

Series C3ABD/1

SET~3

रोल नं. Roll No. प्रश्न-पत्र कोड Q.P. Code

430/1/3

परीक्षार्थी प्रश्न–पत्र कोड को उत्तर–पुस्तिका के मुख–पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE:

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं। Please check that this question paper contains 15 printed pages.
- (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
 Please check that this question paper contains 38 questions.
- (iii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book before attempting it.

(v) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित (बुनियादी) MATHEMATICS (BASIC)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 80

Maximum Marks: 80

C3ABD/1 / 31

Page 1

P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- 1. इस प्रश्न-पत्र में **38** प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- 2. प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** तथा **ड**।
- 3. खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं तर्क आधारित 1 अंक के प्रश्न हैं।
- 4. खण्ड ख में प्रश्न संख्या 21 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के 2 अंकों के प्रश्न हैं।
- 5. खण्ड ग में प्रश्न संख्या 26 से 31 तक लघु-उत्तरीय (SA) प्रकार के 3 अंकों के प्रश्न हैं।
- 6. खण्ड घ में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के 5 अंकों के प्रश्न हैं।
- 7. खण्ड ड में प्रश्न संख्या 36 से 38 स्रोत/प्रकरण इकाई आधारित 4 अंकों के प्रश्न हैं। आंतरिक विकल्प 2 अंकों के प्रश्न में दिया गया है।
- 8. प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड इ के 3 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- 9. जहां आवश्यक हो स्वच्छ आकृतियाँ बनाएं। यदि आवश्यक हो तो $\pi = 22/7$ लें।
- 10. कैलकुलेटर का उपयोग **वर्जित** है।

खण्ड - क

 $20 \times 1 = 20$

प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रश्न हैं तथा प्रत्येक प्रश्न 1 अंक का है।

k के किस मान के लिए बहुपद kx^2-4x-7 के शून्यकों का गुणनफल 2 है ? 1

(a) $-\frac{1}{14}$ (b) $-\frac{7}{2}$ (c) $\frac{7}{2}$ (d) $-\frac{2}{7}$

एक समांतर श्रेढ़ी में, यदि a=8 तथा $a_{10}=-19$ हैं, तो d का मान है : 1

(a) 3

(b) $-\frac{11}{9}$ (c) $-\frac{27}{10}$ (d) -3

3. बिंदुओं (-1, 3) तथा $\left(8, \frac{3}{2}\right)$ को मिलाने वाले रेखाखण्ड का मध्य-बिंदु है : 1

(a) $\left(\frac{7}{2}, -\frac{3}{4}\right)$ (b) $\left(\frac{7}{2}, \frac{9}{2}\right)$ (c) $\left(\frac{9}{2}, -\frac{3}{4}\right)$ (d) $\left(\frac{7}{2}, \frac{9}{4}\right)$

4. यदि $\sin \theta = \frac{1}{3}$ है, तो $\sec \theta$ का मान है :

1

(a) $\frac{2\sqrt{2}}{3}$ (b) $\frac{3}{2\sqrt{2}}$ (c) 3

(d) $\frac{1}{\sqrt{3}}$

HCF (132, 77) है :

1

(a) 11

(b) 77

(c) 22

(d) 44

C3ABD/1 / 31

General Instructions:

Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions. All questions are compulsory.
- 2. Question paper is divided into FIVE sections SECTION A, B, C, D and E.
- 3. In **section** A, question number 1 to 18 are multiple choice questions (MCQs) and question number 19 and 20 are Assertion – Reason based questions of 1 mark each.
- 4. In section B, question number 21 to 25 are very short answer (VSA) type questions of 2 marks each.
- 5. In section C, question number 26 to 31 are short answer (SA) type questions carrying 3 marks each.
- 6. In section **D**, question number 32 to 35 are long answer (LA) type questions carrying 5 marks each.
- 7. In section E, question number 36 to 38 are case-based integrated units of assessment questions carrying 4 marks each. Internal choice is provided in 2 marks question in each case study.
- 8. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 3 questions in Section **E**.
- 9. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.
- 10. Use of calculators is **NOT allowed**.

SECTION - A

 $20 \times 1 = 20$

1

Q. No. 1 to 20 are Multiple Choice Questions of 1 mark each.

For what value of k, the product of zeroes of the polynomial kx^2-4x-7 is 2? 1

(a)
$$-\frac{1}{14}$$
 (b) $-\frac{7}{2}$ (c) $\frac{7}{2}$

(b)
$$-\frac{7}{2}$$

(c)
$$\frac{7}{2}$$

(d)
$$-\frac{2}{7}$$

2. In an A.P., if a = 8 and $a_{10} = -19$, then value of d is :

(b)
$$-\frac{11}{9}$$

(b)
$$-\frac{11}{9}$$
 (c) $-\frac{27}{10}$

(d)
$$-3$$

The mid-point of the line segment joining the points (-1, 3) and $\left(8, \frac{3}{2}\right)$ is: 3. 1

(b)
$$\left(\frac{7}{2}, \frac{9}{2}\right)$$

(c)
$$\left(\frac{9}{2}, -\frac{3}{4}\right)$$

(d)
$$\left(\frac{7}{2}, \frac{9}{4}\right)$$

If $\sin \theta = \frac{1}{3}$, then $\sec \theta$ is equal to :

(a)
$$\frac{2\sqrt{2}}{3}$$
 (b) $\frac{3}{2\sqrt{2}}$ (c) 3

5. HCF (132, 77) is:

1

1

(b) 77

(c) 22

(d) 44

6.	यदि द्विघात समीकरण $4x^2 - 5x + k = 0$ के मूल वास्तिवक और समान हैं, तो k का मान है :	1
	(a) $\frac{5}{4}$ (b) $\frac{25}{16}$ (c) $-\frac{5}{4}$ (d) $-\frac{25}{16}$	
7.	यदि एक खेल के जीतने की प्रायिकता p है, तो इसके हारने की प्रायिकता है :	1
	(a) $1+p$ (b) $-p$ (c) $p-1$ (d) $1-p$	
8.	बिंदुओं $(2,-3)$ तथा $(-2,3)$ के बीच की दूरी है :	1
	(a) $2\sqrt{13}$ इकाई (b) 5 इकाई (c) $13\sqrt{2}$ इकाई (d) 10 इकाई	
9.	θ के किस मान के लिए, $\sin^2\theta + \sin\theta + \cos^2\theta$ का मान 2 है ?	1
	(a) 45° (b) 0° (c) 90° (d) 30°	
10.	52 पत्तों की अच्छी प्रकार से फेंटी गई ताश की गड्डी में से यादृच्छया एक पत्ता निकाला	
	गया। निकाले गये पत्ते के एक लाल रंग की बेगम वाला पत्ता होने की प्रायिकता है :	1
	(a) $\frac{1}{13}$ (b) $\frac{2}{13}$ (c) $\frac{1}{52}$ (d) $\frac{1}{26}$	
11.	यदि कोई निश्चित चर x क्रम में व्यवस्थित सांख्यिकी आँकड़ों को दो समान भागों में	
	विभाजित करता है, तो x का मान कहा जाता है :	1
	(a) माध्य (b) माध्यक (c) बहुलक (d) परिसर	
12.	त्रिज्या $\frac{7}{2}$ cm वाले गोले का आयतन है :	1
	(a) $\frac{231}{3}$ cu cm (b) $\frac{539}{12}$ cu cm (c) $\frac{539}{3}$ cu cm (d) 154 cu cm	
13.	किसी बंटन का माध्य तथा माध्यक क्रमशः 21 व 23 हैं। इस बंटन का बहुलक है :	1
	(a) 27 (b) 22 (c) 17 (d) 23	
14.	एक लंबवृत्तीय शंकु की ऊँचाई तथा त्रिज्या क्रमशः 24 cm तथा 7 cm हैं। इस शंकु की	
	तिर्यक ऊँचाई है :	1
	(a) 24 cm (b) 31 cm (c) 26 cm (d) 25 cm	
15.	यदि द्विघात बहुपद $(\alpha-1)x^2+\alpha x+1$ का एक शून्यक -3 है, तो α का मान है :	1
	(a) $-\frac{2}{3}$ (b) $\frac{2}{3}$ (c) $\frac{4}{3}$ (d) $\frac{3}{4}$	
16.	एक वृत्त के व्यास की लंबाई 6 cm है। यदि इस व्यास का एक सिरा (– 4, 0) पर है, तो	
	इसका दूसरा सिरा, जो x -अक्ष पर है, है :	1
	(a) $(0,2)$ (b) $(6,0)$ (c) $(2,0)$ (d) $(4,0)$	
17.	k का वह मान जिसके लिए रैखिक समीकरण युग्म $5x+2y-7=0$ तथा $2x+ky+1=0$	
	का कोई हल नहीं है, है :	1
	(a) 5 (b) $\frac{4}{5}$ (c) $\frac{5}{4}$ (d) $\frac{5}{2}$	

6.	If the roots of quadratic equation $4x^2 - 5x + k = 0$ are real and equal, then value of k is :								1
	(a)	$\frac{5}{4}$	(b)	$\frac{25}{16}$	(c)	$-\frac{5}{4}$	(d)	$-\frac{25}{16}$	
7.		cobability of w $1 + p$		g a game is $-p$				sing the game is $1-p$: 1
8.		distance betw				_			1
	(a)	$2\sqrt{13}$ units	(b)	5 units	(c)	$13\sqrt{2}$ units	(d)	10 units	
9.	For	what value of	θ, sir	$n^2\theta + \sin\theta + \alpha$	$\cos^2\theta$	is equal to 2	?		1
	(a)	45°	(b)	0°	(c)	90°	(d)	30°	
10.	prob	ability that dr	awn (card is a red	quee	n, is:		ying cards. The	1
	(a)	$\frac{1}{13}$	(b)	$\frac{2}{13}$	(c)	$\frac{1}{52}$	(d)	$\frac{1}{26}$	
11.	equa (a)	al parts; then t	he va	lue of x is ca	alled 1		_	n order into two	1
12.	The	radius of a sp	here i	is $\frac{7}{2}$ cm. The	e volu	me of the sph	ere is	:	1
		$\frac{231}{3}$ cu cm		4					
13.		mean and me le of the data i		of a statistic	cal da	ata are 21 and	1 23 r	espectively. The	1
	(a)		(b)		` /	17	` '		
14.	resp	height and ectively. The 24 cm	slant	height of the	e cone	e is:		cm and 7 cm 25 cm	1
15.								$\alpha x + 1$ is -3 , then	
		value of α is :		1	r J				1
	(a)	$-\frac{2}{3}$	(b)	$\frac{2}{3}$	(c)	$\frac{4}{3}$	(d)	$\frac{3}{4}$	
16.	(-4,	diameter of a di	end o		ıt:	cm. If one e (2, 0)		The diameter is $(4,0)$	1
17.	. ,		or wh	ich the pair	` '	,	` ′	+2y-7=0 and	
	2 <i>x</i> +	-ky+1=0 dor	n't ha	ve a solution	is:				1
	(a)	5	(b)	$\frac{4}{5}$	(c)	$\frac{5}{4}$	(d)	$\frac{5}{2}$	
СЗА	BD/1	/ 31			Page :	5>		F	P. <i>T.O</i> .

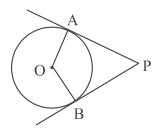
18. दो पासे एक साथ उछाले गए। एक द्विक के आने की प्रायिकता है :

1

1

1

2


- (a) $\frac{2}{36}$ (b) $\frac{1}{36}$ (c) $\frac{1}{6}$

निर्देश:

प्रश्न संख्या 19 तथा 20 प्रत्येक में एक अभिकथन (A) के पश्चात एक तर्क (R) दिया है। निम्न में से सही विकल्प चुनिए:

- (a) दोनों, अभिकथन (A) तथा तर्क (R) सत्य हैं। तर्क (R), अभिकथन (A) की पूर्ण व्याख्या करता है।
- (b) दोनों, अभिकथन (A) तथा तर्क (R) सत्य हैं। तर्क (R), अभिकथन (A) की व्याख्या नहीं करता है।
- (c) अभिकथन (A) सत्य है परन्तु तर्क (R) असत्य है।
- (d) अभिकथन (A) असत्य है जबिक तर्क (R) सत्य है।

19.

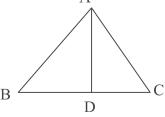
अभिकथन (A): यदि केंद्र O वाले वृत्त पर एक बाह्य बिंदु P से स्पर्श रेखाएं PA तथा

PB खींची गई हैं, तो चतुर्भुज OAPB एक चक्रीय चतुर्भुज है।

एक चक्रीय चतुर्भुज के सम्मुख कोण समान होते हैं। तर्क (R):

बहपद $p(x) = x^2 - 2x - 3$ के शून्यक -1 तथा 3 हैं। 20. अभिकथन (A):

बहपद $p(x) = x^2 - 2x - 3$ का ग्राफ x-अक्ष को (-1, 0) तथा (3, 0)तर्क (R):


पर काटता है।

खण्ड - ख

प्रश्न संख्या 21 से 25 तक अति लघु-उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक 2 अंक का है।

21. \triangle ABC की भुजा BC पर एक बिंदु D इस प्रकार है कि \angle ADC = \angle BAC. दर्शाइए कि

 $AC^2 = BC \times DC$.

C3ABD/1 / 31

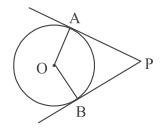
Page 6

18. Two dice are rolled together. The probability of getting a doublet is:

1

1

2


- (a) $\frac{2}{36}$ (b) $\frac{1}{36}$ (c) $\frac{1}{6}$ (d) $\frac{5}{6}$

Directions:

In Q. No. 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Select the correct option from the following options:

- Assertion (A) and Reason (R) are true. Reason (R) explains Assertion (A) completely.
- (b) Both, Assertion (A) and Reason (R) are true. Reason (R) does not explain Assertion (A).
- Assertion (A) is true but Reason (R) is false. (c)
- Assertion (A) is false but Reason (R) is true. (d)

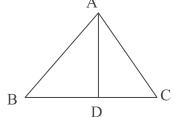
19.

Assertion (A): If the PA and PB are tangents drawn to a circle with centre O from an external point P, then the quadrilateral

OAPB is a cyclic quadrilateral.

Reason (R): In a cyclic quadrilateral, opposite angles are equal.

Zeroes of a polynomial $p(x) = x^2 - 2x - 3$ are -1 and 3. 20. Assertion (A):


The graph of polynomial $p(x) = x^2 - 2x - 3$ intersects Reason (R): x-axis at (-1, 0) and (3, 0). 1

SECTION - B

Q. No. 21 to 25 are Very Short Answer Questions of 2 marks each.

21. D is a point on the side BC of \triangle ABC such that \angle ADC = \angle BAC. Show that

22. (A) निम्नलिखित रैखिक समीकरण युग्म को x, y के लिए, बीजगणितीय विधि से हल कीजिए :

$$x + 2y = 9$$
 तथा $y - 2x = 2$

2

अथवा

(B) जाँच कीजिए कि क्या बिंदु (-4, 3), रैखिक समीकरणों x + y + 1 = 0 तथा x - y = 1 द्वारा निरूपित रेखाओं पर स्थित है।

2

23. (A) सिद्ध कीजिए कि $6-4\sqrt{5}$ एक अपिरमेय संख्या है, दिया है कि $\sqrt{5}$ एक अपिरमेय संख्या है।

2

अथवा

(B) दर्शाइए कि $11 \times 19 \times 23 + 3 \times 11$ एक अभाज्य संख्या नहीं है।

2

2

- **24.** यदि $A = 30^{\circ}$ तथा $B = 45^{\circ}$ है, तो $\sin A \cos B + \cos A \sin B$ का मान ज्ञात कीजिए।
- **25.** एक थैले में 4 लाल, 5 सफेद तथा कुछ पीले रंग की गेंदें हैं। यदि थैले में से यादृच्छया एक लाल गेंद निकालने की प्रायिकता $\frac{1}{5}$ है, तो थैले में से यादृच्छया एक पीले रंग की गेंद निकालने की प्रायिकता ज्ञात कीजिए।

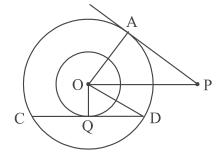
2

खण्ड - ग

प्रश्न संख्या 26 से 31 तक लघु-उत्तर वाले प्रश्न हैं जिनमें प्रत्येक 3 अंक का है।

26. दो अलार्म घड़ियाँ क्रमशः 20 मिनट तथा 25 मिनट के अंतराल पर अलार्म बजाती हैं। यदि वह पहली बार एक साथ दोपहर के 12.00 बजे अलार्म बजाती हैं तो इसके बाद वह फिर एक साथ कितने बजे अलार्म बजाएंगी ?

3


27. दो संपूरक कोणों में बड़ा कोण, छोटे कोण से 18° अधिक है। दोनों कोणों के माप ज्ञात कीजिए।

3

28. बिंदुओं (-2, 2) तथा (7, -4) को मिलाने वाले रेखाखण्ड को तीन समान भागों में बांटने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।

3

29. (A) दी गई आकृति में, दो संकेंद्रीय वृत्तों की त्रिज्याएँ OA = r cm तथा OQ = 6 cm हैं। बड़े वृत्त की जीवा CD छोटे वृत्त को Q पर स्पर्श करती है। यदि PA = 16 cm तथा OP = 20 cm है, तो जीवा CD की लम्बाई ज्ञात कीजिए।

22. (A) Solve the following pair of linear equations for x and y algebraically : x + 2y = 9 and y - 2x = 2

2

OR

(B) Check whether the point (-4, 3) lies on both the lines represented by the linear equations x + y + 1 = 0 and x - y = 1.

2

23. (A) Prove that $6-4\sqrt{5}$ is an irrational number, given that $\sqrt{5}$ is an irrational number.

2

OR

(B) Show that $11 \times 19 \times 23 + 3 \times 11$ is not a prime number.

2

24. Evaluate : $\sin A \cos B + \cos A \sin B$; if $A = 30^{\circ}$ and $B = 45^{\circ}$.

2

25. A bag contains 4 red, 5 white and some yellow balls. If probability of drawing a red ball at random is $\frac{1}{5}$, then find the probability of drawing a yellow ball at random.

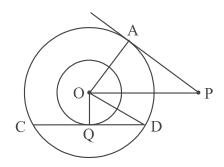
2

SECTION - C

Q. No. 26 to 31 are Short Answer Questions of 3 marks each.

26. Two alarm clocks ring their alarms at regular intervals of 20 minutes and 25 minutes respectively. If they first beep together at 12 noon, at what time will they beep again together next time?

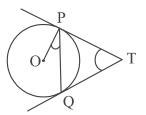
3


27. The greater of two supplementary angles exceeds the smaller by 18°. Find measures of these two angles.

3

28. Find the co-ordinates of the points of trisection of the line segment joining the points (-2, 2) and (7, -4).

3


29. (A) In two concentric circles, the radii are OA = r cm and OQ = 6 cm, as shown in the figure. Chord CD of larger circle is a tangent to smaller circle at Q. PA is tangent to larger circle. If PA = 16 cm and OP = 20 cm, find the length CD.

अथवा

(B) दी गई आकृति में, O केंद्र वाले वृत्त पर एक बाह्य बिंदु T से दो स्पर्श रेखाएँ TP तथा TQ खींची गई हैं। सिद्ध कीजिए कि $\angle PTQ = 2 \angle OPQ$

3

3

3

3

5

5

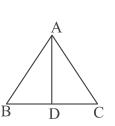
5

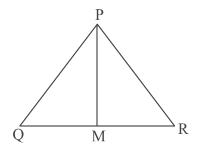
5

30. (A) एक ठोस एक बेलन के आकार का है जिसके दोनों किनारों पर उसी त्रिज्या के अर्ध गोले हैं। इस ठोस की कुल ऊँचाई 20 cm है तथा बेलन का व्यास 14 cm है। इस ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

अथवा

- (B) जूस का एक गिलास बेलनाकार आकार का है जिसका आधार एक ऊपर उठे अर्धगोले के आकार का है। गिलास का आंतरिक व्यास $10~\mathrm{cm}$ है तथा ऊँचाई $14~\mathrm{cm}$ है। इस गिलास की धारिता ज्ञात कीजिए। ($\pi = 3.14~\mathrm{ell}$ जिए)
- 31. सिद्ध कीजिए : $(\cot\theta \csc\theta)^2 = \frac{1 \cos\theta}{1 + \cos\theta}$


खण्ड - घ


प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक 5 अंक का है।

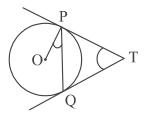
32. (A) यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए एक रेखा खींची जाए, तो सिद्ध कीजिए कि ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित होती हैं।

अथवा

(B) एक त्रिभुज ABC की भुजाएँ AB
और AC तथा माध्यिका AD एक
अन्य त्रिभुज PQR की भुजाओं
PQ और PR तथा माध्यिका PM
के क्रमशः समानुपाती हैं। दर्शाइए
कि ΔABC ~ ΔPQR है।

- **33.** समांतर श्रेढ़ी 27, 24, 21,..... के कितने पदों का योग 105 है ? इस श्रेढ़ी का कौन-सा पद शून्य है ?
- **34.** (A) एक समतल भूमि पर खड़ी मीनार की भूमि पर पड़ रही छाया 40 मीटर लंबी हो गई जब सूर्य का उन्नतांश 60° से 30° हो गया। मीनार की ऊँचाई तथा आरम्भ में बनी छाया की लंबाई ज्ञात कीजिए। ($\sqrt{3} = 1.73$ लीजिए)

छ


C3ABD/1 / 31

OR

(B) In given figure, two tangents PT and QT are drawn to a circle with centre O from an external point T. Prove that ∠PTQ = 2 ∠OPQ.

3

3

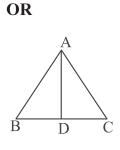
3

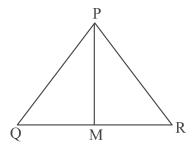
5

5

5

30. (A) A solid is in the form of a cylinder with hemi–spherical ends of same radii. The total height of the solid is 20 cm and the diameter of the cylinder is 14 cm. Find the surface area of the solid.


- **(B)** A juice glass is cylindrical in shape with hemi–spherical raised up portion at the bottom. The inner diameter of glass is 10 cm and its height is 14 cm. Find the capacity of the glass. (use $\pi = 3.14$)
- 31. Prove that : $(\cot \theta \csc \theta)^2 = \frac{1 \cos \theta}{1 + \cos \theta}$.

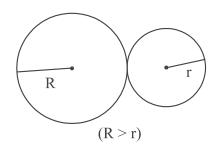

SECTION - D

Q. No. 32 to 35 are Long Answer Questions of 5 marks each.

32. (A) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that other two sides are divided in the same ratio.

(B) Sides AB and BC and median AD of a \triangle ABC are respectively proportional to sides PQ and PR and median PM of \triangle PQR. Show that \triangle ABC \sim \triangle PQR.

- 33. How many terms of the A.P. 27, 24, 21, must be taken so that their sum is 105? Which term of the A.P. is zero?
- 34. (A) The shadow of a tower standing on a level ground is found to be 40 m longer when the Sun's altitude is 30° than when it was 60°. Find the height of the tower and the length of original shadow. (use √3 = 1.73)
 5



- (B) एक बहुमंजिला भवन के शिखर से एक 8 मी. ऊँचे भवन के शिखर तथा पाद के अवनमन कोण क्रमशः 30° तथा 45° हैं। बहमंजिला भवन की ऊँचाई तथा दोनों भवनों के बीच की दूरी ज्ञात कीजिए। $(\sqrt{3} = 1.73 \text{ लीजिए})$
- 35. त्रिज्या 14 cm वाले वृत्त की एक जीवा वृत्त के केंद्र पर 90° का कोण अंतरित करती है। संबंधित लघु वृत्तखण्ड तथा दीर्घ वृत्तखण्ड के क्षेत्रफल ज्ञात कीजिए।

खण्ड – ड

प्रश्न संख्या 36 से 38 तक प्रकरण आधारित प्रश्न हैं, जिनमें प्रत्येक 4 अंक का है।

36. लान को हरा और ठंडा रखने के लिए, साधना पानी के छिड़काव वाले यंत्र का प्रयोग करती है, जो वृत्ताकार आकार में घूमते हैं और एक विशेष क्षेत्र में पानी छिड़कते हैं। नीचे दिए गए चित्र इन दो यंत्रों द्वारा कवर किए गए क्षेत्रों को दर्शाते हैं :

5

5

1

1

2

2

दो वृत्त बाह्य स्पर्श कर रहे हैं तथा उनके क्षेत्रफलों का योग $130~\pi~{
m sg}~m$ है तथा उनके केंद्रों के बीच की दूरी 14 m है।

उपरोक्त जानकारी के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

- उपरोक्त से R तथा r में एक द्विघात समीकरण प्राप्त कीजिए।
- (ii) केवल r में एक द्विघात समीकरण लिखिए।
- (iii) (a) त्रिज्या r ज्ञात कीजिए तथा संगत पानी दिया गया क्षेत्रफल ज्ञात कीजिए।

अथवा

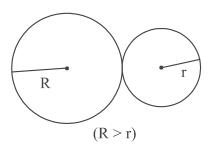
- (b) त्रिज्या R ज्ञात कीजिए तथा संगत पानी दिया गया क्षेत्रफल ज्ञात कीजिए।
- 37. ग्रप्रीत को पौधों पर शोध कार्य करने का बहत शौक है। उसने कुछ पौधों के पत्ते एकत्र किए और उनकी लम्बाइयां mm में मापीं।

OR

(B) The angles of depression of the top and the bottom of an 8 m tall building from the top of a multi-storeyed building are 30° and 45° respectively. Find the height of the multi-storeyed building and the distance between the two buildings. (use $\sqrt{3} = 1.73$)

5

35. A chord of a circle of radius 14 cm subtends an angle of 90° at the centre. Find the area of the corresponding minor and major segments of the circle.


5

SECTION - E

Q. No. 36 to 38 are Case-Based Questions of 4 marks each.

36. To keep the lawn green and cool, Sadhna uses water sprinklers which rotate in circular shape and cover a particular area.

The diagram below shows the circular areas covered by two sprinklers:

Two circles touch externally. The sum of their areas is 130π sq m and the distance between their centres is 14 m.

Based on above information, answer the following questions:

(i) Obtain a quadratic equation involving R and r from above.

1

(ii) Write a quadratic equation involving only r.

1

(iii) (a) Find the radius r and the corresponding area irrigated.

2

OR

(b) Find the radius R and the corresponding area irrigated.

2

37. Gurpreet is very fond of doing research on plants. She collected some leaves from different plants and measured their lengths in mm.

प्राप्त आँकडे नीचे तालिका में दिए गए हैं :

लंबाई (mm में):	70-80	80-90	90-100	100-110	110-120	120-130	130-140
पत्तों की संख्या :	3	5	9	12	5	4	2

उपरोक्त जानकारी के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

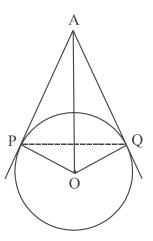
(i) आँकडों का माध्यक वर्ग लिखिए।

1

(ii) कितने पत्तों की लंबाई 10 cm या उससे अधिक है ?

1

(iii) (a) आँकड़ों का माध्यक ज्ञात कीजिए।


2

अथवा

(b) ऑकड़ों का बहलक वर्ग लिखिए तथा बहलक ज्ञात कीजिए।

2

38. दिये गये चित्र में एक वृत्ताकार दर्पण को एक तार के साथ दीवार पर लटका हुआ दिखाया गया है। दिया गया आरेख दर्पण को केंद्र O वाले एक वृत्त के रूप में दर्शाता है, AP और AQ क्रमशः P तथा Q पर वृत्त की स्पर्श रेखाएं हैं। यदि AP = 30 cm तथा $\angle PAQ = 60^\circ$ है।

उपरोक्त जानकारी के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

(i) PQ की लंबाई ज्ञात कीजिए।

1

(ii) m∠POQ ज्ञात कीजिए।

1

(iii) (a) OA की लंबाई ज्ञात कीजिए।

2

अथवा

(b) दर्पण की त्रिज्या ज्ञात कीजिए।

The data obtained is represented in the following table:

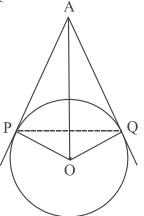
Length (in mm):	70-80	80-90	90-100	100-110	110-120	120-130	130-140
Number of leaves:	3	5	9	12	5	4	2

Based on the above information, answer the following questions:

(i) Write the median class of the data.

- 1
- (ii) How many leaves are of length equal to or more than 10 cm?
- 1

(iii) (a) Find median of the data.


2

OR

(b) Write the modal class and find the mode of the data.

2

38. The picture given below shows a circular mirror hanging on the wall with a cord. The diagram represents the mirror as a circle with centre O. AP and AQ are tangents to the circle at P and Q respectively such that AP = 30 cm and $\angle PAQ = 60^{\circ}$.

Based on the above information; answer the following questions:

(i) Find the length PQ.

1

(ii) Find m $\angle POQ$.

1

(iii) (a) Find the length OA.

2

OR

(b) Find the radius of the mirror.

