA 277: 1624, 1997. With permission.
tions. There have been several meta-analyses to assess the effect of dietary and nondietary interventions on blood pressure. ${ }^{35,39-43}$ A larger effect of calcium supplementation on systolic blood pressure was observed with increasing age and among women. ${ }^{41}$ The subgroup of hypertensive subjects had a greater reduction in blood pressure than the normotensives $(-4.30 /-1.50 \mathrm{mmHg}$ versus $-0.27 /-0.33 \mathrm{mmHg}) .{ }^{42}$ The change in systolic and diastolic blood pressure was significant for the hypertensives, but not the normotensives. ${ }^{42}$ The largest meta-analysis (see Tables 47.8 and 47.9) shows a reduction of blood pressure of $-1.44 /-0.84 \mathrm{mmHg}$ ($\mathrm{p}<0.001$ for each). ${ }^{43}$ There was no difference in the change in blood pressure comparing 33 nondietary trials ($-1.09 /-0.87 \mathrm{mmHg}$) and the 9 dietary trials $(-2.01 /-1.09 \mathrm{mmHg})$. The authors concluded that the small reduction in blood pressure of calcium supplements does not merit its use in mild hypertension, and further suggest that the use of calcium must weigh the benefits of reducing cardiovascular disease and increasing bone density versus the risk of nephrolithiasis.

Despite this modest benefit in nonpregnant subjects, a meta-analysis (see Tables 47.10 and 47.11) of calcium supplementation in pregnancy observed a blood pressure reduction of $-5.40 /-3.44 \mathrm{mmHg}$ and a decrease in the rate of preeclampsia (odds ratio $=0.38$ [95\% CI: 0.22 to 0.65$]$). ${ }^{44}$ Since the publication of the meta-analysis, the National Institutes of Health sponsored trial, Calcium for Preeclampsia Prevention, has been completed. ${ }^{45}$ This placebo-controlled, randomized, multicenter trial assigned 4589 nulliparous women 13 to 21 weeks pregnant to 2 g of calcium carbonate or placebo. There was no benefit in the rate of preeclampsia (6.9 versus 7.3%), the prevalence of gestational hypertension (15.3 versus 17.3%), or pregnancy-associated proteinuria (3.4 versus 3.3%) in the calcium ($\mathrm{n}=$ $2295)$ and placebo $(\mathrm{n}=2294)$ groups.

Magnesium

Magnesium is a divalent intracellular cation. The adult body contains about 25 g distributed between the skeleton (60%) and soft tissues $(40 \%) .{ }^{46}$ It serves as a cofactor for many enzyme systems. Intracellular calcium increases and blood pressure rises as magnesium depletion occurs in rats. The hypotensive effect of magnesium is observed best when given

TABLE 47.8
Randomized Controlled Trials Examining the Relationship of Calcium and Blood Pressure

	No. of Subjects			Elemental	Study Author, Year, (Intervention/
Study Design	Control)	Score *	Calcium	Calcium (mg/day)	Duration (weeks)

Nondietary Interventions

Belizan, 1983	30/27	4	Calcium gluconate	1000	22
Sunderrajan, 1984 ${ }^{\text {cx }}$	17/17	0	Calcium carbonate	1000	4
Johnson, 1985	59/56	2	Calcium carbonate	1500	208
McCarron, 1985 ${ }^{\text {cx }}$	80/80	3	Calcium carbonate	1000	8
Grobbee, 1986	46/44	4	Calcium citrate	1000	12
Nowson, 1986	31/33	3	Calcium carbonate	1600	8
Resnick, 1986 ${ }^{\text {cx, ci }}$	8/8	0	Calcium carbonate	2000	8
Strazzullo, 1986 ${ }^{\text {cx, ci }}$	17/17	3	Calcium gluconate	1000	15
Van Berestyn, 1986	29/29	3	Calcium carbonate	1500	6
Cappuccio, 1987 ${ }^{\text {cx }}$	18/18	4	Calcium gluconate	1600	4
Lyle, 1987	37/38	4	Calcium carbonate	1500	12
Meese, 1987cx	19/17	3	Calcium carbonate	800	8
Siani, 1987 ${ }^{\text {cx }}$	8/8	4	Calcium gluconate	1000	3
Thomsen, 1987	14/14	3	Calcium gluconate	2000	52
Vinson, 1987	4/5	4	Calcium carbonate	500	7
Zoccali, 1987cx, ci	11/11	3	Calcium gluconate	1000	2
Siani, 1988 ${ }^{\text {cx }}$	14/14	5	Calcium gluconate	1000	4
Zoccali, 1988 ${ }^{\text {cx }}$	21/21	3	Calcium gluconate	1000	8
Orwoll, 1990 ${ }^{\text {ci }}$	34/28	3	Calcium carbonate	1000	156
Tanji, 1991 ${ }^{\text {cx }}$	28/28	3	Calcium carbonate	1200	12
Cutler, 1992	237/234	6	Calcium carbonate	1000	26
Lyle, 1992	21/21	3	Calcium carbonate	1500	8
Galloe, 1993 ${ }^{\text {cx }}$	20/20	4	Calcium gluconate	2000	12
Jespersen, 1993 ${ }^{\text {cx }}$	7/7	5	Calcium carbonate	1000	8
Pan, 1993 ${ }^{\text {cx }}$	14/15	1	Calcium citrate and placebo Vitamin D	800	11
Weinberger, 1993 ${ }^{\text {cx }}$	46/46	4	Calcium carbonate	1500	8
Petersen, 1994 ${ }^{\text {ci }}$	10/10	1	Calcium gluconate	2000	26
Zhou, 1994	30/27	3	Calcium carbonate	1000	14
Gillman, 1995	51/50	4	Calcium citrate malate	600	12
Sacks, 1995 ${ }^{\text {ci }}$	34/31	5	Calcium carbonate	1000	26
Lijnen, 1996 ${ }^{\text {ci }}$	16/16	5	Calcium gluconate	2000	16
Davis, 1997	17/17	3	Calcium gluconate	1500	4
Sanchez, 1997	10/10	4	Calcium gluconate	1500	8

Dietary Interventions

Margetts, 1986 ${ }^{\text {cx, ci }}$	39/39	3	Other dietary manipulation	1076	6
Rouse, 1986	18/18	3	Other dietary manipulation	1177	6
Bierenbaum, 1988 ${ }^{\text {cx }}$	50/50	1	Milk/dairy product suppl	1150	26
Morris, 1988	142/139	4	Other dietary manipulation	1500	12
Hakala, 1989	31/37	3	Other dietary manipulation	1163	52
Van Beresteijn, 1990	28/25	3	Milk/dairy product suppl	1180	6
Kynast-Gales, 1992 ${ }^{\text {cx }}$	7/7	1	Milk/dairy product suppl	1515	4
McCarron, 1997	274/274	4	Milk/dairy product suppl	1886	10
Appel, 1997	151/154	4	Milk/dairy product suppl	1265	8

[^0]Adapted from Griffith LE, Guyatt GH, Cook RJ, et al. Am J Hypertens 12, 84, 1999. With permission.

TABLE 47.9
Randomized Controlled Trials Studying the Effect of Calcium Supplementation and Blood Pressure

Author, Year	Position of Blood Pressure Measurement	Mean BP at Study End*	Systolic Mean Baseline, mm Hg	Systolic Mean Difference, mmHg (SD)	Diastolic Mean Baseline, mm Hg	Diastolic Mean Difference, mm Hg (SD)
Nondietary Interventions						
Belizan, 1983						
Women	Lateral	1	102	-2.40 (1.03)	68	-4.50 (1.46)
Men	Lateral	1	113	-0.80 (1.05)	71	-6.00 (1.94)
Sunderrajan, 1984						
Normotensive	Sitting	2	NA	1.89 (2.78)	NA	1.89 (2.50)
Hypertensive	Sitting	2	NA	-1.63 (5.93)	NA	-4.13 (2.50)
Johnson, 1985						
Normotensive	Sitting	2	120	0.00 (3.01)	74	0.00 (1.67)
Hypertensive	Sitting	2	141	-13.0 (6.52)	86	0.00 (2.79)
McCarron, 1985						
Normotensive	Standing	2	113	1.30 (2.00)	75	1.00 (2.62)
Hypertensive	Standing	2	144	-5.60 (2.10)	92	-2.30 (1.40)
Grobbee, 1986	Sitting	1	143	-0.40 (2.27)	83	-2.40 (1.90)
Nowson, 1986						
Normotensive	Sitting	1		0.00 (2.97)		0.30 (2.33)
Hypertensive	Sitting	1	157	1.60 (3.83)	92	1.30 (2.90)
Resnick, 1986						
Salt-sensitive	Sitting	1	NA	NA	NA	-8.0 (6.0)
Salt-insensitive	Sitting	1	NA	NA	NA	7.0 (6.0)
Strazzullo, 1986	Standing	2	145	-8.60 (4.98)	98	-1.70 (2.56)
Van Berestevn, 1986	Supine	1	115	-1.36 (1.88)	65	0.79 (1.66)
Cappuccio, 1987	Standing	2	156	2.00 (4.17)	112	0.40 (2.64)
Lyle, 1987						
White	Sitting	1	115	-2.44 (2.00)	75	-1.89 (2.31)
Black	Sitting	1	114	-3.63 (3.85)	71	4.02 (5.67)
Meese, 1987	Sitting	2	143	-5.00 (4.21)	95	-2.00 (2.83)
Siani, 1987	Supine	2	154	5.10 (8.01)	96	1.30 (4.10)
Thomsen, 1987	Supine	2	124	-0.50 (6.10)	76	-1.30 (3.78)
Vinson, 1987	Supine	2	114	7.90 (4.93)	74	2.40 (2.05)
Zoccali, 1987	Sitting	1	141	6.45 (3.35)	88	4.64 (2.21)
Siani, 1988	Supine	2	139	2.20 (4.94)	91	0.70 (3.68)
Zoccali, 1988	Sitting	1	142	-2.80 (2.97)	88	-2.80 (2.47)
Orwoll, 1990	Sitting	1	131	2.60 (3.54)	84	3.08 (2.63)
Tanji, 1991	Sitting	1	146	3.00 (4.20)	95	2.00 (2.40)
Cutler, 1992	Sitting	1	126	-0.46 (0.67)	84	0.20 (0.46)
Lyle, 1992	Sitting	1	133	-5.90 (1.99)	87	-7.20 (1.71)
Galloe, 1993	Sitting	1	168	2.20 (4.49)	97	3.30 (2.75)
Jespersen, 1993	Supine	1	148	-0.57 (7.20)	93	-0.86 (3.88)
Pan, 1993	Sitting	1	136	-7.09 (7.89)	72	-0.87 (3.29)
Weinberger, 1993						
Normotensive	Sitting	2	116	1.00 (3.00)	72	-1.00 (2.64)
Hypertensive	Sitting	2	131	-2.00 (5.68)	87	-1.00 (2.92)
Petersen, 1994	Sitting	2	145	4.50 (13.2)	81	-8.20 (5.10)
Zhou, 1994	Sitting	1	158	-14.6 (4.48)	103	-7.11 (2.43)
Gillman, 1995	Sitting	1	102	-2.20 (11.0)	58	-0.80 (7.16)
Sacks, 1995	Sitting	1	NA	3.70 (2.45)	NA	3.60 (2.32)
Lijnen, 1996	Supine	1	114	-5.70 (2.18)	73	-3.50 (1.79)
Davis, 1997	Mean 24 h ambulatory	1	125	-1.72 (1.20)	91	-0.49 (0.35)
Sanchez, 1997	Sitting	1	166	1.60 (1.60)	99	0.40 (1.21)

TABLE 47.9 (Continued)
Randomized Controlled Trials Studying the Effect of Calcium Supplementation and Blood Pressure

				Systolic	Systolic	Diastolic
Position of		Mean	Mean	Mean	Diastolic	
Mean						
Author, Year	Blood Pressure	Mean BP at	Baseline,	Difference,	Baseline,	Difference,
	Measurement	Study End *	mm Hg	mmHg (SD)	mm Hg	mm Hg (SD)

Dietary Interventions

Margetts, 1986	Sitting	1	NA	$-3.50(1.75)$	NA	$-1.20(1.00)$
Rouse, 1986	Sitting	2	NA	$1.90(2.30)$	NA	$2.30(1.40)$
Bierenbaum, 1988	Sitting	2	119	$-2.00(2.19)$	79	$-1.00(1.33)$
Morris, 1988						
\quad Normotensive	Standing	1	113	$-1.00(1.04)$	77	$-0.90(0.80)$
\quad Hypertensive	Standing	1	145	$-3.60(1.50)$	94	$-1.20(0.86)$
Hakala, 1989	Sitting	1	129	$3.80(11.9)$	84	$3.20(4.53)$
Van Beresteijn, 1990	Supine	1	114	$-2.82(1.83)$	63	$0.43(1.89)$
Kynast-Gales, 1992	Supine	1	136	$-8.29(8.12)$	83	$-0.14(6.15)$
McCarron, 1997	Sitting	1	134	$-1.80(0.78)$	85	$-1.20(0.46)$
Appel, 1997	Sitting	1	131	$-2.70(0.83)$	84	$-1.90(0.60)$

* For mean blood pressure at study end, 1 indicates change and 2 indicates mean.

Modified from Griffith LE, Guyatt GH, Cook RJ, et al. Am J Hypertens 12, 84, 1999. With permission.
in preeclampsia and toxemia. Magnesium supplementation in 400 normotensive primigravida women given from 13 to 24 weeks gestation did not lower blood pressure or the incidence of preeclampsia. ${ }^{47}$ However, among 2138 hypertensive women admitted in labor, intramuscular magnesium sulfate was superior to phenytoin in preventing eclamptic seizures (0 versus $0.92 \%, \mathrm{p}=0.004$). ${ }^{48}$

Magnesium and calcium contribute to water hardness. There is an inverse relationship between water hardness and blood pressure. ${ }^{49,50}$ However, epidemiologic studies assessing the role of magnesium and blood pressure often do not control for potential confounders, including caloric, ethanol, sodium, potassium, and calcium intake, and use of antihypertensive medication. ${ }^{50}$ Thus, observational studies using 24 -hour dietary recall, food records, and food frequency questionnaires have not always shown a consistent correlation, but generally show a negative correlation with both systolic and diastolic blood pressure after adjustment. ${ }^{50}$ In the Health Professionals Follow-up Study, the relative risk of a stroke among 43,738 men between the lowest quintile of magnesium intake and highest quintile, after adjustment for age, BMI, various risk factors, family history, profession, and physical activity, was 0.62 ($\mathrm{p}<0.002$). ${ }^{28}$ In the Atherosclerosis Risk in Communities Study of four U.S. communities ($\mathrm{n}=15,248$ participants), an early report suggested that low serum and dietary magnesium may be related to the etiology of hypertension; however, a subsequent report found no association between dietary magnesium intake and incident hypertension. ${ }^{51,52}$

The mechanism most often cited for the apparent antihypertensive effect of magnesium is a calcium antagonist property. Other mechanisms include stimulation of vascular prostacyclin release, renal vasodilation, acceleration of the cell membrane sodium pump, and alterations in vascular responsiveness to vasoactive agents. ${ }^{53}$ One 1988 analysis concluded that there were inadequate data from the four randomized, controlled trials to suggest a hypotensive effect. ${ }^{49}$ Since that report, there have been a number of trials reported with mixed results (see Table 47.12). It has been suggested that combinations of cations may act in concert; however, in a randomized, double-blind, multicenter trial of 125 participants, there was no hypotensive effect of magnesium in combination with either calcium or potassium. ${ }^{53}$ In normotensive women whose reported intake of magnesium was

TABLE 47.10

Randomized Controlled Trials of Calcium Supplementation in Pregnancy

Author, Year	No. of Participants, Calcium Supplementation/ Placebo	Calcium Formulation	Elemental Calcium Equivalent, mg/d	Type of Control	Weeks of Gestation	Treatment Duration, wk	Cointervention	Compliance Assessed	Quality Score \dagger
Trials Providing Data on Treatment Effects of Systolic and Diastolic Blood Pressure									
Belizan, 1983	11/14	Calcium Sandoz	2000	Placebo	15	22	NA*	NA	3
Marya, 1987	188/182	Unknown calcium supplement	375	Placebo	22	18	No	Yes	5
Villar,1987	25/27	Os-Cal tablets	1500	Placebo	26	14	Yes	Yes	0
Lopez-Jaramillo,1989	49/43	Calcium gluconate	2000	Placebo	23	17	No	Yes	1
Repke, 1989	16/18	Os-Cal tablets	1500	Placebo	25	10	No	Yes	4
Lopez-Jaramillo,1990	22/34	Elemental calcium	2000	Placebo	30	10	No	No	4
Belizan, 1991	579/588	Calcium carbonate	2000	Placebo	20	20	No	Yes	2
Felix, 1991	14/11	Elemental calcium	2000	Placebo	20	20	No	Yes	3
Knight, 1992	10/10	Os-Cal tablets	1000	Normal diet	12	20	Yes	Yes	5
Sanchez-Ramos, 1993	36/39	Unknown calcium supplement	NA	Unknown	22	18	No	No	6
Sanchez-Ramos, 1994	29/34	Calcium carbonate	2000	Placebo	25	15	No	Yes	4
Levine, 1997 \ddagger	2294/2295	Calcium carbonate	2000	Placebo	17	21	No	Yes	6
Trials Providing Data on Binary Outcomes Exclusively									
Montanaro, 1990	84/86	Calcium carbonate	2000	Placebo	24	16	No	No	1
Villar and Repke 1990	95/95	Os-Cal tablets \ddagger	2000	Placebo	23	20	Yes	Yes	2
Cong, 1993	50/50	Shen gu capsules	Unknown	Placebo	22	18	No	No	0

[^1]TABLE 47.11
Change in Blood Pressure in Randomized Controlled Trials of Calcium Supplementation in Pregnancy

Author, Year	Mean Difference In Systolic Blood Pressure, $\mathbf{~ m m ~ H g ~ H g ~}$	Mean Difference in Diastolic Blood Pressure, mm Hg
Belizan, 1983	-5.10	-5.70
Marya, 1987	-6.90	-3.40
Villar, 1987	-4.10	-4.90
Lopez-Jaramillo, 1989	-8.70	-6.60
Repke, 1989	-2.50	-2.77
Lopez-Jaramillo, 1990	-13.10	-11.80
Belizan 1991	-1.70	-0.90
Felix, 1991	-6.30	-5.80
Knight and Keith, 1992		
\quad Normotensive	-2.70	0.50
\quad Hypertensive	+4.8	0
Sanchez-Ramos, 1993	+4.6	-0.82
Sanchez-Ramos, 1994	-4.08	-3.00
Levine, 1997*	-0.3	+0.3

* Calcium for the Preeclampsia Prevention Trial (not in the original meta-analysis)
Modified from Bucher HC. Reproduced with permission from April 10, 1996 JAMA 275(14):1113-7. Copyright 1996, American Medical Association.
between the 10th and 15th percentiles, 16 weeks' daily supplement of magnesium 14 mmol had no significant treatment effect $(-0.9 /-0.7 \mathrm{mmHg})$. The administration of magnesium with potassium did not enhance the effect of potassium alone. ${ }^{54}$

ω-3 Polyunsaturated Fatty Acids

$\omega-3$ polyunsaturated fatty acids refer to the fish oil, very long chain fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. ω-3 polyunsaturated fatty acids are thought to lower blood pressure by altering the balance of the vasoconstrictor thromboxane A_{2} and the vasodilator prostacyclin prostaglandin I_{3}, modulating the vasoconstrictor response to pressors, or decreasing blood viscosity. ${ }^{8}$

A meta-analysis by Appel identified 40 studies testing the impact of ω-3 polyunsaturated fatty acids on blood pressure; however, 23 were eliminated because of design, including concurrent antihypertensive medications, no control group, unhealthy study population, concurrent use of ω-3 polyunsaturated fatty acids in the control group, or insufficient data. ${ }^{55}$ Most trials used a combined dose of 3 g daily of EPA and DHA, which is equal to 6 to 10 capsules of commercial fish oil supplements or two 100 g servings of fish that are high in $\omega-3$ polyunsaturated fatty acids. The overall change in blood pressure, $-1.5 /-1.0$ mmHg , was significant. For normotensives, the change in blood pressure, $-1.0 /-0.5$ mmHg , was significant for the systolic blood pressure only. However, the decline in blood pressure, $-5.5 /-3.5 \mathrm{mmHg}$, for hypertensives was significant for both systolic and diastolic blood pressure ($\mathrm{p}<0.001$). Interestingly, the higher the blood pressure, the greater the reduction ($\mathrm{p}<0.05$); however, this was not a function of the dose of the ω-3 polyunsaturated fatty acids, duration of treatment, type of intervention (food versus oil capsules), or age of participants. Side effects summarized include the unpleasant or fishy taste, gastrointes-

TABLE 47.12

Randomized Trials of Magnesium Supplementation

Author, Year	n	Mean Age, Yr	Men, \%	Cohort	$\begin{gathered} \text { BP } \\ \text { Meds } \end{gathered}$	Mg Salt, $\mathrm{mmol} \mathrm{Mg} / \mathrm{d}$	Study Design	Duration, Weeks	Control $\Delta \mathrm{SBP} / \Delta \mathrm{DBP}$	Magnesium $\Delta \mathrm{SBP} / \Delta \mathrm{DBP}$
Itoh, 1997	33	65	33	Mixed	?	Hydroxide, 17-23	DB, PR	4	+1/-1	-5/-2
TOHP, 1992 \ddagger	461	43	70	Normotensive	No	Diglycine, 15	DB, PR	24	-2.9/-2.7	-3.0/-2.9
Sacks, 1998	153	39	0	Normotensive	No	Lactate, 14	DB, PR	16	+0.4/+0.2	-0.5/-0.5
de Valk, 1998	50	62.5	56	Diabetes (insulin)	?	Aspartate, 15	DB, PR	12	-10.4/-0.8	-7.7/-0.3
Purvis, 1994	28	53.8	86	Diabetes (no insulin)	?	Chloride, 15.7	DB, CO	6		-7.4/-2.3
Cappuccio, 1985	17	52	53	Hypertensive	No	Aspartate, 15	DB, CO	4	-3/-3	0/-2
Dyckner, 1983	20	65	33	90\% Hypertensive	Yes	Aspartate, 15	O,PR	24	-0/-4	-12/-8
Ferrara, 1992	14	47.5	57	Hypertensive	No	Pidolate, 15	DB, PR	24	-17/-4	-7/-7
Henderson, 1986	41	62	?	Hypertensive	Yes	Oxide, 12.5	DB, PR	24	-3/-1	-4/-3
Kawano, 1998	60	58	57	Hypertensive	Some	Oxide, 20	CO	8		-3.7/-1.7
Lind, 1991	71	61	52	Hypertensive	No	Mixedt, 15	DB, PR	24	-2/-4.2	+1/-2
Plum-Wirell, 1994	39	39	62	Hypertensive	No	Aspartate, 15	DB, CO	8	-0.8/-0.4	-2.4/-0.4
Reyes, 1984	21	57	19	Hypertensive	Yes	Chloride, 15.8	DB, PR	3	-13/-4	-11/-7
Sanjuliani, 1996	15	36-65	47	Hypertensive	No	Oxide, 25	DB, CO	3	+1.7/-1.0	-7.6/-3.8
Sibai, 1989	374	18	0	Pregnancy	No	Aspartate, 15	DB, PR	21	+16/+18	+15/+16
Widman, 1993	17	50	88	Hypertensive	No	Hydroxide, 15-40	DB, CO	9	-1/0.0	-7.9/-8.2
Wirell, 1994	39	26-69	77	Hypertensive	Yes	Aspartate, 15	DB, CO	8	+3.2/+2.3	-3.8//-1.7
Witteman, 1994	91	57	0	Hypertensive	No	Aspartate, 20	DB, PR	24	+0.2/+0.1	-3.3/-2.4
Zemel, 1990	13	~ 49	86	Hypertensive	No	Aspartate, 40	DB, PR	12	$-1 /+1$	+3/+2

[^2]tinal symptoms, eructation, loose stool or diarrhea, and obstipation occurring in 28% of experimental subjects - 13% of the control group ($p<0.001$). ${ }^{55}$

Another meta-analysis included 31 of 52 studies that included trials with a placebo group and a report of pretreatment and post-treatment blood pressures (see Table 47.13). ${ }^{56}$ Like the previous meta-analysis, hypertensives ($-3.4 /-2.0 \mathrm{mmHg}$) had greater blood pressure decline than normotensives $(-0.4 /-0.7 \mathrm{mmHg})$, but the dose of the fish oils was higher in the hypertensive group ($5.6 \mathrm{~g} / \mathrm{d}$) than the normotensive group ($4.2 \mathrm{~g} / \mathrm{d}$). There also was a statistically significant dose-dependent decline in blood pressure: $\leq 3 \mathrm{~g} / \mathrm{d},-1.3 /-0.7$ $\mathrm{mmHg} ;>3$ to $7 \mathrm{~g} / \mathrm{d},-2.9 /-1.6 \mathrm{mmHg}$; and $15 \mathrm{~g} / \mathrm{d},-8.1 /-5.8 \mathrm{mmHg}$. The effect of fish oil on blood pressure is maximally manifested by 3 to 4 weeks.

Since the completion of these meta-analyses, several new studies have supported their conclusions. In a double-blind, placebo-controlled trial of parallel design, 59 overweight, mildly hyperlipidemic men were randomized to $4 \mathrm{~g} / \mathrm{d}$ of purified EPA, DHA, or olive oil (placebo) capsules and continued their usual diets for 6 weeks. Fifty-six subjects completed the study. Only DHA significantly reduced 24 -hour and daytime ambulatory blood pressure ($\mathrm{p}<0.05$). ${ }^{57}$ In 63 overweight hypertensives, combining a daily fish meal with a weightreducing regimen led to additive reduction on ambulatory blood pressure and decreased heart rate. ${ }^{58}$

Dietary Protein

Cross-sectional studies show that dietary protein intake is inversely related to blood pressure, although a direct relationship was considered to exist. ${ }^{59}$ Protein intake was thought to increase blood pressure due to adverse effects on renal function in partially nephrectomized rats. The mechanism of action of high dietary protein intake is not clear, but multicollinearity (multiple nutrient intake that correlated with one another) is a problem. Amino acid production (e.g., tryptophan, tyrosine, and arginine) may affect hormones or neurotransmitters that ultimately alter blood pressure. For instance, the sulfonic amino acid taurine given 6 g for 7 days in 19 young hypertensive subjects decreased blood pressure $-9.0 /-4.1 \mathrm{~mm} \mathrm{Hg}$ compared with to $-2.7 /-1.2 \mathrm{mmHg}$ in the placebo-treated subjects in a double-blind, placebo-controlled trial. ${ }^{60}$ Perhaps other protein metabolites have natriuretic or diuretic activity.

Human observational studies on protein and blood pressure are displayed in Table 47.14. These studies show in aggregate that increased protein intake, determined by food records or recall or by urine studies of sulfate and urea nitrogen, is associated with decreased blood pressure. The relationship of blood pressure and vegetable protein versus animal protein is unclear. After adjustment for age, BMI, alcohol consumption, urinary sodium excretion, dietary intake, and resident area for each one standard deviation higher level of dietary protein intake (39 g), a 3.55 mmHg lower systolic blood pressure was observed.

Most intervention trials (Table 47.15) have been conducted in normotensive subjects, were not designed to assess the relationship between protein and blood pressure or determine a dose relationship, and were not powered adequately or randomized. ${ }^{59,61}$

Dietary Fiber

Vegetarians and other persons with high fiber intakes have lower average blood pressures than persons with low fiber intakes do. In the Coronary Artery Risk Development in Young Adults (CARDIA) Study, fiber intake predicted insulin levels, weight gain, and other cardiovascular risk factors more potently than did fat consumption. ${ }^{62}$ High intake of fiber was associated with lower systolic and diastolic blood pressure in whites but not African-

TABLE 47.13

Characteristics of the 31 Trials used for the Meta-Analysis of Fish Oil and Blood Pressure*

Study, Year	Study Design*	Blinding Subject	Blinding Observer§	Study Length	n, Treatment*	ω-3 Dose (g/d) \ddagger	Gender (Age Range)	Baseline Pressure ${ }^{\text {II }}$	BP Effect SBP/DBP ${ }^{\text {I }}$
Health Subjects									
Mortensen, 1983	XO	+	+	4	20 Fish oil 20 Mixed oil	3.3	$\begin{gathered} \text { Men } \\ (25-40 \mathrm{y}) \end{gathered}$	120/76	-4.0/-4.0
Bruckner, 1987	PG	+	-	3	10 Fish oil 11 Olive oil	3.9	$\begin{gathered} \text { Men } \\ (19-40 \mathrm{y}) \end{gathered}$	119/80	+5.0/+1.0
v Houwelingen, 1987									
Maastricht	PG	-	+	6	19 Fish 20 Meat	4.7	$\begin{gathered} \text { Men } \\ (20-45 \mathrm{y}) \end{gathered}$	121/77	+1.1/-0.9
Tromso	PG	-	+	6	11 Fish 12 Meat	4.7	$\begin{gathered} \text { Men } \\ (20-45 \mathrm{y}) \end{gathered}$	118/77	+0.1/-0.9
Zeist	PG	-	+	6	10 Fish 10 Meat	4.7	$\begin{gathered} \text { Men } \\ (20-45 \mathrm{y}) \end{gathered}$	115/73	-3.7/-3.0
Flaten, 1990	PG	+	+	6	27 Fish oil 29 Olive oil	6.5	$\begin{gathered} \text { Men } \\ (35-45 \mathrm{y}) \end{gathered}$	119/80	+1.5/+0.8
Ryu, 1990	PG	NS \dagger	NS	4	10 Fish oil 10 Wheat germ	3	$\begin{gathered} \text { Men } \\ (20-39 \mathrm{y}) \end{gathered}$	124/73	-4.3/-2.0
TOHP, 1992	PG	+	+	24	175 Fish oil 175 Olive oil	2.4	Men \& Women (30-54y)	123/81	-0.2/-0.6
Hypertensive Subjects									
Norris, 1986	XO	+	+	6	16 Fish oil 16 Placebo	NS	Men \& Women (45-74 y)	161/95	-10.0/-2.0
Knapp, 1989	PG	-	-	4	8 Fish oil 8 Saturated mix	3	$\begin{gathered} \text { Men } \\ \text { (age NS) } \end{gathered}$	137/94	-2.6/-0.1
Meland, 1989	PG	+	+	6	20 Fish oil 20 Mixed oil	6	$\begin{gathered} \text { Men } \\ (26-66 \mathrm{y}) \end{gathered}$	149/101	+1.0/-1.0
Bonaa, 1990	PG	NS	NS	10	78 Fish oil 78 Corn oil	5.1	Men \& Women (34-60 y)	144/95	-6.4/-2.8

TABLE 47.13 (Continued)
Characteristics of the 31 Trials used for the Meta-Analysis of Fish Oil and Blood Pressure*

Study, Year	Study Design*	Blinding Subject	Blinding Observer§	Study Length	n, Treatment*	$\begin{gathered} \omega-3 \text { Dose } \\ (\mathrm{g} / \mathrm{d}) \ddagger \end{gathered}$	$\begin{gathered} \text { Gender } \\ \text { (Age Range) } \end{gathered}$	Baseline Pressure ${ }^{\text {II }}$	BP Effect SBP/DBP ${ }^{\text {I }}$
Levinson, 1990	PG	+	+	6	8 Fish oil 8 Saturated mix	15	Men \& Women (18-75 y)	147/94	-8.0/-9.0
Wing, 1990	XO	+	+	8	20 Fish oil 20 Olive oil	4.5	Men \& Women (32-75 y)	139/81	+0.6/-0.3
Radack, 1991	PG	+	+	12	16 Fish oil 17 Safflower	2	Men \& Women (mean, 46 y)	136/95	-7.2/-6.7
Margolin, 1991	PG	+	+	8	22 Fish oil 24 Corn oil	4.7	Men \& Women (60-80 y)	164/94	+1.1/+0.1
Morris, 1992	XO	+	+	6	18 Fish oil 18 Olive oil	4.8	Men \& Women (32-64 y)	130/87	-2.4/-1.8

Hypercholesterolemic Subjects

Demke, 1988	PG	+	+	4	13 Fish oil 18 Safflower	1.7	Men \& Women (18-60y)	119/74	$-3 /+1.0$
Bach, 1989	PG	+	+	5	30 Total saturated	2.5	Men \& Women (mean, 31 y)	130/85	-9.0-4.0
Dart, 1989	XO	NS	NS	8	21 Fish oil 21 Olive oil	6	Men \& Women (mean, 46 y)	125/77	-5.3/-2.0
Wilt, 1989	XO	NS	NS	12	38 Fish oil 38 Safflower	6	$\begin{gathered} \text { Men } \\ \text { (mean, } 42 \text { y) } \end{gathered}$	124/84	-2.7/-1.8
Kestin, 1990	PG	+	+	6	11 Fish oil 11 Linoleic	3.4	$\begin{gathered} \text { Men } \\ \text { (mean, } 46 \text { y) } \end{gathered}$	124/75	-5.1/0.0
Cobiac, 1991	PG	-	-	5	12 Fish 13 Fish oil 6 Saturated mix	4.5	$\begin{gathered} \text { Men } \\ (30-60 \mathrm{y}) \end{gathered}$	128/79	$-0.6 /+1.3$
Davidson, 1986	PG	+	+	4	30 Total olive oil	6	Age, sex: NS \dagger	142/88	-9.8/-3.2

Cardiovascular Disease Subjects

Mehta, 1988	XO	+	+	4	8 Fish oil 8 Placebo	5.4	$\begin{gathered} \text { Men } \\ (52-73 \mathrm{y}) \end{gathered}$	138/80	-10.0/-4.0
Solomon, 1990	PG	+	+	12	5 Fish oil 5 Olive oil	4.6	Men \& Women $(42-64 y)$	142/87	-16.8/-9.6
Gans, 1990	PG	+	+	16	16 Fish oil 16 Corn oil	3	Men \& Women (mean, 66 y)	148/80	+9.0/+1.0
Diabetic Subjects									
Haines, 1986	PG	-	-	6	19 Fish oil 22 Olive oil	4.6	Men \& Women (30-59 y)	136/82	+1.0/+1.7
Jensen, 1989	XO	+	+	8	18 Fish oil 18 Olive oil	4.6	Men \& Women (22-47 y)	148/89	-9.0/-4.0
Hendra, 1990	PG	+	+	6	40 Fish oil 40 Olive oil	3	Men \& Women (mean, 56 y)	143/83	+0.4/-0.6
Mixed Samplet									
Rogers, 1987	PG	+	+	4	30 Fish oil 30 Olive oil	3.3	$\begin{gathered} \text { Men } \\ (22-65 \mathrm{y}) \end{gathered}$	130/76	-3.1/-5.0

* The number of subjects in each treatment period is listed for crossover studies. XO, Crossover, PG, Parallel Group. The number of subjects in each treatment group was not reported for Davidson, 1986 and Bach, 1989. Saturated mix is a mixture of saturated and other oils; mixed oil is a mixture of corn and olive oils.
\dagger NS, not specified. Mixed sample indicates that there were no inclusion criteria for health of the sample.
$\ddagger \omega$-3 Dose represents eicosapentaenoic acid plus docosahexaenoic acid. The $\omega-3$ dose for Bruckner, 1987, reported as $1.5 \mathrm{~g} / 10 \mathrm{~kg}$ body wt, is estimated based on a mean weight of 85 kg .
II Average blood pressure at baseline for active and control groups for parallel group studies and blood pressure during the placebo period for crossover studies. SBP, systolic blood pressure; DBP, diastolic blood pressure; NS, not specified. Change in BP attributed to fish oil treatment
§ Blinded to treatment status.
Tabulated from Tables 2 and 3 from Morris. ${ }^{56}$

TABLE 47.14
Observational Studies on Protein and Blood Pressure*

Study	Number, Age	Protein Measurement	Results

Cross-Sectional Studies

Yamori, 1981	1120, NS*	Spot urine: sulfate:urea nitrogen ratio	\downarrow SBP with \uparrow animal protein
Kihara, 1984	1120, 30-70+y	Spot urine: sulfate:urea nitrogen ratio	\downarrow SBP in men with \uparrow animal protein
Reed, 1981	6496 men, NS	Single 24-h recall: g/d	\downarrow SBP, \downarrow DBP with \uparrow total protein
Pellum, 1983	61, 22-25 y	3-d food record: g/d	\downarrow SBP with \uparrow total protein
Elliott, 1991	1190, 20-59 y	24-h urine: total nitrogen, urea nitrogen, sulfate	\downarrow SBP with \uparrow total and animal protein
Dyer, 1992	2325, 20-59 y	24-h urine: total nitrogen, urea nitrogen	\downarrow SBP with \uparrow total protein
Stamler, 1992	11342 men, 35-57 y	Four or five 24-h recalls: \% energy intake	\downarrow SBP with \uparrow total protein
Eliott, 1992	1922, mean age 39 y	7-d weighed food record: g / d, \% energy intake	\downarrow SBP in women, \downarrow DBP in men and women with \uparrow total protein
Liu, 1992	3809, 18-30 y	Interviewer-administered foodfrequency questionnaire: \% energy intake	\downarrow DBP in white women, black women, and black men with \uparrow vegetable protein only
Zhou, 1989	2672, 35-50 y	Three 24-h recalls: percentage energy intake	\downarrow SBP with \uparrow animal protein only
Zhou, 1994	705, 40-59 y	Three 24-h recalls: \% energy intake	\downarrow SBP, \downarrow DBP with \uparrow animal protein only
Havlik, 1990	402 male twins, 42-56 y	Interviewer-administered food-frequency questionnaire: \% energy intake, $\mathrm{g} / \mathrm{d}, \mathrm{g} / \mathrm{d}$ adjusted for energy	\uparrow DBP with \uparrow total protein
Нe, 1995	827 men, mean 31-45 y	Three 24-h recalls: \% energy intake	\downarrow SBP with \uparrow total protein
Stamler, 1996	10020, 20-59 y	24-h urine: total nitrogen, urea nitrogen, sulfate	\downarrow SBP, \downarrow DBP with \uparrow total protein
Stamler, 1996	11342 men, 35-57 y	Four or five 24-h recalls: \% energy intake	\downarrow DBP with \uparrow total protein

Longitudinal Studies

Liu, 1993	1804 men, 40-56 y	Quantitative diet history: \% energy intake Interviewer-administered food- frequency questionnaire: \% energy intake	\downarrow SBP with \uparrow vegetable protein only No change, with \uparrow total, animal, or vegetable protein

[^3]Reproduced with permission from May 22/29, 1996 JAMA 275(20):1598-603. Copyright 1996, American Medical Association.

TABLE 47.15
Human Intervention Studies on Protein and Blood Pressure*

Study	Number, Age, Cohort	Study Design	Results	Conclusion
Chapman, 1950	8 men, 31-58 y, hypertensive protein	Sequential: (1) control, (2) rice-fruit; (3) rice-fruit +40 g milk (animal)	\downarrow SBP and \downarrow DBP, but both NS	Compared with rice-fruit diet, no effect of animal protein on BP
Hatch, 1954	9, 36-66 y , hypertensive	Sequential: (1) low-sodium control; (2) low-sodium $+30-50 \mathrm{~g}$ milk and meat protein	\downarrow SBP and \downarrow DBP, but both NS	No effect of \uparrow animal protein on BP
Brussaard, 1981	69, 18-30 y, normotensive	Parallel, randomized, each for 4 wk : (1) control; (2) casein protein; (3) soy protein	Casein: \downarrow SBP and \uparrow DBP, but both NS; Soy: \uparrow SBP and \uparrow DBP, but both NS	No effect of animal or vegetable protein on BP
Sacks, 1981	$21,20-55$ y normotensive vegans	Sequential: (1) 2 wk control vegetarian diet; (2) 4 wk 250 g of added beef	\uparrow SBP (p<0.05), \downarrow DBP (NS)	Animal protein \uparrow SBP
Sacks, 1984	18, 22-41 y, normotensive vegans	Crossover, randomized each for 6 wk (1) high protein (58 g soy and wheat protein); (2) low protein (7 g rice protein)	Compared with low protein, high protein: \uparrow SBP and \uparrow DBP, but both NS	No effect of \uparrow vegetable protein on BP
Sacks, 1984	Study 1 — 19, 14-54 y normotensive	Study I - Sequential: (1) 3 wk at baseline (2) 3 mo lactovegetarian diet	Study 1 - Low-fat vegetarian protein diet: \uparrow SBP and \uparrow DBP, but both NS	Study 1 - No effect of vegetarian diet on BP
	Study 2 - 17, 18-24 y, normotensive vegetarians	Study 2 - Crossover, randomized, each for 3 wk : (1) no eggs; (2) $1 \mathrm{egg} /$ d	Study $2-1 \mathrm{egg} / \mathrm{d}: \uparrow$ SBP and \uparrow DBP, but both NS	Study 2 - No effect of eggs on BP
Prescott, 1987	50, 18-60 y, normotensive	Parallel, randomized, each for 12 wk : (1) meat protein (93 g of protein) (2) vegetable protein (84 g protein)	Compared with meat protein diet, vegetable protein: \downarrow SBP and \uparrow DBP, but both NS	No difference in BP between vegetable and animal protein
Sacks, 1988	13, 21-41 y, normotensive vegans	Crossover, randomized, each for 3 wk: (1) 27 g casein protein; (2) 27 g soy protein	Compared with casein protein; soy protein: \downarrow SBP, and \downarrow DBP, but both NS	No difference in BP between vegetable and animal protein
Kestin, 1989	26 men, 28-64 y, normotensive	Crossover, randomized, each for 6 wk: (1) lean meat (high animal protein); (2) lactoovovegetarian (high vegetable protein)	Lactoovovegetarian diet: No change in SBP and \uparrow DBP, but both NS	No difference in BP between low-fat animal and low-fat vegetable protein diet

[^4]Reproduced with permission from May 22/29, 1996 JAMA 275(20):1598-603. Copyright 1996, American Medical Association.

Americans. Among 30,681 white male health professionals, only dietary fiber had an independent inverse association with hypertension after four years of follow up. ${ }^{34}$ The relative risk of hypertension was 1.57 times greater for men with a fiber intake of less than $12 \mathrm{~g} /$ day versus greater than $24 \mathrm{~g} /$ day. In the Health Professionals Follow-up Study (43,738 men), high intakes of cereal fiber and magnesium were inversely associated with the risk of all strokes after 8 years. ${ }^{28}$ Among 827 Chinese men, a 10 g higher intake of dietary fiber was significantly associated with a reduced systolic and diastolic blood pressure ($-2.2 /-2.1 \mathrm{mmHg}$). ${ }^{63}$

The explanation for lower blood pressure with fiber is unclear. Suggestions include an increased intake in dietary potassium and Vitamin C and/or a decreased sodium intake. ${ }^{64}$ Among controlled studies the average intake of fiber (primarily cereal) was increased by 14 g , resulting in an average reduction of blood pressure of $-1.6 /-2.0 \mathrm{mmHg} .{ }^{65}$ Better studies need to be conducted to understand the relationship of fiber with blood pressure.

Ascorbic Acid (Vitamin C) and Antioxidant Combinations

Ascorbic acid is an antioxidant and a free radical scavenger. Low vitamin C levels might decrease the production of nitric oxide and increase blood pressure by increasing free radical formation. ${ }^{66}$ Other mechanisms include decreased vasodilating prostaglandin formation, modified leukotriene metabolism, altered vascular sodium content, or nutrient multicollinearity. ${ }^{67}$ Several studies suggest an inverse relationship between blood pressure or stroke and vitamin C levels. Differences in nutritional consumption between hypertensives and normotensives are shown in Figure 47.3.68

It has been observed that a low potassium could also explain this association. ${ }^{69}$ In 722 Eastern Finnish men in the Kuopio Ischaemic Heart Disease Risk Factor Study, both plasma ascorbic acid and serum selenium concentrations had independent inverse associations with the blood pressure. ${ }^{66}$ However, neither vitamin E nor vitamin C supplements

FIGURE 47.3
Health and Nutrition Examination Survey I: \% mean difference in average nutritional consumption between hypertensive and normotensive persons, adjusted for age. Derived from McCarron DA, Morris CD, Henry HJ, Stanton JL. Science 224(4656), 1392, 1984. With permission.

TABLE 47.16
Trials of Ascorbic Acid and Blood Pressure

Study	Patient Number	Design	Duration	Intervention	Blood Pressure (mm Hg) Systolic/Diastolic
Osilesi O, 1991	20	Crossover	6 wks	$1000 \mathrm{mg} / \mathrm{d}$	$-6.3 / 0.6$
Feldman EB, 1992	21	Single Blind	4 wks	$1000 \mathrm{mg} / \mathrm{d}$	$-4.2 /-2.9$
Lovat LB, 1993	27	Crossover	4 wks	$400 \mathrm{mg} / \mathrm{d}$	-2 to $-5 \cdot 3 /-0.2$ to -1.9
Ghosh SK,1994	48	Controlled	6 wks	$500 \mathrm{mg} / \mathrm{d}$	$-2.5 /-1.2$
Duffy SJ, 1999	39	Controlled	4 wks	2000 mg bolus	$-11 /-6$
				500 mg per day	

Table modified from Ness A, Sterne J. Lancet 335(9211), 1271, 2000.
reduced the risk of stroke in the Health Professionals Follow-up Study of 43,738 men. ${ }^{70}$ In 168 healthy subjects, plasma concentrations of ascorbic acid (but not α-tocopherol, selenium, or taurine) were significantly inversely related to systolic and diastolic blood pressure. ${ }^{67}$ Intravenous vitamin C, thiopronine, and glutathione (all antioxidants) individually demonstrated an acute decrease in blood pressure in 20 unmedicated hypertensive and 20 diabetic subjects. ${ }^{71}$ Few studies assess the impact of ascorbic acid supplementation alone. Ascorbic acid - 500 mg twice daily in 21 subjects - lowered blood pressure $4.2 / 2.9 \mathrm{mmHg}$ in a pilot study. ${ }^{72}$ In a double-blind randomized crossover study, ascorbic acid 200 mg twice daily or placebo for four weeks was given to 27 elderly hypertensives. ${ }^{73}$ No significant treatment effect was observed. Following a 2-week run-in phase, 48 untreated elderly hypertensive subjects in a randomized, double-blind, placebocontrolled six week study received ascorbic acid 250 mg twice daily or placebo. ${ }^{74}$ The change in blood pressure in the vitamin C group was $-10.3 /-5.9 \mathrm{mmHg}$, and in the placebo group $-7.7 /-4.7 \mathrm{mmHg}(\mathrm{p}=$ nonsignificant). In a controlled trial, 20 subjects received placebo and 19 subjects received a 2 g bolus followed by 500 mg daily of ascorbic acid for 30 days. ${ }^{75}$ Systolic blood pressure decreased $13 \mathrm{mmHg}(\mathrm{p}<0.05)$; the change in diastolic blood pressure was not significant. Table 47.16 summarizes several trials of vitamin C supplementation and blood pressure. ${ }^{76}$ The effect on systolic blood pressure is consistently greater than diastolic blood pressure.

Several studies have combined several antioxidants to assess an effect on blood pressure. In a randomized, placebo-controlled, clinical trial of 297 retired teachers randomly assigned to 2 to 4 months of the combination of $400 \mathrm{IU} /$ day vitamin $\mathrm{E}, 500 \mathrm{mg}$ / day vitamin C , and $6 \mathrm{mg} /$ day β-carotene or placebo, the antioxidant combination capsule had no significant hypotensive effect. ${ }^{77}$ In a randomized, double-blind, crossover design placebocontrolled study of 21 hypertensives and 17 normotensives, participants were assigned to receive either 8 weeks of placebo followed by 2 weeks washout, then 8 weeks antioxidants 200 mg of zinc sulfate, 500 mg of ascorbic acid, 600 mg of α-tocopherol and 30 mg of β carotene daily, or the opposite sequence. Only systolic blood pressure (-5.3 mmHg) decreased significantly at the end of the antioxidant phase compared with the placebo phase (+3.7 mmHg) in hypertensive subjects ($\mathrm{p}<0.01$). ${ }^{78}$

Garlic (Allium Sativum)

Garlic has been reported to decrease blood pressure and attenuate age-related increased aortic stiffness, which could alter blood pressure rise with aging. ${ }^{79-83}$ Allicin is believed to be the component responsible for the medicinal effects of garlic. In rabbits and dogs, garlic elicits a dose-dependent diuretic-natriuretic response. ${ }^{84,85}$ In a randomized, placebo-con-
trolled, double-blind trial, 47 subjects with mild hypertension (diastolic blood pressures from 95 to 104 mmHg) took either garlic powder or a placebo of identical appearance for 12 weeks. ${ }^{79}$ The supine diastolic blood pressure in the garlic treatment group decreased 13 mmHg after 12 weeks ($\mathrm{p}<0.01$) compared with no significant changes in the placebo group. In a double-blind crossover study of 41 moderately hypercholesterolemic men assessing the effect of aged garlic extract versus placebo on blood lipids, there was a 5.5% decrease in systolic blood pressure and a modest reduction of diastolic blood pressure. ${ }^{81}$ Another study of 40 hypercholesterolemic men treated with 900 mg of garlic powder observed a similar finding. ${ }^{80}$ In a randomized, double-blind study, 42 healthy adults took either 300 mg three times a day of standardized garlic powder in tablet form, or placebo for 12 weeks. ${ }^{86}$ There was no significant change in blood pressure.

A meta-analysis of 8 trials (415 subjects) using dried garlic powder 600 to 900 mg observed a decrease for systolic blood pressure of -7.7 (95% CI -11.0 to -4.3) and diastolic blood pressure of $-5.0(95 \% \mathrm{CI}-7.1$ to -2.9$) \mathrm{mmHg}$, which represented the overall pooled difference in the absolute change (baseline to final measurement) in blood pressure relative to placebo (see Table 47.17). ${ }^{87}$ The same analysis for hypertensive subjects reported an $-11.1 /-6.5 \mathrm{mmHg}$ decline in blood pressure. The authors observe that blinding may have been difficult due to the odor of garlic. Furthermore, they emphasize that their quality assessment of the trials was poor because the authors did not state their technique to achieve effective randomization. Side effects appear to be rare. A recent randomized, multicenter, double-blind, placebo-controlled, 12-week parallel treatment study in hypercholesterolemic subjects using garlic powder (Kwai) 300 mg 3 times per day found no benefits in lowering blood pressure. ${ }^{88}$ The authors of this paper emphasize that negative studies tend not to be submitted or published, suggesting that the current literature on garlic represents a publication bias. ${ }^{87,88}$ Despite the suggested benefit, more trials need to be conducted to assess the benefit in hypertensives.

Ethanol

Alcohol consumption increases the risk of the development of hypertension. ${ }^{89,90}$ The risk increases above 28 g of ethanol per day (which is equivalent to 24 oz of beer, 10 oz wine, and 3 oz of distilled spirits). ${ }^{91}$ The maximum addition to the prevalence of hypertension of alcohol usage greater than two drinks daily is estimated to be 5 to 7%; however, the 11% risk in men is greater than in women because of greater alcohol intake. ${ }^{92}$ In another study, alcohol consumption greater than 20 g per day gradually increases the risk of hypertension among women. ${ }^{93}$ The relationship of alcohol intake to blood pressure is graded and continuous with the effect clearer in men than in women and more consistent in whites than in blacks (see Figure 47.4). ${ }^{44}$ The effect of alcohol consumption on systolic blood pressure is independent of the effects of age, obesity, cigarette smoking, and physical activity. ${ }^{95}$ In the INTERSALT Study $(\mathrm{n}=10,079)$, both BMI and heavy alcohol consumption were significantly and independently correlated with both systolic and diastolic blood pressure ($\mathrm{p}<0.001$). ${ }^{5}$ The effect of alcohol consumption on blood pressure is independent of and additive to BMI and urinary excretion of sodium and potassium. ${ }^{96}$ The effect of alcohol on change in blood pressure independent of other risk factors is displayed in Figure 47.4. ${ }^{94}$ In the Scottish Health Heart Study, alcohol consumption showed a weak positive correlation with blood pressure among 7354 men, but the correlation was greater than for sodium. ${ }^{7}$
Resting plasma concentrations of norepinephrine, epinephrine, renin activity, angiotensin II, aldosterone, and cortisol are similar in drinkers and nondrinkers. ${ }^{97}$ In a prospective study of 7735 middle-aged British men, the prevalence of measured hypertension and

TABLE 47.17
Randomized Controlled Trials of Garlic and Blood Pressure*

Reference	Participants	Dose per day (mg)	Control	Blinding	Number of Subjects	Duration	Position	Heart Rate	Analysis
Kandziora, 1988	Hypertensives	600	Reserpine- diuretic	Single	40	12 weeks	Sup/St	UC	ITT
Kandziora, 1988	Hypertensives	600	Placebo	Double	40	12 weeks	Sup/St	UC	ITT
Auer, 1990	Hypertensives	600	Placebo	Double	47	12 weeks	Sup/St	NS	NS
Vorberg, 1990	Hyperlipidemics	900	Placebo	Double	40	16 weeks	Sup	NS	NS
Kiesewetter, 1991	SWISA	800	Placebo	Double	60	4 weeks	NS	NS	NS
Holzgartner, 1992	Hyperlipidemics	900	Bezafibrate	Double	94	12 weeks	NS	UC	ITT
Santos, 1993	NS	900	Placebo	Double	60	6 months	NS	NS	ORT
Jain, 1993	Hyperlipidemics	900	Placebo	Double	42	12 months	NS	NA	NS

* Sup, supine; St, standing; UC, unchanged; ITT intention to treat; NS, not stated; SWISA, subjects with increased spontaneous aggregation; ORT, on randomized treatment; NA. not available. Crossover study.
Modified from Silagy CA, Neil HA. J Hypertens 12(4), 463, 1994. With permission.

White Men
($\mathrm{n}=20,171$)

White Women
($\mathrm{n}=23$, 191)

FIGURE 47.4
The effect of ethanol consumption on the change in blood pressure independent of other factors. Graph derived from data of Klatsky AL, Friedman GD, Armstrong MA. Circulation 73(4): 628, 1986.
level of blood pressure were significantly higher on Mondays and lower on Fridays than on other weekdays. ${ }^{98}$ This suggests a withdrawal effect of weekend ethanol consumption.

Modest alcohol intake has been associated with a protective effect on ischemic heart disease events. Heavy alcohol intake has been associated with an increased rate of hemorrhagic strokes. ${ }^{99,100}$ However, mild to moderate consumption in men reduced the risk of ischemic stroke without increasing the risk of hemorrhagic stroke. ${ }^{101}$

Several trials have been conducted to assess the impact of alcohol in moderation on blood pressure. These are listed in Table 47.18. Prevention and Treatment of Hypertension Study (PATHS) ${ }^{991,102}$ was designed to assess alcohol intake reduction in nondependent moderate to heavy drinkers. 641 outpatient hypertensive and nonhypertensive veterans with a diastolic blood pressure of 80 to 99 mmHg were randomized to observation or behavioral cognitive intervention. To qualify for enrollment, self-reported alcohol intake had to be $\geq 294 \mathrm{~g} /$ week or ≥ 21 drinks/week for the preceding six months. The goal of behavioral cognitive intervention was to reduce alcohol intake to less than 50% of baseline intake or 14 drinks per week.

For the entire cohort, the average reduction of alcohol intake at 6 and 24 months between groups was 131 and $124 \mathrm{~g} / \mathrm{wk}$ ($\mathrm{p}<0.001$ for each). For the 265 hypertensive subjects, the average reduction at 6 and 24 months was 157 and $135 \mathrm{~g} / \mathrm{wk}$ (each $\mathrm{p}<0.001$). At 6 and 12 months, this translated to a nonsignificant reduction in blood pressure (i.e., treatment

TABLE 47.18
Randomized Controlled Trials of Alcohol Reduction on Blood Pressure

Study, Year	n	Age, Years Mean \pm SD or Range)	Duration, Weeks	Baseline BP, mm Hg	Alcohol Intake Difference, Drinkst/Day	Blood Pressure Reduction, mm Hg	p Value
Puddey, 1985	46	35 ± 8	6	$133 / 76$	3.7	$3.8 / 1.4$	$<.001 /<.05$
Howes, 1985	10	$25-41$	0.6	$120 / 66$	5.7	$8 / 6$	$<.025 /<.001$
Puddey, 1987	44	53 ± 16	6	$142 / 84$	4.0	$5 / 3$	$<.001 /<.001$
Ueshima, 1987	50	46 ± 7	2	$148 / 93$	2.6	$5.2 / 2.2$	$<.005 / \mathrm{NS}$
Wallace, 1988	641	42 ± 20	52	$136 / 82$	1.0	$2.1 / ?$	$<.05 / \mathrm{NS}$
Parker, 1990	59	52 ± 11	4	$138 / 85$	3.8	$5.4 / 3.2$	$<.01 /<.01$
Cox, 1990	72	$20-45$	4	$132 / 73$	3.4	$4.1 / 1.6$	$<.05 /<-05$
Maheswaran, 1992	41	40 s	8	$144 / 90$	3.1	Not reported	NS
Puddey, 1992	86	44	18	$137 / 85$	3.0	$4.8 / 3.3$	$<.01 /<.01$
Ueshima, 1993	54	44 ± 8	3	$144 / 96$	1.7	$3.6 / 1.9$	$<.05 / \mathrm{NS}$
PATHS, 1998 \ddagger	641	57 ± 11	104	$140 / 86$	1.3	$0.9 / 0.6$	$0.16 / 0.10$

\dagger A standard drink is defined as 14 g of ethanol and is contained in a $12-\mathrm{oz}$ glass of beer, a $5-\mathrm{oz}$ glass of table wine, or 1.5 oz of distilled spirits.
\ddagger PATHS is Prevention and Treatment of Hypertension Study.
Modified from report of Cushman WC, Cutler JA, Bingham SF, et al. Am J Hypertens 7(9PT1), 814, 1994.
effect) for the entire cohort of $-1.0 /-0.6 \mathrm{mmHg}$ and $-0.9 /-0.6 \mathrm{mmHg}$. For the hypertensive participants, the nonsignificant treatment effect at 6 and 12 months was $-1.9 /-0.6$ and $-1.6 /-0.4 \mathrm{mmHg}$. There was no significant difference in the incidence of hypertension at 24 months: 16.6% in the intervention group and 21.8% in the control group. Weight declined more in the intervention group by -0.5 and -1.0 kg at 6 and 24 months.

PATHS was designed to achieve a 2-drink reduction in alcohol between treatments, but only achieved a reduction of 1.3 drinks per day. Furthermore, it was anticipated that 60% of the intervention group and 20% of the control group could reduce baseline alcohol intake to less than 50%; however, at 6 months the level for the control group was 23% and the intervention group was 44%.

Caffeine

Caffeine may increase peripheral vascular resistance by blocking the adenosine receptors. There are few randomized, controlled trials assessing the impact of coffee consumption on blood pressure. A meta-analysis (see Table 47.19) reviewed 36 studies and identified 11 controlled trials with 522 subjects. ${ }^{103}$ The median duration of the trials was 56 days. They estimated the overall pooled treatment effect attributable for a median coffee intake of 5 cups $/ \mathrm{d}$ as $+2.4 \mathrm{mmHg}(95 \% \mathrm{CI}+1.0$ to +3.7$)$ for systolic blood pressure and +1.2 $\mathrm{mmHg}(95 \% \mathrm{CI}+0.4$ to +2.1$)$ for diastolic blood pressure. Only one of the 11 trials included a hypertensive cohort. This meta-analysis did not observe a treatment effect on blood pressure based on treatment duration, the type of coffee (instant or not), whether coffee was filtered, or the type of coffee control (decaffeinated or no coffee). Age, coffee consumption, and sample size were independently associated with both systolic and diastolic blood pressure. The systolic and diastolic blood pressure increased 0.8 and 0.5 mmHg per cup of coffee consumed. A recent study using ambulatory blood pressure monitoring to study nonsmoking men and women older than 50 years reported a $+4.8 /+3.0 \mathrm{mmHg}$ higher 24 -hour systolic and diastolic blood pressure comparing 14 hypertensive coffee drinkers of $5 \mathrm{cups} / \mathrm{d}$ for two weeks compared with 13 hypertensive abstainers after a mandatory period of abstention of caffeine-containing foods for two weeks. ${ }^{104}$

TABLE 47.19

Controlled Studies of Coffee Consumption

Author, Year	No. of Subjects	Age, y Mean	Age, y Range	\% Male	$\begin{gathered} \text { BP } \\ \text { Drugs } \end{gathered}$	Study Design*	Random Study	Study Duration	Baseline BP, mmHg SBP/DBP	Habitual Intake, cups/d	Run-time Time, d	Coffee Method	Coffee Filtered	No Cups of Coffee	Caffeine Content
Ammon, 1983	8	27	20-30	100	No	XO, D	No	28 d	123/82 \ddagger	...	7	Instant	No	504	
									126/85§						
Burr, 1989	54	35	18-58	65	No	XO, S	Yes	28 d	116/69	\ldots	7	Instant	No	5	...
Bak, 1989a	67	26	18-33	54	No	PG, ...	Yes	63 d	122/71	5.9	21	Boiled	No	5	630
Bak, 1989b	68	26	18-33	54	No	PG, ...	Yes	63 d	122/71	5.5	21	Boiled	Yes	5	670
Van Dusseldorp, 1980	45	38	25-45	49	No	XO, D	Yes	42 d	124/76	..	0	Drip	Yes	5	435
Rosmarin, 1990	21	36	...	100	No	XO, ...	Yes	56 d	115/72	...	0	Drip	Yes	3.6	...
MacDonald, 1991+	52	47	26-67	44	No	XO, D	Yes	14 d	134/87 ${ }^{\text {II }}$		0	Instant	No	3	...
Van Dusseldorp, 1992a	43	39	17-57	42	No	PG, D	Yes	79 d	110/69 ${ }^{\text {II }}$	5.5	17	Boiled	No	6	860
Van Dusseldorp, 1992b	42	39	17-57	42	No	PG, D	Yes	79 d	110/70II	5.5	17	Boiled	Yes	6	887
Eggertsen, 1993	23	56	28-74	57	Yes	XO, D	Yes	14 d	130/80\%	3.5	14	Instant	No	3.5	...
Superko, 1994	99	46	43-48\#	100	No	PG, D	Yes	56 d	116/74	4.5	0	Drip	Yes	4.5	584

* BP indicates blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; XO, crossover; D, double-blind; S, single-blind; and PG, parallel group.
\dagger MacDonald (1991): mean ambulatory BID during caffeinated coffee regimen vs caffeine-free diet.
\ddagger Regular coffee group.
§ Decaffeinated coffee group.
II Ambulatory BP measurements.
\# Range of means.
Modified from Jee SH, He J, Whelton PK, et al. Hypertension 33(2), 647, 1999.

Weight Reduction (Caloric Deprivation)

The relationship between obesity and hypertension is well documented. All adults with a BMI of $25 \mathrm{~kg} / \mathrm{m}^{2}$ or greater are at risk for hypertension. ${ }^{105}$ The impact of weight reduction as a modality for preventing or reducing blood pressure is addressed in the section on major nonpharmacologic trials.

Summary

Table 47.20 summarizes the meta-analyses on nonpharmacologic intervention and blood pressure. The importance of the amount of change in blood pressure varies with the perspective of the clinician vs. that of the epidemiologist.

TABLE 47.20
Meta-Analysis of Results of Studies on Nonpharmacologic Intervention and Blood Pressure

Author, Year	Number of Trials	Nutrient	Systolic Pressure (95\% CI)	$\begin{gathered} \text { Diastolic Pressure } \\ (95 \% \mathrm{CI}) \end{gathered}$
Jee, 1999 ${ }^{103}$	11	Caffeine	+2.4 (+1.0 to +3.7)	+1.2 (+0.4 to +2.1)
Normotensives	10		+2.4 (+1.0 to +3.8)	+1.2 (+0.4 to +2.1)
Cappuccio, 198939	15	Calcium	-0.13 (-0.46 to +0.19$)$	$+0.03(-0.17$ to +0.22$)$
Hypertensives	10		+0.06 (-0.59 to +0.72)	$+0.03(-0.21$ to +0.27$)$
Cutler, 1990 ${ }^{35}$	19	Calcium	-1.8 (-3.0 to -0.6)	-0.7 (-1.5 to +0.2$)$
Normotensives	9		-1.3 (-3.2 to +0.8$)$	-1.3 (-2.6 to -0.1)
Hypertensives	12		-2.1 (-3.6 to -0.6)	-0.1 (-1.3 to +1.0)
Allender, $1996{ }^{41}$	22	Calcium	-0.89 (-1.74 to -0.05)	-0.18 (-0.75 to +0.40)
Normotensives	13		-0.53 (-1.56 to +0.49$)$	$-0.28(-0.99$ to +0.42$)$
Hypertensives	16		-1.68 (-3.18 to -0.18)	+0.02 (-0.96 to +1.00)
Buchner, 199642	33	Calcium	-1.27 (-2.25 to -0.29)	$-0.24(-0.92$ to +0.44$)$
Normotensives	33		-0.27 (-1.80 to +1.27)	-0.33 (-1.56 to +0.90$)$
Hypertensives	6		-4.30 (-6.47 to -2.13)	-1.50 (-2.77 to -0.23)
Griffith, 199943	42	Calcium	-1.44 (-2.20 to -0.68)	-0.84 (-1.44 to -0.24)
He, 199665	20	Fiber	-1.6 (-2.7 to -0.4)	-2.0 (-2.9 to -1.1)
Silagy, 1994 ${ }^{87}$	8	Garlic	-7.7 (-11.0 to -4.3)	-5.0 (-7.1 to -2.9)
Hypertensives	2		-11.1 (-17.2 to -5.0)	-6.5 (-9.6 to -3.4)
Appel, 1993 ${ }^{55}$	17	ω-3-Fatty Acids	-1.5 (-2.4 to -0.6)	-1.0 (-1.6 to -0.4)
Normotensives	11		-1.0 (-2.0 to 0.0)	-0.5 (-1.2 to +0.20$)$
Hypertensives	6		-5.5 (-8.1 to -2.9)	-3.5 (-5.0 to -2.1)
Morris, 1993 ${ }^{56}$	31	$\omega-3-$ Fatty Acids	-3.0 (-4.5 to -1.5)	-1.5 (-2.2 to -0.8)
Normotensives	8		-0.4 (-1.6 to +0.8)	-0.7 (-1.5 to +0.1)
Hypertensives	9		-3.4 (-5.9 to -0.9)	-2.0 (-3.3 to -0.7)
Cappuccio, 1991 ${ }^{106}$	18	Potassium	-4.0 (-4.7 to -3.2)	-2.4 (-3.0 to -1.8)
Hypertensives	12		-5.3 (-6.2 to -4.4)	-3.0 (-3.7 to -2.3)
Whelton, 199729	32	Potassium	-3.11 (-4.31 to -1.91)	-1.97 (-3.42 to -0.52)
Normotensives	12		-1.8 (-2.9 to -0.6)	-1.0 (-2.1 to 0.0)
Hypertensives	20		-4.4 (-6.6 to -2.2)	-2.5 (-4.9 to -0.1)
Cutler,1991 ${ }^{11}$	23	Sodium	-2.91 (-3.67 to -2.15)	-1.60 (-2.09 to -1.11)
Normotensives	6		-1.70 (-2.68 to -0.72)	-0.97 (-1.62 to -0.32)
Hypertensives	18		-4.92 (-6.19 to -3.65)	-2.64 (-3.46 to -1.82)
Midgley, 1996 ${ }^{13}$	56	Sodium	-0.5 (-1.17 to -0.07)	-1.6 (-2.10 to -1.02)
Normotensives	28		$-0.1(-0.76$ to +0.63$)$	-0.5 (-1.16 to +0.14)
Hypertensives	28		-2.0 (-3.57 to -0.49)	-2.7 (-3.77 to -1.58)
Cutler, 1997 ${ }^{14}$	32	Sodium	-2.81 (-3.39 to -2.23)	-1.52 (-1.90 to -1.14)
Normotensives	12		-1.90 (-2.62 to -1.18)	-1.09 (-1.57 to -0.61)
Hypertensives	22		-4.83 (-5.87 to -3.79)	-2.45 (-3.13 to -1.77)
Graudal, 1998 ${ }^{15}$		Sodium		
Normotensives	56		-1.2 (-1.8 to -0.6)	-0.26 (-0.3 to +0.9$)$
Hypertensives	58		-3.9 (-4.8 to -3.0)	-1.9 (-2.5 to -1.3)

References

1. Prisant LM. Hypertension. In: Current Diagnosis 9. Conn RB, Borer WZ, Snyder JW, Eds. Philadelphia: W. B. Saunders, 1997: p 349.
2. Denton D, Weisinger R, Mundy NI, et al. Nat Med 1(10), 1009, 1995.
3. Kurtz TW, Al-Bander HA, Morris RC. N Engl J Med 317(17), 1043, 1987.
4. Boegehold MA, Kotchen TA. Hypertension 17(1 Suppl), I158, 1991.
5. \qquad . Br Med J 297(6644), 319, 1988.
6. Stamler R. Hypertension 17(1 Suppl), I16, 1991.
7. Smith WC, Crombie IK, Tavendale RT, et al. Br Med J 297(6644), 329, 1988.
8. \qquad Arch Intern Med 153(2), 186, 1993.
9. Mascioli S, Grimm R, Jr, Launer C, et al. Hypertension 17(1 Suppl), I21, 1991.
10. Grobbee DE, Hofman A. Br Med J 293(6538), 27, 1986.
11. Cutler JA, Follmann D, Elliott P, Suh I. Hypertension 17(1 Suppl), I27, 1991.
12. Law MR, Frost CD, Wald NJ. Br Med J 302(6780), 819, 1991.
13. Midgley JP, Matthew AG, Greenwood CM, Logan AG. JAMA 275(20), 1590, 1996.
14. Cutler JA, Follmann D, Allender PS. Am J Clin Nutr 65(2 Suppl), 643, 1997.
15. Graudal NA, Galloe AM, Garred P. JAMA 279(17), 1383, 1998.
16. Alderman MH, Madhavan S, Cohen H, et al. Hypertension 25(6), 1144, 1995.
17. Alderman MH. Am J Hypertens 10(5 Pt 1), 584, 1997.
18. Alderman MH, Cohen H, Madhavan S. Lancet 351(9105), 781, 1998.
19. Alderman MH, Lamport B. Am J Hypertens 3(6 Pt 1), 499, 1990.
20. Krishna GG, Miller E, Kapoor S. N Engl J Med 320(18), 1177, 1989.
21. Langford HG. Ann Intern Med 98(5 Pt 2), 770, 1983.
22. Grim CE, Luft FC, Miller JZ, et al. J Chronic Dis 33(2), 87, 1980.
23. J Chronic Dis 40(9), 839, 1987.
24. Adrogue HJ, Wesson DE. Semin Nephrol 16(2), 94, 1996.
25. Brancati FL, Appel LJ, Seidler AJ, Whelton PK. Arch Intern Med 156(1), 61, 1996.
26. Tobian L, Lange J, Ulm K, et al. Hypertension 7(3 Pt 2), I110, 1985.
27. Khaw KT, Barrett-Connor E. N Engl J Med 316(5), 235, 1987.
28. Ascherio A, Rimm EB, Hernan MA, et al. Circulation 98(12), 1198, 1998.
29. Whelton PK, He J, Cutler JA, et al. JAMA 277(20), 1624, 1997.
30. Grimm R, Jr, Neaton JD, Elmer PJ, et al. N Engl J Med 322(9), 569, 1990.
31. Stitt FW, Clayton DG, Crawford MD, Morris JN. Lancet 1(7795), 122, 1973.
32. Gruchow HW, Sobocinski KA, Barboriak JJ. JAMA 253(11), 1567, 1985.
33. Witteman JC, Willett WC, Stampfer M, et al. Circulation 80(5), 1320, 1989.
34. Ascherio A, Rimm EB, Giovannucci EL, et al. Circulation 86(5), 1475, 1992.
35. Cutler JA, Brittain E. Am J Hypertens 3(8 Pt 2), 137, 1990.
36. Resnick LM, Am J Hypertens 12(1 Pt 1), 99, 1999.
37. Hypertension 8(5), 444, 1986.
38. McCarron DA, Morris CD. Ann Intern Med 103(6 (Pt 1)), 825, 1985.
39. Cappuccio FP, Siani A, Strazzullo P. J Hypertens 7(12), 941, 1989.
40. Cappuccio FP, Elliott P, Allender PS, et al. Am J Epidemiol 142(9), 935, 1995.
41. Allender PS, Cutler JA, Follmann D, et al. Ann Intern Med 124(9), 825, 1996.
42. Bucher HC, Cook RJ, Guyatt GH, et al. JAMA 275(13), 1016, 1996.
43. Griffith LE, Guyatt GH, Cook RJ, et al. Am J Hypertens 12(1 Pt 1), 84, 1999.
44. Bucher HC, Guyatt GH, Cook RJ, et al. JAMA 275(14), 1113, 1996.
45. Levine RJ, Hauth JC, Curet LB, et al. N Engl J Med 337(2), 69, 1997.
46. Appel LJ. Calcium, magnesium, and blood pressure. In: Izzo JH, Black HR, Eds. Hypertension Primer. The Essentials of High Blood Pressure. Dallas: Lippincott Williams \&Wilkins, 1999: p 253.
47. Sibai BM, Villar MA, Bray E. Am J Obstet Gynecol 161(1), 115, 1989.
48. Lucas MJ, Leveno KJ, Cunningham FG, N Engl J Med 333(4), 201, 1995.
49. Whelton PK, Klag MJ. Am J Cardiol 63, 26, 1989.
50. Mizushima S, Cappuccio FP, Nichols R, Elliott P. J Hum Hypertens 12, 447, 1998.
51. Ma J, Folsom AR, Melnick SL, et al. J Clin Epidemiol 48(7), 927, 1995.
52. Peacock JM, Folsom AR, Arnett DK, et al. Ann Epidemiol 9(3), 159, 1999.
53. Sacks FM, Brown LE, Appel L, et al. Hypertension 26(6 Pt 1), 950, 1995.
54. Sacks FM, Willett WC, Smith A, et al. Hypertension 31(1), 131, 1998.
55. Appel LJ, Miller ER, Seidler AJ, Whelton PK. Arch Intern Med 153(12), 1429, 1993.
56. Morris MC, Sacks F, Rosner B. Circulation 88(2), 523, 1993.
57. Mori TA, Bao DQ, Burke V, et al. Hypertension 34(2), 253, 1999.
58. Bao DQ, Mori TA, Burke V, et al. Hypertension 32(4), 710, 1998.
59. Obarzanek E, Velletri PA, Cutler JA, JAMA 275(20), 1598, 1996.
60. Fujita T, Ando K, Noda H, et al. Circulation 75(3), 525, 1987.
61. He J, Whelton PK. Clin Exp Hypertens 21(5-6), 785, 1999.
62. Ludwig DS, Pereira MA, Kroenke CH, et al. JAMA 282(16), 1539, 1999.
63. He J, Klag MJ, Whelton PK, et al. J Hypertens 13(11), 1267, 1995.
64. Singh RB, Rastogi SS, Singh R, et al. Am J Cardiol 70(15), 1287, 1992.
65. He J, Whelton PK, Klag MJ. Am J Hypertens 9(4 Part 2), 74, 1996.
66. Salonen JT, Ann Med 23(3), 295, 1991.
67. Moran JP, Cohen L, Greene JM, et al. Am J Clin Nutr 57(2), 213, 1993.
68. McCarron DA, Morris CD, Henry HJ, Stanton JL. Science 224(4656), 1392, 1984.
69. Bulpitt CJ. J Hypertens 8, 1071, 1990.
70. Ascherio A, Rimm EB, Hernan MA, et al. Ann Intern Med 130(12), 963, 1999.
71. Ceriello A, Giugliano D, Quatraro A, Lefebvre PJ. Clin Sci 81(6), 739, 1991.
72. Feldman EB, Gold S, Greene J, et al. Ann N Y Acad Sci 669, 342, 1992.
73. Lovat LB, Lu Y, Palmer AJ, et al. J Hum Hypertens 7(4), 403, 1993.
74. Ghosh SK, Ekpo EB, Shah IU, et al. Gerontology 40(5), 268, 1994.
75. Duffy SJ, Gokce N, Holbrook M, et al. Lancet 354(9195), 2048, 1999.
76. Ness A, Sterne J. Lancet 355(9211), 1271, 2000.
77. Miller E3, Appel LJ, Levander OA, Levine DM. J Cardiovasc Risk 4(1), 19, 1997.
78. Galley HF, Thornton J, Howdle PD, et al. Clin Sci 92(4), 361, 1997.
79. Auer W, Eiber A, Hertkorn E, et al. Br J Clin Pract Suppl 69, 3, 1990.
80. Vorberg G, Schneider B. Br J Clin Pract Suppl 69, 7, 1990.
81. Steiner M, Khan AH, Holbert D, Lin RI. Am J Clin Nutr 64(6), 866, 1996.
82. Breithaupt-Grogler K, Ling M, Boudoulas H, Belz GG. Circulation 96(8), 2649, 1997.
83. Ernst E. Pharmatherapeutica 5(2), 83, 1987.
84. Pantoja CV, Chiang LC, Norris BC, Concha JB. J Ethnopharmacol 31(3), 325, 1991.
85. Pantoja CV, Norris BC, Contreras CM. J Ethnopharmacol 52(2), 101, 1996.
86. Jain AK, Vargas R, Gotzkowsky S, McMahon FG. Am J Med 94(6), 632, 1993.
87. Silagy CA, Neil HA. J Hypertens 12(4), 463, 1994.
88. Isaacsohn JL, Moser M, Stein EA, et al. Arch Intern Med 158(11), 1189, 1998.
89. Klatsky AL, Friedman GD, Siegelaub AB, Gerard MJ. N Engl J Med 296(21), 1194, 1977.
90. Beilin LJ. Ann N Y Acad Sci 676, 83, 1993.
91. Cushman WC, Cutler JA, Bingham SF, et al. Am J Hypertens 7(9 Pt 1), 814, 1994.
92. MacMahon S. Hypertension 9(2), 111, 1987.
93. Witteman JC, Willett WC, Stampfer MJ, et al. Am J Cardiol 65(9), 633, 1990.
94. Klatsky AL, Friedman GD, Armstrong MA. Circulation 73(4), 628, 1986.
95. Arkwright PD, Beilin J, Vandongen R, et al. Circulation 66(3), 515, 1982.
96. Marmot MG, Elliott P, Shipley MJ, et al. BMJ 308(6939), 1263, 1994.
97. Arkwright PD, Beilin LJ, Rouse I, et al. Circulation 66(1), 60, 1982.
98. Wannamethee G, Shaper AG. J Hum Hypertens 5(2), 59, 1991.
99. Iso H, Kitamura A, Shimamoto T, et al. Stroke 26(5), 767, 1995.
100. Camargo CA. Stroke 20(12), 1611, 1989.
101. Berger K, Ajani UA, Kase CS, et al. N Engl J Med 341(21), 1557, 1999.
102. Cushman WC, Cutler JA, Hanna E, et al. Arch Intern Med 158(11), 1197, 1998.
103. Jee SH, He J, Whelton PK, et al. Hypertension 33(2), 647, 1999.
104. Rakic V, Burke V, Beilin LJ. Hypertension 33(3), 869, 1999.
105. Arch Intern Med 158(17), 1855, 1998.
106. Cappuccio FP, MacGregor GA. J Hypertens 9(5), 465, 1991.

[^0]: ${ }^{c x}$, cross-over study; ${ }^{\text {ci}}$, cointervention.

 * A quality score of 6 corresponds to the highest quality level

[^1]: * NA indicates not applicable.
 \dagger Quality scores range from 0 to 6 with 6 indicating the highest quality score
 \ddagger Calcium for the Preeclampsia Prevention Trial (Not in the original meta-analysis)
 Modified from Bucher HC. Reproduced with permission from April 10, 1996 JAMA 275(14):1113-7. Copyright 1996, American Medical Association.

[^2]: $\dagger 4.58 \mathrm{mmol} \mathrm{Mg}$ lactate +0.42 Mg Citrate; \ddagger TOPH, Trial of Hypertension Prevention (Phase I)

[^3]: * SBP indicates systolic blood pressure; DBP, diastolic blood pressure; NS, not stated
 † Personal communication

[^4]: * SBP indicates systolic blood pressure; DBP, diastolic blood pressure; BP, blood pressure; and NS, not significant.

