Real Numbers

• Euclid's Division Lemma

For any given positive integers a and b, there exists unique integers q and r such that a = bq + r where $0 \le r < b$

Note: If *b* divides *a*, then r = 0

Example 1:

For a = 15, b = 3, it can be observed that $15 = 3 \times 5 + 0$ Here, q = 5 and r = 0If b divides a, then 0 < r < b

Example 2:

For a = 20, b = 6, it can be observed that $20 = 6 \times 3 + 2$ Here, q = 6, r = 2, 0 < 2 < 6

• Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers a and b (a > b) by using Euclid's division algorithm:

Step 1: Applying Euclid's division lemma to a and b to find whole numbers q and r, such that a = bq + r, $0 \le r < b$

Step 2: If r = 0, then HCF (a, b) = bIf $r \neq 0$, then again apply division lemma to b and r

Step 3: Continue the same procedure till the remainder is 0. The divisor at this stage will be the HCF of *a* and *b*.

Note: HCF (a, b) = HCF(b, r)

Example:

Find the HCF of 48 and 88.

Solution:

Take a = 88, b = 48Applying Euclid's division lemma, we get $88 = 48 \times 1 + 40$ (Here, $0 \le 40 < 48$)

$$48 = 40 \times 1 + 8$$
 (Here, $0 \le 8 < 40$)
 $40 = 8 \times 5 + 0$ (Here, $r = 0$)
 $HCF (48, 88) = 8$

• For any positive integer a, b, HCF $(a, b) \times LCM(a, b) = a \times b$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

$$315 = 3 \times 3 \times 5 \times 7 = 3^{2} \times 5 \times 7$$

$$360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^{3} \times 3^{2} \times 5$$

$$LCM = 3^{2} \times 5 \times 7 \times 2^{3} = 2520$$

$$\therefore HCF(315, 360) = \frac{315 \times 360}{LCM(315, 360)} = \frac{315 \times 360}{2520} = 45$$

Example 2:

Find the HCF of 300, 360 and 240 by the prime factorisation method.

Solution:

$$300 = 2^2 \times 3 \times 5^2$$

 $360 = 2^3 \times 3^2 \times 5$
 $240 = 2^4 \times 3 \times 5$
HCF (300, 360, 240) = $2^2 \times 3 \times 5 = 60$

• Euclid's Division Lemma

For any given positive integers a and b, there exists unique integers q and r such that a = bq + r where $0 \le r < b$

Note: If *b* divides *a*, then r = 0

Example 1:

For
$$a = 15$$
, $b = 3$, it can be observed that $15 = 3 \times 5 + 0$
Here, $q = 5$ and $r = 0$
If b divides a , then $0 < r < b$

Example 2:

For
$$a = 20$$
, $b = 6$, it can be observed that $20 = 6 \times 3 + 2$
Here, $q = 6$, $r = 2$, $0 < 2 < 6$

• Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers a and b (a > b) by using Euclid's division algorithm:

Step 1: Applying Euclid's division lemma to a and b to find whole numbers q and r, such that a = bq + r, $0 \le r < b$

Step 2: If r = 0, then HCF (a, b) = b

If $r \neq 0$, then again apply division lemma to b and r

Step 3: Continue the same procedure till the remainder is 0. The divisor at this stage will be the HCF of *a* and *b*.

Note: HCF (a, b) = HCF (b, r)

Example:

Find the HCF of 48 and 88.

Solution:

Take a = 88, b = 48

Applying Euclid's division lemma, we get

Applying Edend's division lemma, we get $88 = 48 \times 1 + 40$ (Here, $0 \le 40 < 48$) $48 = 40 \times 1 + 8$ (Here, $0 \le 8 < 40$) $40 = 8 \times 5 + 0$ (Here, r = 0) HCF (48, 88) = 8

• Using Euclid's division lemma to prove mathematical relationships

Result 1:

Every positive even integer is of the form 2q, while every positive odd integer is of the form 2q + 1, where q is some integer.

Proof:

Let *a* be any given positive integer.

Take b = 2

By applying Euclid's division lemma, we have

a = 2q + r where $0 \le r < 2$

As $0 \le r < 2$, either r = 0 or r = 1

If r = 0, then a = 2q, which tells us that a is an even integer.

If r = 1, then a = 2a + 1

It is known that every positive integer is either even or odd.

Therefore, a positive odd integer is of the form 2q + 1.

Result 2:

Any positive integer is of the form 3q, 3q + 1 or 3q + 2, where q is an integer.

Proof:

Let *a* be any positive integer.

Take b = 3

Applying Euclid's division lemma, we have

$$a = 3q + r$$
, where $0 \le r < 3$ and q is an integer
Now, $0 \le r < 3$ P $r = 0, 1$, or 2
 $\therefore a = 3q + r$
 $\Rightarrow a = 3q + 0, a = 3q + 1, a = 3q + 2$

Thus, a = 3q or a = 3q + 1 or a = 3q + 2, where q is an integer.

• Fundamental theorem of arithmetic states that very composite number can be uniquely expressed (factorised) as a product of primes apart from the order in which the prime factors occur.

Example: 1260 can be uniquely factorised as

2	1260
2	630
3	315
3	105
5	35
	7

$$1260 = 2 \times 2 \times 3 \times 3 \times 5 \times 7$$

Example: Factor tree of 84

$$84 = 2 \times 2 \times 3 \times 7$$

• For any positive integer a, b, HCF $(a, b) \times$ LCM $(a, b) = a \times b$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

$$315 = 3 \times 3 \times 5 \times 7 = 3^{2} \times 5 \times 7$$

$$360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^{3} \times 3^{2} \times 5$$

$$LCM = 3^{2} \times 5 \times 7 \times 2^{3} = 2520$$

$$\therefore HCF(315, 360) = \frac{315 \times 360}{LCM(315, 360)} = \frac{315 \times 360}{2520} = 45$$

Example 2:

Find the HCF of 300, 360 and 240 by the prime factorisation method.

Solution:

$$300 = 2^2 \times 3 \times 5^2$$

$$360 = 2^3 \times 3^2 \times 5$$

 $240 = 2^4 \times 3 \times 5$
HCF (300, 360, 240) = $2^2 \times 3 \times 5 = 60$

• According to fundamental theorem of arithmetic, a number can be represented as the product of primes having a unique factorisation.

Example:

Check whether 15^n in divisible by 10 or not for any natural number n. Justify your answer.

Solution:

A number is divisible by 10 if it is divisible by both 2 and 5.

$$15^n = (3.5)^n$$

3 and 5 are the only primes that occur in the factorisation of 15^n

By uniqueness of fundamental theorem of arithmetic, there is no other prime except 3 and 5 in the factorisation of 15^n .

2 does not occur in the factorisation of 15^n .

Hence, 15^n is not divisible by 10.

• Every number of the form \sqrt{p} , where p is a prime number is called an irrational number. For example, $\sqrt{3}$, $\sqrt{11}$, $\sqrt{12}$ etc.

Theorem: If a prime number p divides a^2 , then p divides a, where a is a positive integer.

Example:

Prove that $\sqrt{7}$ is an irrational number.

Solution:

If possible, suppose $\sqrt{7}$ is a rational number.

Then,
$$\sqrt{7} = \frac{p}{q}$$
, where p, q are integers, $q \neq 0$.

If HCF $(p, q) \neq 1$, then by dividing p and q by HCF(p, q), $\sqrt{7}$ can be reduced as

$$\sqrt{7} = \frac{a}{b}$$
 where HCF $(a, b) = 1$... (1)
 $\sqrt{7}b = a$

$$\Rightarrow V^{10} = u$$

$$\Rightarrow 7b^2 = a^2$$

$$\Rightarrow a^2$$
 is divisible by 7

$$\Rightarrow$$
 a is divisible by 7 ... (2)

 \Rightarrow a = 7c, where c is an integer

$$\therefore \sqrt{7}c = b$$

$$\Rightarrow 7b^2 = 49c^2$$

$$\Rightarrow b^2 = 7c^2$$

$$\Rightarrow b^2$$
 is divisible by 7

$$\Rightarrow$$
 b is divisible by 7

... (3) From (2) and (3), 7 is a common factor of a and b, which contradicts (1)

∴ $\sqrt{7}$ is an irrational number.

Example:

Show that $\sqrt{12} - 6$ is an irrational number.

Solution:

If possible, suppose $\sqrt{12} - 6$ is a rational number. Then $\sqrt{12} - 6 = \frac{p}{q}$ for some integers p, q (q 1 0)

Then
$$\sqrt{12} - 6 = \frac{p}{q}$$
 for some integers p , q (q^{-1} 0)

$$\sqrt{12} - 6 = \frac{p}{q}$$

$$\Rightarrow 2\sqrt{3} = \frac{p}{q} + 6$$

$$\Rightarrow \sqrt{3} = \frac{1}{2} \left(\frac{p}{q} + 6 \right)$$

As p, q, 6 and 2 are integers, $\frac{1}{2} \left(\frac{p}{q} + 6 \right)$ is rational number, so is $\sqrt{3}$.

This conclusion contradicts the fact that $\sqrt{3}$ is irrational.

Thus, $\sqrt{12} - 6$ is an irrational number.

- Decimal expansion of a rational number can be of two types:
 - (i) Terminating
 - (ii) Non-terminating and repetitive

In order to find decimal expansion of rational numbers we use long division method.

For example, to find the decimal expansion of $\overline{25}$.

We perform the long division of 1237 by 25.

1237

Hence, the decimal expansion of $\overline{25}$ is 49.48. Since the remainder is obtained as zero, the decimal number is terminating.

• If x is a rational number with terminating decimal expansion then it can be expressed in

p

the q form, where p and q are co-prime (the HCF of p and q is 1) and the prime factorisation of q is of the form 2^n5^m , where p and p are non-negative integers.

 \underline{p}

- Let x = q be any rational number.
- i. If the prime factorization of q is of the form 2^m5^n , where m and n are non-negative integers, then x has a terminating decimal expansion.
- ii. If the prime factorisation of q is not of the form 2^m5^n , where m and n are non-negative integers, then x has a non-terminating and repetitive decimal expansion.

$$\frac{17}{1600} = \frac{17}{2^6 \times 5}$$

For example, $\overline{1600} = \overline{2^6 \times 5^2}$ has the denominator in the form $2^n 5^m$, where n = 6 and m = 2 are non-negative integers. So, it has a terminating decimal expansion.

$$\frac{723}{3} = \frac{3 \times 241}{3}$$

 $\overline{392} = 2^3 \times 7^2$ has the denominator not in the form $2^n 5^m$, where n and m are non-negative integers. So, it has a non-terminating decimal expansion.