Chapter 1 Real Number

Question-1

Write the following rational numbers in decimal form:

- (iii) 3 3 3 8

- (vii) $\frac{2}{13}$
- (viii) 11/17

Solution:

- (i) $\frac{42}{100} = 0.42$

(ii)
$$\frac{327}{500} = 0.654$$
0. 654
5 $\frac{3.27}{30}$
27
25
20
20
0

(iii) $3\frac{3}{8} = \frac{27}{8} = 3.375$

(iv)
$$\frac{5}{6} = 0.833... = 0.8\overline{333}$$

	0.8333
	50
6	30
	20
	18
	20
	18
	20
	18

$$(v) \frac{1}{5} = 0.2$$

$$5 \frac{0.2}{10}$$

$$0.0$$

(vi)
$$\frac{1}{7} = 0.\overline{142857}$$

7	
	0.142857
7	10
	30
	28
	20
	14
	60
	56
	40
	35
	50
	49
	1

(vii)
$$\frac{2}{13} = 0.\overline{153846}$$

	0153846
13	20
	13
	70
	65
	50
	39
	110
	104
	60
	52
	80
	78
	2
	'

(viii)
$$\frac{11}{17} = 0.6470588235294117$$

If a is a positive rational number and n is a positive integer greater than 1, prove that $\mathbf{a}^{\mathbf{n}}$ is a rational number.

We know that product of two rational number is always a rational number.

Hence if a is a rational number then

 $a^2 = a \times a$ is a rational number,

 $a^3 = a^2 x a$ is a rational number.

 $a^4 = a^3x$ a is a rational number.

•••

 $a^n = a^{n-1} x a is a rational number.$

Question-3

Find three rational numbers lying between 0 and 0.1. Find twenty rational numbers between 0 and 0.1. Give a method to determine any number of rational numbers between 0 and 0.1.

Solution:

The three rational numbers lying between 0 and 0.1 are 0.01, 0.05, 0.09.

The twenty rational numbers between 0 and 0.1 are 0.001, 0.002, 0.003, $0.004, \dots 0.011, 0.012, \dots 0.099$.

To determine any number of rational numbers between 0 and 0.1 insert 0 after the decimal.

Question-4

Complete the following:

- (i) Every point on the number line corresponds to a _____ number which may be either ____ or ____.
- (ii) The decimal form of an irrational number is neither _____ or .
- (iii) The decimal representation of the rational number $\frac{8}{27}$ is ______.
- (iv) 0 is _____ number. [Hint: a rational /an irrational]

Solution:

- (i) Every point on the number line corresponds to a <u>real</u> number which may be either <u>rational</u> or <u>irrational</u>.
- (ii) The decimal form of an irrational number is neither <u>recurring</u> or terminating.
- (iii) The decimal representation of the rational number $\frac{8}{27}$ is 0.296
- (iv) 0 is a rational number.

Which of the following rational numbers have the terminating decimal representation?

(i) 3/5 (ii) 7/20 (iii) 2/13 (iv) 27/40 (v) 133/125 (vi) 23/7

[Making use of the result that a rational number p/q where p and q have no common factor(s) will have a terminating representation if and only if the prime factors of q are 2's or 5's or both.]

Solution:

(i) The prime factor of 5 is 5. Hence 3/5 has a terminating decimal representation.

(ii)
$$20 = 4 \times 5 = 2^2 \times 5$$
.

The prime factors of 20 are both 2's and 5's. Hence 7/20 has a terminating decimal.

(iii) The prime factor of 13 is 13. Hence 2/13 has non-terminating decimal.

(iv)
$$40 = 2^3 \times 5$$
.

The prime factors of 40 are both 2's and 5's. Hence 27/40 has a terminating decimal.

(v)
$$125 = 5^3$$

The prime factor of 125 is 5's. Hence 13/125 has a terminating decimal.

(vi) The prime factor of 7 is 7. Hence 23/7 has a non-terminating decimal representation.

Question-6

You have seen that $\sqrt{2}$ is not a rational number. Show that $2 + \sqrt{2}$ is not a rational number.

Solution:

Let $2 + \sqrt{2}$ be a rational number say r.

Then $2 + \sqrt{2} = r$

$$\sqrt{2} = r - 2$$

But, $\sqrt{2}$ is an irrational number.

Therefore, r - 2 is also an irrational number.

=> r is an irrational number.

Hence our assumption r is a rational number is wrong.

Hence, $2 + \sqrt{2}$ is not a rational number.

Prove that $3\sqrt{3}$ is not a rational number.

Solution:

Let $3\sqrt{3}$ be a rational number say r.

$$\sqrt{3} = (1/3)r$$

(1/3) r is a rational number because product of two rational number is a rational number.

=> $\sqrt{3}$ is a rational number but $\sqrt{3}$ is not a rational number.

Therefore our assumption that $3\sqrt{3}$ is a rational number is wrong.

Question-8

Show that $\sqrt[3]{6}$ is not a rational number.

Solution:

Let $\Im G$ be a rational number, say $\frac{p}{q}$ where $q \neq 0$.

Then
$$\sqrt[3]{6} = \frac{p}{a}$$

Since
$$1^3 = 1$$
, and $2^3 = 8$, it follows that $1 < \frac{p}{q} < 2$

Then q > 1 because if q = 1 then $\frac{p}{q}$ will be an integer, and there is no integer between 1 and 2.

Now,
$$6 = \left(\frac{p}{q}\right)^3$$

$$6 = \frac{p^3}{a^3}$$

$$6q^2 = \frac{p^3}{q}$$

q being an integer, $6q^2$ is an integer, and since q > 1 and q does not have a common factor with p and consequently with p^3 .

So, $\frac{p^3}{q}$ is a fraction different from an integer.

Thus
$$6q^2 \neq \frac{p^3}{q}$$
.

This contradiction proves the result.

Identify the following as rational or irrational numbers. Give the decimal representation of rational numbers.

- (i) √4
- (ii) 3 √18
- (iii) √1.44
- (iv) $\sqrt{\frac{9}{27}}$
- (V) \(\square\)
- (vi) √100

Solution:

- (i) $\sqrt{4} = 2$ is rational.
- (ii) $3\sqrt{18} = 3\sqrt{9 \times 2} = 3 \times 3\sqrt{2} = 9\sqrt{2}$ is irrational.
- (iii) $\sqrt{1.44} = \sqrt{\frac{144}{100}} = \frac{12}{10} = 1.2$ is rational.
- (iv) $\sqrt{\frac{9}{27}} = \sqrt{\frac{9}{9 \times 3}} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$ is irrational.
- (v) $\sqrt{0.64}$ = 0.8 is rational.
- (vi) √100 = 10 is rational.

Question-10

In the following equations, find which of the variables x, y, z etc. represent rational numbers and which represent irrational numbers:

- (i) $x^2 = 5$
- (ii) $y^2 = 9$
- (iii) $z^2 = 0.04$
- (iv) $u^2 = 17/4$
- $(v) v^2 = 3$
- (vi) $w^3 = 27$
- (vii) $t^2 = 0.4$

(i)
$$x^2 = 5$$

∴ x = √s is irrational.

(ii)
$$y^2 = 9$$

∴ y = 3 is rational.

(iii)
$$z^2 = 0.04$$

∴ z = 0.2 is rational.

(iv)
$$u^2 = \frac{17}{4}$$

$$\therefore$$
 $\mathbf{u} = \sqrt{\frac{17}{4}}$

 $=\frac{\sqrt{17}}{\sqrt{4}}=\frac{\sqrt{17}}{2}$ is irrational.

$$(v) v^2 = 3$$

∴ v = √s is irrational.

(vi)
$$w^3 = 27$$

(vii)
$$t^2 = 0.4$$
... $t = \sqrt{0.4} = \sqrt{\frac{4}{10}} = \frac{2}{\sqrt{10}}$ is irrational.

Question-11

Give an example to show that the product of a rational number and an irrational number may be a rational number.

Solution:

A rational number 0 multiplied by an irrational number gives the rational number 0.

Question-12

State with reason which of the following are surds and which are not.

(iv)
$$\sqrt{16} \times \sqrt{4}$$

(vi)
$$\sqrt{125} \times \sqrt{5}$$

(ix)
$$\sqrt{120} \times \sqrt{45}$$

(X)
$$\sqrt{15} \times \sqrt{6}$$
.

- (i) $\sqrt{5} \times \sqrt{10} = \sqrt{5} \times \sqrt{5 \times 2} = \sqrt{5} \times \sqrt{5} \times \sqrt{2} = 5\sqrt{2}$ is a surd.
- (ii) √8 × √6 = √4×2 × √3×2 = 2× √2 × √2 × √3 = 4√3 is a surd.
- (iii) √27 × √3 = √9×3 × √3 = 3√3 × √3 = 9 is not a surd.
- (iv) $\sqrt{16} \times \sqrt{4} = 4 \times 2 = 8$ is not a surd.
- (v) $5\sqrt{8} \times 2\sqrt{6} = 5\sqrt{4 \times 2} \times 2\sqrt{3 \times 2} = 5 \times 2\sqrt{2} \times 2\sqrt{2} \times \sqrt{3} = 5 \times 2 \times 2 \times 2 \times \sqrt{3} = 40\sqrt{3}$ is a surd.
- (vi) $\sqrt{125} \times \sqrt{5} = \sqrt{25 \times 5} \times \sqrt{5} = 5\sqrt{5} \times \sqrt{5} = 5 \times 5 = 25$ is not a surd.
- (vii) √100 × √2 = 10 √2 is a surd.
- (viii) $6.5 \times 9.5 = 54.6$ is a surd.
- (ix) $\sqrt{120} \times \sqrt{45} = \sqrt{4 \times 30} \times \sqrt{9 \times 5} = 2\sqrt{6 \times 5} \times 3\sqrt{5} = 2 \times \sqrt{6} \times \sqrt{5} \times 3 \times \sqrt{5} = 30\sqrt{6}$ is a surd.
- (x) $\sqrt{15} \times \sqrt{6} = \sqrt{5 \times 3} \times \sqrt{2 \times 3} = \sqrt{5} \times \sqrt{3} \times \sqrt{2} \times \sqrt{3} = 3 \times \sqrt{10}$ is a surd.

Question-13

Give two examples to show that the product of two irrational numbers may be a rational number.

Solution:

Take a = $(2+\sqrt{3})$ and b = $(2-\sqrt{3})$; a and b are irrational numbers, but their product

$$(2+\sqrt{3})(2-\sqrt{3}) = 4-3=1$$
 is a rational number.

Take $c = \sqrt{s}$ and $d = -\sqrt{s}$; c and d are irrational numbers, but their product = -3,

is a rational number.

Find the value of $\sqrt{5}$ correct to two places of $\sqrt{5}$ decimal.

Solution:

We know that $2^2 = 4 < 5 < 9 = 3^2$ Taking positive square roots we get $2 < \sqrt{5} < 3$.

Next, $(2.2)^2 = 4.84 < 5 < 5.29 = (2.3)^2$ Taking positive square roots, we have $2.2 < \sqrt{5} < 2.3$

Again, $(2.23)^2 = 4.9729 < 5 < 5.0176 = (2.24)^2$ Taking positive square roots, we obtain $2.23 < \sqrt{5} < 2.24$

Hence the required approximation is 2.24 as $(2.24)^2$ is nearest to 5 than $(2.23)^2$.

Question-15

Prove that $\sqrt{3}$ - $\sqrt{2}$ is irrational.

Solution:

Let $\sqrt{3}$ - $\sqrt{2}$ be a rational number, say r

Then $\sqrt{3} - \sqrt{2} = r$

On squaring both sides we have

$$(\sqrt{3} - \sqrt{2})^2 = r^2$$

$$3 - 2\sqrt{6} + 2 = r^2$$

$$5 - 2\sqrt{6} = r^2$$

$$-2\sqrt{6} = r^2 - 5$$

$$\sqrt{6} = -(r^2 - 5)/2$$

Now -(r^2 - 5)/2 is a rational number and \sqrt{s} is an irrational number. Since a rational number cannot be equal to an irrational number. Our assumption that

 $\sqrt{3}$ - $\sqrt{2}$ is rational is wrong.

Question-16

Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.

Let $\sqrt{3} + \sqrt{5}$ be a rational number, say r

Then
$$\sqrt{3} + \sqrt{5} = r$$

On squaring both sides,

$$(\sqrt{3} + \sqrt{5})^2 = \Gamma^2$$

$$3 + 2\sqrt{15} + 5 = \Gamma^2$$

$$8 + 2\sqrt{15} = \Gamma^2$$

$$2\sqrt{15} = \Gamma^2 - 8$$

$$\sqrt{15} = (r^2 - 8)/2$$

Now $(r^2 - 8)/2$ is a rational number and $\sqrt{15}$ is an irrational number. Since a rational number cannot be equal to an irrational number. Our assumption that

 $\sqrt{3}$ + $\sqrt{5}$ is rational is wrong.

Question-17

Examine, whether the following numbers are rational or irrational:

(i)
$$(\sqrt{2} + 2)^2$$

(ii)
$$(2 - \sqrt{2}) \times (2 + \sqrt{2})$$

(iii)
$$(\sqrt{2} + \sqrt{3})^2$$

(iv)
$$\frac{6}{3\sqrt{2}}$$

Solution:

(i)
$$(\sqrt{2} + 2)^2 = (\sqrt{2})^2 + 2\sqrt{2}x^2 + (2)^2 = 2 + 4\sqrt{2} + 4 = 6 + 4\sqrt{2}$$
.

\ It is an irrational number.

(ii)
$$(2 - \sqrt{2}) \times (2 + \sqrt{2}) = (2)^2 - (\sqrt{2})^2 = 4 - 2 = 2$$
.

\ It is a rational number.

(iii)
$$(\sqrt{2} + \sqrt{3})^2 = (\sqrt{2})^2 + 2\sqrt{2} \times \sqrt{3} + (\sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}$$

: It is an irrational number.

(iv)
$$\frac{6}{3\sqrt{2}} = \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$

\ It is an irrational number.

Question-18

Prove that

- (a) 2 +√3 is not a rational number and
- (b) ₹7 is not a rational number.

(a) If possible, let $2 + \sqrt{3} = a$, where a is rational.

Then, $(2 + \sqrt{3})^2 = a^2$

$$7 + 4\sqrt{3} = a^2$$

 $\sqrt{3} = \frac{a^2 - 7}{4}$ -----(i)

Now, a is rational $\Rightarrow \frac{a^2-7}{4}$ is rational.

√s is rational [from (i)]

This is a contradiction.

Hence, 2 + √s is not a rational number.

(b) If possible, let $37 = \frac{p}{q}$, where p and q are integers,

having no common factors and $q \neq 0$.

Then,
$$(37)^3 = (\frac{p}{q})^3$$

$$\Rightarrow$$
 7q³ = p³ -----(i)

⇒ p³ is a multiple of 7

 \Rightarrow p is multiple of 7.

Let p = 7m, where m is an integer.

Then,
$$p^3 = 343 \text{ m}^3$$
 -----(ii)

$$\Rightarrow$$
 7q³ = 343 m³ [from (i) and (ii)]

$$\Rightarrow$$
 q³ = 49 m³ \Rightarrow q³ is a multiple of 7.

 \Rightarrow q is a multiple of 7.

Thus, p and q are both multiples of 7, or 7 is a factor of p and q.

This contradicts our assumption that p and q have no common factors.

Hence %7 is not a rational number.

Question-19

Examine whether the following numbers are rational or irrational:

(i)
$$(3 + \sqrt{2})^2$$

(iii)
$$\frac{6}{2\sqrt{3}}$$

(i) $(3 + \sqrt{2})^2 = 9 + 2 + 6\sqrt{2} = 11 + 6\sqrt{2}$, which is irrational.

(ii) $(3 - \sqrt{3})(3 + \sqrt{3}) = (3)^2 - (\sqrt{3})^2 = 9 - 3 = 6$, which is rational.

(iii)
$$\frac{6}{2\sqrt{3}} = \frac{6}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6 \times \sqrt{3}}{6} = \sqrt{3}$$
, which is irrational.

Question-20

Find two irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$.

Solution:

Irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$ is $\sqrt{\sqrt{2} \times \sqrt{3}}$, i.e $\sqrt{6} = 6^{(1/4)}$ Irrational numbers lying between $\sqrt{2}$ and $6^{(1/4)}$ is $\sqrt{\sqrt{2} \times 6^{\frac{1}{4}}} = 2^{(1/4)} \times 6^{(1/8)}$. Hence two irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$ are $6^{(1/4)}$ and $2^{(1/4)} \times 6^{(1/8)}$.

Question-21

Express $\frac{7}{64}$ as a decimal fraction.

Solution:

Therefore $\frac{7}{64} = 0.109375$

Question-22

Express $\frac{12}{125}$ as a decimal fraction.

Therefore
$$\frac{12}{125}$$
 = 0.096.

Question-23

Express
$$\frac{451}{13}$$
 as a decimal fraction.

Solution:

Therefore 34.692307