Practice Questions SESSION: 2022-23 Class: XII

Subject: CHEMISTRY (043)

Maximum marks: 70 Time Allowed: 3 hours

General instructions:

Read the following instructions carefully.

- a) There are 35 questions in this question paper with internal choice.
- b) SECTION A consists of 18 multiple-choice questions carrying 1 mark each.
- c) SECTION B consists of 7 very short answer questions carrying 2 marks each.
- d) SECTION C consists of 5 short answer questions carrying 3 marks each.
- e) SECTION D consists of 2 long answer questions carrying 4 marks each.
- f) SECTION E consists of 3 long answer questions carrying 5 marks each.
- g) All questions are compulsory.
- h) Use of log tables and calculators is not allowed

Q. No	Question	Marks
110	SECTION A	
	The following questions are multiple-choice questions with one correct answer. Each	
	question carries 1 mark. There is no internal choice in this section.	
Q.1	De-icing is the process of removing snow, ice or frost from a surface. In extremely cold regions, car windows get covered by ice reducing the visibility. The image below shows the de-icing of the window of a car during extreme cold using a fluid.	1
	Which of the following compounds could be present in the do icing fluid used above?	
	Which of the following compounds could be present in the de-icing fluid used above? A. formaldehyde B. phenol C. propan-2-ol D. acetic acid	
Q.2	Which of the following reaction mechanism is not involved in the given reaction sequence?	1

CH₂CH₂CH₃ (CH₃)₂CHCI (CH₃)₂CHCN

(CH₃)₂CHCH₂NHCOCH₃ ← (CH₃)₂CHCH₂NH₂

- A. free-radical substitution
- B. nucleophilic substitution
- C. elimination
- D. nucleophilic addition-elimination
- Q.3 The graph below shows the observed standard electrode potential of some transition elements.

Which of the following reactions can be predicted based on the graph above?

A.
$$Cu + 2 H_2SO_4 --> CuSO_4 + SO_2 + 2 H_2O$$

B.
$$Cu + 2 HNO_3 --> Cu(NO_3)_2 + H_2$$

C.
$$CuO + 2 HCl \longrightarrow CuCl_2 + H_2O$$

D.
$$Cu^{2+} + 2 \text{ NaOH} \longrightarrow Cu(OH)_2 + 2 \text{ Na}^+$$

Q.4 Kamlesh was conducting an experiment to figure out the rate equation of the following reaction:

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

He measured the rate of this reaction as a function of initial concentrations of the reactants as follows:

Experiment Number	Initial [NO]	Initial [O ₂]	Initial rate of formation of No ₂
1	0.2	0.2	0.074
2	0.2	0.4	0.15
3	0.4	0.2	0.29
4	0.4	0.4	0.20

Which of the following could be a reason for the inconsistency in the initial rate of formation of NO₂ data for experiment 4?

- A. The rate of reaction does not depend on the concentration of the reactants.
- B. Higher concentration of O₂ could have resulted in slowing down the rate of reaction.
- C. Higher concentration of NO could have resulted in slowing down the rate of reaction.
- D. The temperature of the reactants in experiment 4 could have been different than for the other experiments.
- Q.5 The image below shows electrolysis of an electrolyte using a DC voltage source.

Based on this, Which of the following statements is/are correct?

- (i) The solution remains electrically neutral during electrolysis.
- (ii) Electrons flow from the current source towards the solution at one electrode, and an equal number of electrons flow away from the solution at the other electrode.
- (iii) The number of positive ions moving towards one electrode is always equal to the number of negative ions moving towards the other electrode.
 - A. i only
 - B. i and ii only
 - C. ii and iii only
 - D. all-i, ii, and iii

1

	T			1					
ertain reaction	$1 X, rate = 0.7 Z_{AB} e^{-E_A/RT}.$								
en that for and	other reaction, Y, rate = Z_{AB6}	e ^{-E} A ^{/RT} .							
Based on the above, what can be said about reactions X and Y?									
A. Both the reactions involve complex molecules.									
B. Both the reactions involve simple molecules or atomic species.									
<u> </u>									
		while reaction Y invol	ves simple						
al ion M ⁿ⁺ formate ligand.	ms a complex ion of formula	[ML ₂] ⁽ⁿ⁻⁴⁾⁺ where L re	presents a	1					
of the following	ing could be the charge on the	ne ligand L?							
-2									
+2									
The image below shows different benzene derivates that give mononitration product at									
Compound	Main products of mononitration	Rate of nitration relative	—						
methylbenzene	CH2 CH2	TO SERVICE AND SER	_						
CH ₃	NO ₂ NO ₂	, , , , , , , , , , , , , , , , , , , ,							
phenol OH	OH NO ₂ OH NO ₂	Slower							
nitrobenzene NO ₂	NO ₂	Faster	_						
benzoic acid COOH	COOH	Slower	-						
	Both the reach Both the reach Both the reach Both the reach Reaction X in involves community and involves communit	Both the reactions involve complex mole Both the reactions involve simple molecules Reaction X involves simple molecules or involves complex molecules. Reaction X involves complex molecules, molecules or atomic species. All ion M ⁿ⁺ forms a complex ion of formula ate ligand. of the following could be the charge on the compound manual and para positions along with the rate and para positions along with the rate and para positions along with the rate of the compound methylbenzene CH ₃ CH ₃ NO ₂ CH ₃ NO ₂ phenol OH NO ₂ OH NO ₂	Both the reactions involve complex molecules. Both the reactions involve simple molecules or atomic species. Reaction X involves simple molecules or atomic species, while rinvolves complex molecules. Reaction X involves complex molecules, while reaction Y involves complex molecules or atomic species. It in the forms a complex ion of formula [ML2] ⁽ⁿ⁻⁴⁾⁺ where L reacted ligand. In the following could be the charge on the ligand L? -2 -1 0 +2 -1 0 +2 -1 0 -1 0 -1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Both the reactions involve complex molecules. Both the reactions involve simple molecules or atomic species. Reaction X involves simple molecules or atomic species, while reaction Y involves complex molecules. Reaction X involves complex molecules, while reaction Y involves simple molecules or atomic species. Reaction X involves complex molecules, while reaction Y involves simple molecules or atomic species. If ion M ⁿ⁺ forms a complex ion of formula [ML ₂] ⁽ⁿ⁻⁴⁾⁺ where L represents a telligand. of the following could be the charge on the ligand L? -2 -1 0 +2 -1 0 +2 large below shows different benzene derivates that give mononitration product at meta and para positions along with the rate of nitration relative to benzene. Compound Main products of mononitration Rate of nitration relative to benzene					

Which of the following rows correctly represents the oxidation state of cobalt in these compounds? Rows [Co(NH3)sCl]SO4 [Co(NH3)sSO4]Cl A		B. C.	only B only C only B and C only C and D						
(According to the Arrhenius equation, rate constant is given by, k = Ae ^{-E_a/RT} .) A. the order of the reaction B. the activation energy of the reaction C. the initial concentration of the reactants D. [No extra information is needed. A can be calculated with the information available] Q.10 The compound [Co(NH ₃) ₅ Cl]SO ₄ is isomeric with the compound [Co(NH ₃) ₅ SO ₄]Cl. Which of the following rows correctly represents the oxidation state of cobalt in these compounds? Rows [Co(NH ₃) ₅ Cl]SO ₄ [Co(NH ₃) ₅ SO ₄]Cl A +2									
A. the order of the reaction B. the activation energy of the reaction C. the initial concentration of the reactants D. [No extra information is needed. A can be calculated with the information available] Q.10 The compound [Co(NH ₃) ₅ Cl]SO ₄ is isomeric with the compound [Co(NH ₃) ₅ SO ₄]Cl. Which of the following rows correctly represents the oxidation state of cobalt in these compounds? Rows [Co(NH ₃) ₅ Cl]SO ₄ [Co(NH ₃) ₅ SO ₄]Cl A +2 +3 B +3 +2 C +2 +1 D +3 +3 A. A B. B C. C D. D		What e	xtra piece of inform	ation is needed to c	alculate the value of A (frequency factor)?				
B. the activation energy of the reaction C. the initial concentration of the reactants D. [No extra information is needed. A can be calculated with the information available] Q.10 The compound [Co(NH ₃) ₅ Cl]SO ₄ is isomeric with the compound [Co(NH ₃) ₅ SO ₄]Cl. Which of the following rows correctly represents the oxidation state of cobalt in these compounds? Rows [Co(NH ₃) ₅ Cl]SO ₄ [Co(NH ₃) ₅ SO ₄]Cl A +2		(Accore	ding to the Arrheniu	us equation, rate con	stant is given by, $k = Ae^{-E_a/RT}$.)				
Which of the following rows correctly represents the oxidation state of cobalt in these compounds? Rows [Co(NH3)sCl]SO4 [Co(NH3)sSO4]Cl A		B. C.	the activation energ the initial concentra [No extra informati	gy of the reaction ation of the reactants					
compounds? Rows [Co(NH3)5Cl]SO4 [Co(NH3)5SO4]Cl A +2 +3 B +3 +2 C +2 +1 D +3 +3 A. A B. B C. C D. D			•		-	1			
A +2 +3 B +3 +2 C +2 +1 D +3 +3 A. A B. B C. C D. D			_	vs correctly represe	nts the oxidation state of cobalt in these				
B +3 +2		Rows	[Co(NH ₃) ₅ Cl]SO ₄	[Co(NH3)5SO4]Cl					
C +2 +1 D +3 +3 A. A B. B C. C D. D		A	+2	+3					
D +3 +3 A. A B. B C. C D. D		В	+3	+2					
A. A B. B C. C D. D		С	+2	+1					
B. B C. C D. D		D	+3	+3					
Q.11 The image below shows an experimental setup to prepare an organic product X.		В. С.	B C						
	Q.11	The im	age below shows an	experimental setup	to prepare an organic product X.	1			

Which of the following could 'X' be?

- A. ethane
- B. ethene
- C. ethanoic acid
- D. diethyl ether
- Q.12 During protein synthesis in cells, amino acids condense (in the presence of enzymes) through the formation of the amide link (–CONH–), or peptide bond, to form a polypeptide chain, which then folds to form a biologically active protein.

The equation below shows the formation of a dipeptide, Ala-Gly, formed by condensation of the two amino acids, alanine and glycine in a test tube.

Which of the following statements is/are true for the above reaction?

- (i) A dipeptide Gly-Ala is equally likely to be formed by condensation of alanine and glycine.
- (ii) Water is eliminated in the above condensation reaction.
- (iii) Oxygen and hydrogen is released as gases in the above condensation reaction.
 - A. i only
 - B. i and ii only
 - C. ii and iii only
 - D. all-i,ii, and iii

1

Which of the following is the reason for the above?	
 A. The almost identical radii of the atoms. B. The elements belong to the same group. C. The elements belong to adjacent periods. D. The presence of the same number of unpaired electrons in both the elements. 	
Q.14 Which of the following would be among the products of the reactions between ammoni reacts with bromoethane?	a 1
(i) CH ₃ CH ₂ NH ₂ (ii) (CH ₃ CH ₂) ₂ NH (iii) (CH ₃ CH ₂) ₃ N (iv) (CH ₃ CH ₂) ₄ N ⁺ Br ⁻ A. only i B. only i and ii	
C. only i, ii, and iii D. all- i, ii, iii and iv	
Q.15 Given below are two statements labelled as Assertion (A) and Reason (R).	1
Assertion (A): Dimethyl amine has higher boiling point than trimethyl amine. Reason (R): The molecular mass of trimethyl amine is relatively higher than that of dimethyl amine.	
Select the most appropriate answer from the options given below:	
 A. Both A and R are true and R is the correct explanation of A. B. Both A and R are true but R is not the correct explanation of A. C. A is true but R is false. D. A is false but R is true. 	
Q.16 Given below are two statements labelled as Assertion (A) and Reason (R).	1
Assertion (A): A silver mirror can be created at the wall of a test tube using ethanal. Reason (R): Ethanal can react with Fehling's solution	
Select the most appropriate answer from the options given below:	
 A. Both A and R are true and R is the correct explanation of A. B. Both A and R are true but R is not the correct explanation of A. C. A is true but R is false. D. A is false but R is true. 	

O.17	Given below are two statements labelled as Assertion (A) and Reason (R).	1
		1
	Assertion (A): At a constant temperature, the dissociation constant of chloroethanoic acid will be higher than that of propanoic acid.	
	Reason (R): Higher the number of carbon atoms in a compound, lower will be	
	the dissociation constant.	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.	
	B. Both A and R are true but R is not the correct explanation of A.	
	C. A is true but R is false.D. A is false but R is true.	
	D. This faile but it is true.	
Q.18	Given below are two statements labelled as Assertion (A) and Reason (R).	1
	Assertion (A): At room temperature, propan-2-ol and 2-methylpropan-2-ol, when heated with acidified potassium dichromate, slowly turns the colour of orange dichromate to	
	green. Reason (R): Secondary and tertiary alcohols are readily oxidised to aldehydes which gets oxidised to acids.	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.	
	B. Both A and R are true but R is not the correct explanation of A.	
	C. A is true but R is false.D. Both A and R are false.	
	D. Boul A and K are faise.	
	SECTION B	
	This section contains 7 questions with internal choice in two questions. The following	
	questions are very short answer type and carry 2 marks each. At high temperatures, ethyl chloride produces HCl and ethylene by the following first	2
_	order reaction:	Ζ
	$CH_3CH_2Cl \longrightarrow HCl + C_2H_4$	
	In an experiment, when the initial concentration of ethyl chloride was 0.01 M, the rate of the reaction was found to be 1.6×10^{-8} M/s.	
	What will be the rate of reaction if the initial concentration of ethyl chloride is 0.07 M?	
	Pineapple contains a protease enzyme that breaks down proteins. If you try to make a jelly with fresh chunks of pineapple, the jelly won't set but it would set if you use canned pineapple. Explain.	2
	OR	2
	The chain atmenture of Lyzine is shown below	
	The chain structure of Lysine is shown below.	

	(i) The complex [PtCl ₂ (NH ₃) ₂] has two isomers whereas [CoCl ₄] ²⁻ does not show geometrical isomerism and has no isomers why? (ii) When NaOH solution is added to aqueous copper (II) sulphate solution, hydroxide ions displace water molecules forming a pale blue precipitate, X. If excess ammonia is now added, water molecules and hydroxide ions are exchanged by ammonia molecules, forming a deep blue solution, Y. Identify X and Y.								
	The half equation for a redox reaction represents an equilibrium between two sides of an equation such as: $Cu^{2+}(aq) + 2e^{} Cu(s); E^{0} = +0.34 \text{ v}$ (i) How will the value of E ⁰ change if the concentration of Cu ²⁺ increases? (ii) Will the conversion of Cu ²⁺ to Cu become more or less feasible if the concentration								
Q.24		action is found	n(s). I to have a half-life of 1.13 d for completion of 99% of		2				
Q.25		of a carboxylic	acid with an alcohol in th	ne presence of mineral acid as	2				
	(i) Suggest two things that can be done with the products formed to push the reaction in the forward direction. (ii) If one mole of ethanoic acid and one mole of ethanol are allowed to reach equilibrium at 298K, how many moles of ethyl ethanoate and ethanoic acid are present at equilibrium? (Assume $K_c = 4$ at 298K)								
	This section co	ontains 5 questi	SECTION C ons with internal choice is	n two questions. The following					
Q.26	questions are short answer type and carry 3 marks each. 26 (a) Is benzaldehyde less or more reactive to electrophilic substitution reactions than benzene (C ₆ H ₆)? Give an explanation for your answer. (b) State the position on the ring at which electrophilic substitution is likely to predominate in benzaldehyde. Explain why.								
	the reduction o	f either an alco	ohol or an aldehyde? Why	-ol, which cannot be produced by ? clarifying the structures of the five	2 3				
	compounds consisting of platinum, chlorine, and ammonia. Some of the properties of these compounds are shown below in the table.								
	Compound Formula Total number of free one ions in the formula ions in the formula								
	Α	PtCl ₄ •6NH ₃	5	4					
	В	PtCl ₄ •5NH ₃	4	3					
	С	PtCl ₄ •4NH ₃	3	2					
		PtCl ₄ •3NH ₃	2	1					
	D	PICI4 SINFI3	2						

(i	(i) What is the oxidation state and coordination number of Pt in compound C? (ii) Which of the complexes formed for the compounds A, B, C, and D have structural somers? (iii) Predict the shape of each compound.	
-	Suman took two glasses of water from a water filter. She cools one glass in a fridge and	3
	warms the other glass on a stove.	
,	Which glass of water will hold more dissolved oxygen? Explain using Henry's law.	
2.29	The image below shows the effect of acid and base on the aqueous ethylamine.	3
	Fishy amine Fishy amine	
	smell	
	1 2 3 4 5	
	Solution of Add dilute Temperature Add excess Smell of ethylamine with hydrochloric rises, smell sodium amine returns	
	characteristic smell acid disappears hydroxide	
	And the control of th	
	(a) What evidence is there for a chemical reaction between ethylamine and hydrochloric	
í	acid?	
(acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added?	
(acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added?	2
.30	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? (A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole	3
.30	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added?	3
.30	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN).	3
.30	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer.	
.30	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR	
.30	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer.	
.30 4	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR	
.30 4	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol.	
0.30	A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol.	
.30 2	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? (d) A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Ethanol Solution of phenol in ethanol	
.30 2	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? (A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Ethanol Sodium sinks, evolves Sodium sinks, evolves Sodium sinks, evolves	
.30 4	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? (d) A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Ethanol Solution of phenol in ethanol	
.302	acid? (b) Why does the smell of ethylamine disappear when hydrochloric acid is added? (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? (A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Ethanol Sodium sinks, evolves Sodium sinks, evolves Sodium sinks, evolves	
.302	(a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol Sodium sinks, evolves hydrogen steadily (c) Why does the smell of ethylamine reappear when sodium hydroxide is added? A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Sodium sinks, evolves hydrogen rapidly (ii) The reaction in each case involves reduction of hydrogen ion by sodium. Write down an ionic reaction for both the cases.	
.302	(a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol Sodium sinks, evolves hydrogen rapidly (i) The reaction in each case involves reduction of hydrogen ion by sodium. Write down	
.302	(a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Sodium sinks, evolves hydrogen steadily Sodium sinks, evolves hydrogen steadily Sodium stronger acid-phenol or ethanol? Why? SECTION D	
0.30	b) Why does the smell of ethylamine disappear when hydrochloric acid is added? b) Why does the smell of ethylamine reappear when sodium hydroxide is added? A mixture of 0.5 moles acetaldehyde and 0.5 moles diethyl ketone is treated with 1 mole of sodium cyanide (NaCN). What will be the major product in this reaction? Give two reasons for your answer. OR (a) Show steps to convert nitrobenzene to phenol. (b) The table below shows the observation when sodium reacts with ethanol and phenol. Ethanol Sodium sinks, evolves hydrogen steadily Sodium sinks, evolves hydrogen steadily Ndrogen rapidly (i) The reaction in each case involves reduction of hydrogen ion by sodium. Write down an ionic reaction for both the cases. (ii) Which is stronger acid- phenol or ethanol? Why?	3

Q.32	(i) The double helix structure is easily destroyed by change in (a) temperature and (b) pH value. Explain the reason for both the cases. (ii) Suppose the bonds holding the DNA strands for double helix together were (a) covalent bonds (b) London dispersion force. What would be the problem in each case? During a titration, 240 ml of NaOH reacted completely with 100 ml of H ₂ SO ₄ solution. The weight of H ₂ SO ₄ taken was 9.8 g. i) What is the molarity of the NaOH used? ii) Calculate the amount of NaOH dissolved in solution. iii) How many grams of NaOH should be added to the original NaOH solution to make one litre of 0.5M NaOH solution? (Molecular mass of NaOH is 40g/mol and molecular mass of H ₂ SO ₄ is 98 g/mol.)	4
	SECTION E Each question carries 5 marks each. Read the group text or image carefully and answer the questions that follow.	

The boiling point of both the series increase monotonically with increasing size of the molecules. However, the slope of increment is different for both the series.

Observe the above graph and answer the following questions:

- (i) Why are the boiling point of alcohols higher than that of corresponding alkanes?
- (ii) Why do the differences in boiling point between corresponding alcohols and alkanes get less as the number of carbon atoms increase?
- (iii) Can the two graphs ever intersect?
- (iv) Will the graph look like almost the same if boiling point is replaced with melting point?
- (v) How will the boiling point graph for straight chain primary amines fare as compared to alcohols and alkanes?
- Q.35 i) Write the outer shell electronic configuration of an element with atomic number 24. Why is this different from the elements that are adjacent to it in the periodic table?
 - ii) Why is Hg not considered as a transition element?
 - iii) The third ionisation enthalpy of a few transition elements are given below:

Element	Sc	Ti	٧	Cr	Mn	Fe	Со
lonisation enthalpy (kJ mol ⁻¹)	2393	2657	2833	2990	3260	2962	3243

5

Explain the reason for the break in the trend of steady increase in third ionisation	
enthalpy as shown in the table. Based on this, what can be said about the second	
ionisation energy of Cr as compared to that of Mn?	

 End of Questions	 	

Practice Questions – Marking Scheme SESSION: 2022-23

Class: XII Subject: CHEMISTRY (043)

Q.No	Question	Marks
	SECTION A	
	Q1 to 18 each correct answer 1 mark	
Q.1	C. propan-2-ol	1
Q.2	C. elimination	1
Q.3	A. $Cu + 2 H_2SO_4> CuSO_4 + SO_2 + 2 H_2O$	1
	D. The temperature of the reactants in experiment 4 could have been different than for the other experiments.	1
Q.5	B. i and ii only	1
Q.6	D. Reaction X involves complex molecules, while reaction Y involves simple molecules or atomic species.	1
Q.7	A2	1
Q.8	C. only B and C	1
Q.9	D. [No extra information is needed. A can be calculated with the information available]	1
Q.10	D. D	1
Q.11	B. ethene	1
Q.12	B. i and ii only	1
Q.13	A. The almost identical radii of the atoms.	1
Q.14	D. all- i, ii, iii and iv	1
Q.15	B. Both A and R are true but R is not the correct explanation of A.	1
Q.16	B. Both A and R are true but R is not the correct explanation of A.	1
Q.17	C. A is true but R is false.	1
Q.18	D. Both A and R are false.	1
	SECTION B	
Q.19	Calculating the rate constant:	2
	Rate = $k[CH_3CH_2Cl]$ since it is a first order reaction. [0.5 mark]	
	$1.6 \times 10^{-8} \text{ M/s} = \text{k} \times 0.01 \text{ M}$	
	$\therefore k = 1.6 \times 10^{-6} \text{ s}^{-1} \text{ [0.5 marks]}$	
	Calculating rate of reaction if the initial concentration of ethyl chloride is 0.07 M:	
	Rate = $k[CH_3CH_2Cl]$	

	Rate = $1.6 \times 10^{-6} \times 0.07 \text{ M/s}$	
	∴ Rate = $1.12 \times 10^{-7} \text{ M/s [1 mark]}$	
Q.20	- Fresh pineapple contain enzymes which breaks down protein molecules in liquid that would turn into jelly, making them smaller, so they can't tangle up, which stops the jelly setting [1]	2
	- In canned pineapple, due to a change in temperature, the protease enzyme becomes inactivated, and hence it won't break protein molecules of the liquid, allowing them to tangle. [1]	
OR	(i) - It is basic [0.5]	2
	- Side chain of lysine contains an amine functional group, so it produces a basic solution because the extra amine group is not neutralized by the acid group. [0.5]	
	(ii) 1 marks	
	H O H-N-CH-C-O-H I (CH ₂) ₄ H-N-H H H	
Q.21	(a) 0.5 marks for each of the following:	2
	 SN₂ mechanism The configuration of the product is opposite to that of the reactant. 	
	(b) 0.5 marks each for the following:	
	(i) The rate of reaction will be reduced by half.(ii) The rate of reaction will be reduced by half.	
OR	(a) Both, compound P and compound Q have a chiral centre.(b) (i) 0.5 marks each for any one example such as:	2
	- melting point	
	- boiling point - refractive index	
	(ii) direction of rotation of plane of polarized light [0.5 marks]	
Q.22	(i) - [PtCl ₂ (NH ₃) ₂] has a square planar structure.	2

	SECTION C				
	(ii) 2/3 moles of ethyl ethanoate and 1/3 moles of ethanoic acid [1]				
	- Reduce the concentration of the products formed.				
	OR				
	Remove the water as it is formed.Remove the ester as it is formed.				
Q.25	0.5 mark each for the following:	2			
	t = 76006.6 s = 1266.77 minutes = 21.11 hours [1 mark]				
	$t = (2.303 \times 10g \ 10^{-})/K$ $t = 4.606/k = 4.606/(6.06 \times 10^{-5})$				
	t= $(2.303 \times \log R_0/(R_0-0.99R_0))/k$ t= $(2.303 \times \log 10^2)/k$				
	$k = (2.303 \times \log R_0/R) / t$ $t = (2.303 \times \log R_0/(R_0, 0.00R_0)) / t$				
	$k = 6.06 \times 10^{-5} \text{ s}^{-1} [1 \text{ mark}]$				
	$k = 0.693 / 1.15 \times 10^4 \text{ s}$				
	$t \frac{1}{2} = 0.693 / k$				
Q.24	Calculating k from t ½:	2			
0.24	-with an increase in concentration, the) E° will become more positive that means it will have more likely (energetically favourable) for the reduction of copper ions to copper. [1]	2			
	(ii) more feasible				
Q.23	(i) E° will become more positive [1]	2			
	(ii) $X = [Cu(H_2O)_4(OH)_2]; Y = [Cu(NH_3)_4(H_2O)_2]^{2+}$				
	- All the four ligands are adjacent and equidistant to one another in it and the relative positions of donor atoms of ligands attached to the central atom are same with respect to each other. Thus, isomers are not found for [CoCl ₄] ²⁻ [0.5]				
	- [CoCl ₄] ²⁻ has a tetrahedral structure with the same kind of ligand.				
	- All the ligands in it are in the same plane, so they can have cis and trans configuration. [0.5]				

Q.26	(a)	3
	- less reactive [0.5 marks]	
	- The aldehyde group is an electron withdrawing group and destabilises the intermediate carbocation formed in electrophilic substitution reactions. [0.5 mark]	
	(b)	
	- meta position [0.5 marks]	
	- Of the three positions meta, ortho and para, the meta position is the least deactivated.[0.5]	
	(c) 2-methyl-butan-2-ol [0.5]	
	- 2-methyl-butan-2-ol is a tertiary compound which can not be formed using reduction of carbonyl group. [0.5]	
Q.27	(i) Oxidation state = +2; Coordination number =6 [1]	3
	(ii) All of them [1]	
	(iii) Octahedral [1]	
Q.28	According to Henry's law, the partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution and is expressed as: $p = K_H x$ [1 mark]	3
	K _H , the Henry's constant, generally increases with increasing temperature. This means that the solubility of gases in liquids decreases with an increase in temperature. [1 mark]	
	K _H for oxygen dissolving in warm water is thus more than that of cold water. Thus, there will be more oxygen dissolved in cold water than in warm water.[1 mark]	
Q.29	 (a) increase in the temperature and disappearance of smell from the solution. (b) Reaction between ethylamine and hydrochloric acid gives a salt called ethyl ammonium salt, which is non-volatile and has no smell. (c) When a strong base is added to ethyl ammonium salt, protons are removed from the salt. This reforms the free amine. 	3
Q.30	The cyanohydrin formed by reaction of CN ⁻ with acetaldehyde will be the major product. [1]	3
	1 mark each for the following:	

- Due to greater steric hindrance of the ethyl groups in diethyl ketone, the nucleophilic substitution reaction of CN⁻ with acetaldehyde is favoured over that with diethyl ketone.
- The greater electron releasing effect of the ethyl groups in diethyl ketone reduces the electrophilicity of the carbonyl carbon atom more than the methyl group in acetaldehyde.

OR (a) [1 mark]

3

- (i) reduction of nitrobenzene to aniline with tin/HCl or Fe/HCl
- (ii) diazotisation of aniline to benzenediazonium chloride with sodium nitrite and hydrochloric acid at 0 to 5 °C
- (iii) hydrolysis of benzenediazonium chloride to phenol with water
- (b) [2 marks]

(i)

$$2C_2H_5OH + 2Na \longrightarrow 2C_2H_5O^-Na^+ + H_2$$

- (ii) phenol is stronger than ethanol. This is because the negative charge on oxygen atom in phenoxide ion can be partly delocalised around the ring.
 - This reduces its tendency to attract H⁺ ions. In other words, it reduced its strength as conjugate base. This makes it as a stronger conjugate acid than ethanol.

SECTION D

Q.31 (i)

- (a) Change in temperature
- double helix is formed through hydrogen bonds. By changing temperature, the bonds are disturbed and the helix gets uncoiled. [0.5]
- (b) change in pH
- by increasing pH, some of the bases within the double helix structure of DNA will be de-protonated. This means that less hydrogen bonds will be involved in holding the two strands of DNA together and eventually the two strands will break apart, thereby destroying the double helix structure. [1]
- conversely, decreasing the pH, we can end up protonating the bases, which can also lead to the disturbance in hydrogen bonds of the double helix structure [0.5]

	 (ii) (a) covalent bonds Covalent bonds are stronger, and form between two non-metals sharing electrons. If a carbon and oxygen, or two carbons, or a carbon and nitrogen held the helix together, it would be very strong, but require a lot more energy to form and separate for replication or repairs. [1] b) London dispersion force molecules with only this force are usually nonpolar, without any electronegative atoms to induce a dipole. This force would probably be too weak to hold the helix together. [1] 	
_	i) 9.8 g of H ₂ SO ₄ is 0.1 mole. 1 mole of H ₂ SO ₄ reacts with 2 moles of NaOH. [1 mark]	4
	0.2 moles of NaOH reacts with 0.1 moles of H_2SO_4 . Molarity of NaOH = 0.2 × $1000/240 = 0.83$ M/litre [1 mark]	
	ii) Moles = amount of NaOH/Molar mass	
	Amount of NaOH = Molar mass \times moles	
	Number of NaOH = $40 \times 0.2 = 8$ grams [1 mark]	
	iii) 0.5 M of 1 litre NaOH solution will have 0.5 moles of NaOH. Therefore 20 grams of NaOH needs to be present. Therefore, 12 g of NaOH needs to be added [1 mark]	
	SECTION E	
Q.33	(i) Reactions:	5
	- At graphite electrode: $2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + OH^-$	
	- At zinc electrode: $Zn \rightarrow Zn^{2+} + 2e^-$ (ii) Overall cell potential = +0.74 - (-0.76) V = +1.5 V (iii) Carbon(graphite); because electrons flow from zinc to carbon (iv) cell diagram representing the direction in which reaction occurs in this cell: $Zn(s) 1 Zn^{2+}(aq.) 11 2MnO_2(s) + H_2O(1) 1 Mn_2O_3(s) + OH^-(aq.)$	
OR	i) In experimental Set up I, the blue colour of CuSO ₄ solution will fade away.	5
	It is because $CuSO_4$ solution will turn into H_2SO_4 solution. Oxidation of water leaves behind H^+ and reduction of Cu^{2+} ion leaves SO_4^{2-} ion in the solution. $2H^+ + SO_4^{2-}> H_2SO_4$ (1+1)	

- ii) Hg has completely filled d orbitals $(3d^{10})$ in its ground state as well as in its oxidised state, hence it is not regarded as a transition element. [1 mark]
- iii) Mn^{2+} has $3d^5$ configuration, which is more stable than $3d^6$ configuration of Fe²⁺. This makes removing an electron from Mn^{2+} more difficult than from Fe²⁺. [1 mark]

Since Cr⁺ has 3d⁵ configuration, it is more stable than Mn⁺ and so Cr will have higher second ionisation enthalpy as compared to Mn.[1 mark]

E 1 C4L D		
 End of the Paper	·	