11. Construction

Question-1

Draw a circle of radius 3 cm. From a point 10 cm away from its centre. Construct the pair of tangents to the circle.

Solution:

Given: A circle with centre O and radius 3 cm. **Required:** To construct the pair of tangents.

Steps of Construction:

- (i) Draw a circle of radius 3 cm.
- (ii) Take an external point P which is 10 cm away from its centre. Join OP.
- (i) Bisect the line segment OP = 10 cm. Let the point of bisection be M.
- (ii) Taking M as centre and OM as radius, draw a circle. Let it intersect the given circle at the points Q and R.
- (iii) Join PQ and PR.

These are the required tangents.

Question-2

Construct a triangle ABC whose sides are 7.5 cm, 7 cm and 6.5 cm. Construct another triangle similar to Δ ABC and with sides $\frac{2}{3}$ of the corresponding sides of triangle ABC.

Solution:

Given: \triangle ABC, AB = 7.5 cm, BC = 7 cm and CA = 6.5 cm.

Required: To construct a \triangle A'BC' in which A'B = $\frac{2}{3}$ AB, A'C' = $\frac{2}{3}$ AC and BC' = $\frac{2}{3}$

BC.

Steps of construction:

(i) Divide the base BC into three equal parts. Let C' be the point on BC such that BC' = $\frac{2}{3}$ BC.

Steps of construction

- 1. Draw a line segment BC = 7 cm, AB = 7.5 cm and CA = 6.5 cm.
- 2. Below BC, make an acute angle ∠ CBP
- 3. Divide the base BC into three equal parts. Let C' be the point on BC such that BC' = $\frac{2}{3}$ BC.
- 4. Along BP, mark off three points X_1 , X_2 , X_3 such that $XX_1 = X_{1X2} = X_{2X3}$
- 5. Join X₃C
- 6. Draw a line C'A' || CA intersecting BA at A'.

Then A'BC' is the required triangle.

Question-3

Construct a triangle similar to a given triangle with sides 5 cm, 12 cm and 13 cm and whose sides are $\frac{3}{5}$ th of the corresponding sides of the given triangle.

Solution:

Given: \triangle ABC, AB = 5 cm, BC = 12 cm and CA = 13 cm.

Required: To construct a \triangle A'BC' in which A'B = $\frac{3}{5}$ AB, A'C' = $\frac{3}{5}$ AC and BC' = $\frac{3}{5}$ BC.

Steps of construction:

- 1. Draw a line segment BC = 12 cm
- 2. With B as centre and with radius 5 cm, draw an arc.
- 3. With C as centre and with radius 13 cm, draw another arc, intersecting the previously drawn arc at A.
- 4. Join AB and AC. Then, \triangle ABC is the required triangle.
- Below BC, make an acute angle ∠ CBP.
- 6. Along BP, mark off seven points X_1 , X_2 , X_3 X_7 such that $XX_1 = X_{1X_2}$ X_6X_7
- 7. Join X_5 to C and draw a line through X_3 parallel to X_5 C, intersecting the extended line segment BC at C'.
- 8. Draw a line through C' parallel to CA intersecting the line segment BA at A'. Then A'BC' is the required triangle.

Question-4

Construct a triangle similar to a given triangle with sides 6 cm, 7 cm and 8 cm and whose sides are $\frac{5}{7}$ th of the corresponding sides of the given triangle.

Solution:

align="center">

Steps of construction:

- 1. Draw a line segment BC = 7 cm
- 2. With B as centre and with radius 6 cm, draw an arc.
- 3. With C as centre and with radius 8 cm, draw another arc, intersecting the previously drawn arc at A.
- 4. Join AB and AC. Then, Δ ABC is the required triangle.
- 5. Below BC, make an acute angle \angle CBX.
- 6. Along BX, mark off seven points $X_1, X_2, X_3, ..., X_7$ such that $XX_1 = X_{1X2}, ...$

X_6X_7

- 7. Join X_7 to C and draw a line through X_5 parallel to X_7 C, intersecting the extended line segment BC at C'.
- 8. Draw a line through C' parallel to CA intersecting the line segment BA at A'. Then A'BC' is the required triangle.

Question-5

Divide a line segment of 7 cm length externally in the ratio of 3:5.

Solution:

Given: AB is a line segment of 7 cm length.

Required: To divide a line segment of 7 cm length externally in the ratio of 3:5.

Steps of Construction:

- 1. Draw the line segment AB = 7 cm.
- 2. Draw ray BX making an acute ∠ ABX .
- 3. Along BX, mark off five points B₁, B₂, B₃, B₄ and B₅. Join B₂ to A.
- 4. Through B₅ draw B₅P || B₂A, intersecting BA produced at P.
- 5. The point P so obtained is the required point which divides AB externally in the ratio

3:5.

Proof: In Δ s ABB₂ and PBB₅,

$$B_5P \parallel B_2A \Rightarrow ABB_2 \sim PBB_5$$

$$\therefore \frac{AB}{PB} = \frac{B_2B}{B_5B} = \frac{AB_2}{PB_5} = \frac{2}{7} \text{ (Property of similarty)}.$$

$$\Rightarrow \frac{AP}{PB} - \frac{3}{5}$$

Question-6

Construct a triangle similar to a given \triangle ABC such that each of its sides is $\frac{2}{3}$ rd of the corresponding sides of the \triangle ABC. Given AB = 4.2 cm, BC = 5 cm and AC = 6.2 cm.

Solution:

Given: In \triangle ABC, AB = 4.2 cm, BC = 5 cm and AC = 6.2 cm.

Required: To construct \triangle AB'C' such that each of its sides is $\frac{2}{3}$ rd of the corresponding sides of the \triangle ABC.

Steps of Construction:

- 1. Draw a line segment AB = 4.2 cm.
- 2. With A as centre and radius = AC = 6.2 cm, draw an arc.
- 3. With B as centre and radius = BC = 5 cm, draw another arc, intersecting the previous arc at C.
- 4. Join AC and BC to obtain \triangle ABC.
- 5. Below AB, make an acute angle ∠ BAX.
- 6. Along AX, mark off three points A_1 , A_2 , A_3 such that $AA_1 = A_1A_2 = A_2A_3$ 7. Join A_3B .
- 8. Draw A₂B' || A₃B, meeting AB at B'.
- 9. From B', draw B'C' || BC meeting AC at C'.

AB'C' is the required Δ .

Proof: Since B'C' || BC , \triangle ABC $\sim \triangle$ AB'C'.

B'C'/BC = AC'/AC = AB'/AB = 2/3.

Question-7

Construct a triangle similar to a \triangle XYZ with its sides equal to $(\frac{3}{4})$ th of the corresponding sides of \triangle XYZ. It is given that XY = 6 cm, XZ = 5 cm and ZY = 4 cm. Write the steps of construction.

Solution:

Given: D XYZ in which XY = 6 cm, XZ = 5 cm and ZY = 4 cm.

Required: To construct a \triangle XY'Z' in which XY' = (3/4)XY, Y'Z' = (3/4)ZY and XZ' = (3/4)XZ.

Steps of construction:

- (i) Draw a ray XP.
- (ii) Construct a \triangle XYZ in which XY = 6 cm, XZ = 5 cm and ZY = 4 cm.
- (iii) Draw any ray XP inclined at certain angle with X.
- (iv) Starting from X, cut off seven equal line segment XX_1 , X_1X_2 , X_2X_3 , X_3X_4 on XQ.
- (v) Join YX_4 and draw a line segment X_3Y' parallel to X_4Y to intersect XP at Y'

Draw a line Y'Z' parallel to YZ which intersects XP in Y'

Then XY'Z' is the required quadrilateral.

Question-8

Draw a \triangle ABC in which AB = 5 cm, BC = 4.6 cm, and AC = 5.8 cm. Construct a triangle similar to \triangle ABC such that each of its sides is 2/3rd of the corresponding sides of \triangle ABC.

Solution:

Given: In \triangle ABC, in which AB = 5 cm, BC = 4.6 cm, and AC = 5.8 cm.

Required: To construct a triangle similar to Δ ABC such that each of its sides is two-third of the corresponding sides of Δ ABC.

Steps of Construction:

- (i) Draw BC = 4.6 cm.
- (ii) With B as centre and radius equal to 5 cm draw an arc and with C as centre and radius equal

to 5.8 cm draw another arc to cut the previous arc at A.

- (iii) Join AB and AC.
- (iv) Make an acute angle ∠ CBE.
- (v) Set off three equal distances along BE at B₁, B₂ and B₃.
- (vi) Join B₃C.
- (vii) From B₂ draw B₂C' || B₃C, meeting BC at C'.
- (viii) Join AC'.

Then, ABC' is the required triangle.