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The Klein Gordon equation was the first attempt at unifying special relativity and quan-

tum mechanics. While initially discarded this equation of “many fathers” can be used in

understanding spinless particles that consequently led to the discovery of pions and other

subatomic particles. The equation leads to the development of Dirac equation and hence

quantum field theory. It shows interesting quantum relativistic phenomena like Klein Para-

dox and “Zitterbewegung”, a rapid vibrating movement of quantum relativistic particles.

The simulation of such quantum equations initially motivated Feynman to propose the idea

of quantum computation. While many such simulations have been done till date in various

physical setups, this is the first time a digital quantum simulation of Klein Gordon equa-

tion is proposed on IBM’s quantum computer. Here we simulate the time-dependent Klein

Gordon equation in a barrier potential and clearly observe the tunnelling of the particle and
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anti-particle through a strong potential claiming Klein Paradox. The simulation technique

used here inspires the quantum computing community for further studying Klein Gordon

equation and applying it to more complicated quantum mechanical systems.

Keywords: Klein Gordon Equation, Quantum Simulation, IBM Quantum Experience

1 Introduction

The possibilities that quantum computation offers today in not only solving problems of quantum

mechanics but also in various other algorithms is truly remarkable 1–6. It is well known that Shor’s

algorithm 7 once simulated on a quantum computer can be used to break our most common form

of cryptography to secure data 8. Similarly many other algorithms like the Grover’s algorithm 9

have also been shown to be exponentially faster than their classical counterparts.

Since 1982 when Richard Feynman proposed the simulation of quantum systems using quan-

tum computers 10 there have been a major development on simulation of quantum mechanical sys-

tems. Quantum simulation has been found a great interest in various quantum systems including

Hubbard model 11, 12, spin models 13, 14, quantum phase transitions 15, 16, quantum chemistry 17,

quantum chaos 18, interferometry 19–22 and so on. Simulation of such quantum systems has shown

to be more effective than those performed by classical systems 23.

The simulation of quantum field theories has been performed by both analog quantum simu-

lations, where the Hamiltonian is mapped to another system 24, 25, or a digital quantum simulation
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where the Hamiltonian is split using the Suzuki Trotter formula 26–28, generally split into kinetic

and potential energy terms 29–44 and then simulated by appropriately decomposing the Hamiltonian

into unitary operators and designing the quantum circuits on a quantum computer. Using the above

technique, non-relativistic simulation of the Schrodinger equation 45, 46, relativistic simulations of

Dirac equation 24, 25 and the digital simulation of Dirac equation 47 have already been performed.

The Klein Gordon equation which can be derived from Schrodinger’s equation was initially

proposed for the unification of quantum mechanics and special relativity. This equation also shows

”Zitterbewegung” and the Klein Paradox, where if the barrier potential V is greater than mc2 the

particle can easily penerate the barrier as if it wasn’t there 48–50. Significant work has been done

on the Klein Gordon equation including solving the equation 51, 52 and simulating it in classical

systems 53. This is the first time where we are simulating the Klein Gordon equation in a quantum

system. It aims towards simulating the Klein Gordon equation for a single particle using digi-

tal quantum simulation. The basic technique used here can be utilized to effectively simulate the

Klein Gordon equation that applies for any physical quantum system. Hence it illustrates an im-

portant application of quantum computers in the field of quantum simulation. This paper proposes

a method for the simulation of the Klein Gordon equation and observes the so called Klein Para-

dox. We use the IBM quantum computer to simulate these equations using the QISkit, where a

number of research works have been performed 54–82. We mainly use the local simulator device for

performing the experiment and taking the results for the simulation purposes.
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2 Results

Theoretical Protocol A common technique for solving the Klein Gordon equation classically is

to represent the wavefunction as two different parts of a vector and then finding a Hamiltonian

for that. This helps us to easily understand some of the peculiar natures of the Klein Gordon

equation. We mainly use the form, i~∂ϕ
∂t

= Ĥϕ, to solve the equation for the Hamiltonian Ĥ

whose expression is given below.

Ĥ =
σ3 + iσ2

2m
p̂2 + σ3mc

2 + IV̂ (1)

where m, p̂, V, c and I represent the mass of the particle, the momentum operator, the scalar

potential, the speed of light and the identity matrix respectively where σi (i = 1, 2, 3) are the Pauli

matrices. The wavefunction ϕ is a vector with two components.

ϕ =

φ
χ


After solving two simultaneous equations, we have

Ĥ1φ = K̂(φ+ χ) + V̂1φ (2)

Ĥ2χ = −K̂(φ+ χ) + V̂2χ (3)

where K̂ = p̂2

2m
, V̂1 = mc2 + V̂ and V̂2 = −mc2 + V̂ .

The time evolution of a general Hamiltonian is given by

|ψ(x, t+ δ)〉 = e−iĤit |ψ(x, t)〉 (4)
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where Hi = K̂ + V̂i and i=1,2. Using the second order Suzuki Trotter decomposition 26–28 we can

decompose the unitary operators as follows.

e−iĤ1t = e−i(
p̂2

2m
(2+2)+V̂1)t (5)

e−iĤ2t = e−i(
p̂2

2m
(2+2)−V̂2)t (6)

In Eqs. (5) & (6), the kinetic energy portion can be solved by splitting the two momentum operators

as given below. Here the box ‘2’ denotes the component of the wavefunction used in the particular

equation.

e±i
p̂2

2m
(2+2) = e±i

p̂2

2m
2.e±i

p̂2

2m
2 (7)

These individual momentum operators can be expressed in momentum space by using quan-

tum Fourier transformation 83, 84 and momentum eigenstates as shown in Eq. (8).

e±i
p̂x

2

2m
(2+2) = F−1e±i

p̂p
2

2m
2.F.F−1.e±i

p̂p
2

2m
2F−1 (8)

where p̂p, F and F † represent the momentum eigenvalues, Fourier transformation and it’s inverse

respectively. These operators can be implemented on a quantum computer by using a set of con-

trolled phase gates and Hadamard gates 22, 85. The potential energy term for a double potential can

be written as,

e−iV X̂t = I ⊗ e−iV0σzt (9)

To express the equation as a digital quantum circuit we take the mass of the system as m=0.5

and use the co-ordinates system such that h =
√
2c = 1. Using the above values, we have the full
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|0〉 H T † T U1(−π2

4 t) U1(−π2

2 t) U1(
π2

2 t) 1

|0〉 U1(12t) T H U1(−π2

4 t) U1(
π2

2 t) H 2

(a) (b) (c1)

1 T T † H H T † T 3

2 T T † T H 4

(d) (e)

3 U1(−π2

4 t) U1(−π2

2 t) U1(
π2

2 t) T T † H ↗

4 U1(−π2

4 t) U1(
π2

2 t) H T T † U1(12t) ↗

(f1) (g) (h)

|0〉 H T † T X U1(
π2

4 t) X U3(π, π
2tπ

2

4 t) X 5

|0〉 U1(12t) T H 6

(a) (b) (c2)

5 T T † H H T † T 7

6 T T † T H 8

(d) (e)

7 X U1(
π2

4 t) X U3(π, π
2tπ

2

4 t) X T T † H ↗

8 T T † U1(12t) ↗

(f2) (g) (h)

Figure 1: Quantum circuit for simulating the Klein Gordon equation. Steps (b) and (d) rep-

resent the circuits performing the inverse of the Fourier transform F †. Steps (d) and (g) represent

the circuit for the Fourier transform F. Steps (a) and (h) represent the potential term of the Klein

Gordon equation. Steps (c1), (c2), (f1), and (f2) are the digital quantum circuit representation for

the eigenvalues of the respective eigenfunctions.

expressions for the unitary operators as referred by Eqs. (10) & (11).

e−iĤ1t = F−1eip̂p
22.F.F−1.eip̂p

2

2F−1.eiV1σzt (10)

e−iĤ2t = F−1e−ip̂p
22.F.F−1.e−ip̂p

22F−1.e−iV2σzt (11)

where V̂1 = V̂ +1 and V̂2 = V̂ − 1. Here we take the high potential of the barrier as V0=11 so that

the potentials V1 and V2 are 12 and 10 respectively.
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Figure 2: Experimental results for the two parts of the wavefunction ϕ. Here in the vertical

axis 1, 2, 3 and 4 represent |00〉, |01〉, |10〉 and |11〉 respectively. The horizontal axis represents

the time scale of the evolution of the quantum state. As time goes on we can see that the particle

slowly crosses over the barrier potential as expected from the condition, V > mc2 (Klein Paradox).

Case (A): The particle was initially in the state |00〉 at time t=1. After 10 iterations at time t=10, it

was found in state |10〉. Case (B): The anti-particle was located in state |01〉 in the negative time

scale. After 8 iterations at time t=4, the anti-particle was found to be located in state |11〉. In the

above cases, we clearly observe the tunneling of both the particle and anti-particle through lower

and higher potentials respectively.
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Experimental Results To solve the equation, we use two qubits for representing four lattice points

and a small barrier potential for illustrating the tunneling process in the system. The quantum

circuits provided in Fig. (2), Case (A) and (B) are used to solve the Eqs. 10 & 11 respectively for

the four lattice points. We then run the quantum circuits for different values of t and observe the

dynamics of the system by performing a digital simulation. In the circuit, a number of iterations of

the circuits were done and a higher amount of iterations of the circuit led to increased accuracy in

the results. The number of iterations were kept between 9-10 in most of the cases though even 6

provided appropriate results. Here, t is the only variable in our program which decides the output

at various time instances and this output was observed to find the location of the particle at various

instances.

In Fig. 2, Case (A) and Case (B) represent the evolution of a quantum system for a particle

and an anti-particle respectively as a consequence of Klein Gordon equation. The tunneling is

obersved for both the cases as a consequence of Klein Paradox due to a strong potential, i.e.,

V > mc2, where V = 11 and mc2 = 1. In Case (A), it can be clearly observed that the particle

was initially located in |00〉 state at time, t=1 in a relatively lower potential region as compared

to Case (B). At time t=6, it was in an equal superposition of states |00〉 and |10〉. Then after the

application of a number iterations, it slowly tunneled through the barrier of the potential which was

at location |01〉 state. After 10 iterations, i.e., at time t=10, the particle was found to completely

cross the barrier and finally located in |10〉 state. In Case (B), the anti-particle was observed in the

negative time scale and in a comparatively higher potential region that clearly indicates its nature

that is impossible for a particle. At time, t=-4, it was in the state |01〉, then it was found in an
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equal superposition of |01〉 and |11〉 states at time t=0. After 8 iterations, i.e., at time t=4, it was

noticed to completely tunnel through the potential situated at |10〉 state, and finally found to be in

|11〉 state.

Discussion

Here we have proposed a two-qubit quantum circuit for the simulation of Klein Gordon equation to

study the nature of particle and anti-particle behaviour. Quantum tunneling of both the particle and

anti-particle has been observed due to a strong potential as a consequence of Klein Paradox. The

simulation technique used here can be extended to higher dimensional lattice structure and using

n=log2N number of qubits for N-qubit lattice, the dynamics of the system for any physical system

of the equation can be studied. The proposed digital simulation is very much useful for study of a

number of quantum field-theoretic equations.

Methods

The Kinetic energy operator plays a key role in our problem and solving it is of paramount im-

portance. We start by taking the Fourier transform of the kinetic energy operator according to the

following equation.

e±i
p̂x

2

2m
() = F−1e±i

p̂p
2

2m .F (12)

9



The form of Fourier transform for the two qubits can be written as follows.

F =



1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


To find the momentum eigenvalue matrix given by e±i

p̂p
2

2m , we need to first find the eigenstates of the

matrix in the X̂ coordinate representation. A wavefunction in the terms of momentum eigenvalues

can be expressed as

|φ(p, j)〉 =
2n−1∑
j,k=0

φ(pj, j) |j〉

The eigenvalues of this state can be found using a formula

pj =


2π
2n
j 0 > j > 2n−1

2π
2n
(2n−1 − j) 2n−1 > j > 2n

On calculating this we find that the matrix is diagonal and is given by the following expression.

P̂p =
2n−1∑
j=0

2π

2n
j |j〉 〈j|+

2n−1∑
j=2n−1+1

2π

2n
(2n−1 − j) |j〉 〈j|

Solving for two qubit simulation we have

P̂p =
2π

4



0 0 0 0

0 1 0 0

0 0 2 0

0 0 0 −1



10



If we take m=0.5 we get the following equation as our kinetic energy operator

e±i
p̂x

2

2m
() = F−1e±A.F (13)

where

A =
π2

4



0 0 0 0

0 1 0 0

0 0 4 0

0 0 0 1


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