# **Some Applications of Trigonometry**

- Some Applications of Trigonometry
- Line of sight: It is the line drawn from the eye of an observer to a point on the object viewed by the observer.
- Angle of Elevation:



Let P be the position of the eye of the observer. Let Q be the object above the horizontal line PR.

Angle of elevation of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PR. That is,  $\angle$ QPR is the angle of elevation.

## o Angle of Depression



Let P be the position of the eye of the observer. Let Q be the object below the horizontal line PX.

Angle of depression of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PX. That is,  $\angle$ XPQ is the angle of depression. It can be seen that

$$\angle PQR = \angle XPQ$$
 [Alternate interior angles]

The height or length of an object or the distance between two distant objects can be calculated by using trigonometric ratios.

### **Example:**

The angle of elevation of the top of a tower from the foot of a building is  $60^{\circ}$  and the angle of elevation of the top of the building from the foot of the tower is  $30^{\circ}$ . If the building is 16 m tall, then what is the height of the tower?

#### **Solution:**



Let AB and CD be the building and the tower respectively. It is given that, angles of elevation  $\angle ADB = 30^{\circ}$ ,  $\angle CBD = 60^{\circ}$  In  $\triangle ABD$ ,

$$\frac{AB}{BD} = \tan 30^{\circ}$$

$$\Rightarrow \frac{16}{BD} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow BD = 16\sqrt{3} \text{ m} \qquad \qquad \_(1)$$
Now, in  $\triangle CBD$ 

$$\frac{CD}{BD} = \tan 60^{\circ}$$

$$\Rightarrow \frac{CD}{16\sqrt{3}} = \sqrt{3} \qquad \qquad [\text{using (1)}]$$

$$\Rightarrow CD = 16\sqrt{3} \times \sqrt{3} \text{ m} = 48 \text{ m}$$

Thus, the height of the tower is 48 m.

### **Example:**

Two wells are located on the opposite sides of a 18 m tall building. As observed from the top of the building, the angles of depression of the two wells are 30° and 45°. Find the distance between the wells. [Use  $\sqrt{3} = 1.732$ ]

#### **Solution:**

The given situation can be represented as



Here, PQ is the building. A and B are the positions of the two wells such that:

$$\angle$$
XPB = 30°,  $\angle$ XPA =45°  
Now,  $\angle$ PAQ =  $\angle$ XPA = 45°  
 $\angle$ PBQ =  $\angle$ XPB = 30°

In  $\triangle PAQ$ , we have

$$\frac{PQ}{AQ} = tan\ 45^o$$

$$\Rightarrow \frac{18}{AQ} = 1$$

$$\Rightarrow$$
AQ=18m

In  $\triangle PBQ$ , we have

$$\frac{PQ}{QB} = tan \, 30^o$$

$$\Rightarrow \frac{18}{QB} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 QB = 18 $\sqrt{3}$ 

$$= 49.176 m$$

 $=18\times2.732 \text{ m}$