
DEFINITE INTEGRATION

  1. DEFINITION

Let F (x) be any antiderivative of f (x), then for any two values of

the independent variable x, say a and b, the difference

F (b) – F (a) is called the definite integral of f (x) from a to b and

is denoted by �
b

a

dx)x(f . Thus  ),a(F)b(Fdx)x(

b

a

��� f

The numbers a and b are called the limits of integration; a is the

lower limit and b is the upper limit. Usually F (b) – F (a) is

abbreviated by writing F (x) b

a| .

  2. PROPERTIES OF DEFINITE INTEGRALS

1. � ���
b

a

a

b

)x(dx)x( ff

2. � ��
b

a

b

a

dy)y(dx)x( ff

3. � �� ��
c

a

b

c

b

a

,dx)x(dx)x(dx)x( fff  where c may or may

not lie between a and b.

4. � � ��
a

0

a

0

dx)xa(dx)x( ff

5. � � ���
b

a

b

a

dx)xba(dx)x( ff

1. � �
��

a

0
2

a
dx

)xa()x(

)x(

ff

f

2.

b

a

(x) b a
dx

(x) (a b x) 2

�
�

� � ��
f

f f

6. � � � ���
a2

0

a

0

a

0

dx)xa2(dx)x(dx)x( fff

= 
a

0

0 if (2a x) (x)

2 (x) dx if (2a – x)  (x)

� � �� �
� �
� 	

�� �

 �
�

f f

f f  f

7.

a

a

0

a

2 (x)dx if ( x) (x) i.e. (x) is even
(x)dx

0 if ( x) (x) i.e. (x) is odd
�

� �
� �� �� � 	

� �� � �
 �

��
f f f f

f

f f f

8. If f (x) is a periodic function of period ‘a’,

i.e. f (a + x) = f (x), then

(a) � ��
na

0

a

0

dx)x(ndx)x( ff

(b) 

na a

a 0

(x) dx (n 1) (x) dx� �� �f f

(c) 

b na b

na 0

(x) dx (x) dx, where b R

�

� �� �f f

(d) �
�ab

b

dx)x(f  independent of b.

(e) � �
�

��
nab

b

a

0

Inwhere,dx)x(ndx)x( ff
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9. If f (x) 
 0 on the interval [a, b], then � 

b

a

.0dx)x(f

10. If f (x) � g (x) on the interval [a, b], then

�� �
b

a

b

a

dx)x(dx)x( gf

11. �� �
b

a

b

a

dx)x(dx)x( ff

12. If f (x) is continuous on [a, b], m is the least and M is the

greatest value of f (x) on [a, b], then

� ����
b

a

)ab(Mdx)x()ab(m f

13. For any two functions f (x) and g (x), integrable on the

interval [a, b], the Schwarz – Bunyakovsky inequality

holds

��� �
b

a

2

b

a

2

b

a

dx)x(.dx)x(dx)x(.)x( gfgf

14. If a function f (x) is continuous on the interval [a, b],

then there exists a point c ��(a, b) such that

� ��
b

a

),ab()c(dx)x( ff  where a < c < b.

 3. DIFFERENTIATION UNDER INTEGRAL SIGN

  NEWTON LEIBNITZ’S THEOREM :

If f is continuous on [a, b] and g(x) & h(x) are differentiable

functions of x whose values lie in [a, b], then

(x )

(x)

d d d
(t) dt (x) . (x) (x) . (x)

dx dx dx

� �
� �� �

� �� �
�
h

g

f h f h g f g

4. DEFINITE INTEGRAL  AS A LIMIT OF SUM

Let f (x) be a continuous real valued function defined on the closed

interval [a, b] which is divided into n parts as shown in figure.

The point of division on x-axis are

a, a + h, a +2h.........a + (n–1) h, a + nh, where .h
n

ab
�

�

Let S
n 
denotes the area of these n rectangles.

Then, S
n 
= h f (a) + h f (a + h) + h f (a + 2h) + ....... + h f

(a + (n – 1) h)

Clearly, S
n 
is area very close to the area of the region bounded by

curve y = f (x), x –axis and the ordinates x = a, x = b.

Hence n
n

b

a

SLtdx)x(
��� �f

��
�

�
��

��
1n

0r
n

b

a

)rha(Ltdx)x( fhf

�
�

�
��

�
�

�
�
�

� �
��

�

�
�
�

� ��
1n

0r
n n

r)ab(
a

n

ab
Lt f
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1. We can also write

S
n 
= h f (a + h) + h f (a + 2h) + ......... + h f (a + nh) and

��
�

�� ��
�

�
��
�

�
�
�

�
�
�

� �
��

�

�
�
�

� �
�

n

1r
n

b

a

r
n

ab
a

n

ab
Ltdx)x( ff

2. If a = 0, b = 1, ��
�

�
��

�
�

�
�
�

�
�

1n

0r
n

1

0
n

r

n

1
Ltdx)x( ff

Steps to express the limit of sum as definite integral

Step 1. Replace 
n

r
by x, 

n

1
 by dx and ��n

Lt ��by �

Step 2. Evaluate �
�

�
�
�

�
�� n

r
Lt
n

 by putting least and greatest

values of r as lower and upper limits respectively.

For example �� ��
�

�
�
�

�

�
��

0

pn

1r
n

dx)x(
n

r

n

1
Lt ff

n n

r r
Lt 0, Lt p

r 1 r npn n�� ��

� �� � � �� �� �� � � �� �� � � �� �

5. REDUCTION FORMULAE IN

DEFINITE INTEGRALS

5.1 If �

�

�
2

0

n

n sinI x dx, then show that 
2nn I

n

1n
I ��

�

�
�
�

� �
�

Proof: dxxsinI

2

0

n

n �

�

�

�

�

�
�

� ����
2

0

22n2
0

1n

n dxxcos.xsin)1n(xcosxsinI

�

�

� ���
2

0

22n dx)xsin1(.xsin)1n(

��
��

� ����
2

0

n

2

0

2n dxxsin)1n(dxxsin)1n(

I
n
 + (n – 1) I

n 
= (n – 1) I

n–2

2nn I
n

1n
I ��

�

�
�
�

� �
�

1. � �
� �

�
2

0

2

0

nn dxxcosdxxsin

2. 10n IorI.....
4n

5n

2n

3n

n

1n
I �

�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

� �
�

according as n is even or odd. 1I,
2

I 10 �
�

�

�
�
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�
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�
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�

� �

�
oddisnif1.

3

2
........

4n

5n

2n

3n

n

1n

evenisnif
2

.
2

1
.......

4n

5n

2n

3n

n

1n

IHence n

5.2 If �

�

�
4

0

n

n xtanI dx, then show that I
n 
+ I

n–2 
= 

1n

1

�

Sol. dxxtan.)x(tanI
2

4

0

2n

n �
�

��
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dx)1x(sec)x(tan 2

4

0

2n �� �

�

�

dx)x(tandxxsec)x(tan

4

0

2n2

4

0

2n ��
�

�

�

� ��

2n

4

0

1n

I
1n

)x(tan
�

�
�

��
�

�
�
�

�

�
�

2nn I
1n

1
I ��

�
�

1n

1
II 2nn �

�� �

5.3 If I
m,n 

= xsin

2

0

m�

�

. cosn x dx, then show that

n,I
nm

1m
I 2mn,m ��

�
�

Sol. dx)xcosx(sinxsinI n

2

0

1m

n,m �

�

��

m 1 n 1 2

0

sin x.cos x

n 1

�
� �� �

� � �� ��� �

n 12

0

cos x

n 1

�
�

��  (m–1) sinm–2 x  cos x dx

dxxcos.xcos.xsin
1n

1m 2n

2

0

2m�
�
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�

�
�
�

�
�
�

�

�

�
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�

�
�
�

�
�
�

�
2

0
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1m
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�
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�
�

�
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�
�

�
�
�

�
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�
�

�
�
�

�
�
�

�
4nm

5m

2nm

3m

nm

1m
I n,m .......... I

0,n 
or I

1,n

according as m is even or odd.

�
�

�
2

0

n

n,0 cosI x dx and �
�

�
��

2

0

n

n,1
1n

1
dxxcos.xsinI

  2. Walli’s Formula

m,n

(m 1) (m 3) (m 5) ...... (n 1) (n 3) (n 5) .....

(m n) (m n 2) (m n 4)......... 2

when both m, n are even

I

(m 1) (m 3) (m 5) ....... (n 1) (n 3) (n 5).........

(m n) (m n 2) (m n 4)........

otherwise

� � � � � � ��
� � � � � ��
�
�
� �
� � � � � � ��

� � � � ��
�
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2. The area bounded by the curve x = g (y), y – axis and the
abscissae y = c and y = d (where d > c) is given by

d d

c c

A | x | dy (y) | dy� �� �| g

3. If we have two curve y = f (x) and y = g (x), such that
y = f (x) lies above the curve y = g (x) then the area
bounded between them and the ordinates x = a and x = b
(b > a), is given by

� ���
b

a

b

a

dx)x(dx)x(A gf

i.e. upper curve area – lower curve area.

4. The area bounded by the curves y = f (x) and y = g (x)
between the ordinates x = a and x = b is given by

� ���
c

a

b

c

,dx)x(dx)x(A gf

where x = c is the point of intersection of the two curves.

AREA UNDER THE CURVES

6. AREA OF PLANE REGIONS

1. The area bounded by the curve y = f (x), x-axis and the

ordinates x = a. and x = b (where b > a) is given by

b b

a a

A | y| dx (x) | dx� �� �| f

(i) If f (x) > 0 " x ��[a, b]

Then 

b

a

A (x) dx� � f

(ii) If f (x) > 0 " x ��[a, c) &

           < 0 " x ��(c, b] Then

�� ��
b

c

c

a

dxydxyA =
c b

a c
f (x)dx f (x)dx�� �

where c is a point in between a and b.
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5. CURVE TRACING

In order to find the area bounded by several curves, it is

important to have rough sketch of the required portion.

The following steps are very useful in tracing a cartesian

curve f (x, y) = 0.

Step 1 : Symmetry

(i) The curve is symmetrical about x-axis if all powers of y

in the equation of the given curve are even.

(ii) The curve is symmetrical about y-axis if all powers of x

in the equation of the given curve are even.

(iii) The curve is symmetrical about the line y = x, if the

equation of the given curve remains unchanged on

interchanging x and y.

(iv) The curve is symmetrical in opposite quadrants, if the

equation of the given curve remains unchanged when x

and y are replaced by – x and – y respectively.

Step 2 : Origin

If there is no constant term in the equation of the algebraic

curve, then the curve passes through the origin.

In that case, the tangents at the origin are given by equating

to zero the lowest degree terms in the equation of the

given algebraic curve.

For example, the curve y3 = x3 + axy passes through the

origin and the tangents at the origin are given by axy = 0

i.e. x = 0 and y = 0.

Step 3 : Intersection with the Co-ordinate Axes

(i) To find the points of intersection of the curve with X-axis,

put y = 0 in the equation of the given curve and get the

corresponding values of x.

(ii) To find the points of intersection of the curve with Y-axis,

put x = 0 in the equation of the given curve and get the

corresponding values of y.

Step 4 : Asymptotes

Find out the asymptotes of the curve.

(i) The vertical asymptotes or the asymptotes parallel to

y-axis of the given algebraic curve are obtained by

equating to zero the coefficient of the highest power of y

in the equation of the given curve.

(ii) The horizontal asymptotes or the asymptotes parallel to

x-axis of the given algebraic curve are obtained by equating

to zero the coefficient of the highest power of x in the

equation of the given curve.

Step 5 : Region

Find out the regions of the plane in which no part of the

curve lies. To determine such regions we solve the given

equation for y in terms of x or vice-versa. Suppose that y

becomes imaginary for x > a, the curve does not lie in

the region x > a.

Step 6: Critical Points

Find out the values of x at which .0
dx

dy
�

At such points y generally changes its character from an

increasing function of x to a decreasing function of x or

vice-versa.

Step 7: Trace the curve with the help of the above points.



SOLVED EXAMPLES

DEFINITE INTEGRATION

  Example – 1

Evaluate the following integrals :

(i) 

3

2

2

x dx� (ii) 

3

1

x
dx

(x 1) (x 2)� ��

Sol. (i)
3

2

2
x dx�

3
3

2

x

3

� �
� � �
� �

27 8

3 3
� �

19

3
�

(ii)
x 1 2

(x 1) (x 2) x 1 x 2

�
� �

� � � �

[Partial Fractions]

3

1

x
dx

(x 1) (x 2)� ��

= 
3

1
- log |x + 1| + 2 log |x + 2|

= [– log |4| + 2 log |5|] – [–log |2| + 2 log |3|]

= [–log 4 + 2 log 5] – [– log 2 + 2 log 3]

= – 2 log 2 + 2 log 5 + log 2 – 2 log 3

= – log 2 + log 25 – log 9 = log 25 – log 18

= 
25

log
18

  Example – 2

Evaluate : 
/ 4

0

1 sin x
sec x . dx

1 sin x

� �
�� .

Sol.
/ 4

0

1 sin x
I sec . dx

1 sin x

� �
�

��

/ 4

0

1 sin x 1 sin x
sec x. . dx

1 sin x 1 sin x

� � �
�

� ��

/ 4

2
0

1 sin x
sec x dx

1 sin x

� �
�

�
�

/ 4

0

1 sin x
sec x dx

cos x

� �
� �

/ 4

2

0

(sec x sec x tan x) dx

�

� ��

/ 4 / 4

2

0 0

sec x dx sec x tan x dx

� �

� �� �

/ 4 / 4

0 0[tan x] [sec x]� �� �

tan tan 0 sec sec0
4 4

� �� � � �� � � �� � � �
� � � �

(1 0) ( 2 1) 2 2� � � � � � .
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  Example – 3

Evaluate : 
1

4 5

1

5x x 1 dx
�

�� .

Sol. Let 
1

4 5

1

I 5x x 1 dx
�

� ��

Put x5 = t so that 5x4 dx = dt.

When x = –1, t = –1. When x = 1, t = 1.

1

1

I t 1 dt
�

� ��

1
3 / 2

1
3 / 2

1
1

(t 1) 2
(t 1)

3/ 2 3 �
�

� ��
� �� � �� � � �

� �

3/ 22 4 2
[2 0]

3 3
� � � .

  Example – 4

Prove that 

/ 2

5

0

64
sin cos d

231

�

# # # �� .

Sol.
/ 2

5

0

I sin cos d

�

� # # #�

/ 2

4

0

sin cos cos d

�

� # # # #�

/ 2

2 2

0

sin (1 sin ) cos d

�

� # � # # #�

Put sin # = t so that cos #�d#�= dt.

When #�= 0, sin 0 = t !�t = 0.

When , sin t t 1
2 2

� �
# � � ! �

1 1

2 2 2 4

0 0

I t (1 t ) dt t ( 2t t ) dt� � � � �� �

1

1/ 2 5 / 2 9 / 2

0

(t 2t t ) dt� � ��

1
3 / 2 7 / 2 11/ 2

0

t t t
2

3 / 2 7 / 2 11/ 2

� �
� � �� �
� �

1

3/ 2 7 / 2 11/ 2

0

2 4 2
t t t

3 7 11

� �� � �� �� �

2 4 2
(1) (1) (1) [0 0 0]

3 7 11

� �
� � � � � �� �� �

2 4 2

3 7 11
� � �

154 132 42 64

231 231

� �
� � .

  Example – 5

Evaluate : 
2

x

2

1

x 1
e dx

x

�� �
� �
� ��

Or

2

x

2

1

1 1
e dx

x x

� ��� �
� ��

Sol.
x x

2 2

x 1 1 1
e dx e dx

xx x

�� � � �� �� � � �
� � � �� �

x x

2

1 1
. e dx .e dx

x x
� �� �

x x x

2 2

1 1 1
. e e dx .e dx

x x x

� �� � � �� �
� �� �

[Integrating first integral by parts]

x1
. e F(x)

x
� �

22 x
x

2

1 1

x 1 e
e dx

xx

� ��� � � � �� �
� � � �
�

2 1 21 1 1
.e e e e

2 1 2
� � � � .
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AREA UNDER THE CURVES

Example - 1

Find the area bounded by the curve

y = x2 – 5x + 6, X–axis and the lines x = 1 and 4.

Sol. For y = 0, we get x2 + 5x + 6 = 0

! x = 2, 3

Hence the curve crosses X–axis at x = 2, 3 in the interval

[1, 4].

Bounded Area = 

2 3 4

1 2 3

y dx y dx y dx� �� � �

!
2 3

2 2

1 2

A (x 5x 6) dx (x 5x 6) dx� � � � � �� �

4

2

3

(x 5x 6) dx� � ��

3 3 2 2

1

2 1 2 1 5
A 5 6 (2 1)

3 2 6

� � � �� �
� � � � �� �� �
� � � �

3 3 2 2

2

3 2 3 2 1
A 5 6 (3 2)

3 2 6

� �� �
� � � � � �� �

� �

3 3 2 2

3

4 3 4 3 5
A 5 6 (4 3)

3 2 6

� �� �
� � � � �� �

� �

! .units.sq
6

11

6

5

6

1

6

5
A �����

Find the area bounded by the curve : ,x4y ��  X–axis

and Y–axis.

Sol. Trace the curve .x4y ��

1. Put y = 0 in the given curve to get x = 4 as the point of

intersection with X–axis.

Put x = 0 in the given curve to get y = 2 as the point of

intersection with Y–axis.

2. For the curve, 0x4,x4y 
���

! x ��4

! curve lies only to the left of x = 4 line.

3. As any y is positive, curve is above X–axis.

Using step 1 to 3, we can draw the rough sketch of

.x4y ��

In figure,

Bounded area = 

44

0 0

2
4 x dx (4 x) 4 x

3

�
� � � ��

16
sq. units.

3
�

Example - 2



DEFINITE INTEGRATION & AREA

AOBA is the part of the ellipse 9x2 + y2 = 36 in the first

quadrant such that OA = 2 and OB = 6. Find the area

between the arc AB and the chord AB.

Sol. The given equation of the ellipse can be written as

2 2 2 2

2 2

x y x y
1i.e. 1

4 36 2 6
� � � �

A is (2, 0) and B is (0, 6).

The equation of chord AB is :

6 0
y 0 (x 2)

0 2

�
� � �

�

! y = –3x + 6.

Reqd. area (shown shaded)

2 2

2

0 0

3 4 x dx (6 3x) dx� � � �� �

2 2
2 2

1

00

x 4 x 4 x 3x
3 sin 6x

2 2 2 2

�
� � � ��

� � � �� � � �
� � � �� �

12 3(4)
3 (0) 2sin (1) 6(2)
2 2

�� � � �� � � �� � � �� � � �

3 2 [12 6]
2

�� �� % � �� �� �

= (3��– 6) sq. units.

Find the area bounded by the curves y = x2 and x2 + y2 = 2

above X–axis.

Sol. Let us first find the points of intersection of curves.

Solving y = x2 and x2 + y2 = 2 simultaneously, we get :

x2 + x4 = 2

! (x2 – 1) (x2 + 2) = 0

! x2 = 1 and x2 = – 2 [reject]

! x = ± 1

! A = (–1, 1) and B = (1, 1)

Shaded Area = �
�

�

�
�
��

�
� ��

1

1

22 dxxx2

1 1

2 2

1 1

2 x dx x dx

� �

� �
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� ����
1

0

1

0

22
dxx2dxx22

1

2 1

0

x 2 x 1
2 2 x sin 2
2 2 32
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.units.sq
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