Chapter 9. Some Applications of Trigonometry

Question-1

From a point 20 m away from the foot of a tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.

Solution:

Let AB be the height of the tower and C be the point.

In rt. Δ ABC,

 $tan 30^{\circ} = AB/BC$

 $AB = BC \tan 30^{\circ}$

$$=\frac{20}{\sqrt{3}}=\frac{20}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$$

= 11.56 m

Therefore the height of the tower is 11.56 m.

Ouestion-2

A ladder is placed against a wall such that it just reaches the top of the wall. The foot of the ladder is 1.5 m away from the wall and the ladder is inclined at an angle of 60° with the ground. Find the height of the wall.

Solution:

Let AC be the ladder and B be the foot of the wall.

In rt. Δ ABC,

tan 60° = AB/BC

AB = BC tan 60°

$$= 2.598 m$$

Therefore the height of the wall is 2.598 m.

An electric pole is 10 m high. A steel wire tied to the top of the pole is affixed at a point on the ground to keep the pole upright. If the wire makes an angle of 45° with the horizontal through the foot of the pole, find the length of the wire.

Solution:

Let AB be the height of the electric pole and AC be the length of the wire.

In rt. Δ ABC,

cosec 45° = AC/AB

AC = AB cosec 45°

= 10 √2 m

 $= 10 \times 1.414 \text{ m}$

 $= 14.14 \, \text{m}$

Therefore the length of the wire is 14.14 m.

Question-4

A balloon is connected to a meteorological ground station by a cable of length 215 m inclined at 60° to the horizontal. Determine the height of the balloon from the ground. Assume that there is no stack in the cable.

Solution:

Let A be the position of the balloon.

In rt. \triangle ABC.

 $\sin 60^{\circ} = AB/AC$

 $AB = 215 \sin 60^{\circ}$

 $AB = 215 \times \frac{\sqrt{3}}{2}$

 $= 215 \times \frac{1.73}{2}$

 $= 186 \, \mathrm{m}$

Therefore the height of the balloon from the ground is 186 m.

A bridge across a river makes an angle of 45° with the river bank (fig.). If the length of the bridge across the river is 150 m, what is the width of the river?

Solution:

Let AB be the width of the river.

In rt. \triangle ABC, sin45° = AB/AC

AB = AC sin45°

$$= 150 \times \frac{1}{\sqrt{2}}$$

$$= 150 \times \frac{\sqrt{2}}{2}$$

= 106.05 m

Therefore the width of the river is 106.05 m.

Question-6

The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of elevation of top of the tower from the foot of the hill is 30° . If the tower is 50 m high, what is the height of the hill?

Solution:

Let h be the height of the hill and x m be the distance between the foot of the hill and foot of the tower.

Therefore the height of the hill is 150 m.

Question-7

There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. P and Q are points directly opposite each other on the two banks, and in line with the tree. If the angles of elevation of the top of the tree from P and Q are respectively 30° and 45°, find the height of the tree.

Solution:

Let PQ be the width of the river and RS be the height of the tree on the island.

In rt. \triangle PRS, x = RS cot 30° x = RS \sqrt{s} x = \sqrt{s} RS(i) In rt. \triangle RSQ, SQ = RS cot 45° (100 - x) = RS x = 100 - RS(ii) Equating (i) and (ii) we have: \sqrt{s} RS = 100 - RS 2.73 RS = 100 RS = 36.63 m

Therefore the height of the tree is 36.63 m.

A flag-staff stands at the top of a 5 m high tower. From a point on the ground, the angle of elevation of the top of the flag-staff is 60° and from the same point, the angle of elevation of the top of the tower is 45°. Find the height of the flag-staff.

Solution:

Let BC be the height of the tower and DC be the height of the flag-staff.

In rt. Δ ABC,

 $AB = BC \cot 45^{\circ}$

AB = 5 m(i)

In rt. Δ ABD,

AB = BD cot 60°

AB =
$$(5 + CD) \frac{1}{\sqrt{3}}$$
....(ii)

Equating (i) and (ii)

$$(5 + CD) \frac{1}{\sqrt{3}} = 5$$

CD =
$$5\sqrt{3}$$
 - 5 = $5(1.732 - 1)$ = 5×0.732 = 3.66 m

Therefore the height of the flag-staff is 3.66 m

Question-9

A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 7 m. From a point on the plane, the angle of elevation of the bottom of the flag-staff is 30° and that of the top of the flag-staff is 45°. Find the height of the tower.

Solution:

Let BC be the height of the tower and DC be the height of the flag-staff.

Therefore the height of the tower is 9.58 m.

Question-10

Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 25° 10′ and at a distance of 5 km further off from the mountain, along the same line, the angle of elevation is 15° 20°. Give the answer in km correct to 2 decimals.

Solution:

In the figure, A is the mountain top. C and D are points of observation. In rt. Δ ABC, tan 25° 10′ = $\frac{AB}{BC}$ BC tan 25°10′ = AB

$$BC = \frac{AB}{\tan 25^{\circ}10^{\circ}}$$

$$BC = \frac{AB}{0.4699}$$

In rt. \triangle ABD. tan 15° 20′ = $\frac{AB}{\Box}$

In rt. \triangle ABD, tan 15° 20′ = $\frac{AB}{BD}$

$$\tan 15^{\circ} 20' = \frac{AB}{BC+5} [BD = BC + 5]$$

$$0.2742 = \frac{AB}{BC + 5}$$

Substituting BC =
$$\frac{AB}{0.4699}$$

$$\frac{AB}{AB+2.3495} = 0.2742$$

$$0.4699$$

$$0.4699 \text{ AB} = 0.2742(AB + 2.3495)$$

$$0.1957 AB = 0.644$$

$$AB = \frac{0.644}{0.1957} = 3.29 \text{ km}$$

∴ The height of a mountain is 3.29 km.

The angle of elevation of a cliff from a fixed point A is θ . After going up a distance of k metres towards the top of the cliff at an angle φ , it is found that the angle of elevation is α . Show that the height of the cliff in metre is $\frac{k(\cos\phi - \sin\phi \cot\alpha)}{\cot\theta - \cot\alpha}.$

Solution:

In rt. Δ FED,

Question-12

The length of a string between a kite and a point on the roof of the building 10 m high is 180 m. If the string makes an angle θ with the level ground such that $\tan \theta = 4/3$ how high is the kite from the ground?

Solution:

In \triangle KPR, \angle KPR = θ , KP = 180 m and tan $\theta = \frac{4}{3}$

$$\tan \theta = \frac{4}{3} = \frac{\text{opposite side}}{\text{adjacent side}} \Rightarrow \text{Hypotenuse} = \sqrt{4^2 + 3^2} = 5 \Rightarrow \sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$= \frac{4}{5} \Rightarrow \sin \theta = \frac{\text{KR}}{\text{KP}} = \frac{4}{5} \Rightarrow \frac{\text{KR}}{180} = \frac{4}{5} \therefore \text{KR} = \frac{4 \times 180}{5} = 144 \text{ m}$$

In rectangle PQLR, PQ = RL = 10 m (Opposite sides of a rectangle) \cdot KL = KR + RL = (144 + 10) m

$$= 154 \, \mathrm{m}$$

.. The height of the kite from the ground is 154 m.

Ouestion-13

If the angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake is β , prove that the height of the cloud is $\frac{\hbar(\tan\alpha+\tan\beta)}{(\tan\beta-\tan\alpha)}$.

Solution:

Let AB be the surface of the lake and let P be the point of the observation such that AP = h metres. Let C be the position of the cloud and C' be its reflection in the lake.

Then, CB = C'B. Let PM be perpendicular from P on CB. Then \angle CPM = α and \angle MPC' = β . Let CM = χ .

Then CB = CM + MB = CM + MB = CM + PA = x + h.

In \triangle CPM, we have

tan α = CM /PM \Rightarrow tan α = x/AB [Since PM = AB] \Rightarrow AB = x cot α -----(i) In Δ PMC', we have

tan β = C'M /PM \Rightarrow tan β = x+2h/AB [Since C'M = C'B + BM = x + h + h] \Rightarrow AB = (x + 2h) cot β ------(ii)

From (i) and (ii),

 $x \cot \alpha = (x+2h) \cot \beta \ x \ (\cot \alpha - \cot \beta \) = 2h \cot \beta \ \Rightarrow x (1/\tan \alpha - 1/\tan \beta \) = 2h /\tan \beta \Rightarrow x = \frac{2h \tan \alpha}{(\tan \beta - \tan \alpha)} \ \therefore \ The \ height of the \ cloud = x+h = \frac{2h \tan \alpha}{(\tan \beta - \tan \alpha)} + h = \frac{h(\tan \alpha + \tan \beta)}{(\tan \beta - \tan \alpha)}.$

An aeroplane flying horizontally at height of $2500\sqrt{3}$ mts above that ground; is observed to be at angle of elevation 60° from the ground. After a flight of 25 seconds the angle of elevation is 30° . Find the speed of the plane in m/sec.

Solution:

Let P and Q be the two positions of the aeroplane.

 $QB = 2500\sqrt{3} \text{ mts}$

Let the speed of the aeroplane be s m/sec.

tan 60° =
$$\frac{2500\sqrt{3}}{x}$$

 $\Rightarrow \frac{2500\sqrt{3}}{x} = \sqrt{3} \therefore x = \frac{2500\sqrt{3}}{\sqrt{3}} = 2500 \text{ m}$
tan 30° = $\frac{2500\sqrt{3}}{x+y} \Rightarrow \frac{2500\sqrt{3}}{x+y} = \frac{1}{\sqrt{3}} \Rightarrow x+y = 2500\sqrt{3} \times \sqrt{3}$
= 2500×3
= $7500 \therefore y = 7500 - 2500$
= 5000 m

To travel 5000 m the aeroplane takes 25 seconds. \therefore The speed of the plane = $\frac{5000}{25}$ = 200 m/sec.

Question-15

In the figure below, some dimensions of a hut have been marked. Find the other dimensions (marked?) of the hut correctly up to one place of decimal.

Solution:

In rt.
$$\triangle$$
 ACD, \angle CAD = 42° 6'
cot 42° 6' = $\frac{AD}{DC}$
1.1067 = $\frac{AD}{1.5}$
 \therefore AD = 1.5 × 1.1067 = 1.66 units

A ladder rests against a wall at an angle α to the horizontal. When its foot is pulled away from the wall through a distance a, it slides a distance b down the wall and makes an angle β with the horizontal. Show that a/b = $(\cos\alpha - \cos\beta)/(\sin\alpha - \sin\beta)$.

Solution:

Let the length of the ladder be I units.

In rt.∆ ACD,

$$\sin \beta = \frac{DC}{AD} = \frac{DC}{I}$$
, $\cos \beta = \frac{a + BC}{AD} = \frac{a + BC}{I}$(i)

In rt.∆ EBC

$$\sin \alpha = \frac{b + DC}{BE} = \frac{b + DC}{I}$$
, $\cos \alpha = \frac{BC}{BE} = \frac{BC}{I}$(ii)

From (i) and (ii)

$$R.H.S = \frac{\cos\alpha - \cos\beta}{\sin\beta - \sin\alpha} = \frac{\frac{BC}{I} - \frac{a+BC}{I}}{\frac{DC}{I} - \frac{b+DC}{I}} = \frac{BC - a - BC}{DC - b - DC} = \frac{-a}{-b} = \frac{a}{b} = L.H.S.$$

Question-17

The line joining the top of a hill to the foot of the hill makes an angle of 30° with the horizontal through the foot of the hill. There is one temple at the top of the hill and a guest house half way from the foot to the hill. The top of the temple and the top of the guesthouse both make an elevation of 32° at the foot of the hill. If the guesthouse is 1 km away from the foot of the hill along the hill, find the heights of the guest house and the temple.

Solution:

In the figure, GB is the hill. AG is the temple. EF is guesthouse. C is foot of the hill.

To find EF and AG.

CE = 1 km or 1000 m

$$\frac{CD}{1000} = \sqrt{3}/2$$

$$CD = 1000\sqrt{3}/2 = 866 \text{ m}$$

$$\frac{DE}{CE} = \sin 30^{\circ}$$

$$\frac{DE}{1000} = \frac{1}{2}$$

$$DE = \frac{1}{2} \times 1000 = 500 \text{ m}$$

In rt. ACFD.

$$\frac{DF}{CD} = \tan 32^{\circ}$$

$$\frac{DF}{866} = 0.6249$$

DE = 500 m.

Since E is midpoint of CG. (given halfway)

$$\frac{BG}{CG} = \sin 30^{\circ}$$

$$\frac{BG}{2000} = \frac{1}{2}$$

In rt. Δ CBG,

$$\frac{CB}{CG} = \cos 30^{\circ}$$

$$CB = \sqrt{3}$$

2000 2

In \triangle CDF and \triangle CBA,

$$\angle$$
CDF = \angle CBA = 90°

$$\therefore \frac{CD}{CB} = \frac{DF}{AB}$$

$$\Rightarrow \frac{866}{1732} = \frac{541.16}{AB}$$

$$\Rightarrow AB = \frac{541.16 \times 1732}{866}$$

: The height of guest house is 41 m and the height of temple is 82 m

Question-18

A man standing 'a' metres behind and opposite the middle of a football goal observes that the angle of elevation of the nearer cross-bar is α and that of

the further crossbar is β . Show that the length of the field is, a(tan α cot β + 1).

Question-18

A man standing 'a' metres behind and opposite the middle of a football goal observes that the angle of elevation of the nearer cross-bar is α and that of the further crossbar is β . Show that the length of the field is, a(tan α cot β + 1).

Solution:

Let AB and CD be the cross bars of the football goal.

Let O be a point, 'a' metres behind and opposite the middle of the football goal.

Let 'I' metres be the length of the field.

Let AB = CD = p m since AB and CD are the cross bars of the football goal. In rt. ΔBAO ,

$$\frac{AB}{AO}$$
 = tan α = tan α a = $\frac{p}{tan \alpha}$

In rt. DCO,

$$\frac{CD}{CO}$$
 = $\tan \beta$ = $\tan \beta I - a = \frac{p}{\tan \beta}$

Length of the field = AO + OC

$$= a + (I - a)$$
$$= \frac{p}{\tan a} + \frac{p}{\tan \beta}$$

By replacing $p = a \tan \alpha$ we get,

$$= \frac{a \tan \alpha}{\tan \alpha} + \frac{a \tan \alpha}{\tan \beta}$$

$$= a + \frac{a \tan \alpha}{\tan \beta}$$

$$= \frac{a(\tan \beta + \tan \alpha)}{\tan \beta}$$

$$= a(1 + \tan \alpha \cot \beta) m$$

Question-19

The angle of elevation of the top of a tower from a point A due south of the tower is α and from B due east of the tower is β .

If AB = d, show that the height of the tower is $\frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$.

Solution:

Let OP be the tower and let A and B be two points due south and east respectively of the tower such that $\angle OAP = \alpha$ and $\angle OBP = \beta$. Let OP = h. In $\triangle OAP$, we have

$$\tan \alpha = \frac{h}{OA}$$

$$OA = h \cot \alpha \dots (i)$$

In ΔOBP, we have

$$\tan \beta = \frac{h}{OB}$$

OB =
$$h \cot \beta$$
(ii)

Since OAB is a right angled triangle. Therefore,

$$AB^2 = OA^2 + OB^2$$

$$d^2 = h^2 \cot^2 \alpha + h^2 \cot^2 \beta$$

$$h = \frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$$
[Using (i) and (ii)].

Question-20

A tower subtends an angle α at a point A in the place of its base and the angle of depression of the foot of the tower at a point b ft. just above A is β . Prove that the height of the tower is b tan α cot β .

Solution:

Let x be the distance of the point A from the foot of the tower and h be the height of the tower.

$$h = x \tan \alpha \dots (i)$$

In ∆ PRB

From (i) and (ii),

 $h = b.tan\alpha /tan\beta = b.tan\alpha cot\beta$

Therefore the height of the tower is

b tanα cotβ.

