Probability

- **Experimental Probability:** The probability obtained from the result of an experiment when we actually perform the experiment is called experimental (or empirical) probability.
- **Theoretical Probability:** The probability we find through the theoretical approach without actually performing the experiment is called theoretical probability.
- The theoretical probability (or classical probability) of an event E, is denoted by P(E) and is defined as

$$P(E) = \frac{\text{Number of outcomes f avour able to E}}{\text{Number of all possible outcomes of the experiment}}$$

- Experimental probability may or may not be equal to the theoretical probability.
- Formula of theoretical probability can be used to find the probabilities of various events.

Example 1: A dice is thrown once. What is the probability of getting 1 on the dice?

Solution: When a dice is thrown once, the possible outcomes are 1, 2, 3, 4, 5, 6. Let A be the event of getting 1 on the dice.

Let A be the event of getting 1 on the dice.
$$\therefore P(A) = \frac{\text{Number of outcomes f avour able to A}}{\text{Number of all possible outcomes}} = \frac{1}{6}$$

Example 2: A box contains 3 white, 5 green, and 6 red balls. A ball is drawn at random out of the box. Find the probability of drawing a red ball.

Solution: Total number of balls = 3 + 5 + 6 = 14

Therefore, total number of possible outcomes = 14

Let E be the event of drawing a red ball.

Number of outcomes favourable to E = 6

$$\therefore P(E) = \frac{\text{Number of outcomes f avour able to E}}{\text{Number of all possible outcomes}} = \frac{6}{14} = \frac{3}{7}$$

Example 3: A card is drawn at random from a deck of 52 cards. Find the probability that the card drawn is,

- A black card
- An ace
- Neither a black card nor an ace

Solution:

Since there are 52 cards in a deck, the number of all possible outcomes is 52.

• Number of black cards in the deck = 26

Therefore, the probability that the drawn card is black $=\frac{26}{52} = \frac{1}{2}$

 \circ Number of aces in the deck = 4

Therefore, the probability that the drawn card is an ace $=\frac{4}{52} = \frac{1}{13}$

 \circ Number of cards which are neither black nor an ace = 26 - 2 = 24

Therefore, the probability that the drawn card is neither black nor an ace $=\frac{24}{52}=\frac{6}{13}$

Complementary events

For an event E such that $0 \le P(E) \le 1$ of an experiment, the event \overline{E} represents 'not E', which is called the complement of the event E. We say, E and \overline{E} are **complementary** events.

$$P(\overline{E}) + P(\overline{E}) = 1$$

 $\Rightarrow P(\overline{E}) = 1 - P(E)$

Example:

A pair of dice is thrown once. Find the probability of getting a different number on each die.

Solution:

When a pair of dice is thrown, the possible outcomes of the experiment can be listed as:

		2				
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
		(4, 2)				
		(5, 2)				
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

The number of all possible outcomes = $6 \times 6 = 36$

Let E be the event of getting the same number on each die.

Then, \bar{E} is the event of getting different numbers on each die.

Now, the number of outcomes favourable to E is 6.

$$\therefore P(\overline{E}) = 1 - P(E) = 1 - \frac{6}{36} = \frac{5}{6}$$

Thus, the required probability is $\frac{5}{6}$.