ELECTROSTATICS

1. ELECTRIC CHARGE

1.1 Definition

Charge is the property associated with matter due to which
it produces and experiences electrical and magnetic effects.

1.2 Type

There exists two types of charges in nature
{1 Positive charge
(i)  Negative charge

Charges with the same electrical sign repel each other, and
charges with opposite electrical sign attract each other.
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1.3 Unit and dimensional formula

S.I. unit of charge is coulomb (C),
(1mc =107°C, 1pC=10"°C, InC = 10‘90).

C.G.S. unit of charge is e.s.u. 1C=3 x 10 esu

Dimensional formula [ Q] =[AT].

1.4 Point Charge

Whose spatial size is negligible as compared to other
distances.

1.5 Properties of charge

(1] Chargeis a Scalar Quantity : Charges can be added
or subtracted algebrically.

(i) Chargeis transferable : If a charged body is putin
contact with an uncharged body, uncharged body
becomes charged due to transfer of electrons from
one body to the other.

(iii)

(i)

(1)

(vif)

(viii)

Chargeis always associated with mass, i e., charge
can not exist without mass though mass can exist
without charge.

Chargeis conserved : Charge canneither be created
nor be destroyed.

Invariance of charge : The numerical value of an
elementary charge is independent of velocity.

Charge produces dectric field and magnetic field : A
charged particle at rest produces only electric field in
the space surrounding it. However, if the charged
particle is in unaccelerated motion it produces both
electric and magnetic fields. And if the motion of
charged particle is accelerated it not only produces
electric and magnetic fields but also radiates energy in
the space surrounding the charge in the form of
electromagnetic waves.

Chargeresides on the surface of conductor : Charge
resides on the outer surface of a conductor because
like charges repel and try to get as far away as possible
from one another and stay at the farthest distance
from each other which is outer surface of the
conductor. This is why a solid and hollow
conducting sphere of same outer radius will hold
maximum equal charge and a soap bubble expands
on charging.

Quantization of charge : When a physical quantity
can have only discrete values rather than any value,
the quantity is said to be quantised. The smallest
charge that can exist in nature is the charge of an

electron. If the charge of an electron

(—1.6><10_19C) is taken as elementary unit ie.

quanta of charge the charge on any body will be
some integral multiple of eie., Q=+newith n =0,

Charge onabody canneverbe0.5e,£17.2eor =107 e
elc.



1.6 Comparison of Charge and Mass

We are familiar with role of mass in gravitation, and we have
just studied some features of electric charge. We can

compare the two as shown below :

Charge

Mass

. Electric charge can be
positive, negative or zero.
Charge carried by a body

does not depend upon

velocity of the body.

. Charge 1s quantized.

- Electric charge is always

conserved.

. Force between charges
can be attractive or
repulsive, according as
charges are unlike or like

charges.

Mass of a body is a
positive quantity.
Mass of a body increases

with its velocity as

me 20
- m where ¢
is veloeity of light in

vaccum, m 1s the mass of
the velocity vand m _ is

rest mass of the body.
The quantization of mass
is yet to be established.
Mass is not conserved as

it can be changed into
energy and vice—versa.

The gravitational force
between two masses 1s

always attractive.

(i)

negatively charged. However, ebonite on rubbing with
wool becomes negatively charged making the wool
positively charged. Clouds also become charged by
friction. In charging by friction in accordance with
conservation of charge, both positive and negative
charges in equal amounts appear simultaneously due
to transfer of electrons firom one body to the other.

By electrostatic induction : If a charged body is
brought near an uncharged body, the charged body
will attract opposite charge and repel similar charge
present in the uncharged body. As a result of this
one side of neutral body (closer to charged body)
becomes oppositely charged while the other 1is
similarly charged. This process is called electrostatic
induction.

1.7 Methods of Charging

A body can be charged by following methods :

U]

By friction : In friction when two bodies are rubbed
together, electrons are transferred from one body to
the other. As a result of this one body becomes
positively charged while the other negatively charged,
e.g., when a glass rod is rubbed with silk, the rod
becomes positively charged while the silk becomes
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(iii)

Inducting body neither gains nor loses charge.

Charging by conduction : Take two conductors, one
charged and other uncharged. Bring the conductors
in contact with each other. The charge (whether —ve
or +ve) under its own repulsion will spread over both
the conductors. Thus the conductors will be charged
with the same sign. This is called as charging by
conduction (through contact).



Uncharged Charged Bodies in contact

Both are positively charged
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A truck carrying explosives has a metal chain
touching the ground, to conduct away the charge
produced by friction.

1.8 Electroscope

It is a simple apparatus with which the presence of electric
charge on a body is detected (see figure). When metal knob
is touched with a charged body, some charge is transferred
to the gold leaves, which then diverges due to repulsion.
The separation gives a rough idea of the amount of charge
on the body. If a charged body brought near a charged
electroscope the leaves will also diverge. If the charge on
body is similar to that on electroscope and will usually
converge if opposite. If the induction effect is strong enough
leaves after converging may again diverge.

(1) Uncharged electroscope

Charging by conduction

Charging by induction

(2) Charged electroscope

2. COULOMB'S LAW

If two stationary and point charges Q, and Q, are kept at a
distance 7, then it is found that force of attraction or
repulsion between them is Mathematically, Coulomb’s law

can be written as

F =419

r2

where k is a proportionality constant.
In SI units k has the value, k =8.988 x 1 (° N m?/C?

= 9.0 x 10° Nm?/C?

1 9°
\’OM’O

(@  The direction of force is always along the line joining
the two charges.

(by  The force is repulsive if the charges have the same
sign and attractive if their signs are opposite.

(c)  This force is conservative in nature.

(d)  This is also called inverse square law.

2.1 Variation of &

Constant k depends upon system of units and medium
between the two charges.



2.1.1 Effect of units

(@ InC.GS.forark=1, F= Q1?2 Dyne
r

2
—0x10° Ni

() InSLforark= o

4 g,

1 QQ,

4ne;, r
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E £, = Absolute permittivity of air or free space

F=

Newton (1 Newton=10°Dyne)

2
:8.85><10‘12C72(: Fam‘].
N-m m

Dimension is [M_IL_3T4A2J

E £- Relates with absolute magnetic permeability

(p.n) and velocity of light (¢) according to the

following relation ¢ =

1
'JHD £p
2.1.2 FEffect ofmedium

(@  When a dielectric medium is completely filled in
between charges rearrangement of the charges inside
the dielectric medium takes place and the force
between the same two charges decreases by a factor
of X known as dielectric constant, X is also called
relative permittivity £ of the medium (relative means
with respect to free space).

Q.0 == 0 Q.

F 3
—
¥

Hence in the presence of medium

F _Ey 1 Q0Q,

T K 4mg K 2

Here g,K = g;£, = £ (permittivity of medium)

Medium K
Vacuum / air 1
Water 80
Mica 6
Glass 510
Metal w0

2.2 Vector form of coulomb’s law

It is helpful to adopt a convention for subscript notation.

F,,=force on 1 dueto 2 F, =forceon2 dueto 1

Suppose the position vectors of two charges q, and g, are

r, and ,, then, electric force on charge q, dueto charge q,

is,

= _ 1 q9qy .. -
12 _4:rt50 |f‘{—i’2|3 (i-1%)
ILY »

Similarly, electric force on q, due to charge q, is

s 9,9,
E _
21 = 411:50 |r2 —r1| (r2 1'1)

Forceisa vector, so in vector form the Coulomb’s law is
written as

1 qq; .
—— 2

F o
12
dng; r
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where 1}, is a unit vector directed toward q, from q,.
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f12:_?21
= 1 q9; . 1 9,0y , &
Fi= = —r
27 dng, 2 dng, r° (~f)
1 qg,q; . 2
= — SR :—F
Az, 2o 21

o2 L 1
‘ L} trom I—b trom
to to

Remember convention for 1.

Here q, and g, are to be substituted with sign. Position

vector of charges q, and q, are § :x1}+y1]+zll; and

L= x2§+yzj+ zzﬁ respectively. Where (x, ¥, z) and (x,,

¥,» Z,) are the co-ordinates of charges q, and q,.

2.3 Principle of superposition

According to the principle of super position, total force
acting on a given charge due to number of charges is the
vector sum of the individual forces acting on that charge
due to all the charges.

Consider number of charge Q,, Q,, Q,...are applying force
on a charge Q

Net force on O will be

The magnitude of the resultant of two electric force is given by

F= JF12 +F7 +2FF, cos® and the force direction is given by

E,sin®
tan 0= ———
F +F, coso

3. ELECTRIC FIELD

A positive charge or a negative charge is said to create its
field around itself Thus space around a charge in which
another charged particle experiences a force is said to have
electrical field in it.

3.1 Electric field intensity (E)

The electric field intensity at any point is defined as the
force experienced by a unit positive charge placed at that

point. E= i
dy
TQ (9o)
()iwmisssomimmiiinsomsion &

Where q, — Oso that presence of this charge may not

affect the source charge Q and its electric field is not changed,
therefore expression for electric field intensity can be better
: A
writtenas E= lim —
g —0 q;



(a) Unit and Dimensional formula : It’s S.I. unit —

Newton  volt Joule

coulomb meter coulombx meter

C.GS. unit = Dyne/stectt coulomb.

Dimension: [E]=[MLTZA™"]

(M Direction of electric field : Electric field (intensity)

E isavector quantity. Electric field due to a positive

charge is always away from the charge and that due
to a negative charge is always towards the charge

+Q O —
+Q O < *E

3.2 Relation between electric force and electric field

In an electric field E a charge (0) experiences a force F =
QE. If charge is positive then force is directed in the direction
of field while if charge is negative force acts on it in the
opposite direction of field

2 gt
> E > E
+QO0—» [ <—FO—Q_

3.3 Super position of electric field

Theresultant electric field at any point is equal to the vector
sum of electric fields at that point due to various charges.

E=E +E, +E;+..

The magnitude of the resultant of two electric fields are
given by

B= JEf +E%+2E,E, cos6 and the direction is given by

E,sin®

tangg=—2"-——
E,+E;cos0

3.4 Point Charge

Point charge produces its electric field at a point P which is
distance r from it given by

Ep = Q - (Magnitude)
dngr

% For+ ve point charge, E is directed away from it.

E For —ve point charge, E is directed towards it.

3.5 Continuous charge distributions

There are infinite number of ways in which we can spread a
continuous charge distribution over a region of space. Mainly
three types of charge distributions will be used. We define
three different charge densities.

Symbol Definition SI units
(lambda) A= Charge per unit length Cim
(sigma) G = Charge per unit area :
(tho) p= Charge per unit volume Cht’

If atotal charge q is distributed along a line of length £, over
a surface area A or throughout a volume V, we can calculate
charge densities from.

> p:_

k:ﬂ, c:g
£ A v

3.6 Properties of Electric Field Lines

1 Electric field lines originate from a positive charge &
terminate on anegative charge.

2 The number of field lines originating/terminating on
a charge is proportional to the magnitude of the
charge.




3 The number of Field Lines passing through Let a charge particle of mass m and charge O be initially at
perpendicular unit area will be proportional to the rest in an electric field of strength £
magnitude of Electric Field there.

4, Tangent to a Field line at any point gives the direction »T
of Electric Field at that point. This will be the +Q @—>» F=QE
instantaneous path charge will take ifkept there. >

F-QF +—) -0 i
Fig. (A)

5. Two or more field lines can never intersect each N .

other. - -
: - " Ae o

[they cannot have multiple directions] > >
. S i

6. Uniform field lines are straight, parallel & uniformty A &
placed. > >

7. Field lines cannot form a loop. Fig. (B)

) Force and acceleration : The force experienced by
the charged particle is F = QE. Positive charge
experiences force in the direction of electric field while
negative charge experiences force in the direction
opposite to the field. [Fig. (A)]

F E
8 Electric field lines originate & terminate perpendiailar Acceleration produced by this force is a = i = %
to the surface of the conductor. Electric field lines do
not exist inside a conductor. Since the field E in constant the acceleration is
constant, thus motion of the particle is uniformly
5 accelerated.
: : = ()  Velocity : Suppose at point A particle is at rest and in
+ L - time ¢, it reaches the point B [Fig. (B)]
i > V =Potential difference between.4 and B;
+ e
T > = S =Separation between 4 and B
(A) (B)

(a) By using
9 Field lines always flow from higher potential to lower

. E
potential. v=u+tat, v=0+Q—t,
m
10. Ifinaregion electric field is absent, there will be no
field lines. QEt
=M=
m

3.7 Motion of Charged Particle in an Flectric Field

(b By using
(@)  When charged particle initially atrestisplacedin

th ift field :
e uniform fie v¥ =u? + 2as, v2:0+2x@xs:,"@
m

m




(iii) Momentum : Momentum p =y,
p=mx Sl =QEt
m

(ivy  Kinetic energy : Kinetic energy gained by the particle
in time # is

Et ) 22,2
K:lm\;zzlm(Q ) :QEt

2 m 2m

) When a charged particle enters with an initial
velocity at right angle to the uniform field

When charged particle enters perpendicularly in an
electric field, it describe a parabolic path as shown

i) Equation of trajectory : Throughout the motion
particle has uniform velocity along x-axis and
horizontal displacement (x) is given by the equation
x=ut

S
=)

.~

/ Px.v)

=

:x-‘r

Since the motion of the particle is accelerated along y-axis,
we will use equation of motion for uniform acceleration to

1
determine displacement y. From S = ut + 5 at*

We have u= 0 (along y-axis) so y :% at?

i.e., displacement along y-axis will increase rapidly with time
(sincey o t?)

From displacement along x-axist =x/u

L(QEY(xY . . .
So ¥=—|— || —|; this is the equation of parabola
2im /lu

which shows v o x?

(ii)  Velocity at any instant : At any instant#, v, =u and

_ QEt

¥ m

Qo R
v=|¥|= v2+v§,: u2+Q -

If B is the angle made by v with x-axis than

_SE

Vy
tanfp = —
v mu

H

4. ELECTRIC POTENTIAL ENERGY

4.1 Potential energy of 2 charges system

It is always change in potential energy that is designed as

AU=-W =-W

corservative force Coulorab force

Potential energy is defined of a system of charges in a
particular configuration.

Consider a system of two charges q, and q,. Suppose, the
charge q, is fixed and the charge q, is taken from apoint A to
B

fixed i moved
1 : I >
I 1
® Wl *9----- k
q A l B
dr

9193 .

The electric force on the charge q, is F = F
4me,r?

The total work done as the charge q, moves from Bto Cis

g
_ 2 9,9, fpoes q,9; {l_i]

2
4 dqg,r drg, \n 1



The change in potential energy Utr,) — U(r,) is, therefore,

99 (1 1
00U =W = L
0 2 1

The potential energy of the two-charge system is assumed
to be zero when they have infinite separation.

The potential energy when the separation is r is

1 1
UM =U()-U(x0)= 492 (_ _ _] _ %9
dmeg \r o0/ dmer

The potential energy depends essentially on the separation
between the charges and is independent of the spatial
location of the charged particles.

Equation gives the electric potential energy of a pair of
charges.

./Kag../

* Electric potential energy is a scalar quantity so in
the above formula take sign of O, and Q..

4.2 Flectron volt (e})

It is the smallest practical unit of energy used in atomic and
nuclear physics. As electron volt is defined as “the energy
acquired by a particle having one quantum of charge 1e
when accelerated by lvolf” ie.

_1g ., 17 _10

16V =1.6x107"Cx-2=1.6x10 T=1.6x10"" erg

4.3 Potential energy of a system of # char ges

In asystem of 7 charges electric potential energy is calculated
for each pair and then all energies so obtained are added

algebraically. ie. U= L QR + Qs SER } and

gy | T T3
in case of continuous distribution of charge. As

dU=dQ.V=U=|VdQ

e.g. Electric potential energy for a system of three charges

Potential energy = 1 {Q1Q2+Q2Q3+Q3Q1}

dmey | 1, I3 I3

5. ELECTRIC POTENTIAL

Suppose, a test charge q is moved in an electric field from a
point A to a point B while all the other charges in question
remain fixed. If the electric potential energy changes by U,
— U, due to this displacement, we define the potential
difference between the point A and the point B as

q
@ e &
B B
q v d
® 8
A A
: U,-U, W
av=2Y g V-V, =—B—&—_—=t [AKE =]
q q q

Conversely, if a charge q is taken through a potential
difference V, —V, , the electric potential energy is increased

by U,-U, =q(V,-V,).
AlsoW_ =q(V,-V,) [AKE=0]
Potential difference between two points give us an idea about

work which has to be done in moving a charge between those
points.

5.1 Flectric Potential due to a point charge

Consider a point charge Q placed at a point A.

The potential at P is,




U -U

= e
q 4re,r dreg,r

(" Vs 1s taken as 0)

The electric potential due to a system of charges may be
obtained by finding potentials due to the individual charges
using equation and then adding them. Thus,

L

4rz, L

Electric potential is a scalar quantity, hence sign of charges
is to taken in expression it is denoted by ¥

5.2 Unit and dimensional formula

T L
Coulomb
[V]=[MLT=AT]

5.3 Types of electric potential

According to the nature of charge potential is of two types
(i) Positive potential : Due to positive charge.

(ii) Negative potential : Due to negative charge.

s

¥ At the centre of two equal and opposite charge
V=0butE=0.

E At the centre of the line joining two equal and
similar charge V=0, E=0.

* Iflefifreetomove,

Positive charge will always move from higher to
lower potential points.

Negative charge will always move from lower to
higher potential points.

(Because this motion will decrease potential energy

of a system)

6. RELATION BETWEEN ELECTRIC FIELD & POTENTIA

In an electric field rate of change of potential with distance
is known as potential gradient. It is a vector quantity and
it’s direction is opposite to that of electric field. Potential
gradient relates with electric field according to the following

relation E = _%;; This relation gives another unit of

volt

electric field is . In the above rleation negative sign

meter

indicates that in the direction of electric field potential
decreases.

In space around a charge distribution we can also write
E=E i+E, j+Ek
dv dv dv

where E, =——, E,=—— and E, =——
dx dy dz

Suppose.A, B and C are three points in an uniform electric field
as shown in figure.

(i Potential difference between point 4 and B is

Since displacement is inthe direction of electric field, hence
=0

—d ——»

v L 2 L 2 L J

A ﬁ;::)l;----------"B

o
(o]
L A

B B
80, Vy -V, =—|E.dr cos0=—|E.dr=-Ed
A A



Equipotential Surface or Lines

@

@

3

@

&)

Ifevery point of a surface is at same potential, then it
is said to be an equipotential surface dark for a given
charge distribution, locus of all points having same
potential is called “equipotential surface” regarding
equipotential surface following points should keep
inmind :

The direction of electric field is perpendicular to the
equipotential surfaces or lines.

The equipotential surfaces produced by a point
charge or a spherically charge distribution are a
family of concentric spheres.

v, V. V. v, W,

v
W

: €—Tquipotentizl

v : v, \I Sy -3 V. surface

For auniform electric field, the equipotential surfaces
are a family of plane perpendicular to the field lines.

A metallic surface of any shape is an equipotential
surface e.g. When a charge is given to a metallic
surface, it distributes itself in a manner such that its
every point comes at same potential even if the object
is of irregular shape and has sharp points on it.

Metallic charged sphere

Charged metallic body of irregular shape

©

Equipotential surfaces can never cross each other.

It is a common misconception that the path traced
by a positive test charge is a field line but actually
the path traced by a unit positive test charge
represents a field full line only when itmoves along a
straight line.

7. ELECTRIC DIPOLE

7.1 General information

System of two equal and opposite charges separated by a
small fixed distance is called a dipole.

=
(-1

Equatorial axis

Dipole axis

:E()w

M
(i)

(i

(iv)

ot
»*

E

Dipole axis : Line joining negative charge to positive
charge of a dipole is called its axis. It may also be
termed as its longitudinal axis.

Equatorial axis : Perpendicular bisector of the dipole
is called its equatorial or transverse axis as it is
perpendicular to length.

Dipolelength : The distance between two charges is
known as dipole length (d)

Dipole moment : It is a quantity which gives
information about the strength of dipole. It is a vector
quantity and is directed from negative charge to

positive charge along the axis. It is denoted as p and is

defined as the product of the magnitude of either of the
charge and the dipole length.

ie p= q(Ei)

Its S.I. unit is coulomb-metre or Debye (1 Debye =
3.3 %10 C x m) and its dimensions are AF L1 T4

A

A region surrounding a stationary electric dipole
has electric field only.

When a dielectric is placed in an electric field, its
atoms or molecules are considered as tiny dipoles.



7.2 Electric field and potential due to an electric dipole

(a) Flectric Potential dueto a dipole

v, -k kGa)
AP BP
r == d (distance °r’ is large as compared to d)

AP=QO"P;

BP = OP
OP=r+d/2 Cos8, OP=r—-d/2Cos0

__ ko k+g)
Fo@r+d/2cos0) (r—d/2cos8)

1
=k(+ 2 _
( q){r—dmcose r+d;’2cose}
r+d/2cos6—r+d/2cos0 | __Kadcosb
=kq 5 &,
rl —d—c0528 r°——cos“ 0
4
k(qd)cos® kpcos®
Vi = 5 d® 3 B , &, [ P=qd]_
I"——c0s"0 r1r"———cos" 0
4 4
sincer=>=d
kpcos© 1 pcosé
A e T 0

r - dre; r
8 is angle with the axis of dipole ; r is distance from centre of
dipole.

(b) Electric Field due to dipole

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole
on the side of the charge q, as shown in fig (a). Then

q ~

E yj=————
4me,(r+a)

where p is the unit vector along the dipole axis (from —q to
q). Also

= 7q N
4 dmeq(r— a)2

[P 2a .|
E. E % L4l
PTG, S ——— o)
:: rq 5 —-q
(@) a point on the axis.
Thetotal field at P is
q 1 1 i
E=E, ., +E = - P
. q dar 5
47550 (r2’ — a2)2’
Forr>>a
dga .
E= p :
4naor3 (r=>a) D)

(if) For p oints on the equatorial plane

The magnitudes of the electric fields due to the two charges
+ q and —q are given by

q 1
E =
+q 4?‘580 r2+a2
q 1
E_ =
q 4?180 r2+a2

and are equal.

(b} a point on the equetorial plane of the dipole. p is the
dipole moment vector of magnitude p = g x 2a and
directed from —q to g.



The directions of E+q and E_01 are as shown in fig. (b). Clearly,
the components normal to the dipole axis cancel away. The
components along the dipole axis add up. Thetotal electric

field is opposite to p. We have
=—(E,,tE_)cosd P

2qa a
2)3f2 P

4mey(r® +a
At large distances (r >> a), this reduces to

2qa .

Tzaoﬁ P (== a) (i)

E=-

From Eqgs. (i) and (ii), it is clear that the dipole field at large
distances does not involve q and a separately ; it depends
on the product ga. This suggests the definition of dipole is
defined by

P=qx2ap

that is, it is a vector whose magnitude is charge q times the
separation 2a (between the pair of charges q, —q) and the
direction is along the line from—q to q. In terms of p, the electric
field of a dipole at large distances takes simple forms ;

At a point on the dipole axis

E= <P 3 :@(r»wa)
4neqr r

At a point on the equatorial plane

E=—2 Szg(r;oa)
4reqr T
0

7.3 Electric Dipole in uniform electric field

(i) Force and Torque : If a dipole is placed in a uniform
field such that dipole (i.e. p ) makes an angle 6 with

direction of field then two equal and opposite force
acting on dipole constitute a couple whose tendency
is to rotate the dipole hence a torque is developed in it
and dipole tries to align it self in the direction of field.
Consider an electric dipole in placed ina unifonm electric
field such that dipole (i.e. p ) makes an angle 6 with

the direction of electric field as shown

(i)

(iii)

k 4

Y

N
LR R AR A A 2

1

|
WOoWowW W W

sl

15

(@ Net force on electric dipole E . =0

() t:pEsine(f:ﬁxE)

Work : From the above discussion it is clear that in
an uniform electric field dipole tries to align itself in
the direction of electric field (i.e. equilibrium position).
To change it’s angular position some work has to be
done.

Suppose an electric dipole is kept in an uniform electric
field by making an angle &, with the field, ifit is again
turn so that it makes an angle &, with the field, work
done in this process is given by the formmla

- 4 - | =7
L0\
—q ./ ::

=Y

W W W W WYV
W W W VWV VW

W =pE(cos6, —cos6,)

Potential energy : In case of a dipole (in a uniform
field), potential energy of dipole is defined as work
done in rotating a dipole from a direction
perpendicular to the field to the given direction i.e. if
6, =90°and 6, =6 then

e >
> AP - > E
> AP >
> 8 >
> s >
- 7 -
- -
L A
- -

W=AU=U;-U,.=-pEcos

U, =—pEcosd -+ [U(90°)=0] or



8. ELECTRIC FIELD

8.1 Continuous charge distributions

Diagram Data Graph
H
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Diagram Data
L,
ka . . ;
r E, =—(sina+sinp)
s ¥
Tu)p : E K
E, =—(cosc—cosp)
¥
tFFFFF A R

g2k
R
kn
E, ===
¥R
kn
EX:E
E:Jka
R

ki .
E, =—
sin (o)

E, = % [1-cos(a)]

—EE&QH(EJ—ngEEEiEiEJ
R 2) R? (a/2)

8.2 Neutral Point

A neutral point is a point where resultant electrical field is
zero. Thus neutral points can be obtained only at those
points where the resultant field is subtractive.

(a) At aninternal point along the line joining twolike
charges (Due to a system of two like point charge) :
Suppose two like charges. Q, and Q, are separated
by a distance x from each other along a line as shown

in following figure.
N
QO . O Q.
«—X—>¢ X; =
& X >

If'N is the neutral point at a distance x from Q, and at a
distancex, (=x —x ) from Q, then for natural pt. at N,

|E.F. dueto Q,[=|EF dueto Q,|ie.,

1 Q] 1 |Qz|:>|Ql|_{>‘I_1]2

LR o
dnz, X 4re, X5 |Q2| X,

Short trick :

X x
= amdx, =—_
1 1+\}|Q2|”|Q1| 2 1+\J|Q1|’{|Q2|



sl

In the above formula if Q, = Q,, neutral point lies at the
centre so remember that resultant field at the midpoint of
two equal and like charges is zero.

()  Atanexternal point along theline joining twounlike
charges (Due to a system of twounlike point charge)
: Suppose two unlike charge Q, and Q, separated by
a distance x from each other.

Here neutral point lies outside the line joining two unlike
charges and also it lies nearer to charge which is smaller
in magnitude.

If |Q,[ <[Q,| then neutral point will be obtained on the side
of Q,, suppose it is at a distance { from Q,

Hence at neutral point ;

kjQu| _ k[Q| :M:(LT
£ (X+g)2 Q| \x+¢

Short trick : £ = S S
(Vl1al-1]
In the above discussion if |Q,| = |Q,| neutral point
will beat infinity.

L

8.3 Equilibrium of Charge

(@  Definition : A charge is said to be in equilibrium, if net
force acting on it is zero. A system of charges is said to
be in equilibrium if each charge is in equilibrium.

(M Type of equilibrium : Equilibrium can be divided in
following type:

() Stable equilibrium : After displacing a charged
particle from it’s equilibrium position, if it returns
back then it is said to be in stable equilibrium. If
U is the potential energy then in case of stable
equilibrium U is minimum.

(ii) Unstable equilibrium : After displacing a charged
particle fromit’s equilibrium p osition, if it never
returns back then it is said to be in unstable
equilibrium and in unstable equilibrium, I is
nmximmumn

(iii) Neutral equilibrium : After displacing a charged
particle from it’s equilibrium position if it neither
comes back, nor moves away but remains in the
position in which it was kept it is said to be in
neutral equilibrium and in neutral equilibrium,
Uis constant.

() Different cases of equilibrium of charge

Suppose three similar charge Q,, q and Q, are placed
along a straight line as shown below

A . B
}—‘., 0 ]
QO > QQ,
< X S X, >
< X >
Case—1:

2
Charge gwill be in equilibrium if |[F,|=|F,| e, 8—1 = {X—l] :
z X2

This is the condition of equilibrium of charge g. After
following the guidelines we can say that charge ¢ is in stable
equilibrium and this system is not in equilibrium.



A

X X

— = awe
TN N T STe

e.g. if two charges +4 uC and +16 uC are separated by a
distance of 30 cm from each other then for equilibrium a
third charge should be placed between them at a distance

30

B
T T

=10 c¢m 0rx2=20cm

Case-2:

Two similar charge Q, and Q, are placed along a straight line
at a distance x from each other and athird dissimilar charge ¢
is placed in between them as shown below

A B
F, 0O F
QO ——> 0Q.
< X, >q< X >
= X >

Charge g will be in equilibrium if |F,| =|F|

ie., & = [ﬁjz .
Q, Xy

Same short trick can be used here to find the position of
charge g as we discussed in Case—1 ie,,

X x
X j=——— and x, =———
"1+ o, /g, 149 7q,

It is very important to know that magnitude of charge g
can be determined if one of the extreme charge (either Q
or Q, ) is in equilibrium i e. if Q, 1s in equilibrium then |qf
=Q,(x/x)and if Q, is in equilibriumthen g = Q(x /x)*(It
should be remember that sign of ¢ is opposite to that of
Q (or Q)

Case—3:

Two dissimilar charge Q, and Q, are placed along a straight
line at a distance x from each other, a third charge q should
be placed out side the line joining Q, and Q, for it to
experience zero net force.

Q -Q, q

O Oporrreerre

< . >é—d—>
(Let|@|<|Q)
Short Trick :

For it’s equilibrium. Charge 4 lies on the side of charge which is
smallest in magnitude and

X

§Qi1/Q; -1

(d Equilibrium of suspended charge in an electric field

(i) Freely suspended charged particle : To
suspend a charged a particle freely in air under
the influence of electric field it’'s downward
weight should be balanced by upward electric
force for example if a positive charge is
suspended freely in an electric field as shown
then

F=QE
or

b+ + + + + + + + +

mg

— e e
4 E

Inequilibrim QE=mg — E = %

Jofé,./

In the above case if direction of electric field is suddenty
reversed in any figure then acceleration of charge particle
at that instant will be = 2g.



(i)

Charged particle suspended by a massless insulated
string (like simple pendulum) : Consider a charged
particle (like Bob) of mass m, having charge O is
suspended in an electric field as shown under the
influence of electric field. It turned through an angle
(say 0) and comes in equilibrium.

S0, in the position of equilibrium (O’ position)
Tsin6=QE ..(1)

TcosB=mg ..(i)

By squaring and adding equation (i) and (ii)

Dividing equation (i) by (ii) tan 6 =

=3

(1ii

)

T = J(QE)’ +(mg)’
E

E
= tan™! QE

mg
Equilibrium of suspended point charge system :
Suppose two small balls having charge +Q on each
are suspended by two strings of equal length /. Then
for equilibrium position as shown in figure.
Tsin6=F ...
TcosB=mg ...(i)

T?=(F '+ (mgy

8

Equilibrium of suspended point charge systemin aliquid
: In the previous discussion if point charge system is
taken into a liquid of density p such that 6 remain
same then

+Q

919
i : ¢
i L Teos 0
J‘E\
E ~ W B
ﬁ 1" sinp 9! +Q
€ % >
(mg - Vpg)

In equilibrivm

Fe'=T'sin6 and (mg—Vpg)=T' cos6

B Fe' ~ Q2
(mg—Vpg) 4neK(mg—Vpg)x*

tano

When this system was in air

_Fe_ O

tan© —
mg 4rg; mgx

So equating these two gives us

1 1 m 1
m  k{m-Vp) m-Vp (I—Xp]
m

If o is the density of material of ball then

K:#: g

v

8.4 Time Period of Oscillation of a Charged Body

@

Simple pendulumbased : If'a simple pendulumhaving

length  and mass of bob m oscillates about it’s mean
position than it’s time period of oscillation

T=2mfé/g




Case —1 : If some charge say + Q is given to bob and an
electric field E is applied in the direction as shown in figure
then equilibrium position of charged bob (point charge)
changes from O to O”.

'
mg,

On displacing the bob from it’s equilibrium position O, It
will oscillate under the effective acceleration g’, where

mg' = \I(mg)z + (QE)2 =g'= 1/g2 + (QEf’m)2

Hence the new time period is T, = ZEF
g

= T =2r ‘ £ :
¢(g2 +(QE;’m)2 )E

Since g'> g, hence T, <T

i.e. time period of pendulum will decrease.

Case—2: If electric field is applied in the downward direction
then.

Effective acceleration g'=g+ QE/m

Sonewtimeperiod T, = 2n S
g+(QE/m)

T.=T
Case -3 : In case 2 if electric field is applied in upward
direction then, effective acceleration.

mg + QE

O .9

b)

©

g'=g—QEm
So new time period

£
T.=2n {————
! nqg—(QE;’m)

T> ¥
Charged circular ring : A thin stationary ring of radius R
has a positive charge + O unit. If a negative charge — g

(mass ) is placed at a small distance x from the centre.
Then motion of the particle will be simple harmonic motion.

Electric field at the location of — ¢ charge

E:41 —
TTE -
: (XZ +R? )2
Sincex << R, So x? neglected hence E = L ) Qx
drg, R’
Force experienced by charge — g is Arg, RS

= F o« —x hence motion is simple harmonic

4ng,mR’
Qq

Spring mass svstem : A block of mass m containing a
negative charge — (2 is placed on a frictionless horizontal
table and is connected to a wall through an unstretched
spring of spring constant & as shown. If electric field E
applied as shown in figure the block experiences an electric

Having time period T =2n

force, hence spring compress and block comes in new
position. This is called the equilibrium position of block
under the influence of electric field. If block compressed
further or stretched, it execute oscillation having time period

Th= 2n\jmfk_ . Maximum compression in the spring due
to electric field = QEk
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9. ELECTRIC POTENTIAL ENERGY

For the expression of total potential energy of a system of n

charges consider M number of pair of charges.
2

Using Work energy theorem

10. ELECTRIC POTENTIAL

10.1 Potential dueto char ge distribution

W = AKE +AU |

If only conservative forces are there (e.g. gravity / spring /
coulomb force), then W_ =0

AKE +AU=0 o, KE+U,=KE+U,
Work = AKE + AU

AU = Wext T WY e

If charges are assembled from infinity : AU=U({) —U(«0)=
Um [U(=)=0]

We know, AU=W__ [when AK.E. =0]

IfU(e)=0 = U@=W_,

AKE+AU=00rKE + U =KE,+U,

Diagram Data Graph
Vo
x{F ittt rrr T —e L+d
ey > Vp=ki é’n[ ]




Data

v, =X 10n
R

R

10.2 Zero Potential due to a System of Two Point Charge

For internal point : Q, and Q, (opposite signs)

2Q— . OQ

Ll
Calay

A P
P
W

Q_ Q X

T R e —
s (xmx) T (@il

1I. For External point : Q, and ), (opposite signs) |Q,|< |Q,|

S —
X N . \
| [Q] X
i A g, i P —
X;  (x+x;) (1Qu|/|Qu[-1)

11. ELECTRIC DIPOLE

11.1 Flectric field due to a dipole

rd
.

d | +1

—4

Using the concept that if we know potential electric field
can be calculated we have already calculated

v, = kp cose.
2




To Calculate net electric field at P we need E_(Radial
Component) & E, (tangential component) of electric field at P

—dVv

E, = P [When we travel in the radial direction].
dv : T
E = T [When we travel in the tangential direction].
kPcos®
Vp = 72
r
—d{ kPcos® 2kPcos©
Er — d_ > e 3 2
r r r
—d (kPcos® | —kP d kPsin 6
 =—| ——— |=———cosf = .
rde z r’ de g

E,; =«E +E} =\’[k—f]2 [4(:052 6+ sin’? e]
r

- J[g]z [1+3c0s? 6]

kP
Epe =— 1+3cos’ ©
r

E
A
-y | d | ~«
k—PsinE)
tancx—ﬂ—ir3 s o=tan™! il
E, 2chosE) 2 2

3
r

[Note : ctis the angle with the radial direction]

11.2 Equilibrium ofdipole

We knowthat, for ary equilibriumnet torque and net force on a
particle (or systerm) should be zero.

We already discussed when a dipole is placed in an uniform
electric field net force on dipole is always zero. But net
torque will be zero only when 6 = 0° or 18(7.

When 6= (rie. dipole is placed along the electric field it is
said to be in stable equilibrium, because after turning it
through a small angle, dipole tries to align itself again in
the direction of electric field.

When 6 = 18(r ie. dipole is placed opposite to electric
field, it is said to be in unstable equilibrium.

D
— E T > —— B
v
6=0 6=90° 6=180
Stable equilibrium Unstable equilibrium
T, —PE =0
w=0 W=pE W =2pE
. =—pE U=0 U =pE
11.3 Angular SHM

In a uniform electric field (intensity E) if a dipole (electric)
is slightly displaced from it’s stable equilibrium position it
executes angular SHM having period of oscillation. If J=
moment of inertia of dipole about the axis passing through
it’s centre and perpendicular to it’s length.

For electric dipole: T = 2;1;,[1pr

11.4 Dipole-point charge interaction

If a point charge is placed in dipole field at a distance
from the mid point of dipole then force experienced by

: : } : 1
point charge varies according to the relation F < o
I

11.5 Electric dipole in non-uniform electric field

When an electric dipole is placed in a non-uniform field,
the two charges of dipole experiences unequal forces,
therefore the net force on the dipole is not equal to zero.

Due to two unequal forces, a torque is produced which
rotate the dipole so as to align it in the direction of field.

So in non-uniform electric field
(i) Motion of the dipole is translatory and rotatory

(ii) Torque on it may be zero.



GAUSS’S LAW

1. ELECTRIC FLUX

1.1 Definition

Electric flux is defined as proportional to number of field
lines crossing or cutting any area of cross section in space.

“The number of field lines passing through perpendicular
unit area will be proportional to the magnitude of Electric
Field there” (Theory of Field Lines)

NeE = N«<E4,

€L

Electric Flux, ®, =EA,

v

AcosB=4A,
i A

t=
vy VvVYy
\<

Asin g

4

As 8 increases, flux through area A decreases. If we draw a
vector of magnitude A along the positive normal, it is called

the area vector, A corresponding to the area A.

v

A 4
=

b

v
ks

v

w
o=
@
s

=

L 4

Electric Flux, ©, = EA cos6=FE. A

(Assuming Electric Field is uniform over whole area)

A

If Electric field is not constant over the area of cross
section, then

cD:jE.dA’
A

1.2 Unit and Dimension

Flux is a scalar quantity.

2

S.I unit : (volt xm)or

It Dimensional forrmula : (MLBT_BA_I)

1.3 Types of flux

For a closed body outward flux is taken to be positive, while
inward flux is taken to be negative.

Positive—flux Negative—flux

(4) B)

2. GAUSS'S LAW

2.1 Definition

According to Gauss’s law; total electric flux through a closed surface

enclosing a charge is Y times the magnitude of the charge

2
enclosed.
i'e" ¢net = (Qen:)
i}
. 2 Q
E.dA ===
ie SB .

Gauss’s law is only applicable for a closed surface.



2.2 Gaussian Surface

The closed surface on which Gauss law is applicable is
defined as a Gaussian surface.

sl

* Gaussian surface can be of any shape & size, only
condition 1s that it should be closed.

L (Gaussian surface is hypothetical in nature. It does
not have a physical existence.

2.3 Deriving Gauss’s law from Coulomb’s law

+Q

C
eomann®”

Lets take a spherical gaussian surface with charge *+Q’ kept
at the centre.

We know field lines for a +ve charge are always radially
outward.

Angle between dA & E is zero.

PN
4 % =
1 ]
T o
v\ Q0 FdA
“‘~. .“‘0
_kQ_ Q
E=—=
T 4n e,

Net flux = Qf)EdA (f)4n€ =

SE) .41:r2:g

4n Cpt? 411 e, T o

Hence Netflux =Q/e .

Jff@../

Although we derived gauss law for a spherical
surface it is valid for any shape of gaussian surface
and for any charge kept anywhere inside the surface.

2.4 Coulomb’s law from Gauss’s law

We choose an imaginary sphere (Gaussian surface) of radius
r centred on the charge +q. Due to symmetry, E must have the

same magnitude at any point on the surface, and E points

radially outward, parallel to dA . Hence we write the integral in
Gauss’s law as

L,
S
T

1
1]
1
]
4
q ;
i
r

I
# i

s,
-
T

0ue = PE.dA = PEdA =EPdA = E(4m?)

anclossd = q

Thus, E(ﬁhrrz):i or B-—4 ;
o dme,r

From the definition of the electric field, the force on a point
charge q, located ata distance r from the charge q 1sF =g E.

Therefore,
1

po_ L 9%
dne, r

which 1s Coulomb’s law.

3. APPLICATIONS OF GAUSS’S LAW

Using Gauss’s law to derive ‘E’ due to various charge
distributions.

3.1 Electric Field due to a Line Charge

Consider an infinite line which has a linear charge density A.
Using Gauss’s law, let us find the electric field at a distance
1’ from the line charge.



The cylindrical symmetry tells us that the field strength
will be the same at all points at a fixed distance r from the
line. Thus, if the charges are positive. The field lines are
directed radially outwards, perpendicular to the line charge.

- e
+
+ =
<t >
= o
+
+
+
F |t 1 el
= =+ =
Ed—ﬂ + q E
A5 € 4 : ds
+
-+
+
+
e |+ P
S I " g
g5 ldé’

The appropriate choice of Gaussian surface 1s a cylinder of
radius r and length L. On the flat end faces, S,and S, § 1s

perpendicular dS, which means fluxis zero onthem. Onthe

curved surface S, E isparallel to dS, sothat E.dS =EdS.

The charge enclosed by the cylinder is Q = AL. Applying
Gauss’s law to the curved surface, we have

E(]SdS:E(zan):& or [Heet | 2

€, - 2mg,r T

This 1s the field at a distance r from the line. It is
directed away from the line if the charge 1s positive
and towards the line if the charge 1s negative.

3.2 Flectric Field due to a Plane Sheet of Charge

o — e 4
T+ ds
+++
++ 4

=

E
- o A + -
ds = et ds
++H
+
[+

Consider a large plane sheet of charge with surface charge
density (charge per unit area) 6. We have to find the electric
field E at a point P in front of the sheet.

/f{t&./

If the charge is positive, the field is away from the
plane.

To calculate the field E at P. Choose a cylinder of area of
cross-section A through the point P as the Gaussian surface.
The flux due to the electric field of the plane sheet of charge
passes only through the two circular caps of the cylinder.

According to Gauss law (j)E.dS =q, /g,

Erl g o] o O
[ BaS+ [ EdS+ [ EdS=—
I cireular I cireular cylindrical €o
surface surface surface
GA

or EA+EA+0=—
8O

or 2¢,

%ﬁ../

We see that the field 1s uniform and does not depend
on the distance from the charge sheet. This 1s true as
long as the sheet 1s large as compared to its distance
from P

3.3 Uniform Spherical Charge Distribution

3.3.1 QOutside the Sphere

Pisa point outside the sphere at a distance r from the centre.

-
- -,

Gaussian
Surface




According to Gauss law, (_f)]::dg = Q or E (4:I'Er2 ) = Q

&g &g
Electric field at P {Qutside sphere)
1 Q oR?
Epy=———=
W dng, P gyr? and
R | oR’
Vout = __[Ed - g =
o ane, r gyl
Q=0xA
= ox4nR*
3.3.2 Atthe surface of sphere
At surfacer=R
1 8] 1 oR
So, E, = .%z— and V, = .gz—
dne, R° g ing, R g

3.3.3 Insidethesphere

Inside the conducting charged sphere electric field is zero
and potential remains constant every where and equals to
the potential at the surface.

E =0and V. =constant =V :L
" m f dng R

Graphical variation of electric field and potential with
distance

E —r graph

3.4 Uniform Spherical Volume Charge Distribution

We consider a spherical uniformly charge distribution of
radius R in which total charge Q is uniformly distributed
throughout the volume.

The charge density

_ total charge Q@  3Q

p =i =
4 3
total volume 2.3 4R

3.4.1 Outsidethe sphereat P (r 2R)

According to Gauss law ff)]:: ds = Q or E (4nr2)= Q

gy Ly

i f= . 1
E,, = % and V,, =—|Ed R
4me, r . arme; r
using p =
4
—nR?
3
R’ R’
out: p 7] and Vout :p (V(m)zo)
3g,r 3gr
3.4.2 Atthesurfaceofsphere
At surfacer=R
1 Q pR _ 1 Q_pR?

—=—and V, =——. =

*dmg, RY 3g, *dng, R 3,

3.4.3 Inside the sphere

At adistance r from the centre. (r <R)

3

S Qr’
(ﬁEm.ds = g = =R or E, (4”2): 80;3



6g;
3 1 3
At centre (r=10). V, .. == —g ==V,
2 4ng, B2
i'e" Vcenhe = Vsu.rfaj:e = Vout

Graphical variation of electric field and potential with
distance

4. PROPERTIES OF CONDUCTORS

1. Inside a conductor, electrostatic field is zero

Consider a conductor, neutral or charged. There may also
be an external electrostatic field. In the static situation the
electric field is zero everywhere inside the conductor. As
long as electric field is not zero, the free charge carriers
would experience force and drift. In the static situation, the
free charges have so distributed themselvesthat the electric
field is zero everywhere inzide. Electrostatic field is zero
ingide a conductor.

2. At the surface of a charged conductor, electrostatic
field mustbenormal to the surface at every point

If E were not normal to the surface, it would have some non-
zero component along the surface. Free charges on the
surface of the conductor would then experience force and
move. In the static situation, therefore, E should have no
tangential component. Thus electrostatic field at the surface
of a charged conductor must be normal to the surface at
every point. {For a conductor without any surface charge
density, field is zero even at the surface).

3. Thechargekeptin thematerial of a conductor will come
to its outermost surface.

We know electric field at all points inside the material of a
conductor is zero. This means “E* at all points on the
Gaussian surface is zero.

Gaussian surface

Conductor

[EA=2= op=0 >

&g

Charge cannot remain inside so it comes outside dotted
surface.

4. Electrostatic potential is constant throughout the
volume of the conductor and has the same value (as
inside) on its surface

This follows from results 1 and 2 above. Since E =0 inside
the conductor and has no tangential component on the
surface, nowork is done in moving a small test charge within
the conductor and on its surface. That is, there is no potential
difference between any two points ingide or on the surface
of the conductor. Hence, the result. If the conductor is
charged, electric fieldnormal to the surface exists ; this means
potential will be different for the surface and a point just
outside the surface.



In a system of conductors of arbitrary size, shape and charge
configuration, each conductor is characterised by a
constant value of potential, but this constant may differ
from one conductor to the other.

5. Flectricfield at the surface of a charged conductor

where ¢ is the surface charge density and n is a unit vector
normal to the surface in the outward direction.

For 6= 0,electric field is normal to the surface outward ; for
c = 0, electric field is normal to the surface inward.

5.1 Some important points ab out Gauss Law

Sf)EdA Qu

[Het flux]) =i

In the above expression, charge enclosed is (Q, & Q,).
Net flux will only depend on Q, & Q..

But “E’ in the Gauss Law will be due to all the charges Q,,
Q,. Q, & Q,. Hence electric field calculated through Gauss
law is not just due to enclosed charges but due to all the
charges.

2

If Q_ by a gaussian surface is given to be zero then it does
not necessarily imply that E=0. It may or may not be zero.

For example :

Gaussian Surface

Qenzo

but electric field on the Gaussian surface is present.

If E at all points on the gaussian surface is zero then it mean
Q,, has to be zero.

Because (_[)Eﬁ = & :

£

5.2 Zero flux

.. Net charge equals (o zero
If a dipole is enclosed by a surface

¢=0;Q,=0

If the magnitude of positive and negative charges are equal
inside a closed surface.

s0, 0=0
(i) Charges are absent
If a closed body (not enclosing any charge) is placed in an

electric field (either uniform or non-uniform) total flux linked
with it will be zero



>3 v £ % @
$=—RE $, =0 b = +RR'E /—
9. =0
9 =0

@

(i)

Gospe = g . The cube has six faces and flux linked with
0

three faces (through A) is zero (ABCD, AHED, ABGH), so

flux linked with remaining three faces will g . Now as the
o]

remaining three are identical so flux linked with each of the

three faces will be :lx l g =i2
3 |8leg, 24 g,

5.3 Observe Flux through Common Geometrical Figures

5.3.1 Cube

Charge at the centre of cube.

11

v

o

Jf{@../
1

Orotat :;(Q)

0]

Q

Flux through each face, ¢;,.. = —
6g,

Charge situated at the corner of a cube.

H G

For the charge at the corner, we require eight cube to
symmetrically enclose it in a Gaussian surface. The total

flux ¢ = L4 . Therefore the flux through one cube will be

€o

Charge Position de By
Cube centre q/e ¢
Face centre a/2e, &
At corer q/8e, s

£ a
At centre of edge q/4e, a

5.3.2 Hemisphere

¢'0L1t = q)m = TERZE

=

VT

=
I
<
v
=)

(dotted part shows imaginary part to enclose the charge
completely)



5.3.3 Cylinder

L9, a
q)T SO > q)cyl 280
S
*q

6. CASES OF CONCENTRIC SHELLS

1
oy
. S DR ERETRIES IS

Initially

£

(Q,

Final distribution

Vo=

@+k(7Ql)+k(Ql+Q2)

a

L L

)

Vi, =
e L

{Refer Section3.3)

kQ | k(=Q) |, k(Q+Q)

)

7. CASES OF EARTHING A CONDUCTOR

L Firstly do charge distribution before earthing.
2 After charge distribution, assume some ‘X’ charge flown to
ground (after earthing).

Do re-distribution of charge.

4 Take a point on the conductor (which is earthed) & do net
potential of it equals 0. Calculate x.

Charge is flown from outer surface because as long as Q
remainsoninner shell, *~Q,” will be induced on inner shell.

&

Q,

tQ+Q

Net charge should be
conserved (isolated systern)




:k(Ql_X)+k(—(Ql _X))+k(Q1+Q2—X) Final charges

V, =0

f g g @ 1Q)n Q1+ Qo)
1 +15 Iy she oy
Q1_X_(Q1_X)+Q1+Q2_X:0 e
5 I I
Q. s X o &,
= ¥ £ r X=Q r Final common potential =k QrQ ;
1 2 1 2 rl + rg
Nots.. /
As it can be seen not all charge on the surface flows to ‘Q
ground. When the outermost conductor is earthed then
the charge residing on the outermost surface of outer Q
conductor will flow to ground.
V.=V,
8. CONNECTION OF CHARGED CONDUCTORS v o 8Q-x) k-(Q-x) k(Q+Q,)
! 5 L I
Steps
k{(Q-x) k—(Q -x) k{(Q +Q
L Do charge distribution before connection. = Ve = ( ; )+ (rl )+ ( 11_ 2)
2 2 2
2 Assume “x’ charge flows from one conductor to another. V. =v
3 Do redistribution of charges. 2
; : k(Q -x) k(Q -x) 1 1
4, Equate net potential of conductor (1) equal tonet potential | — = = (Q-x)|=—=|=0
5 2 L 5
of conductor (2).
= x=0Q
J J This indicates that all the charge on shell (1) will flow to
Q Q shell (2).

0 e 9. SELF ENERGY OF CHARGED SPHERE

Consider auniformly charged sphere of radius R having a

Assumption : Distance between them is very large. total charge Q. The electric potential energy of this sphere
is equal to the work done in bringing the charges from
i 0 T infinity to assemble the sphere.

a k(Ql_X):k(Q2+X): Qr, —Qy1

x=—tt =1

5 5] L+




10. ENERGY DENSITY

The energy stored per unit volume around a point in an

: i U 1 3
electric field is givenby u, = —— = —EDE2 .Ifinplace
Volume 2

of vacuum some medium of dielectric constant K is present

then u, = —KEOE2 ‘

11. PLATE THEORY

IMH

11.1 Charged Conducting Plate

2
Net Flux = & BT (cylindrical Gaussian surface)
= &
2
G
Emr’ =
g
-~y O
+
Conductor + .
E=0 / PROER
+
)
E=—
&

Net electric field at point P, near a conducting surface,
. .o’ is given by [0/g,].

11.2 Parallel Plate Theory

To find charge distribution on each surface of plates
L 2

1) @)

7

Conductor Conductor

Two conducting plates having area ‘A’ (area is large as
compared to distance, so that field is uniform) and the
thickness of plates is small so that charge only appears on
parallel faces.

lQl le
(Q,-q) 1.4 b4 (Q,-x%)
+ [+ + +
+ (1)5 + + @ +
+ |+ + +
+ ; + + +
\—) Gaussian surface

Since the field lines are parallel, the net flux through the
gaussian surface will be zero, surface (1) & (2) be inside the
material of the conductor.

Hence it can be said that net charge enclosed will be zero
which implies the charges appearing on the facing surfaces
are equal & opposite to each other.

1 Q2
Q-9 i +q —q l (Q,+qg
+//+ -//+
+ + B +
4 / P ol / + @
H o [ M

Net electric field at any point “P* or “R’ has tobe zero.
(Enet P =0

There are 4 distributions, the net field at P should be zero.

@)= ()220 ) (B, =5

Q2+
() (E) =22

= ‘(EP)1‘+‘(EP)3‘:‘(EP)2‘+‘(EP )4‘

(B), =

This shows Ql_q+ . | +Q2 4
2Ag, 2Ag, 2Ag, 2Ag,
q= % gso final distributions would be
(A-%) (9
2 J - 2 s

kS

Q]‘*’Qg\] \ \ rQ]"’Qf_},\]

nopgn

/ /

+| o+ -+




sl

When charged conducting plates are placed parallel to
each other, the two outermost surfaces get equal charges
and the facing surfaces get equal and opposite charges.

11.3 Force on a charged conductor

To find force on a charged conductor {due to repulsion of
like charges) imagine a small part XY to be cut and just
separated {rom the rest of the conductor MLLN. The field in
the cavity due to the rest of the conductor is E,, while field
due to small part is E,. Then

Inside the conductor

. fEZ:O()rE]:E2
Outside the conductor E:E1+E2:E. Thus,
€y
c
B =F. =
1 2 280

To find force, imagine charged part XY (having charge
adA placed in the cavity MIN having field E ). Thus force

GZ

dF =(cdA)E, or dF = 5

dA . The force per unit area or
8O

dF  o°
electric pressure is P= aA 2e, - (Electrostatic pressure)

The force is always outwards as (+ o)° is positive ie.,
whether charged positively or negatively, this force will
try to expand the charged body.

A soap bubble or rubber balloon expands on given charge
to it {charge of any kind + or ).

CAPACITORS

1. CAPACITANCE

1.1 Definition

We know that charge given to a conductor increases it’s potential
ie, QucV =Q=CV

Where C is a proportionality constant, called capacity or
capacitance of conductor. Hence capacitance is the ability
of conductor to hold the charge (and associated electrical

energy).

1.2 Unit and dimensional formula

Coulomb

5.1 unit is =Farad (F)

Smaller 5.1. units are mF, uF, nF and pF

(ImF =107F, IuF =10°F, InF =10F, 1pF =10 F)

C.G.S. unit 1s Stat Farad. 1F = 9x 10" Stat Farad.

Dimension : [C]=[MTL=2T*A%].

2. CAPACITOR

2.1 Definition

A capacitor 1s a device that stores electric energy. It is also
named condenser.

or

A capacitor is a pair of two conductors of any shape, which
are close to each other and have equal and opposite charge.

/] -9/

V+++++
1
N\




2.2 Symbol

The symbol of capacitor are shown below

||
or
1

4
I\

2.3 Capacitance

The capacitance of a capacitor is defined as the magnitude
of the charge O on the positive plate divided by the
magnitude of the potential difference I” between the plates
e, C=Q/NV

/f%../

Capacitance ofa capacitor is constant for the given

dimensions & medium.

2.4 Charge on capacitor

Net charge on a capacitor is always zero, but when we speak
of the charge Q on a capacitor, we are referring to the
magnitude of the charge on each plate.

2.5 Energy stored

When a capacitor is charged by a voltage source (say
battery) it stores the electric energy.

Energy density = e L g,E*.
vol. 2

If C = Capacitance of capacitor; ¢ = Charge on
capacitor and ¥ = Potential difference across capacitor

2
then energy stored in capacitor J = %CVZ = 1 Qv Q

3% e
Jfé},../

In charging capacitor by battery half the energy
supplied 1s stored in the capacitor and remaining
half energy (1/2 OF) is lost in the form of heat.

2.6 Types of capacitors

Capacitors are of mainly three types as described in given
table :

Parallel Plate Capacitor

Spherical Capacitor

Cylindrical Capacitor

It consists of two parallel metallic
plates (may be circular, rectangular,

square) separated by a small distance

A=areaof plate

QQ = Magnitude of charge

It consists of two concentric conducting
spheres of radii @ and b (a@ <5). Inner
sphere is given charge +(J, while outer

sphere is given charge —Q [by battery]

It consists of two concentric cylinders

of radii @ and b (@ <b), inner cylinder is
given charge +( while outer cylinder is
given charge —Q. Common length of the

cylinders is [ then

|




gpA

Capacitance: C= 7

o =Surface charge density
V=Fotatial differare
E=Electric field between the plates
the plates (=o/g)

In the presence of dielectric

KﬁoA

between plates C= 1

ab
b-a

Capacitance C=4mz,

ab

—a

nCGS. C=

In the presence of dielectric
medium (dielectric constant K)

between the spheres

ab
b-a

C'=4ng K

2 £
é’n[k]
a

In the presence of dielectric medium

(Capacitance ' =

(dielectric constant K) capacitance

increases by K times and

_ 2ng K4

;)

CH’

2.7 Capacity of anisolated spherical conductor

When charge  is given to a spherical conductor of radius
R, then potential at the surface of sphere is

3. PROPERTIES OF AN IDEAL BATTERY

(a) A battery has two terminals.

Hence it’s capacity C = % =4reg,R

1
9%10°
inC.G8.C=R

= C=4ngR = R

2.8 Forcebetween the Plates of a Parallel Plate Capacitor

Field due to charge on one plate on the other is E = i,

hence the force F = QE

2z,

|

A Air

—
| t
| | |

g

02
F=-0Ax| — |=——A >|F|=
2g)

2z, 2g,

c’A

2g,A

(b)

©

(d

(©

The potential difference V between the terminals is
constant for a given battery. The terminal with higher
potential is called the positive terminal and that with
lower potential is called the negative terminal.

The value of this fixed potential difference is equal to
the electromotive force or emf of the battery. If a
conductor is connected to a tenminal of a battery, the
potential of the conductor becomes equal to the
potential of the terminal. When the two plates of a
capacitor are connected to the terminals of a battery,
the potential difference between the plates of the
capacitor becomes equal to the emf of the battery.

The total charge in a battery always remains zero. If
its positive terminal supplies a charge Q, its negative
terminal supplies an equal, negative charge —Q).

When a charge Q passes through a battery of emf £
from the negative terminal to the positive terminal,
an amount Qg of work is done by the battery.

An ideal battery is represented by the symbol shown
in figure. The potential difference between the facing
parallel lines is equal to the emf £ of the battery. The
longer line is at the higher potential.

=
L

£




4. GROUPING OF CAPACITORS

4.1  Series grouping

4.2 Parallel grouping

{1y  Charge on each capacitor remains same and equals

to the main charge supplied by the battery

5 et s
Q- 09 Qo Q

+ + = +
+ |+ = I+
- I -l ;
Q I+ - + - +

-

V=V A+ AT, — Vb . P ;P
+| :—
vl
. . 1 11 1
{2y  Equivalent capacitance —=—+—+—
eq Cl CZ C3

(3)  If two capacitors having capacitances C, and C, are

connected in series then

Y = v and = Sy
C+C, C,+C,

{4y  If nidentical capacitors each having capacitances C

are connected in series with supply voltage I~ then

Equivalent capacitance Cy = & and Potential
n

. ; hY
difference across each capacitor v/ = .

/fffo../
»

Two capacitors are in series when charge leaving
one capacitor directly enters into another capacitor,
undivided and undisturbed.

In series combination equivalent capacitance is always
lesser than that of either of the individual capacitors.

(1)  Potential difference across each capacitor remains

same and equal to the applied potential difference

of
++++Lp ++++@
TR
w’\y

Q=0,+0,+0. AQ QNS

B

@ €. FEeHs

(3 Iftwo capacitors having capacitance C, and C,

respectively are connected in parallel then

Q=== = _|.q
blc+q, C +C,

}.Q and Q, [

{4y  Ifnidentical capacitors are connected in parallel

Equivalent capacitance Ceq = nC and Charge on each

Q

capacitor Q" =—.
n

/fffo../

* Two capacitors are in parallel when their positive
plates are connected and negative plates are also
connected with each other

* In parallel combination, equivalent capacitance is
always greater than the individual capacitance.




5. SIMPLE CIRCUITS {SERIES & PARALLEL)

Suppose equivalent capacitance is to be determined in the following networks between points A and B

3x6 R
........ i ¥ X8 5 g Con = 243=5pF
/\ o /\ s M 2 rj u
Y l#‘ I" i % u &
3'ubi jﬁllF e " 6pF; “: x
3 B-

=
J
r 3
!
/f:/\
L}
\

r o - : 7 1
' : ] A 5 3 F': !
A 3“1‘1 B ‘ A 3“1—; B H ? “‘ "r !
H ! ] Ti 44
LI ____‘I I,_ H 1rF
6uF
I
-
L 3uF | [—
(ii) GiFs ok = 6uF "
T .
A 2pF B
e Ny g Scrics
9uF 9uF 9uF ' | 9uF 9uF P9uF M : i 9uF 9uF
Ae—| 11 11 E Ad>] " “‘ E
I J_ 11 J_ 1 J_ = A : f I 5 1“ +E
(i) _I_ 6uF _|_ 6uF _|_ R 6uF _|, 6,LLF_|_ doour ;ii-__%p}: =
Be—| T 1 i Be—| I i >—<—T :
9uF 9uF 9uF E ______ i 9uF 9uF :.?;.IF ‘_,‘ i ______ i o9pF 9uF Parallel

.

By Similar process C., = 3uF <




6. DIELECTRIC

Dielectrics are insulating (non-c onducting) materials which
transmits electric effect without conducting. We know that
in every atom, there is a positively charged nucleus and a
negatively charged electron cloud surrounding it. The two
oppositely charged regions have their own centres of charge.
The centre of positive charge is the centre of mass of
positively charged protons in the nucleus. The centre of
negative charge is the centre of mass of negatively charged
electrons in the atoms/molecules.

6.1 Polarization of a dielectric slab

It is the process of inducing equal and opposite charges on
the two faces of the dielectric on the application of electric
field.

—_—>
OO
oo
€D
SIS
€EDED

+++ A+ F

Suppose a dielectric slab is inserted between the plates of a
capacitor. As shown in the figure.

Induced electric field inside the dielectric is E, hence this
induced electric field decreases themainfieldEtoE-E ie.,
New electric field between the plates willbe E_=E-E,

6.2 Dielectric constant

After placing a dielectric slab in an electric field. The net
field is decreased in that region hence

IfE = Original electric field and E_ =Net electric field. Then

E. =K where K is called dielectric constant K is also

Enet
known as relative permittivity (¢,) of the material.

The value of K is always greater than one. For vacuum there
isnopolarization andhence E=E’ and K=1

6.3 Dielectricbreakdown and dielectric strength

If avery high electric field is created in a dielectric, the outer
electrons may get detached from their parent atoms. The
dielectric then behaves like a conductor. This phenomenon
is known as dielectric hreakdown.

The maximum value of electric field (or potential gradient)
that a dielectric material can tolerate without it’s electric
breakdown is called it’s dielectric strength.

S.I. unit of dielectric strength of'a material is V/mbut practical
unit is kV/mm.

6.4 Variation of Different Variables ((), C, V, E and U)
of Parallel Plate Capacitor

Suppose we have an air filled charged parallel plate capacitor
having variables as follows :

Charge : Q,
Surface charge density : 6 = % ,
A
Capacitance : C= DT
_ +Q A
F Y +
W y
5 _
A : Alr —
i 2
+
x| Af - i
—d ——>
I
3

Potential difference across the plates : V=E. d

Electric field between the plates : E= LW N

g, Ag

ol Q1
Energy stored : U==CV* == =_QV
2 26 2



Quantity Battery is Removed Battery Remains connected
A
A
¥
X d
— d — I
1%
Capacity . '=KC C'=KC
Charge Q'=Q (Charge is conserved) Q'=KQ
Potential V'=V/K V'=V (Since Battery maintains
the potential difference)
Intensity E'=FEK E'=E
Energy U'=uUK U'=KU

s A

If nothing is said it is to be assumed that battery

is disconnected.

7. VAN DE GRAFF ELECTROSTATIC GENERATOR

supported at a suitable height (of several metres above
the ground) over the insulating pillarsp,, p,. A long narrow
belt of insulating material like, silk, rubber or rayon is
wrapped around two pulleys P and P.. P, is at the ground
level and P, is at the centre of S. The belt is kept moving
continuously over the pulleys with the help of a motor
(not shown). B, and B, are two sharply pointed metal
combs fixed as shown. B, is called the spray comb and B,
is called the collecting comb.

A van de graff generator is a device used for building up
high potential differences of the order of a few million
volts. Such high potential differences are used to accelerate
charged particles like electrons, protons, ions etc. needed
for various experiments of Nuclear Physics.

It was desighned by Van de graff in the year 1931.
Principle : This generator is based on

(i) the action of sharp points, i.e., the phenomenon of
corona discharge.

(i) the property that charge given to a hollow conductor
is transferred to outer surface and is distributed
uniformly over it.

Construction : The essential parts of Van de graff generator
are shown in fig. 8 is large spherical conducting shell of
radius equal to a few meters. This is supported by a
conducting shell of radius equal to a few metres. This is

= [ TITARGET ~



The positive ions to be accelerated are produced in a
discharge tube D. The ion source lies at the head of the
tube inside the spherical shell. The other end of the tube
carrying the target nucleus is earthed.

The generator is enclosed in a steel chamber C filled with
nitrogen or methane at high pressure in order to minimise
leakage in a steel spherical conductor.

Working : The spray comb is given a positive potential
& 10" volt) w.rt. the earth by high tension source H.T. Due
to discharging action of sharp points, a positively charged
electric wind is set up, which sprays positive charge on
the belt (corona discharge). As the belt moves, and reaches
the comb., a negative charge is induced on the sharp ends
of collecting comb B, and an equal positive charge is
induced on the farther end of B,. This positive charge
shifts immediately to the outer surface of S. Due to
discharging action of sharp points of B,, a negatively
charged electric wind is set up. This neutralises the positive
charge on the belt. The uncharged belt returns down,
collects the positive charge from B,, which in turn is
collected by B,. Thisis repeated. Thus, the postive charge

on S goes on accumulating,

Now, the capacity of spherical shell c =4 m e R, where Ris
radius of the shell.

Qe R
As V= = dney R
Hence the potential V of the spherical shell goes on
increasing with increase in Q).

The breakdown field of air is about 3 x 10° V/m. The
moment the potential of spherical shell exceeds this value,
air around S 1s 1omsed and leakage of charge starts. The
leakage is minimised by housing the generator assembly
nside a steel chamber filled with nitrogen or methane at
high pressures.

If q 1s the charge on the 1on to be accelerated and V is the
potential difference developed across the ends of the
discharge tube, then energy acquired by the ions = gV,
The ions hit the target with this energy and carry out the
artificial transmutation etc.

8. COMBINATION OF DROPS

(i)

(iii)

()

®

Suppose we have » identical drops each having — Radius
—r, Capacitance —c¢, Charge — g, Potential — v and Energy

—u

If these drops are combined to form a big drop of -
Radius — R, Capacitance — C, Charge — Q, Potential — V
and Energy — U then —

Charge onbig drop:

Q=nq

Radius of big drop : Volume of big drop =7 x volume of a
single drop i.e.,

i1tR3 :nxinrs, R=n’r
3 3

Capacitance of big drop:
C=n'""c
Potential of big drop:

T~ s

Q_nq
C n'c

2/3
V=n"v

Energy of bigdrop: 1] = lcvz _ l(nmc)(nmv)z
2 2

# [t is a very common misconception that a capacitor
stores charge but actually a capacitor stores electric

energy in the electrostatic field between the plates.

# Two plates of unequal area can also form a capacitor

because effective overlapping area is considered.



¥ Capacitance of a parallel plate capacitor depends
upon the effective overlapping area of plates

(C e A), separation between the plates (C «c1/d)

and dielectric medium filled between the plates.
While it is independent of charge given, potential
raised or nature of metals and thickness of plates.

# The distance between the plates is kept small to
avoid fringing or edge effect (non-uniformity of the
field) at the bounderies of the plates.

# Spherical conductor is equivalent to a spherical
capacitor with it’s outer sphere of infinite radius.

¥ A spherical capacitor behaves as a parallel plate
capacitor if it’s spherical surfaces have large radii
and are close to each other.

¥ The intensity of electric field between the plates of a
parallel plate capacitor (E = o/g) does not depends
upon the distance between them.

#* Radial and non-uniform electric field exists between

the spherical surfaces of spherical capacitor.

9. CHARGE DISTRIBUTION METHOD

(Circuit Solving method)

Sometimes it may not be easy to find the equivalent
capacitance of a combination using the equations for
series-parallel combinations. We may then use the general
method as follows :

Step 1:

Identify the two points between which the equivalent
capacitance is to be calculated. Call any one of thermn as A
and the other as B.

Step2:
Connect (mentally) a battery between A and B with the
positive terminal connected to A and the negative terminal

to B. Send a charge +Q from the positive terminal of the
battery and —Q from the negative terminal of the battery.

Step 3:
Write the charges appearing on each of the plates of the
capacitors. The charge conservation principle may be used.
The facing surfaces of a capacitor will always have equal
and opposite charges. Assume variables Q,, Q, ..... etc. for
charges wherever needed. Mark the polarity across each

circuit element corresponding to higher (+) & lower (-)
potential ends.

Step 4 :
The algebraic sum of all the potential differences along a
closed loop in a circuit is zero.

While using this rule, one starts from a point on the loop
and goes along the loop, either clockwise or anticlockwise,
to reach the same point again. Any potential difference
encountered (firom —ve to +ve) is taken to be positive and
any potential drop (from +veto —ve) is taken to be negative.

The net sum of all these potential differences should be
Zero.

The loop lawfollows directly from the fact that electrostatic
force is a conservative force and the work done by it in
any closed path is zero.

Step 5:
Number of variables Q,, Q,, etc. must be the same as the
number of equations obtained (loop equation). The

equivalent capacitance Coy = % , where V is the potential

difference across the assumed battery terminals.

10. WHEATSTONE BRIDGE BASED CIRCUIT

If in a network five capacitors are arranged as shown in
following figure, the network is called wheatstone bridge

oo 5 c, C ;
type circuit. If it is balanced then —-=—= hence C. is
2 4

removed and equivalent capacitance between A and B

@ c,

=n

0—] —-eo

=
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11. EXTENDED WHEATSTONE BRIDGE

The given figure consists of two wheatstone bridge connected
together. One bridge is commected between points AEGHFA
and the other is connected between points EGBHFE.

This problem is known as extended wheatstone bridge problem,
it has two branches EF and GH to the left and right of which
symmetry in the ratio of capacities can be seen.

It can be seen that ratio of capacitances in branches AE
and EG is same as that between the capacitances of the
branches AF and FH. Thus, in the bridge AEGHFA,; the

branch EF canberemoved. Similarly in the bridge EGBHFE
branch GH can be removed

C C C
Il L I G 11
I ] 11
o (2 o —0
A B
| | { | {}
C 4 C i .
5] 4 1 - Q
11 L& 11 G 11
11 11 11
= A —0
A B
{} { } i}
(& 5 . o C
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CAB_
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12. INFINITE NETWORK OF CAPACITORS

@

(i)

Suppose the effective capacitance between A and B is C.
Since the network is infinite, even if we remove one pair of
capacitors fromthe chain, remaining network would still have
infinite pair of capacitors, i.e., effective capacitance between
X andY would also be C,

X
AQ 1} — | il
&, & &
Cirms Cim tons =
RO i il il
g
C X
AT i | B Parallel
i L T o
B O B<
v
& T ' |8 “‘x,\\ / Serics
— ey, SEHGL
[ P
B

Hence equivalent capacitance between.4 and B
— Cl (CQ +CR) =
C+C +Cy

C C
Cop =—=| JI1+4=L | -1
2 ¢

For what value of C; inthe circuit shown below will the net
effective capacitance between A and B be independent of
the number of sections in the chain

AR |8

%] e e & .
1 |
i 1

1l .

Parallel

,.,
“d
ge——>p

B D

Suppose there are n sections between A and B and the



network is termmated by C, with equivalent capacitance €, x(C, +C,)
C,. Now if we add one more sections to the network | Hence ¢, = — "2 ~0/
between D and C (as shown in the following figure), the C+C+ G

equivalent capacitance of the network C_ will be

independent of number of sections if the capacitance | simplification C, = C, { [1 " 4&}1]

=ICE $1C,C,—CC, =0

between D and C still remains C ie., 2 5

13. CIRCUITS WITH EXTRA WIRE {(PLATE NUMBERING METHOD}

If there is no capacitor in any branch of a network then every point of this branch will be at same potential. Suppose equivalent
capacitance is to be determine in following cases
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No p.d. across vertical branch so 1t is removed
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:C: A = L B c+c=2cC +|....-.+.| —
C
Hence equivalent capacitance between A and B is 5C/3.
ml{ Series {;;:}WParallel
&L e j i 2 0238
20xC _2¢ / 3 =73
DTk T
B
F 3
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) [ puin
(v) N T .. .... APB, the points A, P and B are electrically same i.e., the input and output points are

directly connected (short circuited).

C C

Il Il

1 1

A J_ B
o— C-l- —0
P

Thus, entire charge will prefer to flow along path.4.PB. It means that the capacitors connected in the circuit will not receive any
charge for storing. Thus equivalent capacitance of this circuit is zero.

14, USING SYMMETRY BETWEEN TWO POINTS
1

Symmetry is always defined between 2 points.

Equivalent (symmetric) paths have same number, value

and order of circuit elements along it.

This technique makes the circuit easy to comprehend.

When two or more paths in any network are equivalent,
then charges flowing through those paths will be same.
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Between A & B, paths (1) & (3) are symmetric = q, =q,
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Paths (1) & (3) are symmetric between A & B thus equal
charge will flow in them.
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sarme as is on the other end.

If the combination of elements in the network is symmetric w.r.t. battery ends, then the distribution of charge at one end will be
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15. BATTERY SUPERPOSITION METHOD Combined effect
In a circuit involving multiple batteries, the charge flowing LuF SV
- " =
will be the superposition effect of each battery. uF
(I AY l
u 5 C ‘
— —— L0pC 10pC" "2k
11 i "
2WF 1 0 10uC
<p IuF 10V p
l1
1L
Y /
Fffect of 10V battery Aote..
When more than 2 batteries are present, take individual
Lo effect of battery, assuming other batteries absent. And
WF ,Tuc], then superimpose to get total effect.
= I
bt e 16. DIELECTRIC
{1 —
10V a 16.1 Series and Parallel (with dielectrics)
Effect of SV battery
(a) When dielectricis partially filled between the plates
4uC 5V
5 — If a dielectric slab ofthickness t (t < d) is inserted between
ZIFI“‘ [uE 1 4uc the plates as shown below, then E = Main electric field
a 2;1 . {— between the plates, E=1Induced electric field in dielectric.
bl 2 ‘ 2 ] r ' } <
2nc ik E = (E - E) = The reduced value of electric field in the
dielectric. Potential difference between the two plates of
2uc 2uc capacitor is given by
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Now capacitance of the capacitor
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(b) When a metallic slab is inserted between the plates
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"= w0 (Inthis case capacitor is said to be short circuited)

(c) Advance case of compound dielectrics

If several dielectric medium filled between the plates of a
parallel plate capacitor in different ways as shown.

The system can be assumed tobe made up of two capacitors
C, and C, which may be said to connected in series
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In this case these two capacitors are in parallel and
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o= K,gA o = K,g A
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Hence, ¢, =C,+C, = C :[K1+K2]ﬁ
B e 2 d

K, +K,

Also K, =



In this case C, and C, are in series while this combination
is in parallel with C,
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16.2 When separation between the plates is changing

KIEDAXKQEDA
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If separation between the plates changes then it’s capacitance also changes according to ¢ « % . The effect on other variables

depends on the fact that whether the charged capacitor is disconnected from the battery or battery is still connected.

(i) Separation is increasing

Quantity Battery isremoved

Battery remains connected

— = —

—'—n
\
Capacity Decreases because C o % ie, C'<C Decreases ie., C'<C
Charge Remains constant because a battery Decreases because battery is present i.e.,, Q"< Q
isnot presenti.e, Q'=0Q Remaining charge (Q — Q) goes back to thd
battery.
Potential difference Increases because v = Q =V 1 ie, V>V V'=V (Since Battery maintains the p otential
C C
difference)
Electric field Retnains constant because E=— - ie,E=E Decreasebecause E = 2 = ExQie,E<E
& Af Ag,
2
Energy Increases because U:Q_ — Uocl ie,U=U Decreases because U:%CV2 =>U«cCie,U<U]
2C

—d'—




(ii) Separationis decreasing

Quantity Batteryisremoved Battery remains connected
Capacity Increases because ¢« 1 ie, O'>C Increases ie., C'=>C

d
Charge Remains constant because battery is Increases because battery is present ie., Q"> Q

not presenti.e, Q'=0Q Remaining charge (Q" — Q) supplied from the

battery.
Potential difference Decreases because V= Q => vV wt ie, V<V | V' =V (Since Battery maintains the potential

C C

difference)
Electric field Remains constant because E = — = A% ie,E'=E Increasesbecause F = R = ExQie,E>E
g A
Q? I . - ;

Energy DemeasesbecauseU:E s UOCE ieU<U InmezsesbecauseU:ECV >U«xCie,U=U

16.3 Force on dielectric

When dielectric is placed near the charged capacitor
(rectangular plates), it experiences force towards the
capacitor, due to fringing field just outside the plates.
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Fringing
field

(a) Battery connected (V remains same)

2 ol
F= 1 %b%(Kl) (towards capacitor)
2

sl

E Force doesn’t depend on the amount of dielectric
inside the plates.

% Force becomes zero when Dielectric is in middle
of plates.

(b) Battery disconnected ({) remains same)

E—X X @b

-
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B Q*d(K 1)
26,b (£ +x(K 1))’

s A

Force depends on x (amount of dielectric inside the
capacitor plates).




17. REDISTRIBUTION OF CHARGE BETWEEN

TWO CAPACITORS

When a charged capacitor is connected across an
uncharged capacitor, then redistribution of charge occur
to equalize the potential difference across each capacitor.
Some energy is also wasted in the form of heat.

Suppose we have two charged capacitors C, and C, after
disconnecting these two from their respective batteries.
These two capacitors are connected to each other as shown
below (positive plate of one capacitor is connected to
positive plate of other while negative plate of one is
connected to negative plate of other)
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Charge on capacitors redistributed and new charge on

. C C
themwillbe Q', =Q l_| Q' = 2
! {CﬁCJ Q’ Q{CIJrC2

The commonpotential V = Q4+Q GV TGV, and loss
C +C, C +C,

(V- v,)

GG,

of enerey AU=——172
TR

s A

Two capacitors of capacitances C, and C, are charged to

potential of V, and V, respectively. After disconnecting

from batteries they are again connected to each other

with reverse polarity i.e., positive plate of a capacitor

connected to negative plate of other. So common
Q1 _Qz C1V1 _szz

potential V = =
C,+C, C +C,






