Circles

• Concept of tangent at any point of the circle

Theorem: The tangent at any point on a circle is perpendicular to the radius through the point of contact.

Example:

A tangent AB at a point A of a circle of radius 6 cm meets a line through the centre O at the point B, such that OB = 10 cm. Find the length of AB.

Solution:

It is known that the tangent at any point on a circle is perpendicular to the radius through the point of contact.

 $OA \perp AB$

By applying Pythagoras theorem in right triangle OAB, we obtain

 $OA^2 + AB^2 = OB^2$

 \Rightarrow 6² + AB² = 10²

 \Rightarrow AB² = (100 - 36) cm²

 \Rightarrow AB² = 64 cm²

⇒AB=64 cm2=8 cm

No tangent can be drawn to a circle passing through a point lying inside the circle.

One and only one tangent can be drawn to a circle passing through a point lying on the circle.

Exactly two tangents can be drawn to a circle through a point lying outside the circle.

• Tangent drawn from an external point to a circle

Length of the tangent: The length of the segment of the tangent from an external point P to the point of contact with the circle is called the length of the tangent from the point P to the circle.

Theorem: The lengths of tangents drawn from an external point to a circle are equal.

Example:

In the given figure, a circle is inscribed in $\triangle ABC$ touching the points, P, Q, and R.

If AB = 7 cm, BC = 9 cm, CA = 8 cm, then find the measures of AR, AQ, BR, BP, CP, and CQ.

Solution:

It is known that the lengths of tangents drawn from an external point to a circle are equal.

$$AR = AQ = a$$
 (say)

$$BR = BP = b$$
 (say)

$$CP = CQ = c \text{ (say)}$$

$$AB + BC + CA = (7 + 9 + 8) cm = 24 cm$$

$$\Rightarrow$$
 $(a+b)+(b+c)+(c+a)=24$ cm

$$\Rightarrow 2(a+b+c) = 24$$
 cm

$$\Rightarrow a + b + c = 12 \text{ cm}$$

$$AB = 7 \text{ cm}$$

$$\Rightarrow a + b = 7 \text{ cm}$$

$$\therefore c + 7 \text{ cm} = 12 \text{ cm}$$

$$\Rightarrow c = (12 - 7) \text{ cm} = 5 \text{ cm}$$

$$BC = 9 \text{ cm}$$

$$\Rightarrow b + c = 9 \text{ cm}$$

$$\Rightarrow b = 9 - c = (9 - 5) \text{ cm} = 4 \text{ cm}$$

$$a + b + c = 12$$
 cm

$$\therefore$$
 9 cm + a = 12 cm

$$\Rightarrow a = (12 - 9) \text{ cm} = 3 \text{ cm}$$

Hence,
$$AR = AQ = 3$$
 cm,
 $BR = BP = 4$ cm,

$$CP = CQ = 5 \text{ cm}.$$

Results: If two tangents are drawn to a circle from an external point, then

1.

- 1.
- 2. 1. they subtend equal angles at the centre.
- 3. 2. they are equally inclined to the segment, joining the centre to that point.