Class XII Session 2023-24 **Subject - Mathematics** Sample Question Paper - 2

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCO's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

1. If
$$(A - 2B) = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$$
 and $(2A - 3B) = \begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix}$ then $B = ?$

a)
$$\begin{bmatrix} -4 & 6 \\ -3 & -3 \end{bmatrix}$$

b) None of these

c)
$$\begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix}$$

d)
$$\begin{bmatrix} 6 & -4 \\ -3 & 3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix}$$
 d) $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$
2. Let $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$ where $0 \le \theta \le 2\pi$. Then

a) Det(A) = 0

b) $Det(A) \in [2, 4]$

c) $Det(A) \in (2, 4)$

d) $Det(A) \in (2, \infty)$

3. The system of equations x + 2y = 5, 4x + 8y = 20 has [1]

[1]

a) None of these

b) no solution

c) a unique solution

d) infinitely many solutions

4. At
$$x = 2$$
, $f(x) = [x]$ is

[1]

a) Continuous but not differentiable

b) None of these

c) Continuous as well as differentiable

d) Differentiable but not continuous

5. The lines l_1 and l_2 intersect. The shortest distance between them is

[1]

a) infinity

b) negative

c) positive

d) zero

6.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2+\left(\frac{d^2y}{dx^2}\right)^2$	$\left(rac{dy}{dx} ight)^2 = x \sin\!\left(rac{dy}{dx} ight)$ is	[1]
	a) not defined	b) 1	
	c) 2	d) 3	
7.	The corner points of the feasible region determined by the system of linear constraints are $(0, 10)$, $(5, 5)$, $(15, 15)$, $(0, 20)$. Let $Z = px + qy$, where $p, q > 0$. Condition on p and q so that the maximum of Z occurs at both the points $(15, 15)$ and $(0, 20)$ is		[1]
	a) q = 3p	b) q = 2p	
	c) p = q	d) p = 2q	
8.	If $ ec{a} + ec{b} = ec{a} - ec{b} $ Then		[1]
	a) $ec{a} \perp ec{b}$	b) none of these	
	c) $ ec{a} = ec{b} $	d) $ec{a} \ ec{b}$	
9.	$\int \sqrt[3]{x} dx = ?$		[1]
	a) $\frac{4}{3}x^{\frac{4}{3}} + C$	b) $\frac{3}{4}x^{\frac{4}{3}} + C$	
	c) $\frac{3}{2}x^{\frac{2}{3}} + C$	d) $\frac{4}{3}x^{\frac{3}{4}} + C$	
10.	Total number of possible matrices of order 3×3 with	0	[1]
	a) 27	b) 81	
	c) 9	d) 512	
11.	Maximize $Z = 5x+3y$, subject to constraints $x + y \le 300$, $2x + y \le 360$, $x \ge 0$, $y \ge 0$.		[1]
	a) 1020	b) 1050	
	c) 1040	d) 1030	
12.	If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = 0$, then which one of the following is correct?		[1]
	a) $ec{a}$ is parallel to $ec{b}$	b) $\vec{a} = 0$ or $\vec{b} = 0$	
	c) $ec{a}$ is perpendicular to $ec{b}$	d) None of these	
13.	If $A=egin{bmatrix} a & 0 & 0 \ 0 & a & 0 \ 0 & 0 & a \end{bmatrix}$, then the value of adj A is		[1]
	a) a ²	b) a ⁶	
	c) _a 9	d) _a ²⁷	
14.	If A and B are events such that $P(A B) = P(B A)$, the	n	[1]
	a) $A \subset B$ but $A \neq B$	b) A = B	
	c) $A \cap B = \emptyset$	d) P(A) = P(B)	
15.	Consider the following statements in respect of the d	ifferential equation $\frac{d^2y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0$	[1]
	i. The degree of the differential equation is not defi ii. The order of the differential equation is 2.		
	Which of the above statement(s) is/are correct?		

	c) Only (i)	d) Neither (i) nor (ii)		
16.	If $ec{a}, ec{b}, ec{c}$ are three non-zero vectors, no two of which a	are collinear and the vector $ec{a}+ec{b}$ is collinear with $ec{c},ec{b}+ec{c}$	[1]	
	is collinear with $ec{a}$, then $ec{a}+ec{b}+ec{c}=$			
	a) $ec{a}$	b) $ec{c}$		
	c) $ec{b}$	d) None of these		
17.	If $y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$ then $\frac{dy}{dx} = ?$		[1]	
	a) $\frac{-1}{(1+x^2)}$	b) None of these		
	c) $\frac{2}{(1+x^2)}$	d) $\frac{-2}{(1+x^2)}$		
18.	The lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are		[1]	
	a) parallel	b) intersecting		
	c) skew	d) coincident		
19. Assertion (A): If x is real, then the minimum value of x^2 - 8x + 17 is 1.			[1]	
	Reason (R): If $f''(x) > 0$ at a critical point, then the value of the function at the critical point will be the			
	minimum value of the function.			
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the		
	explanation of A.	correct explanation of A.		
	c) A is true but R is false.	d) A is false but R is true.		
20.	Assertion (A): Every function is invertible.		[1]	
	Reason (R): Only bijective functions are invertible.			
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the		
	explanation of A.	correct explanation of A.		
	c) A is true but R is false.	d) A is false but R is true.		
	Sec	tion B		
21.	Find the principal value of cosec ⁻¹ (-2).		[2]	
		OR		
	Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$.			
22.	That the intervals in function $I(X) = 2X - 2X$		[2]	
23.			[2]	
	rate of 2 cm/minute. When $r = 9$ cm and $h = 6$ cm, find	d the rate of change of its volume. OR		
	A partial province along the curve $C_{V} = v^{3} + 2$. Find the	e points on the curve at which y-coordinates is changing 2 ti	moo	
	A particle moves along the curve $6y = x^3 + 2$. Find the as fast as x - coordinates.	e points on the curve at which y-coordinates is changing 2 th	mes	
24.	Evaluate the integral: $\int_0^1 \log(1+x) dx$		[2]	
25.	Find the values of \boldsymbol{x} for which the function ,		[2]	
	$f(x) = kx^3 - 9x^2 + 9x + 3$ is increasing in R			
Section C				

b) Only (ii)

a) Both (i) and (ii)

- 26. Evaluate: $\int \frac{dx}{(e^x-1)^2}$. [3]
- 27. In a school, there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII, what is the probability that a student chosen randomly studies in class XII, given that the chosen student is a girl?
- 28. Evaluate $\int_0^\pi e^{2x} \cdot \sin(\frac{\pi}{4} + x) dx$.

OR

Evaluate: $\frac{3x+1}{\sqrt{5-2x-x^2}}dx$

29. Solve the following differential equation: [3]

$$xdy - (y - x^3)dx = 0$$

OR

Find the particular solution of the differential equation $\left(1+x^2\right)\frac{dy}{dx}+2xy=\frac{1}{1+x^2}$, given that y = 0 when x = 1.

30. Solve the Linear Programming Problem graphically: [3]

Minimize Z = x - 5 y + 20 Subject to

$$x - y > 0$$

$$-x + 2y > 2$$

 $x \ge 3$

 $y \le 4$

 $x, y \ge 0$

OR

Solve the Linear Programming Problem graphically:

Maximize Z = 50x + 30y Subject to

$$2x + y \le 18$$

$$3x + 2y < 34$$

$$x, y \ge 0$$

31. Differentiate the function with respect to x: $\tan^{-1}\left(\frac{a+b\tan x}{b-a\tan x}\right)$. [3]

Section D

- 32. Find the area enclosed by the parabola $y^2 = 4ax$ and the line y = mx.
- 33. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow [5]$ x y is divisible by n, is an equivalence relation on Z.

OR

[5]

Let A = R - {3}, B = R - {1]. If $f:A\to B$ be defined by $f(x)=\frac{x-2}{x-3}$ $\forall x\in A$. Then, show that f is bijective.

34. Solve the system of equations [5]

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$

$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

35. Find the perpendicular distance of the point (1, 0, 0) from the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$. Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.

OR

Show that the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3\hat{i}-\hat{j})$ and $\vec{r}=(4\hat{i}-\hat{k})+\mu(2\hat{i}+3\hat{k})$ intersect Also, find the equation of the plane containing them.

Section E

36. Read the text carefully and answer the questions:

[4]

For an audition of a reality singing competition, interested candidates were asked to apply under one of the two musical genres-folk or classical and under one of the two age categories-below 18 or 18 and above.

The following information is known about the 2000 application received:

- i. 960 of the total applications were the folk genre.
- ii. 192 of the folk applications were for the below 18 category.
- iii. 104 of the classical applications were for the 18 and above category.
 - (i) What is the probability that an application selected at random is for the 18 and above category provided it is under the classical genre? Show your work.
 - (ii) An application selected at random is found to be under the below 18 category. Find the probability that it is under the folk genre. Show your work.
 - (iii) If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then $P(A \cup B)$ is equal to

OR

If A and B are two independent events with

$$P(A) = \frac{3}{5}$$
 and $P(B) = \frac{4}{9}$, then find $P(A' \cap B')$.

37. Read the text carefully and answer the questions:

[4]

A plane started from airport O with a velocity of 120 m/s towards east. Air is blowing at a velocity of 50 m/s towards the north As shown in the figure.

The plane travelled 1 hr in OA direction with the resultant velocity. From A and B travelled 1 hr with keeping velocity of 120 m/s and finally landed at B.

- (i) What is the resultant velocity from O to A?
- (ii) What is the direction of travel of plane O to A with east?
- (iii) What is the total displacement from O to A?

OR

What is the resultant velocity from A to B?

38. Read the text carefully and answer the questions:

[4]

The temperature of a person during an intestinal illness is given by $f(x) = -0.1x^2 + mx + 98.6$, $0 \le x < 12$, m being a constant, where f(x) is the temperature in ${}^{0}F$ at x days.

- (i) Is the function differentiable in the interval (0, 12)? Justify your answer.
- (ii) If 6 is the critical point of the function, then find the value of the constant m.

Solution

Section A

1. **(a)**
$$\begin{bmatrix} -4 & 6 \\ -3 & -3 \end{bmatrix}$$

Explanation:
$$(A-2B) = \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}$$

Multiplying equation by 2

$$2A - 4B = \begin{pmatrix} 2 & -4 \\ 6 & 0 \end{pmatrix} \dots (i)$$

$$2A - 3B = \begin{pmatrix} -2 & 2 \\ 3 & -3 \end{pmatrix}$$
 ...(ii)

(ii) - (i)
$$B = \begin{pmatrix} -2 & 2 \\ 3 & -3 \end{pmatrix} - \begin{pmatrix} 2 & -4 \\ 6 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -4 & 6 \\ -3 & -3 \end{pmatrix}$$

2.

(b)
$$Det(A) \in [2, 4]$$

Explanation:
$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$

$$|A| = 1 (1 \times 1 - \sin \theta \times (-\sin \theta)) - \sin \theta (-\sin \theta + \sin \theta) + 1 [(-\sin \theta) \times (-\sin \theta) - (-1) \times 1]$$

$$|\mathbf{A}|$$
 = $1 + sin^2\theta + sin^2\theta + 1$

$$|A| = 2 + 2 \sin^2 \theta$$

$$|A| = 2(1 + \sin 2\theta)$$

Now,
$$0 \le \theta \le 2\pi$$

$$\Rightarrow \sin 0 < \sin \theta < \sin 2\pi$$

$$\Rightarrow 0 < \sin^2 \theta < 1$$

$$\Rightarrow$$
 1 + 0 \leq 1 + $\sin^2\theta \leq$ 1 + 1

$$\Rightarrow 2 < 2(1 + \sin^2\theta) < 4$$

∴ Det
$$(A) \in [2, 4]$$

3.

(d) infinitely many solutions

Explanation: x + 2y = 5,

$$4x + 8y = 20$$

$$\Rightarrow A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} 5 \\ 20 \end{bmatrix}$$

$$|A| = 8 - 8 = 0$$

$$adjA = \begin{bmatrix} 8 & -2 \\ -4 & 1 \end{bmatrix}$$

$$adjA = \begin{bmatrix} 8 & -2 \\ -4 & 1 \end{bmatrix}$$

$$now (adj A)B = \begin{bmatrix} 8 & -2 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 20 \end{bmatrix} = \begin{bmatrix} 40 - 40 \\ -20 + 20 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow (adj A)B = 0$$
Since, $|A| = 0$ and $(adjA)B = 0$

So, the pair of equation have infinitely many solutions

4.

(b) None of these

Explanation: Let us see that graph of the floor function, we get

We can see that f(x) = [x] is neither continuous and non differentiable at x = 2.

5.

(d) zero

Explanation: Since the lines intersect. Hence they have a common point in them. Hence the distance will be zero.

6. **(a)** not defined

Explanation: In general terms for a polynomial the degree is the highest power.

Degree of differential equation is defined as the highest integer power of highest order derivative in the equation

Here the differential equation is
$$\left(\frac{d^2y}{dx^2}\right)^2+\left(\frac{dy}{dx}\right)^2=x\sin\left(\frac{dy}{dx}\right)$$

Now for degree to exist the given differential equation must be a polynomial in some differentials.

Here differentials mean $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ or $\frac{d^ny}{dx^n}$

The given differential equation is not polynomial because of the term $\sin \frac{dy}{dx}$ and hence degree of such a differential equation is not defined.

7. **(a)** q = 3p

Explanation: Since Z occurs maximum at (15, 15) and (0, 20), therefore, $15p + 15q = 0p + 20q \Rightarrow q = 3p$.

8. **(a)** $\vec{a} \perp \vec{b}$

Explanation: Here
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

 $\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$
 $\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$
 $\Rightarrow |a|^2 + 2\vec{a} \cdot \vec{b} + |b|^2 = |a|^2 - 2\vec{a} \cdot \vec{b} + |b|^2$
 $\Rightarrow 2\vec{a} \cdot \vec{b} = -2\vec{a} \cdot \vec{b}$
 $\Rightarrow 4\vec{a} \cdot \vec{b} = 0$
 $\Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\Rightarrow \vec{a} \perp \vec{b}$

9.

(b)
$$\frac{3}{4}x^{\frac{4}{3}} + C$$

Explanation: Given integral is $\int \sqrt[3]{x} dx$

$$\int x^n dx = rac{x^{n+1}}{n+1} + c$$
 $\int \sqrt[3]{x} dx = rac{x^{rac{1}{3}+1}}{rac{1}{3}+1} + c$
 $= rac{x^{rac{4}{3}}}{rac{4}{3}} + c$
 $= rac{3}{4}x^{rac{4}{3}} + c$

10.

(d) 512

 $\textbf{Explanation:} \ \ \text{Since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices is a since each element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0'), total number of possible matrices element a}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be filled in two ways (with either '2' or "0')}_{ij} \ \text{can be fil$

8x8x8 = 512

11. **(a)** 1020

Explanation: Here , Maximize Z = 5x+3y , subject to constraints $x + y \le 300$, $2x + y \le 360$, $x \ge 0$, $y \ge 0$.

Corner points	Z = 5x + 3y
P(0, 300)	900
Q(180, 0)	900
R(60, 240)	1020(Max.)
S(0, 0)	0

Hence, the maximum value is 1020

12.

(b)
$$\vec{a} = 0$$
 or $\vec{b} = 0$

Explanation: Given that, $\vec{a} \cdot \vec{b} = 0$,

i.e. \vec{a} and \vec{b} are perpendicular to each other and $\vec{a} \times \vec{b} = 0$

i.e. \vec{a} and \vec{b} are parallel to each other. So, both conditions are possible iff $\vec{a}=0$ and $\vec{b}=0$

13.

Explanation:
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$

$$|A| = a^3$$

$$|adj A| = |A|^{3-1} = |A|$$

$$|adj A| = (a^3)^2 = a^6$$

14.

(d)
$$P(A) = P(B)$$

Explanation: It is given that : P(A | B) = P(B | A)

$$\Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(A)}$$

$$\Rightarrow \frac{1}{P(B)} = \frac{1}{P(A)} \Rightarrow P(A) = P(B)$$

15. **(a)** Both (i) and (ii)

Explanation: Both (i) and (ii)

16.

(d) None of these

Explanation: Given that $\vec{a} + \vec{b}$ is collinear with \vec{c}

$$\vec{a} + \vec{b} = x\vec{c}$$
 ...(i)

where x is scalar and $x \neq 0$

 $\vec{b} + \vec{c}$ is collinear with \vec{a}

$$\vec{b} + \vec{c} = y\vec{a}$$
 ...(ii)

y is scalar and $y \neq 0$

Subtracting (ii) from (i) we get

$$\vec{a} - \vec{c} = x\vec{c} - y\vec{a}$$

$$\vec{a} + y\vec{a} = x\vec{c} + \vec{c}$$

$$\vec{a}(1+y) = (1+x)\vec{c}$$

As given

 \vec{a},\vec{c} are not collinear. (no two vecotors are collinear)

$$\therefore$$
 1 + y = 0 and 1 + x = 0

$$y = -1 \text{ and } x = -1$$

Putting value of x in equation (i)

$$\vec{a} + \vec{b} = -\vec{c}$$

$$\vec{a} + \vec{b} + \vec{c} = 0$$

17.

(d)
$$\frac{-2}{(1+x^2)}$$

Explanation: Given that $y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$

$$\Rightarrow \sec y = \frac{x^2+1}{x^2-1}$$

Since $tan^2x = sec^2x - 1$, thus

$$an^2 y = \left(rac{x^2+1}{x^2-1}
ight)^2 - 1 = rac{4x^2}{\left(x^2-1
ight)^2}$$

Hence,
$$\tan y = -\frac{2x}{1-x^2}$$
 or $y = \tan^{-1}\left(-\frac{2x}{1-x^2}\right)$

Let $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

Hence,
$$y= an^{-1}\Bigl(-rac{2 an heta}{1- an^2 heta}\Bigr)$$
 Using $an 2 heta=rac{2 an heta}{1- an^2 heta}$, we obtain

$$y = \tan^{-1}(-\tan 2\theta)$$

Uisng $-\tan x = \tan(-x)$, we obtain

$$y = tan^{-1} (tan(-2\theta) = -2\theta = -2tan^{-1} x$$

Differentiating with respect to x, we obtain

$$\frac{dy}{dx} = \frac{-2}{1+x^2}$$

18.

(d) coincident

Explanation: The equation of the given lines are

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \dots (i)$$

$$\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$$

$$= \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3} \dots (ii)$$

Thus, the two lines are parallel to the vector $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ and pass through the points (0, 0, 0) and (1, 2, 3).

$$(\overrightarrow{a_2} - \overrightarrow{a_1}) imes \vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k}) imes (\hat{i} + 2\hat{j} + 3\hat{k})$$

= $\vec{0}$ [$\because \vec{a} imes \vec{a} = \vec{0}$]

So, here the distance between the given two parallel lines is 0, the given lines are coincident.

19. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Let $f(x) = x^2 - 8x + 17$

$$f'(x) = 2x - 8$$

So,
$$f'(x) = 0$$
, gives $x = 4$

Here x = 4 is the critical number

Now,
$$f''(x) = 2 > 0$$
, $\forall x$

So, x = 4 is the point of local minima.

 \therefore Minimum value of f(x) at x = 4,

$$f(4) = 4 \times 4 - 8 \times 4 + 17 = 1$$

Hence, we can say that both Assertion and Reason are true and Reason is the correct explanation of the Assertion.

20.

(d) A is false but R is true.

Explanation: Assertion is false because every function is not invertible. The function which is one-one and onto i.e. bijective functions are invertible so reason is true.

Section B

21. $\operatorname{cosec}^{-1}x$ represents an angle in $\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$ whose cosent is x.

Let
$$x = \csc^{-1}(-2)$$

$$\Rightarrow cosec \ x = -2 = cosec \left(-\frac{\pi}{6} \right)$$

 $\Rightarrow x = -\frac{\pi}{6}$

 \therefore Principal value of $\operatorname{cosec}^{-1}(-2)$ is $-\frac{\pi}{6}$.

OR

Let $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)=y$. Then, $\operatorname{cosec} y=-\sqrt{2}=-\operatorname{cosec}\left(\frac{\pi}{4}\right)=\operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of

$$\mathrm{cosec}^{ ext{-}1}$$
 is $\left[-rac{\pi}{2},rac{\pi}{2}
ight]-\{0\}$ and $\mathrm{cosec}\left(-rac{\pi}{4}
ight)=-\sqrt{2}$.

Therefore, the principal value of $\operatorname{cosec^{-1}}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

22. Given: $f(x) = 2x^3 - 24x + 107$

$$\Rightarrow f'(x) = rac{d}{dx} \left(2x^3 - 24x + 107
ight)$$

$$\Rightarrow$$
 f'(x) = $6x^2 - 24$

For f(x) lets find critical point, for this we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 6x² - 24 = 0

$$\Rightarrow$$
 6(x² - 4) = 0

$$\Rightarrow$$
 $(x-2)(x+2)=0$

$$\Rightarrow$$
 x = -2, 2

clearly, f'(x) > 0 if x < -2 and x > 2

and
$$f'(x) < 0$$
 if $-2 < x < 2$

Thus, the function f(x) increases on $(-\infty, -2) \cup (2, \infty)$ and f(x) is decreasing on interval $x \in (-2, 2)$.

23. We know that Volume of right circular cone $=\frac{\pi r^2 h}{3}$

$$rac{\partial V}{\partial t} = rac{\pi}{3} \Big(2rhrac{\partial r}{\partial t} + r^2rac{\partial h}{\partial t} \Big)$$

$$\frac{\partial v}{\partial t} = \frac{\pi}{108} \times \frac{3}{108} \times \frac{$$

$$rac{\partial v}{\partial t} = rac{\pi}{3}(108 imes -3 + 81 imes 2) \ rac{\partial v}{\partial t} = rac{\pi}{3}(-162) = -54\pi ext{cm}^2/ ext{min}$$

Therefore Volume is decreasing at rate $54\pi \text{cm}^2/\text{min.}$.

OR

Given curve is,

$$6y = x^3 + 2$$

$$\Rightarrow 6 \frac{dy}{dt} = 3x^2 \cdot \frac{dx}{dt} \dots (i)$$
Given: $\frac{dy}{dt} = 2 \cdot \frac{dx}{dt} \dots (ii)$

Given:
$$\frac{dy}{dt} = 2 \cdot \frac{dx}{dt}$$
 ... (ii)

from (i) and (ii),
$$2\left(2\frac{dx}{dt}\right) = x^2 \cdot \frac{dx}{dt}$$

$$\Rightarrow$$
 x = ± 2

when
$$x = 2$$
, $y = \frac{5}{3}$; when $x = -2$, $y = -1$

Therefore, Points are $\left(2,\frac{5}{3}\right)$ and (-2, -1)

24. Let I = $\int_0^1 \log(1+x) dx$, then

$$I = \int_0^1 \log(1+x) imes 1 dx$$

$$=[\log(1+x)x]_0^1-\int_0^1rac{x}{1+x}dx$$

$$= [\log(1+x)x]_0^1 - \int_0^1 \left(1 - rac{1}{1+x}
ight) dx$$

$$=[x\log(1+x)]_0^1-[x-\log(1+x)]_0^1$$

$$= \log 2 - 1 + \log 2$$

$$= 2 \log 2 - 1$$

$$=\log\frac{4}{e}$$

25. we have,
$$f(x)=kx^3-9x^2+9x+3$$

$$\Rightarrow f'(x) = 3kx^2 - 18x + 9$$

Since $\mathrm{f}(\mathrm{x})$ is increasing on R, therefore , $f'(x)>0\ orall\ x\in R$

$$\Rightarrow 3kx^2 - 18x + 9 > 0, orall x \in R \ \Rightarrow kx^2 - 6x + 3 > 0, orall x \in R$$

$$\Rightarrow$$
 k>0 and 36-12k<0 [: $ax^2 + bx + c > 0, \forall x \in R \Rightarrow a > 0$ and $discriminant < 0$]

$$\Rightarrow k > 3$$

Hence, f(x) is increasing on R, if k>3.

Section C

26. Putting $t = e^x - 1$

$$e^{X} = t + 1$$

$$dt = e^{x} dx$$

$$\frac{dt}{dt} = dx$$

$$rac{dt}{e^x}=dx \ rac{dt}{t+1}=dx$$

Putting above by have by partial fractions. $\frac{1}{(1+t)t^2} = \frac{A}{t+1} + \frac{Bt+C}{t^2}$... (1)

$$A(t^2) + (Bt + C)(t + 1) = 1$$

Put
$$t + 1 = 0$$

$$A = 1$$

Equating coefficients

$$A + B = 0$$

$$1 + B = 0$$

$$B = -1$$

From equation (1), we get,

From equation (1), we get,
$$\frac{1}{(1+t)t^2} = \frac{1}{t+1} + \frac{-t+1}{t^2}$$

$$\int \frac{1}{(1+t)t^2} dt = \int \frac{1}{t+1} dt - \int \frac{t}{t^2} dt + \int \frac{1}{t^2} dt$$

$$= \log|t+1| - \int \frac{1}{t} dt + \int \frac{1}{t^2} dt$$

$$= \log|t+1| - \log|t| - \frac{1}{t} + c$$

$$\int \frac{1}{(e^x-1)^2} dx = \log|e^x| - \log|e^x - 1| - \frac{1}{e^x-1} + c$$

27. Let 'A' be the event that the chosen student studies in class XII and B be the event that the chosen student is a girl.

There are 430 girls out of 1000 students

So, P(B) = P (Chosen student is girl) =
$$\frac{430}{1000} = \frac{43}{100}$$

Since, 10% of the girls studies in class XII

So, total number of girls studies in class XII

$$=\frac{10}{100} \times 430 = 43$$

Then, $P(A \cap B) = P$ (Chosen student is a girl of class XII)

$$=\frac{43}{1000}$$

∴ Required probability = P(A / B)
$$= \frac{P(A \cap B)}{P(B)} \quad \left[\because P(A/B) = \frac{P(A \cap B)}{P(B)} \right]$$

$$= \frac{43/1000}{43/100} = \frac{1}{10}$$

28. According to the question , $I=\int_0^\pi e^{2x}\cdot\sin\Bigl(rac{\pi}{4}+x\Bigr)dx$...(i)

Consider ,
$$I_1 = \int e_{II}^{2x} \sin \left(rac{\pi}{4} + x
ight) dx$$
(ii)

By using integration bi parts, we get

$$= \sin\left(\frac{\pi}{4} + x\right) \int e^{2x} dx - \int \left\{\frac{d}{dx}\sin\left(\frac{\pi}{4} + x\right) \int e^{2x} dx\right\} dx$$

$$= \sin\left(\frac{\pi}{4} + x\right) \frac{e^{2x}}{2} - \int \cos\left(\frac{\pi}{4} + x\right) \frac{e^{2x}}{2} dx$$

$$= \frac{e^{2x}}{2}\sin\left(\frac{\pi}{4} + x\right) - \frac{1}{2} \int e^{2x}_{II}\cos\left(\frac{\pi}{4} + x\right) dx$$

By using integration by parts for second integral , we get

$$=rac{e^{2x}}{2}\mathrm{sin}\Big(rac{\pi}{4}+x\Big)$$
- $rac{1}{2}\Big[\mathrm{cos}\Big(rac{\pi}{4}+x\Big)rac{e^{2x}}{2}-\int -\mathrm{sin}\Big(rac{\pi}{4}+x\Big)rac{e^{2x}}{2}dx\Big]$

$$\begin{split} &=\frac{e^{2x}}{2}\sin\left(\frac{\pi}{4}+x\right)-\frac{e^{2x}}{4}\cos\left(\frac{\pi}{4}+x\right)-\frac{1}{4}\int e^{2x}\sin\left(\frac{\pi}{4}+x\right)dx\\ &\Rightarrow I_1=\frac{e^{2x}}{4}\left\{2\sin\left(\frac{\pi}{4}+x\right)-\cos\left(\frac{\pi}{4}+x\right)\right\}-\frac{1}{4}I_1 \ \ [\text{From eq.(ii)}]\\ &\Rightarrow I_1+\frac{1}{4}I_1=\frac{e^{2x}}{4}\left\{2\sin\left(\frac{\pi}{4}+x\right)-\cos\left(\frac{\pi}{4}+x\right)\right\}\\ &\Rightarrow \quad \frac{5}{4}I_1=\frac{e^{2x}}{4}\left\{2\sin\left(\frac{\pi}{4}+x\right)-\cos\left(\frac{\pi}{4}+x\right)\right\}\\ &\Rightarrow \quad I_1=\frac{e^{2x}}{5}\left\{2\sin\left(\frac{\pi}{4}+x\right)-\cos\left(\frac{\pi}{4}+x\right)\right\} \end{split}$$

From (i) and (ii) ,we get

$$\begin{split} & : I = [I_1]_0^\pi \\ & = \left[\frac{e^{2x}}{5}\left\{2\sin\left(\frac{\pi}{4} + x\right) - \cos\left(\frac{\pi}{4} + x\right)\right\}\right]_0^\pi \\ & = \frac{1}{5}\left[e^{2\pi}\left\{2\sin\left(\frac{\pi}{4} + \pi\right) - \cos\left(\frac{\pi}{4} + \pi\right)\right\} - e^0\left\{2\sin\left(\frac{\pi}{4} + 0\right) - \cos\left(\frac{\pi}{4} + 0\right)\right\}\right] \\ & = \frac{1}{5}\left[e^{2\pi}\left\{-2\sin\frac{\pi}{4} + \cos\frac{\pi}{4}\right\} - e^0\left\{2\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right\}\right] \\ & = \frac{1}{5}\left[e^{2\pi}\left\{-2 \times \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right\} - 1\left\{2 \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right\}\right] \\ & = \frac{1}{5}\left[e^{2\pi}\left\{-\frac{1}{\sqrt{2}}\right\} - \frac{1}{\sqrt{2}}\right] \\ & = -\frac{1}{5\sqrt{2}}\left[e^{2\pi} + 1\right] \\ & : I = -\frac{1}{5\sqrt{2}}\left[e^{2\pi} + 1\right] \text{ sq units.} \end{split}$$

Let the given integral be,

$$I = \frac{3x+1}{\sqrt{5-2x-x^2}} dx$$
Let $3x + 1 = \lambda \frac{d}{dx} (5 - 2x + x^2) + \mu$

$$= \lambda(-2 - 2x) + \mu$$
 $3x + 1 = (-2\lambda)x + 2\lambda + \mu$

Comparing the coefficients of like powers of x,
$$-2\lambda = 3 \Rightarrow \lambda = -\frac{3}{2}$$

$$-2\lambda + \mu = 1$$

$$\Rightarrow -2\left(-\frac{3}{2}\right) + \mu = 1$$

$$\mu = -2$$
 So,
$$I = \int \frac{-\frac{3}{2}(-2-2x)-2}{\sqrt{5-2x-x^2}} dx$$

$$= -\frac{3}{2} \int \frac{(-2-2x)}{\sqrt{5-2x-x^2}} dx - 2 \int \frac{1}{\sqrt{-[x^2+2x-5]}} dx$$

$$I = -\frac{3}{2} \int \frac{(-2-2x)}{\sqrt{5-2x-x^2}} dx - 2 \int \frac{1}{\sqrt{-[x^2+2x+(1)^2-(1)^2-5]}} dx$$

$$I = -\frac{3}{2} \int \frac{(-2-2x)}{\sqrt{5-2x-x^2}} dx - 2 \int \frac{1}{\sqrt{-[(x+1)^2-(\sqrt{6})^2]}} dx$$

$$I = -\frac{3}{2} \int \frac{(-2-2x)}{\sqrt{5-2x-x^2}} dx - 2 \int \frac{1}{\sqrt{(\sqrt{6})^2-(x+1)^2]}} dx$$

$$I = -\frac{3}{2} \times 2\sqrt{5-2x-x^2} - 2\sin^{-1}\left(\frac{x+1}{\sqrt{6}}\right) + c \text{ [since the second of the second of$$

$$I = -rac{3}{2} imes 2\sqrt{5-2x-x^2} - 2\sin^{-1}\Bigl(rac{x+1}{\sqrt{6}}\Bigr) + c \; ext{ [since, } \int rac{1}{\sqrt{x}} dx = 2\sqrt{x} + c, \int rac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}\bigl(rac{x}{a}\bigr) \; + c ext{]} \ I = -3\sqrt{5-2x-x^2} - 2\sin^{-1}\Bigl(rac{x+1}{\sqrt{6}}\Bigr) + c$$

OR

29.
$$xdy - (y - x^3)dx = 0$$

This can be written as

$$xdy = (y - x^3)dx$$

Divide throughout by x,

$$\frac{dy}{dx} = \frac{y}{x} - x^2$$

$$\frac{dy}{dx} - \frac{y}{x} = -x^2$$

This is a linear differential equation of the form,

$$\frac{dy}{dx} + Py = Q$$

The integrating factor I.F is

$$e^{\int Pdx} = e^{\int \frac{-1}{x} dx} dx = e^{-\log x} = e^{\log(\frac{1}{x})} = \frac{1}{x}$$

The required solution is

$$ye^{\int Pdx} = \int Qe^{\int Pdx} \cdot dx + c$$

$$y \cdot \left(\frac{1}{x}\right) = -\int x^2 imes \frac{1}{x} dx + c$$

$$\frac{y}{x} = -\int x dx + c$$

$$\frac{y}{x} = \frac{-x^2}{2} + c$$

$$\frac{y}{x} + \frac{x^2}{2} = c$$

$$\frac{x}{y} + \frac{x^2}{2} = c$$

$$2y + x^3 = 2cx$$

 \Rightarrow $x^3 - 2cx + 2y = 0$ is the required solution.

OR

$$\left(1+x^2
ight)rac{dy}{dx}+2xy=rac{1}{1+x^2}$$

Divide both sides by $1 + x^2$

$$\frac{dy}{dx} \, + \, \frac{2xy}{1+x^2} = \frac{1}{(1+x^2) \cdot (1+x^2)}$$

Divide both sides by
$$1 + x^2$$

$$\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{1}{(1+x^2) \cdot (1+x^2)}$$

$$\frac{dy}{dx} + \left(\frac{2x}{1+x^2}\right) y = \frac{1}{(1+x^2)^2}$$
Comparing with $\frac{dy}{dx} + Py = Q$,
$$P = \frac{2x}{1+x^2} & Q = \frac{1}{(1+x^2)^2}$$
Finding Integrating factors

$$P = \frac{2x}{1+x^2} \& Q = \frac{1}{(1+x^2)^2}$$

Finding Integrating factor:

IF =
$$e^{\int Pdx}$$

$$IF = e^{\int \frac{2x}{1+x^2}} dx$$

Let
$$1 + x^2 = t$$

Diff. w.r.t. x

$$2x = \frac{dt}{}$$

$$2x = \frac{dt}{dx}$$
$$dx = \frac{dt}{2x}$$

Thus, IF =
$$e^{\int \frac{2x}{t} \frac{dt}{2x}}$$

$$IF = e^{\int \frac{dt}{t}}$$

$$IF = e^{\log|t|}$$

$$IF = t$$

$$IF = 1 + x^2$$

Solution of the differential equation:

y × I.F. =
$$\int Q \times I.F dx$$

Putting values,

$$y \times (1 + x^2) = \int \frac{1}{(1+x^2)^2} (1+x^2) dx$$

$$y(1 + x^2) = \int \frac{1}{(1+x^2)} dx$$

$$y(1 + x^2) = tan^{-1}x + C...(1)$$

Putting that y = 0 and x = 1,

$$0(1+1^2) = \tan^{-1}(1) + C$$

$$0 = \frac{\pi}{4} + C$$

$$C = -\frac{\pi}{4}$$

Putting value of C in eq(1),

$$y(1 + x^2) = tan^{-1}x + C$$

$$y(1 + x^2) = \tan^{-1}x - \frac{\pi}{4}$$

30. First, we will convert the given inequations into equations, we obtain the following equations:

$$x - y = 0$$
, $-x + 2y = 2$, $x = 3$, $y = 4$, $x = 0$ and $y = 0$

Region represented by $x - y \ge 0$ or $x \ge y$ The line x - y = 0 or x = y passes through the origin. The region to the right of line x = ywill satisfy the given inequation. Check by taking an example like if we take a point (4,3) to the right of the line x = y. Here $x \ge y$ y. So, it satisfies the given inequation. Take a point (4,5) to the left of the line x = y. Here, $x \le y$. That means it does not satisfy the given inequation. Region represented by - x + 2 y \geq 2 The line - x + 2 y = 2 meets the coordinate axes at A(- 2,0) and B(0,1) respectively. By joining these points we obtain the line - x + 2 y = 2. Clearly (0,0) does not satisfies the inequation - x + 2 y \geq 2. So, the region in x y plane which does not contain the origin represents the solution set of the inequation - x + 2 y \geq 2 The line x = 3 is the line that passes through the point (3,0) and is parallel to Y-axis. x \geq 3 is the region to the right of line x = 3 The line y = 4 is the line that passes through the point (0,4) and is parallel to X-axis. y \leq 4 is the region below the line y = 4 Region represented by x > 0 and y > 0:

since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x \ge 0$ and $y \ge 0$ The feasible region determined by subject to the constraints are $x - y \ge 0$, -x + 2 $y \ge 2$, $x \ge 3$, $y \le 4$, non negative $x \ge 0$ and $x \ge 0$ are as follows.

The corner points of the feasible region are

$$C(3, \frac{5}{2})$$
, D(3,3), E(4,4) and F(6,4)

The values of objective function at the corner points are as follows:

Corner point: z = x - 5y + 20

$$C\left(3, \frac{5}{2}\right) : 3 - 5 imes \frac{5}{2} + 20 = \frac{21}{2}$$

$$D(3, 3): 3 - 5 \times 3 + 20 = 8$$

$$E(4,4):4-5\times 4+20=4$$

$$F(6, 4): 6-5\times 4+20=6$$

Therefore, the minimum value of objective function Z is 4 at the point E(4,4). Hence, x=4 and y=4 is the optimal solution of the given LPP.

Thus, the optimal value of objective function Z is 4.

OR

First, we will convert the given inequations into equations, we obtain the following equations:

$$2x + y = 18$$
, $3x + 2y = 34$

Region represented by $2x + y \ge 18$:

The line 2x + y = 18 meets the coordinate axes at A(9,0) and B(0,18) respectively. By joining these points we obtain the line 2x + y = 18 Clearly (0,0) does not satisfies the inequation $2x + y \ge 18$. So, the region in xy plane which does not contain the origin represents the solution set of the inequation $2x + y \ge 18$.

Region represented by $3x + 2y \le 34$:

The line 3x + 2y = 34 meets the coordinate axes at

$$C\left(\frac{34}{3},0\right)$$
 and D(0,17) respectively.

By joining these points we obtain the line 3x + 2y = 34 Clearly (0,0) satisfies the inequation $3x + 2y \le 34$. So, the region containing the origin represents the solution set of the inequation $3x + 2y \le 34$

The corner points of the feasible region are A(9,0)

$$C\left(\frac{34}{3},0\right)$$
 and E(2,14) and feasible region is bounded

The values of Z objective function at these corner points are as follows.

Corner point	Z = 50x + 30y
A(9, 0)	50 imes 9 + 3 imes 0 = 450
$C\left(\frac{34}{3},0\right)$	$50 imes rac{34}{3} + 30 imes 0 = rac{1700}{3}$
E(2, 14)	50 imes 2 + 30 imes 14 = 520

Therefore, the maximum value of objective function Z is

 $\frac{1700}{3}$ at the point $\left(\frac{34}{3},0\right)$ Hence, $x=\frac{34}{3}$ and y=0 is the optimal solution of the given LPP.

Thus, the optimal value of objective function Z is $\frac{1700}{3}$.

31. Let,
$$y = \tan^{-1} \left[\frac{\frac{a+b\tan x}{b-a\tan x}}{\frac{b-a\tan x}{b}} \right]$$

$$\Rightarrow y = \tan^{-1} \left[\frac{\frac{a+b\tan x}{b}}{\frac{b-a\tan x}{b}} \right]$$

$$\Rightarrow y = \tan^{-1} \left[\frac{\frac{a}{b} + \tan x}{1 - \frac{a}{b} \tan x} \right]$$

$$\Rightarrow y = \tan^{-1} \left[\frac{\tan(\tan^{-1} \frac{a}{b}) + \tan x}{1 - \tan(\tan^{-1} \frac{a}{b}) \times \tan x} \right]$$

$$\Rightarrow y = \tan^{-1} \left[\tan\left(\tan^{-1} \frac{a}{b} + x\right) \right]$$

$$\Rightarrow y = \tan^{-1} \left(\frac{a}{b} \right) + x$$

Differentiate it with respect to x,

$$\frac{dy}{dx} = 0 + 1$$

$$\therefore \frac{dy}{dx} = 1$$

Hence the derivative is equal to 1 for the given function .

Section D

$$y^2 = 4ax$$
(1)

$$y = mx....(2)$$

Using (2) in (1), we get,

$$(mx)^2 = 4ax$$

$$\Rightarrow$$
 m²x² = 4ax

$$x(m^2x - 4a) = 0$$

$$\Rightarrow x = 0, \frac{4a}{m^2}$$

From (2),

When
$$x = 0$$
, $y = m(0) = 0$

When
$$x=\frac{4a}{m^2}, y=m imes \frac{4a}{m^2}=\frac{4a}{m}$$

 \therefore points of intersection are (0,0) and $(\frac{4a}{m^2},\frac{4a}{m})$

Area =
$$\int_0^{4a/m^2} \sqrt{4ax} dx - \int_0^{\frac{4a}{m^2}} mx dx$$

= $\sqrt{4a} \int_0^{\frac{4a}{m^2}} \sqrt{x} dx - m \int_0^{\frac{4a}{m^2}} x dx$
= $\sqrt{4a} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^{\frac{4a}{m^2}} - m \left[\frac{x^2}{2} \right]_0^{\frac{4a}{m^2}}$
= $\sqrt{4a} \left[\frac{2}{3} \left(\frac{4a}{m^2} \right)^{\frac{3}{2}} - 0 \right] - \frac{m}{2} \left[\left(\frac{4a}{m^2} \right)^2 - 0 \right]$
= $\frac{2}{3m^3} (4a)^2 - \frac{1}{2m^3} (4a)^2$
= $\frac{(4a)^2}{m^3} \left[\frac{2}{3} - \frac{1}{2} \right]$
= $\frac{8a^2}{3m^3} squnit$.

33. We observe the following properties of relation R.

Reflexivity: For any $a \in N$

$$a - a = 0 = 0 \times n$$

$$\Rightarrow$$
 a - a is divisible by n

$$\Rightarrow$$
 (a, a) \in R

Thus, $(a, a) \in \text{for all } a \in Z$. So, R is reflexive on Z

Symmetry: Let $(a, b) \in R$. Then,

$$(a, b) \in R$$

$$\Rightarrow$$
 (a - b) is divisible by n

$$\Rightarrow$$
 (a - b) = np for some p \in Z

$$\Rightarrow$$
 b - a = n (-p)

$$\Rightarrow$$
 b - a is divisible by n $[\because p \in Z \Rightarrow -p \in Z]$

$$\Rightarrow$$
 (b, a) \in R

Thus, $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in Z$.

So, R is symmetric on Z.

Transitivity: Let a, b, $c \in Z$ such that $(a, b) \in R$ and $(b, c) \in R$. Then,

$$(a, b) \in \mathbb{R}$$

$$\Rightarrow$$
 (a - b) is divisible by n

$$\Rightarrow$$
 a - b = np for some p \in Z

and,
$$(b, c) \in R$$

$$\Rightarrow$$
 (b - c) is divisible by n

$$\Rightarrow$$
 b - c = nq for some q \in Z

$$\therefore$$
 (a, b) \in R and (b, c) \in R

$$\Rightarrow$$
 a - b = np and b - c = nq

$$\Rightarrow$$
 (a - b) + (b - c) = np + nq

$$\Rightarrow$$
 a - c = n (p + q)

$$\Rightarrow$$
 a - c is divisible by n $[\because p, q \in Z \Rightarrow p + q \in Z]$

$$\Rightarrow$$
 (a, c) \in F

Thus, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in Z$.

OR

Given that, $A = R - \{3\}$, $B = R - \{1\}$.

$$f:A o B$$
 is defined by $f(x)=rac{x-2}{x-3}\ orall x\in A$

For injectivity

Let
$$f(x_1) = f(x_2) \Rightarrow rac{x_1 - 2}{x_1 - 3} = rac{x_2 - 2}{x_2 - 3}$$

$$\Rightarrow$$
 (x₁ - 2)(x₂ - 3) = (x₂ - 2)(x₁ - 3)

$$\Rightarrow$$
 $x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$

$$\Rightarrow$$
 -3x₁ - 2x₂ = -3x₂ - 2x₁

$$\Rightarrow$$
 -x₁ = -x₂ \Rightarrow x₁ = x₂

So, f(x) is an injective function

For surjectivity

Let
$$y = \frac{x-2}{x-3} \Rightarrow x-2 = xy-3y$$

 $\Rightarrow x(1-y) = 2-3y \Rightarrow x = \frac{2-3y}{1-y}$
 $\Rightarrow x = \frac{3y-2}{y-1} \in A, \ \forall y \in B \ [codomain]$

So, f(x) is surjective function.

Hence, f(x) is a bijective function.

34. Let
$$\frac{1}{x} = u$$
, $\frac{1}{y} = v$ and $\frac{1}{z} = w$

$$2u + 3v + 10w = 4$$

$$4u - 6v + 5w = 1$$

$$6u + 9v - 20w = 2$$

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} u \\ v \\ w \end{bmatrix} B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$Now, |A| = \begin{vmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{vmatrix}$$

$$= 150 + 330 + 720 = 1200 \neq 0$$

 \Rightarrow A is non-singular and hence A⁻¹ exists.

Now,
$$A_{11} = 75$$
, $A_{12} = 110$, $A_{13} = 72$

$$A_{21} = 150$$
, $A_{22} = -100$, $A_{23} = 0$

$$A_{31} = 75$$
, $A_{32} = 30$, $A_{33} = -2$

$$A_{31} = 75, A_{32} = 50, A_{33} = -2$$

$$A_{31} = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|}(adjA) = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

$$X = A^{-1}B$$

$$= \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$\begin{bmatrix} y \\ v \\ w \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$u = \frac{1}{2}, v = \frac{1}{3}, w = \frac{1}{5}$$

$$\frac{1}{x} = \frac{1}{2}, \frac{1}{y} = \frac{1}{3}, \frac{1}{z} = \frac{1}{5}$$

$$\frac{1}{x} = \frac{1}{2}, \frac{1}{y} = \frac{1}{3}, \frac{1}{z} = \frac{1}{2}$$

x = 2, y = 3, z = 5

$$x = 2, y = 3, z = 5$$

35. Suppose the point (1, 0, 0) be P and the point through which the line passes be Q(1,-1,-10). The line is parallel to the vector $ec{b}=2\hat{i}-3\hat{j}+8\hat{k}$

Now,

$$\overrightarrow{PQ} = 0\hat{i} - \hat{j} - 10\hat{k}$$
 $\therefore \overrightarrow{b} \times \overrightarrow{PQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 8 \\ 0 & -1 & -10 \end{vmatrix}$

$$\begin{split} &= 38\hat{i} + 20\hat{j} - 2\hat{k} \\ &\Rightarrow |\vec{b} \times \overrightarrow{PQ}| = \sqrt{38^2 + 20^2 + 2^2} \\ &= \sqrt{1444 + 400 + 4} \\ &= \sqrt{1848} \\ &= \frac{|\vec{b} \times \overrightarrow{PQ}|}{|\vec{b}|} \\ &= \frac{\sqrt{1848}}{\sqrt{77}} \\ &= \sqrt{24} \\ &= 2\sqrt{6} \end{split}$$

Suppose L be the foot of the perpendicular drawn from the point P(1,0,0) to the given line-

The coordinates of a general point on the line

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$$
 are given by
$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} = \lambda$$

$$\Rightarrow x = 2\lambda + 1$$

$$y = -3\lambda - 1$$

$$z = 8\lambda - 10$$

Suppose the coordinates of L be

$$(2\lambda+1,-3\lambda-1,8\lambda-10)$$

Since, The direction ratios of PL are proportional to,

 $\therefore 2(2\lambda) - 3(-3\lambda - 1) + 8(8\lambda - 10) = 0$

$$2\lambda + 1 - 1, -3\lambda - 1 - 0, 8\lambda - 10 - 0$$
, i.e., $2\lambda, -3\lambda - 1, 8\lambda - 10$

Since, The direction ratios of the given line are proportional to 2, -3, 8, but PL is perpendicular to the given line.

$$\Rightarrow \lambda$$
 = 1 Substituting λ = 1 in $(2\lambda+1,-3\lambda-1,8\lambda-10)$ we get the coordinates of L as (3, -4, -2). Equation of the line PL is given by
$$\frac{x-1}{3-1} = \frac{y-0}{-4-0} = \frac{z-0}{-2-0} = \frac{z-0}{1}$$
 $= \frac{y-0}{1} = \frac{y}{-2} = \frac{z}{-1}$

$$\Rightarrow \stackrel{1}{ec{r}} = \stackrel{-2}{\hat{i}} \stackrel{-1}{+} \lambda (\hat{i} - 2\hat{j} - \hat{k})$$

OR

Given lines are
$$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3\hat{i}-\hat{j})$$
 and $\vec{r}=(4\hat{i}-\hat{k})+\mu(2\hat{i}+3\hat{k})$

On comparing both equations of lines with

$$ec{r}=ec{a}+\lambdaec{b}$$
 respectively, we get ,

$$\overrightarrow{a_1} = \hat{i} + \hat{j} - \hat{k}, \overrightarrow{b_1} = 3\hat{i} - \hat{j}$$

and
$$\overrightarrow{a_2} = 4\hat{i} - \hat{k}, \overrightarrow{b_2} = 2\hat{i} + 3\hat{k}$$

and
$$\overrightarrow{a_2} = 4\hat{i} - \hat{k}, \overrightarrow{b_2} = 2\hat{i} + 3\hat{k}$$

Now $\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix}$
 $= \hat{i}(-3 - 0 - \hat{j}(9 - 0) + \hat{k}(0 + 2)$

$$=\hat{i}(-3-0-\hat{j}(9-0)+\hat{k}(0+2)$$

$$=-3\hat{i}-9\hat{j}+2\hat{k}$$

and
$$\overrightarrow{a_2}-\overrightarrow{a_1}=\left(4\hat{i}-\hat{k}\right)-(\hat{i}+\hat{j}-\hat{k})=3\hat{i}-\hat{j}$$

Now,
$$(ec{a}_2-ec{a}_1)\cdot \left(ec{b}_1 imesec{b}_2
ight)=(3\hat{i}-\hat{j})$$
 . $(-3\hat{i}-9\hat{j}+2\hat{k})$

$$= -9 + 9 = 0$$

Hence, given lines are coplanar.

Now, cartesian equations of given lines are

$$\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$$

and
$$\frac{x-4}{2} = \frac{y-0}{0} = \frac{z+1}{3}$$

Then, equation of plane containing them is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x - 1 & y - 1 & z + 1 \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = 0$$

$$(x - 1)(-3 - 0) - (y - 1)(9 - 0) + (z + 1)(0 + 2) = 0$$

$$-3x + 3 - 9y + 9 + 2z + 2 = 0$$

$$3x + 9y - 2z = 14$$

Section E

36. Read the text carefully and answer the questions:

For an audition of a reality singing competition, interested candidates were asked to apply under one of the two musical genres-folk or classical and under one of the two age categories-below 18 or 18 and above.

The following information is known about the 2000 application received:

- i. 960 of the total applications were the folk genre.
- ii. 192 of the folk applications were for the below 18 category.
- iii. 104 of the classical applications were for the 18 and above category.
 - (i) According to given information, we construct the following table.

Given, total applications = 2000

	Folk Genre	Classical Genre
	960 (given)	2000 - 960 = 1040
Below 18	192 (given)	1040 - 104 = 936
18 or Above 18	960 - 192 = 768	104 (given)

Let E_1 = Event that application for folk genre

 E_2 = Event that application for classical genre

A = Event that application for below 18

B = Event that application for 18 or above 18

∴
$$P(E_2) = \frac{1040}{2000}$$

and
$$P(B \cap E_2) = \frac{104}{2000}$$

Required Probability =
$$\frac{P(B \cap E_2)}{P(E_2)}$$

$$=\frac{\frac{104}{2000}}{\frac{1040}{200}} = \frac{1}{10}$$

(ii) Required probability =
$$P\left(\frac{\text{folk}}{\text{below } 18}\right)$$

$$= P\left(\frac{E_1}{A}\right)$$
$$= \frac{P(E_1 \cap A)}{P(A)}$$

Now,
$$P(E_1 \cap A) = \frac{192}{2000}$$

and
$$P(A) = \frac{192 + 936}{2000} = \frac{1128}{2000}$$

$$\therefore$$
 Required probability = $\frac{\frac{192}{2000}}{\frac{1128}{2000}} = \frac{192}{1128} = \frac{8}{47}$

(iii)Here,

$$P(A) = 0.4$$
, $P(B) = 0.8$ and $P(B|A) = 0.6$

$$\therefore P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$\Rightarrow$$
 P(B \cap A) = P(B|A).P(A)

$$= 0.6 \times 0.4 = 0.24$$

$$\therefore$$
 P(A \cup B) = P(A) + P(B) - P(A \cap B)

$$= 0.4 + 0.8 - 0.24$$

$$= 1.2 - 0.24 = 0.96$$

OR

Since, A and B are independent events, A' and B' are also independent. Therefore,

$$P(A'\cap B')=P(A')\cdot P(B')$$

$$= (1 - P(A)(1 - P(B))$$

$$= \left(1 - \frac{3}{5}\right) \left(1 - \frac{4}{9}\right)$$

$$= \frac{2}{5} \cdot \frac{5}{9}$$

$$= \frac{2}{9}$$

$$=\frac{\overset{\circ}{2}}{\overset{\circ}{5}}\cdot\frac{\overset{\circ}{5}}{\overset{\circ}{5}}$$

37. Read the text carefully and answer the questions:

A plane started from airport O with a velocity of 120 m/s towards east. Air is blowing at a velocity of 50 m/s towards the north As shown in the figure.

The plane travelled 1 hr in OA direction with the resultant velocity. From A and B travelled 1 hr with keeping velocity of 120 m/s and finally landed at B.

(i) Resultant velocity from O to A

$$=\sqrt{\left(V_{
m Plane}\,
ight)^2+\left(V_{
m wind}\,
ight)^2}$$

$$=\sqrt{(120)^2+(50)^2}$$

$$=\sqrt{14400+2500}$$

$$=\sqrt{16900}$$

$$= 130 \text{ m/s}$$

(ii)
$$an heta = rac{V_{ ext{wind}}}{V_{ ext{aeroplane}}} an heta = rac{50}{120}$$

$$\tan \theta = \frac{50}{120}$$

$$\tan \theta = \frac{\frac{120}{5}}{12}$$

$$\theta = \tan^{-1}\left(\frac{5}{12}\right)$$

(iii)Displacement from O to A = Resultant velocity \times time

$$|\overrightarrow{OA}| = |\overrightarrow{V}| \times t$$
 $= 130 \times \frac{18}{5} \times 1$

Since, from A to B both Aeroplane and wind have velocity in North direction.

$$\vec{V}_{plane,AtoB}$$
 = 120 + 50

$$= 170 \text{ m/s}$$

38. Read the text carefully and answer the questions:

The temperature of a person during an intestinal illness is given by $f(x) = -0.1x^2 + mx + 98.6$, $0 \le x < 12$, m being a constant, where f(x) is the temperature in ${}^{0}F$ at x days.

OR

- (i) $f(x) = -0.1x^2 + mx + 98.6$, being a polynomial function, is differentiable everywhere, hence, differentiable in (0, 12).
- (ii) f(x) = -0.2x + m

At Critical point

 $0 = -0.2 \times 6 + m$

m = 1.2