FIVE FATAL DESIGNS

Crispin Hales, PhD, CEng

HALES & GOOCH LTD.

Chicago USA and Christchurch NZ

www.halesgooch.com

MANAGING ENGINEERING DESIGN

FIVE EXAMPLES:

The Exploding Boiler: Specification

The Swinging Door: Concept

• The Falling Kingpin: Embodiment

The Hanging Thread: Detail

• The Vibrating Press: Communication

THE EXPLODING BOILER

- Prison boilerhouse with glass windows
- Four boilers and a high brick chimney
- Old boiler replaced low NOx burner
- No damper controlling the induced draft
- Mixture set in winter, explosion in spring
- \$500,000 claim settled by mediation
- Boiler manufacturer out of business

Deficient design specification

THE SWINGING DOOR

- Post Office in Michigan
- Windy day elderly lady comes to door
- Door flies off hinges and kills lady
- Spring-loaded quick-release top hinge
- No positive door/hinge connection

Poor design concept

Poor design concept:

later model had bolted connection

THE FALLING KINGPIN

- Dump truck in Ohio
- Front left wheel assembly collapses
- Head-on crash kills van passenger
- Tapered kingpin inserted from bottom
- Worn or failed thrust bearing
- Load path changes to go through nut
- Nut unscrews kingpin drops out

Deficient embodiment design

3C-8 FRONT AXLE AND SUSPENSION

Deficient embodiment design:

fatal change in load path as the parts wear during use

THE HANGING THREAD

- Low-loading truck in Missouri
- Smoking trailer brakes readjusted
- Wet road minor accident up ahead
- Hello! No brakes! jackknifes into car
- Head-on crash kills one, injures others
- Trailer brake relay valve partially closed
- Loose 5mm thread on air release valve

Deficient detail design

Deficient detail design:

inappropriate part orientation, thread profile and locking

THE VIBRATING PRESS

- Largest presses ever built
- Customer wanted two presses ASAP
- High on scales of novelty and complexity
- Designed in one country built in another
- 4000 drawings translated units/words
- No time for testing or commissioning
- Dynamic problems poor performance

Deficient design specification
Lack of communication
Design separated from manufacture

PROJECT PROF	ILE WORK SHEET	F PROJECT: Tri-A	Axis Transfer Press	DATE: 1990
LEVEL	INFLUENCES	CONTRIBUTING FACTORS	CURRENT STATUS	REQUIRED ACTION
PROJECT	DESIGN TASK	Magnitude Complexity Novelty Production Quality Technical Risk Delivery Time Constraints	Positive Neutral Negative	Compensate Promote Disregard
	DESIGN TEAM	Expertise (Competence) Experience Role Balance Cooperation Commitment Motivation Morale Negotiating Ability Negotiating Power User Involvement		
	USE OF DESIGN TOOLS	Systematic Approach Formal Design Methods Intuitive Design Methods Communication Project Control Computer Design Methods Computer Aids Codes and Standards		
	ТЕАМ ОПТРИТ	Productivity Quality of Work		
© Hales and Gooch 2004				

Failure primarily due to lack of communication:

- specifications + expectations
- culture + language
- imperial vs. metric
- whoosh, whoosh vs. bonk, bonk

SUMMARY

- Engineering design management needs:
 - understanding
 - involvement
 - enthusiasm
 - persistence
 - communication
- The engineering design process needs:
 - an adequate design specification
 - a practicable design concept
 - a sytematically developed layout
 - careful attention to detail design

MANAGING ENGINEERING DESIGN SOME GUIDELINES

- Consider engineering design process in context
- Review influences at five different levels of resolution
- Profile the project to establish how work is to be done
- Use phase diagrams to overlap phases & shorten timescales
- Build a strong and appropriate team
- Negotiate for enough money and time to do a quality job
- Use a systematic approach to the engineering design process
- Use checklists to review progress during each project phase
- Review design prior to manufacture