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Abstract 
 

Genomes store and encode complex instruction sets for the production and regulation of 

genes. In turn, genes interact with each other and with their environment to dictate the 

phenotype and function of biological cells. Elucidating genomic mechanisms of operation can 

potentially deliver innovation in healthcare, agriculture, ecology and even in encoding digital 

information and computing. Technological advancements and emergent experimental 

procedures continuously produce new sets of challenges in efficiently scaling and correctly 

interpreting genomic observational data. This thesis addresses data analysis aspects related to 

two molecular biology measurement techniques, focusing on specific challenges that have 

emerged in the context of interpreting their results. We present three separate research 

projects that share a common goal – deciphering genomic and epigenomic properties from 

measurement data. We provide novel algorithms, motivate them with simulations, apply them 

on real data and provide statistical evidence and biological interpretation of the analysis 

findings. The approaches discussed in this thesis advance the state-of-the-art and provide new 

insights on genomic and epigenomic characteristics of cells and their functional roles. In 

particular, our contribution includes: 

• An approach for using Hi-C data to infer full haplotypes from partially phased genotypes. 

• A statistical approach to characterizing the functional 3D organization of unicellular 

genomes using Hi-C data. 

• A novel normalization approach to miRNA data, that enables the integration of several 

datasets, leading to increased statistical power. 
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Chapter 1:  

 

Introduction 
 

Chromosome conformation capture (3C), and related methods (e.g. High-throughput 3C, or Hi-

C), are a set of experimental biology protocols based on DNA sequencing technology that 

produce a (sparse) map of paired read counts across chromosomes. These read counts are 

(approximately) proportional to spatial proximities between pairs of chromosomal loci (Nynke 

L. van Berkum et al., 2010a). A myriad of approaches embed Hi-C read counts into (qualitative) 

3D models in order to smooth out sampling noise and offer an intuitive glimpse into the 

underlying genome structure. 3C and related techniques have paved the way for experimentally 

charting 3-dimensional structural properties of genomes in living cells at detail currently 

unavailable to volumetric microscopy. Key discoveries attributable in part to 3C include: 

Functional-organizational unit of TADs (topologically associating domains) as a structural 

epigenetic mechanism enforcing promoter-enhancer contacts and enabling neighborhood 

insulation. Systematic evidence for the “transcription factory” hypothesis. Namely, regulatory 

co-factors and transcription machinery co-localize to sub-compartments in the nucleus 

(Eukaryotes) / nucleoid (Prokaryote) along with their genomic targets.  

In chapter 1.1 we introduce an approach that leverages information obtained by genome 

conformation capture to address the “last-mile” sequence assembly problem of Haplotyping. 

Haplotyping is the process of assigning nucleotide sequence variants and aberrations to one 

corresponding homologous chromosome copy. In our work (S. Ben-Elazar et al., 2016) we 

demonstrate methods that are useful for both 1) de-multiplexing “traditional” averaged 

pairwise-chromosome Hi-C proximity maps into maps containing pairwise-homologous copy 

information and 2) “Phasing” (un-shuffling) homologous Hi-C maps to the correct homologous 

block structure. Such de-multiplexed and phased Hi-C maps are important to improve the 

precision and applicability of further interpretation of Hi-C data for other downstream tasks.  
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In chapter 1.2 we revisit a problem related to the downstream analysis of 3D models derived 

from Hi-C data. In this work (Ben-Elazar et al., 2019) we develop an algorithmic and statistical 

framework to identifying 3D spherical compartments in which genomic elements with some 

common biological property significantly co-localize. This approach overcomes a limitation of 

our previous work where candidate enrichment spheres were centered on the 1D genome. We 

provide rigorous analysis of this method and illustrate its benefit in detecting novel patterns 

with plausible biological interpretation. We describe findings in several organisms. 

MicroRNAs (miRNAs) are short RNA molecules that are typically functional although they do not 

undergo translation to protein. miRNA has evolved to play a regulatory role in gene expression 

as well as in immune system activity and modulation. miRNAs have been implicated in both 

malignant tumor suppression and development depending on various conditions (Peng and 

Croce, 2016). Of particular interest is the precise characterization of their relation to cancer 

subtypes as potential biomarkers for driving personalized clinical care. 

In chapter 1.3 we present a method for the normalization and integrative analysis of miRNA 

expression data. Our methods mitigate batch-related effects. We apply this approach to jointly 

analyze four cohorts of miRNA expression in breast cancer, present potential novel miRNA 

biomarkers and discuss the statistical advantages of our approach. We also discuss some 

specific observations that would not have emerged without normalization.  

In the sections of this chapter we provide more background and a more detailed overview of 

each of the aforementioned questions. In later chapters we present computational methods to 

address these problems and discuss potential novel findings surfaced by our techniques along 

with their detailed analysis. Finally, we conclude by discussing our work and offering directions 

for future investigation. 

 

1.1 Hi-C and Phasing 

 

Haplotyping, or phasing, is the process of determining the physical co-occurrence of genomic 

variations along intact maternal or paternal homologous chromosomes in diploid or polyploid 
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organisms. Several methods aim to determine haplotype, ranging from population-genetics 

based approaches that require some knowledge on the parental genomes, to methods based 

on time consuming and elaborate molecular isolation of chromosomes prior to high-throughput 

sequencing. 

We developed a computational pipeline that combines Hi-C data with partial phasing data to 

infer full haplotypes as well as the fully phased Hi-C proximity map (Shay Ben-Elazar, Chor, 

Yakhini, et al., 2016). In this work we embedded genomic locations based on corrected Hi-C 

maps and used this representation to apply a greedy partitioning method in order to decode 

the correct homologous assignment of different alleles observed from a partially phased 

genotype assay. We prove that our solution yields the global maximum likelihood configuration 

in a statistical formalization of the problem. We show that embedding Hi-C data offers a better 

proximity measure for haplotype decoding suggesting that embedding is an essential step in 

smoothing Hi-C data which can be sparse and noisy. This is possibly true for other Hi-C analysis 

pipelines as well. Additionally, we process reads that overlap mono-allelic (indiscernible 

between maternal and paternal copies) loci and not only reads that overlap loci that are bi-

allelic for the measured individual. Such mono-allelic reads are softly assigned under a uniform 

prior over its potential homolog copies of origin. Traditionally, such reads are ignored by many 

state-of-the-art Hi-C data analysis approaches. 

In chapter 2 we explore the problem of recovering phased Hi-C and full haplotype data using 

un-phased Hi-C data and partial haplotype data. The proposed solution is exemplified by 

analyzing its accuracy on human diploid Hi-C and ground-truth haplotype data available via 

Trio-phasing (Auton et al., 2015). Our results show that the proposed method results in 

haplotypes that have 98% agreement with ground truth data (averaged across chromosomes). 

We show potential added value in correctly interpreting diploid Hi-C data by applying a co-

localization analysis that shows patterns in which single copies of genes on different 

homologous chromosomes reside in a proposed transcription factory. For completeness, we 

provide a more rigorous mathematical definition to the underlying geometric problem 

addressed in the paper and available as an additional supplementary chapter directly following 

chapter 2. 
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1.2 Hi-C, Spatial Enrichment and Transcription Factories 

 

Chapter 3 discusses algorithmics and statistics for assessing spatial enrichment of a binary 

property on a given spatially organized dataset (coordinates in ). We developed a method 

to identify locations within a 2D-3D Euclidean space, around which a specific subset of elements 

is localized with significantly high density. We studied the validity and efficiency of this method 

on simulated data and applied it to 3D embeddings of Hi-C data from multiple unicellular 

organisms and across multiple genomic annotation sets (Ben-Elazar et al., 2019). We compare 

this method to directly studying raw paired read counts and discuss its advantages. 

Previous studies, both by us and by others, have suggested heuristics for performing spatial co-

localization analysis on Hi-C data. In this work we explored a rigorous formal definition of the 

spatial co-localization problem. We present compelling evidence to support our methodology 

compared to those used previously and apply our method to obtain statistically significant 

results suggesting potential novel biology. Applying spatial co-localization for obtaining a more 

precise characterization and means of identifying transcription factories is of particular interest. 

Transcription factories are a regulatory mechanism manifested as confined spaces within the 

nucleus, where transcription machinery recruits relevant cofactors and genomic stretches such 

as to regulate the activation of specific cellular functions (F. J. Iborra et al., 1996; Sutherland 

and Bickmore, 2009a). Previous studies have attempted to statistically assess the existence of 

transcription factories. The authors of (Dai and Dai, 2012) compared the number of interactions 

in different functionally-related gene sets and observed statistical enrichment under the 

hypergeometric null model for interactions among transcription factor (TF) targets. However, a 

follow-up study (Witten and Noble, 2012) argued that edges in the 3C interaction graph are not 

statistically independent, as was assumed under the model used by Dai and Dai, and that co-

localization events would therefore be over-counted. To correct for this issue, Witten and 

Noble applied a re-sampling methodology under which no signal for TF target co-localization 

was detected. Our approach, applied in both (Ben-Elazar et al., 2013a) and (Shay Ben-Elazar, 

Chor, Yakhini, et al., 2016)), avoids comparing between populations of proximities altogether, 

and so avoids any statistical dependence issues which arise in former methods. Instead, we 
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focused on the distances to a single pivot locus – a reference point around which we measure 

co-localization statistical significance, as described below. 

In our previous study, we identified transcription factory candidates by developing a statistical 

model based on the minimum Hypergeometric (mHG) statistical framework (Eden et al., 2007, 

2009a). In more detail, consider a genomic locus, . Rank all other genomic loci  by 

some distance function to , . Consider a transcription factor (TF) and its set of targets, .  

We consider  to represent the genomic locations at which transcription is driven by the TF. 

Define a binary vector,  of length , where . For  we define 

 as the prefix of length  of the binary vector . Let , . 

The mHG score is defined by the threshold, , that minimizes the right tail of the 

hypergeometric CDF of observed  values. That is, 

�

 

The null hypothesis in mHG is that given the number of B 1’s, they are uniformly distributed in 

the binary vector of length N. In our context, rejecting the null hypothesis suggests that TF 

targets are localized in significantly close proximity to the pivot locus. We repeat this 

experiment for all loci and TFs, Bonferroni correcting for multiple testing. 

The mHG statistic was used to measure the probability with which an observed ranking of 

genes by their distance from a certain pivot point would surface an ‘unlikely’ number of genes 

that are known targets of a specific TF to the ‘top’ of the ranked list. The observed value of this 

statistic is assessed against a background model of random permutations, to which we add 

appropriate controls for the 1D gene order, to isolate the effect of actual 3D spatial localization. 

See an illustration of our previously developed method in Figure 1 taken from (Ben-Elazar et al., 

2013a).  
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Figure 1. Comparing functional enrichment between the genomic and spatial regions of the genome. (A) Two 

genomic distances. The schematic shows the gene neighborhood surrounding a particular gene (red). The 

neighboring genes may be ranked by their genomic proximity (left) or their spatial proximity (right). (B) Detecting 

areas of enrichment for TF-cohorts. In ranked gene lists, generated by either genomic or spatial proximity, the 

genes annotated as targets of a particular TF are indicated as black lines. The p-value of the enrichment of the 

targets for each threshold is indicated on the right. The threshold with the best p-value is indicated by the dashed 

line (see Methods). This analysis is shown for two genomic loci surrounding genes YCL012C and YHL050C 

respectively and querying for targets of GLN3. (C) Local structures of the two loci examined in B. Colors indicate 

distinct yeast chromosomes. The red circles indicate the center gene around which co-localization was tested. The 

center genes shown are YCL012C (top) and both YHL050C and YHL050W-A (bottom). The content shown in each 

sphere is the environment which corresponds to the mHG threshold, dictated by the most enriched spatial 

environment for GLN3 targets. Bars on the right mark the loci along the linear genome which participate in the 

most enriched environment by both the genomic and spatial rankings. Black dots, both in the bars and the 

visualized structure, indicate gene targets of GLN3.  

In the approach described above, we scanned genes along the 1-dimensional genome as pivots 

to identify potential transcription factories, measuring whether TF targets are enriched in 3D 

space around each such pivot. However, transcription factories need not be centered around a 

gene and not even around a pivot along the 1D genome, as we show in the paper. In this work 

swe expand the applicability of the 3D enrichment method described above and develop 

approaches that relax the limits of considering pivots only along the 1D genome. 

Venturing out of the discrete space of possible pivots along the 1D genome in order to cover all 

possible pivots in 3D is generally intractable as there are infinitely many possible pivots. 
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However, as our enrichment analysis is based on rank orders and not on actual distance values, 

not all possible points in space need to be considered as pivots. We show that only a 

polynomial number of sets of pivots can induce different rank orders and can yield different 

mHG values. In our work we characterize the underlying combinatorial space precisely and 

provide an online branch and bound approach to scan for co-localization in arbitrarily pivots. 

Our algorithmics rely on properties of the hypergeometric distribution to efficiently discard 

candidate regions and recursively refine potential enrichments. In continuation to our previous 

work we applied this method to analyze Hi-C data and identify points in space as transcription 

factory candidates based on genomic 3D configurations. We evaluated this method on multiple 

datasets including simulated 3D data. More importantly – we applied it to Hi-C data from 

unicellular organisms and discuss several interesting biological results: Spatially co-localized 

peri-telomeric copy number increase in Rad21 knockout mutant, alluding to a deep connection 

between a functional cohesion complex and peri-telomeric integrity presented in Figure 2 taken 

from our paper. Co-localized genome replication genes partitioned to two copies that are in 

close proximity to the ori and ter (origin and terminus of DNA replication, accordingly) providing 

evidence for an evolved “backup” template useful for recovering stalled replication, etc.  

 

Figure 2. Example of spatial co-localization identified by our method.Left: sNMDS embedding for S. pombe with 

colour coded chromosomes. Middle (animation available as Supplementary Video 5): Bins are colour coded by 

average aCGH value, with marked outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak 

duplication signal on ChrII, and deletion on ChrI, ChrIII. Strongest duplication is evident at the telomeres.  Right 

(animation available as Supplementary Video 6): Red bins contain Loz1 transcription factor targets. The resulting 

 pivot and corresponding ball are visible containing 4/6 TF targets. 
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1.3 Integrative analysis of miRNA expression data 

 

Chapter 4 describes an adjusted quantile-normalization approach (AQN) for the integrative 

analysis of breast-cancer miRNA expression data from multiple experiments sampled using 

different technologies. microRNAs (miRNAs) are endogenous, small non-coding RNAs (~22 

nucleotides) that bind to target-specific sites most often found in the 3’-untranslated regions 

(UTRs) of target messenger RNAs (mRNAs). By this binding miRNAs regulate gene expression, 

inhibiting mRNA translation or marking the mRNA molecules for degradation. miRNA 

expression profiling is an important tool for studying tumor biology and classification and has 

shown to be important with respect to diagnostic and prognostic assessments. 

The approaches to jointly analyze expression data from multiple sources (with source-specific 

biases) can be split to two families: meta-analysis and integrative analysis. In meta-analysis we 

study each dataset independently and combine results to make more robust conclusions. Meta-

analysis is considered to benefit less from the added statistical power of an increased sample 

size when compared to integrative analysis. In contrast integrative analysis attempts to 

overcome batch effects by shifting the distributions of expression values from different 

experiments such that they are comparable, under different and specific considerations. 

We develop a quantized and jittered variant of quantile normalization, denoted AQN, that 

reduces batch related clustering effects. We show that when coupled with appropriate 

downstream statistics our method is able to surface more differentially expressed miRNAs 

between estrogen receptor (ER) positive and negative patients. In particular, using the 

combined dataset, we implicate hsa-miR-193b-5p as a potential tumor suppressor. Our 

approach yields expression values that correlate better with known miRNA targets and 

increases GO (gene ontology) enrichment score for terms that are consistent with observational 

studies. We compare our method to commonly used normalization schemes and provide 

different lines of evidence in its favor. 
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1.4 Summary of articles included in this Thesis 

 

1. Extending partial haplotypes to full genome haplotypes using chromosome 

conformation capture data 

Shay Ben-Elazar, Benny Chor, Zohar Yakhini 

Published in Bioinformatics 2016, Presented as poster and orally at ECCB 2016 

 

Motivation: Complex interactions among alleles often drive differences in inherited 

properties including disease predisposition. Isolating the effects of these interactions 

requires phasing information that is difficult to measure or infer. Furthermore, 

prevalent sequencing technologies used in the essential first step of determining a 

haplotype limit the range of that step to the span of reads, namely hundreds of bases. 

With the advent of pseudo-long read technologies, observable partial haplotypes can 

span several orders of magnitude more. Yet, measuring whole-genome-single-individual 

haplotypes remains a challenge. A different view of whole genome measurement 

addresses the 3D structure of the genome – with great development of Hi-C techniques 

in recent years. A shortcoming of current Hi-C, however, is the difficulty in inferring 

information that is specific to each of a pair of homologous chromosomes.  

Results: In this work we develop a robust algorithmic framework that takes two 

measurement derived datasets: raw Hi-C and partial short-range haplotypes, and 

constructs the full-genome haplotype as well as phased diploid Hi-C maps. By analyzing 

both data sets together we thus bridge important gaps in both technologies – from 

short to long haplotypes and from un-phased to phased Hi-C. We demonstrate that our 

method can recover ground truth haplotypes with high accuracy, using measured 

biological data as well as simulated data. We analyze the impact of noise, Hi-C 

sequencing depth and measured haplotype lengths on performance. Finally, we use the 

inferred 3D structure of a human genome to point at transcription factor targets nuclear 

co-localization. 

 

2. The functional 3D organization of unicellular genomes 

Shay Ben-Elazar, Benny Chor, Zohar Yakhini 

Published in Nature Scientific Reports 2019 
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Genome conformation capture techniques permit a systematic investigation into the 

functional spatial organization of genomes, including functional aspects like assessing 

the co-localization of sets of genomic elements. For example, the co-localization of 

genes targeted by a transcription factor (TF) within a transcription factory. We quantify 

spatial co-localization using a rigorous statistical model that measures the enrichment of 

a subset of elements in neighbourhoods inferred from Hi-C data. We also control for co-

localization that can be attributed to genomic order. 

We systematically apply our open-sourced framework, spatial-mHG, to search for 

spatial co-localization phenomena in multiple unicellular Hi-C datasets with 

corresponding genomic annotations. Our biological findings shed new light on the 

functional spatial organization of genomes, including: In C. crescentus, DNA replication 

genes reside in two genomic clusters that are spatially co-localized. Furthermore, these 

clusters contain similar gene copies and lay in genomic vicinity to the ori and ter 

sequences. In S. cerevisae, Ty5 retrotransposon family element spatially co-localize at a 

spatially adjacent subset of telomeres. In N. crassa, both Proteasome lid subcomplex 

genes and protein refolding genes jointly spatially co-localize at a shared location. An 

implementation of our algorithms is available online. 

 

4. miRNA normalization enables joint analysis of several datasets to increase sensitivity 

and to reveal novel miRNAs differentially expressed in breast cancer 

Shay Ben-Elazar, Miriam Ragle Aure, Kristin Jonsdottir, Suvi-Katri Leivonen, Vessela N. 

Kristensen, Emiel A.M. Janssen, Kristine Kleivi Sahlberg, Ole Christian Lingjærde and 

Zohar Yakhini 

Submitted to PLOS Computational Biology 2019 

 

Different miRNA profiling protocols and technologies introduce differences in the 

resulting quantitative expression profiles. These include differences in the presence (and 

measurability) of certain miRNAs. We present and examine a method based on quantile 

normalization, Adjusted Quantile Normalization (AQN), to combine miRNA expression 

data from multiple studies in breast cancer to a single joint dataset for integrative 
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analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing 

patterns that do not emerge as statistically significant when separately analyzing these 

datasets. To merge several datasets, as we do here, one needs to overcome both 

technical and batch differences between these datasets. We compare several 

approaches to merging and jointly analyzing miRNA datasets. We investigate the 

statistical confidence for known results and highlight potential new findings that 

resulted from the joint analysis using AQN. In particular, we detect several previously 

associated breast-cancer miRNAs to be differentially expressed in estrogen receptor (ER) 

positive versus ER negative, thereby identifying new potential biomarkers and 

therapeutic targets for both categories. More specifically, using the AQN-derived 

dataset we detect hsa-miR-193b-5p to have statistically significant higher expression in 

ER positive samples, a phenomenon that was not previously reported. Furthermore, 

overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell 

viability and expression of cancer-relevant proteins in addition to induced apoptosis, 

suggesting a novel functional role for this miRNA in breast cancer. Packages 

implementing AQN are provided for Python, Matlab and R. 

 

1.5 Summary of contributions 

The contributions of our work include: 

• An approach for using Hi-C data to infer full haplotypes from partially phased genotypes. 

At the time of writing this thesis, state-of-the-art haplotyping (and similarly, 

metagenomic analysis) is typically accomplished using a hybrid of short range and long 

range (e.g. Hi-C) sequencing technologies. We provide an advanced algorithmic 

approach that better utilizes Hi-C data for improved performance, as we show in a direct 

comparison. We demonstrate an interesting implication of haplotype information via a 

downstream co-localization analysis on human (diploid) Hi-C data. Namely: we observe 

genomic co-localization patterns in which a single copy of a homologous gene pair 

appears to co-localize into a potential transcription factory. 
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• A statistical approach to characterizing the functional 3D organization of unicellular 

genomes using Hi-C data. We apply the approach to discover evidence of functional 3D 

organization across multiple organisms and multiple functional annotation sets. We 

present novel biological potential findings based on our analyses. An additional side-

product (and prerequisite) from this work is the 3D embedding of several Hi-C datasets.  

• A novel normalization approach to miRNA data that enables the integration of several 

datasets, leading to increased statistical power. We present statistically significant 

differentially expressed miRNA in estrogen receptor (ER) positive compared to ER 

negative breast-cancer patients, including a newly identified tumor suppressor miRNA 

that could potentially aid with future prognosis and treatment.  

Finally, packages and code implementing our work presented herein is available as open source 

software for the community. 
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Chapter 2:  

 

Extending partial haplotypes to full genome 

haplotypes using chromosome conformation 

capture data 
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2.1. Introduction 

Chromosome conformation capture (3C), and derived high-throughput methods (Hi-C), are a 

experimental protocols that yield a sparse map of read counts that are proportionally related to 

spatial proximities between pairs of genomic loci (Nynke L van Berkum et al., 2010). Hi-C and 

related methods have been used to assess structural properties of genomes (Ay and Noble, 

2015). Haplotyping is the process of determining the physical co-occurrence of genomic 

variations along intact maternal or paternal homolog chromosomes in diploid or polyploid 

organisms. Co-localization and linkage of such variations are key factors in determining the 

complex nature of some phenotypes and as essential tools in understanding genetics (Tewhey 

et al., 2011).  

Both haplotype information and genome conformation are typically investigated using “next 

generation” DNA sequencing technology, which suffers from an inherent ambiguity in its 

interpretability. In current state-of-the-art DNA sequencing methods, high-throughput short 

reads are computationally aligned or assembled to recover contiguous regions of the genome. 

The ambiguity in sequencing becomes evident when considering diploid genomes. Diploid 

genomes, by definition, contain at least two copies of almost every genomic region (up to CNVs 

and other genetic variations between homologous regions and sex chromosomes). Thus, when 

two long genomically identical regions are flanked by bi-allelic genotypes (such as in single 

nucleotide polymorphisms, SNPs) for a measured genome, we are unable to determine 

whether said variations reside on the same copy of the chromosome homologs, or belong to 

different homologs. The problem becomes practically intractable when considering the 

combinatorics involved in accurate pairwise assignment of variations along an entire genome. 

While many methods attempt to address the problem of haplotype phasing it is difficult to 

achieve a satisfactory balance between the scalability and reliability required in practice. 

Methods vary from population-based methods, to methods requiring vast sequencing depth 

with multiple insert sizes, complex manual isolation or cutting-edge non-mainstream 

technology. A good overview of these methods including their advantages and disadvantages is 

presented in (Snyder et al., 2015; Glusman et al., 2014). In recent years technological progress 
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enabled cost-effective long-read or pseudo-long-read sequencing such as Pacific Biosciences 

SMRT and Oxford Nanopore and 10X (McCoy et al., 2014; Patterson et al., 2015; Pirola et al., 

2016; Eisenstein, 2015). With such technology, experimentally-derived short-range haplotypes 

are becoming viable, and the algorithmic challenges, common to all combinatorial methods for 

haplotype assembly, are shifting towards extending short-range phasing to cover longer 

genomic stretches with hybrid approaches (Glusman et al., 2014; Auton et al., 2015; Kuleshov 

et al., 2014). On the other hand, Hi-C and related technologies are becoming more accurate, 

cheaper, and with higher coverage (Suhas S P Rao et al., 2014). Information about distances in 

the genome can be used in the context of haplotyping, as shown in the pioneering work from 

Selvaraj, Bafna and colleagues (Selvaraj et al., 2013). The authors developed ‘HaploSeq’, an 

adjusted version of ‘HapCut’ (Bansal and Bafna, 2008) that was shown to recover haplotypes 

with high coverage and quality. In their study, the authors utilize a Monte Carlo scheme to 

maximize the agreement of a sampled phasing with the observed read counts, and iteratively 

solve Min-Cut instances to identify and replace discordant phase assignments in a way that 

guarantees convergence to a local minimum. By rerunning this process  times, where  is 

the number of variation sites, they expect to find a single haplotype assignment that minimizes 

an overall discordance score.  

In this work we introduce an algorithmic approach to using Hi-C data to extend haplotype 

information to longer genomic stretches. Several aspects of the approach presented in (Selvaraj 

et al., 2013) can potentially be addressed to improve performance. First – distances measured 

at any two loci can be used to more robustly infer a distance between these two loci. We 

address this by computing the embedding of local similarities that induces a global proximity 

measure among loci by using all available data to establish coordinate locations in the ambient 

space. Embedding helps correct observed connections, which can be sparse and noisy. We also 

process reads that overlap mono-allelic loci and not only reads that overlap loci that are bi-

allelic for the measured individual. Our algorithm is deterministic and therefore consistent in its 

output. 

The premise of this work relies on a fundamental duality between diploid genome structural 

inference and haplotyping. In Hi-C data, one cannot determine an assignment of a read pair to 
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the physical chromosomal copy directly from sequencing. Naïve approaches average reads from 

both chromosomal copies into the same co-occurrence matrix. Some biological phenomena can 

survive this distortion and still be captured. However, this structure based on averages is 

unlikely to capture the original structure of chromosome copies (Figure S1). Therefore, studies 

based on distance averages become questionable and are likely to miss much of the 

information related to the actual structure (Figure S6). With haplotype information, reads 

spanning bi-allelic instances of SNPs would be uniquely-mappable to their chromosome copy of 

origin, and a partial reconstruction of the manifold would potentially be achievable with a 

sufficient amount of reads. On the dual side, if one had SNP allele specific positions along the 

geometrical structure of the chromosomal manifold – it would potentially be possible to 

interpolate a reasonable manifold structure and infer the haplotype by partitioning SNP alleles 

based on their geometric relationships. 

Recent studies (Suhas S P Rao et al., 2014; Servant et al., 2015) make use of fully phased Hi-C 

data in a straight-forward way. These approaches produce a partial Hi-C co-occurrence matrix 

in the resolution of single nucleotides and focus only on reads overlapping specific alleles in bi-

allelic loci. These can be uniquely mapped and then phased using measured haplotype data. 

This enables inference from phased Hi-C data. One possible shortcoming is, however, the focus 

on bi-allelic loci.  

Our contribution consists of: 

(1) An algorithmic approach that takes short range haplotype blocks (as can be inferred 

from current and near future NGS techniques) and Hi-C data and produces much longer 

blocks and phased Hi-C data. 

(2) Performance analysis of the above and comparison to other approaches. 

(3) An algorithmic approach to computing a distance matrix between haplotype blocks, 

using Hi-C data. In particular, we use mono-allelic as well as bi-allelic loci. 

(4) A component of 1 above uses an embedding of the haplotype blocks into an inferred 3-

dimensional configuration. 
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(5) An example of how the phased Hi-C data can be used to better understand genome 3-

dimensional structure. Specifically – we address the spatial co-occurrence of TF 

(transcription factor) targets, using inferred phased Hi-C data. We show that using 

genomic order or averaged unphased Hi-C data is not sufficiently strong to identify this 

co-occurrence. 

 

2.2 Methods 

We present an algorithmic framework to computationally extend partial short-range 

haplotypes based on Hi-C data. Our algorithm relies in its core on embedding of a Hi-C-based 

 similarity data matrix, , to a set of  coordinates, . That is – we seek a 

conformation of points that maintains the similarity values in  with minimal error. Because of 

measurement noise values in the matrix  do not behave as a metric. Since  is forced to a 

Euclidean space, the embedding approximates transitive relations possibly violated in , 

elucidating a viable geometrical interpretation of the similarity data. Based on an abstraction of 

the resulting geometry, we partition bi-allelic coordinates and recover a haplotype. To 

overcome several issues affecting our embedding strategy (elaborated in The Supplementary 

section – 5.1) we introduce additional preliminary steps of computing dot product and 

performing connected component analysis. Our algorithm for determining the complete 

phasing is composed of five steps:  
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Figure 3. Illustration of steps applied to parse Hi-C data into a similarity matrix between HT-blocks (A) Contiguous HT-blocks 

(with known partial phasing data) along two pairs of homologous chromosomes, chromosome 1 and 2 with homolog pairs 

 and  are illustrated. Following our notation, HT-block � � �  is depicted as an orange section of the 

chromosome and thus the correct underlying phasing for this chromosome should be � � �  and � � � . Some gray 

dots are connected with a red line representing a paired-end Hi-C read mapped to bi-allelic genomic loci on both ends. E.g., 

� �  is one such read at the top of the illustration. (B) Reads depicted in Figure 3A, map to their corresponding pair of bi-

allelic loci shown as red dots. E.g., � �  is the top-left-most red dot. (C) Illustrated Hi-C paired-read that overlaps only 

mono-allelic loci on both ends. (D) Showing the 2D Gaussian interpolation within the corresponding HT-block pair for the read 

illustrated in Figure 3C. Since the read can potentially map to either block of the matrix, it is split proportionally according to 

phased bi-allelic-overlapping reads in its genomic neighborhood in the bin (intersecting dashed lines). (E) Spy-plot of a resulting 

enriched map with simulated HT-blocks (Supp. Methods) fully ordered by ground-truth phasing data.  

Algorithm Overview – SPECTRALPHASING 

Input: Aligned Hi-C data and partial short-range phasing data. 

Do: 

(1) Aggregate filtered sequencing reads to yield a matrix of similarities among haplotype blocks (Figure 3). 

For each pair of homologous chromosomes: 

(2) Compute dot product similarities for haplotype blocks (Figure 4). 

(3) Identify connected components and partition accordingly. 

(4) Embed HT-blocks to a 3D model using Multidimensional Scaling (MDS), per connected component. 

(5) Compute Trellis phasing using the 3D Euclidean distances of the embedded representation of points. 

Output: Report the extended phasing and a phased Hi-C map. 
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We define the following notation: for a chromosome with homologs A and B we denote phased 

alleles as ordered sets,  

 and  

.   are alleles belonging to bi-allelic locus . 

Denote  as the number of sets of phased alleles in the chromosome. We index 

haplotype blocks (HT-blocks) in the homolog copies following the above notation. That is, for 

example:  is the 2nd (according to genomic order) HT-block of homolog . An 

HT-block is defined as the genomic region demarcated by a set of phased alleles assumed or 

measured to be on the same homolog, according to partial phasing data. Finally, an ordered set 

of HT-blocks, e.g. , is the information that 

extends a partial phasing to a complete one.  

 

Figure 4. Computing dot products on a chromosome’s genome-wide map enriches intra-chromosomal maps. (A) Figure 3E shows 

a single inter-chromosomal enriched contact map, while in fact, there are � maps for each pair of chromosomes, shown here 

separated by a white grid. Multiplying the sub-matrices belonging to the first block-row with the first block-column (highlighted 

in red), that correspond to all inter-chromosomal Hi-C data for Chromosome 1, yields the dot product of Chromosome 1 (B). 

Intra-chromosomal map of Chromosome 1, before computing the dot product. (C) Illustration shows a bipartite graph   

representation of an intra-chromosomal contact map. Nodes belong to HT-blocks and are colored by the homolog of origin of 

the block. Edges represent observed contacts between HT-blocks in the Hi-C contact map. Dashed edge belongs to observations 

that are eliminated by the algorithm. (D) Result of the dot product computation for Chromosome 1. (E) Illustration of the impact 

of the dot product computation on edges in the underlying graph. In real data the graph is also enriched with edges spanning 

different chromosomes, not shown here. 
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2.2.1 Haplotype-block binned Hi-C contact maps 

The first step of our algorithm aims to prepare diploid Hi-C similarity matrices by utilizing all 

reads. Our algorithm is parallelized across pairs of both homologs of each two chromosomes. 

We produce similarity matrices for each two chromosomes. A total of  similarity 

matrices are produced. For this step we begin by binning sufficiently high quality Hi-C reads that 

overlap bi-allelic loci (Figure 3A, Figure 3B) on both ends into their HT-block pair to a read count 

matrix, . I.e., for a pair of HT-blocks  with homologous blocks  and bi-allelic loci 

pair :  

(1) 
� �

 

Once all such reads are mapped, we compute the ratio of observed reads for each HT-block pair 

in the bi-allelic loci pair: 

(2) 
� �

� � � � � � � � � �
 

Next, we map each of the ambiguous reads, reads that have at least one end in a mono-allelic 

region (Figure 3C) to the four corresponding bins in the ratio matrix  (for each HT-block pair) 

and interpolate the ratio at its chromosomal loci along a chromosome with a 2D Gaussian 

kernel (Figure 3D). The interpolant is given by  

(3) 
� �

�
�

�
�

�

� �

� �

� �

� �

 

The interpolated ratio for each bin is added to the final read-count matrix. Finally, since bins are 

not equally-sized, all read counts are averaged by the product of the number of nucleotide in 

 and , i.e. 

(4) 
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� �

� �

� �

 

The final block-matrix (Figure 3E) represents a more robust picture of a similarity measure 

between HT-blocks, in their genomic locations across both homologous chromosome pairs, for 

all chromosomes. Note that utilizing the Gaussian interpolant enabled utilizing all mappable 

reads to obtain the resulting similarity matrix. The choice of a Gaussian interpolant is further 

elaborated in the Discussion section. 

2.2.2 Mitigating noise and sparsity: dot-product similarities 

Our algorithm is founded on the basis of constructing a global similarity measure that 

integrates over observed local similarities in the partially phased Hi-C map. In the latent 3D 

structure underlying our data, similarities are inherently transitive, a property that we aim to 

exploit. Specifically, to determine for a certain HT-block, , whether it should be phased to the 

same homolog with  or with  we would like to infer a robust measure of which 

homolog is a more likely pairing based on spatially adjacency.  

Embedding discovers the latent structure, however, it can be unfeasible for large matrices (see 

Supplementary for more on embedding and spectral theory). With this in mind, we devise a 

“divide and conquer” strategy, solving for each homologous chromosome pair separately. The 

downside of dividing to sub problems is that informative inter-chromosomal similarities are 

lost. To alleviate this loss, we introduce a step of computing the whole-genome dot product for 

each homologous chromosome pair. This calculation is described in Figure 4.  

Since both Hi-C and phasing data can have potential errors and biases, we perform a seemingly 

heuristic step of removing all cross-homolog edges referencing the same HT-block, i.e. edges of 

the form  shown in Figure 4B as a dashed edge. This is a noise-reduction step used 

to avoid sequencing biases, as previously described (Suhas S P Rao et al., 2014). This type of 

error appears to be prevalent in Hi-C data (see the light-colored secondary diagonal in Figure 4B 

in inter-homolog block matrix) and cleaning it is essential to recovering a partitionable 

embedding, as we show in Figure 7. We further justify this step in the discussion. Finally, the 

diagonal,  for every HT-block  is set to be 1. 
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2.2.3 Connected components 

The dot product matrix described above is not guaranteed to recover estimated weights on all 

edges. In some cases, partially phased Hi-C can give rise to blocks that are completely 

unreachable to one another by traversing graph edges. We therefore apply connected 

component analysis (Dulmage and Mendelsohn, 1958) and perform the embedding and phasing 

analysis per (non-trivial) component. This issue reduces the coverage of a possible complete 

phasing that utilizes Hi-C, as discussed in the results section.  

 

2.2.4 Embedding of HT-blocks with multidimensional scaling 

In Figure 5 we show several iterations during the convergence process of a single embedding 

from the ensemble, that contains most of Chromosome 1’s HT-blocks. The process is initialized 

by setting coordinates to the top eigenvectors from the Classical Multidimensional Scaling 

(Mead, 1992a) on the dot product matrix, that includes explicit zeros. This initialization is a 

heuristic that helps converge to a local minimum that is more likely to treat a zero value as 

dissimilar, rather than as a missing value. We then apply non-classical multidimensional scaling 

(Kruskal, 1964a) where zeroes in the dot product matrix are masked as missing values and are 

ignored in the optimization. Non-classical MDS attempts to minimize the mistakes between the 

order of Euclidean distances in the embedding and (non-missing) distances in the input matrix, 

, or in our case . We observe that the quality of phasing increases as the stress 

criterion for embedding diminishes, while the embedding is agnostic to phasing quality. 
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Figure 5. Embedding convergence. Showing the progression of the optimization for the embedding of a connected component in 

Chromosome 1. Insets from left to right: Random initialization, Classical Multidimensional Scaling, Optimization convergence. 

HT-blocks of different homologs (according to ground-truth) are colored in yellow and blue, accordingly. Dashed lines 

correspond to phasing assignments according to the algorithm. The figure shows the stress optimization target function value in 

blue and the phasing quality (unsupervised) in red. After 6 iterations of optimization the phasing already yields better quality 

when relying on the embedding rather than relying on local Hi-C similarity. Note that quality is not guaranteed to monotonically 

increase with embedding steps but is highly correlated. Animations showing convergence progression are available in Online 

Materials. 

 

2.2.5 Trellis recovery of phasing 

Distances in an embedding can be used as estimators for the likelihood of HT-blocks to phase to 

the same homolog. We apply a simple decision rule along consecutive homologous HT-blocks to 

compute their best haplotype assignments. For HT-blocks  let, 

(1) 
�

� ���

� ��� � ���
 

(2) 
�

� ���

� ��� � ���
 

Where  is the 3D Euclidean distance between HT-block coordinates in the embedding latent 

space. We define  

� �  

 

If  we call this a ‘stay’ transition, as we keep the order induced by the arbitrary HT-block 

ordering, and if  we call it a ‘switch’ transition. The set of assignments  
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defines the full haplotypes  for the  HT-blocks. To compute an optimal haplotype, we 

maximize 

(3)  
�

�

�

�
 

We call attention to the fact that a “greedy” solution to this equation, or, taking the maximal  

assignments , yields the global maximum for Equation (3) by its definition. We visualize the 

set of HT-blocks and relevant embedding distances in graph form using the Trellis graph (Figure 

6). 

 

Figure 6. Trellis diagram. Illustration of Trellis graph with selected transitions by ‘SpectraPh’ highlighted in bold. Nodes represent 

HT-blocks with homologs along the graph in orange and blue. HT-blocks are randomly permuted between homologs to illustrate 

the arbitrary order given by the partial phasing data. Edges are weighted by the Euclidean distance between the HT-blocks’ 

corresponding coordinates in latent space. The red asterix shows an erroneous selected a ∗ , ‘stay’ transition, i.e. the 

algorithm chose to traverse edges that are not validated by the ground truth phasing data. See an example of selected 

transitions on real data for Chromosome 1 in Figure S4. 

  

2.3 Results 

To investigate the applicability of our algorithm we simulated partial short-range phasing data 

(see Supp. Methods) at different HT-block lengths. We used the “gold standard” trio-phased 

GM12878 genome (Auton et al., 2015) as our baseline and show that the algorithm is able to 

recover the haplotype with high quality using experimentally available GM12878 Hi-C data from 

(Selvaraj et al., 2013). To investigate the robustness of our method to noise we defined a 

generative model to sample Hi-C-like data from a Log-Normal distribution. We inspected the 

effect of noise on our algorithm and compared to ‘HapCut’. We define natural quality, 

confidence and coverage scores, to be computed for each chromosome. Given  connected 
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components for a chromosome, and each underlying Trellis ordered according to ground truth 

phasing: 

• Coverage is the percent of remaining Trellis transitions when factoring over all 

components. Namely, . 

• Confidence is computed per transition as the difference between ‘stay’ and ‘switch’ 

transition probabilities (E.g. Figure S4).  Namely, 
� �

. 

• Quality is computed as the fraction of ‘stay’ out of all transitions. Namely, �

��

�. 

We emphasize that ground truth order is assumed when computing Confidence and Quality 

only for performance assessment when a ground-truth phasing is available.  

 

Figure 7. Showcasing impact of applying combinations of the algorithm on quality of phasing. Each bar group contains 23 

columns corresponding to the different chromosomes, and a red horizontal line representing the average of the group (weighted 

by number of transitions per chromosome). Columns below each bar group show which configurations of the algorithm were 

applied. Bar group #8, that corresponds to applying all algorithm steps, shows near-perfect phasing quality compared to ground 

truth. Covariance refers to computing the dot-product similarities of two homologs. 

2.3.1 Extending partial haplotype in humans with Hi-C data 

GM12878 has trio-based phasing data available. To emulate experimentally unavailable short-

range phasing, we scan each chromosome for SNP loci, adding ground truth phasing as long as 

the resulting HT-block length is below a certain threshold. Quality of phasing for all 
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chromosomes at 1Mb HT-block length is shown in Figure 7, including a breakdown of the 

impact of different non-trivial steps in our algorithm. Figure S2 shows our results for different 

simulated partial short-range phasing HT-block lengths. Collectively, these show that the 

algorithm is able to completely recover the ground-truth data for most chromosomes, reaching 

an average quality of 0.98. We observe that short chromosomes tend to yield poorer results. 

This effect is amplified when we do not apply the “diagonal removal” heuristic, suggesting that 

errors in mapping Hi-C reads or in ground-truth phasing data are more easily corrected by 

taking into account more similarity observations. We have verified the quality results for 100Kb, 

500Kb, 800Kb, 2Mb thresholds as well (Figure S2). 

2.3.2 Simulated Hi-C data 

To investigate the effect of noise we have simulated Hi-C-like data. We begin by generating two 

3D curves by iteratively appending random unit vectors within a fixed angle range. Each curve is 

normalized to its center of mass, and rotated in a random direction. We then sample values 

from a log-normal distribution based on a transformation of the pairwise Euclidean distances 

among resulting curves.  where c is a normalizing constant used to control 

the number of simulated ‘reads’ in the experiment reflecting a fixed sequencing depth.  is set 

as a function of the coefficient of variation , to control the level of noise in the 

simulation. 

To compare robustness between our algorithm and HapCut, we have implemented a non-

optimized version of HapCut in Matlab that can accommodate the format of our simulated 

data. This simplified version is able to handle the scale of our simulated data and was run for 

 iterations, as suggested by HapCut authors. Results for the analysis are shown in Figure 8 

and indicate that HapCut suffers from inclusion of noise in simulation while our algorithm can 

reach quality of ~0.87 for .  
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Figure 8. Simulated data signal-to-noise analysis.  (Top) Each line at the top represents the average quality computed over 10 

instances of simulated Hi-C data for a pair of simulated homologs. We compare our algorithm with HapCut (Blue). (Bottom) Left 

to right: 1. Example of a generated pair of homologs. 2. Pairwise distances. 3. Transformation to noisy Hi-C data with a log 

normal sampling with CV=0.2. 4. Embedding result overlaid on top of originally generated homologs. 

 

2.3.3 Enrichment analysis on a diploid genome structure 

Once a complete phasing is known we can utilize Hi-C to investigate co-localization of genomic 

functions. In (Ben-Elazar et al., 2013a) we describe co-localization (in a haploid genome) of 

yeast transcription factor (TF) targets. Such co-localization supports the existence of 

Transcription Factories, regions in the nucleus where transcription machinery operates in 

concert to regulate transcription activity. We now apply a similar enrichment analysis of TF 

targets (Bovolenta et al., 2012) to demonstrate such analysis on phased Hi-C. Analysis of co-

localization in averaged Hi-C data for diploid genomes is also addressed in (Diament et al., 

2014). Our results indicate that diploid Hi-C maps provide insights into the distribution of genes 

in the nucleus that current, averaging based Hi-C analysis approaches cannot identify. An 

example for the TFAP2C transcription factor is shown in Figure 9. In our analysis we compute 
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the mHG (Eden et al., 2007, 2009a) enrichment score of TF targets ordered by proximity to a 

pivot locus. In this example we clearly see patterns that would not emerge from a naïve 

interpretation of Hi-C data. We can see that often only one homolog of each TF target is within 

the suggested transcription factory according to the mHG threshold. In more detail, consider a 

genomic locus, . Rank all other genomic loci  by the distance to , . Consider a TF 

and its set of targets, . Define a binary vector of length , . For  we define 

 as the prefix of length  of the binary vector. Let , . 

The mHG score is defined by the threshold, , that minimizes the right tail of the 

hypergeometric CDF. I.e., 

�

 

The null hypothesis in the mHG statistical framework is that all binary vectors of length N with 

exactly B 1’s are equi-probable. In our context, rejecting the null hypothesis suggests that TF 

targets are localized in significantly close proximity to the pivot locus. We repeat this 

experiment for all loci and TF, correcting for multiple hypotheses with Bonferroni correction. 
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Figure 9. TFAP2C target 3D co-localization pattern. Human genome chromosomes in pairs of homologs. We mark the closest HT-

blocks to a pivot HT-block (200 HT-blocks, as determined by the optimal mHG threshold, p< ��
, Bonferroni), colored by the 

rank in the phased dot product similarity. The pivot HT-block is marked as a magenta triangle and arrow pointing to its position 

on Chr 17’. Targets of the TFAP2C transcription factor that are positioned within the mHG threshold are marked as teal dots. The 

co-localization pattern evident in the figure illustrates the importance of phasing homologs in Hi-C data, as mostly distinct 

copies of each TF target inhabit the suggested transcription factory.  
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2.4 Discussion 

The method presented in this paper can refine the haplotype signal in Hi-C data without 

assuming a complex prior on the experimental setup. 

We note that the quality achieved by our method is highly dependent on the genomic size of 

partially phased HT-blocks (Figure S2). Short HT-blocks characteristically yield sparser maps as 

the same number of Hi-C reads are binned to a quadratically larger contact matrix. This will 

become less of a problem as sequencing depth improves with technology. More surprisingly, 

perhaps, is that long HT-blocks also yield lower quality results. We observe that this 

phenomenon is related to the skew of the distribution of similarity values used in the 

embedding. In large HT-blocks the underlying structural signal is averaged over significant 

portions of the chromosome, and the embedded structure no longer contains the information 

required for phasing. This issue can be bypassed by preliminarily subdividing HT-blocks in the 

known partial phasing to produce better Hi-C data for embedding. 

Another issue plaguing short HT-blocks is the runtime complexity of the embedding algorithm. 

To investigate the applicability of our algorithm on HT-block sizes  would require a 

higher-performance implementation of the algorithm, or a different algorithmic approach.  

One seemingly heuristic step performed in our algorithm is the removal of cross-homolog edges 

referencing the same HT-block, i.e. secondary diagonal. We argue that while this indeed has 

impact on the resulting embedding, keeping these edges can only lower the quality of phasing 

as they can only increase the ratio  when the trellis is ordered according 

to ground-truth phasing. This notion relates to another important distinction that we would like 

to stress – while our method is completely reliant on embedding for phasing, it is by no means 

suggesting that the recovered structures represent actual chromosomal conformation. 

Specifically, embedding is used as a tool to integrate global similarities into Trellis edge weights 

to facilitate phasing. 

Another point worth discussing is the application of the Gaussian kernel as the interpolant used 

on the ratio matrix. By utilizing an interpolant that includes a variance parameter we can 

guarantee a small effect of genomically distant reads, as would be expected by the mechanical 
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properties of DNA structure. This is especially beneficial when interpolating on large HT-blocks 

to reduce the effect of genomically distant loci in the block on the interpolated value. In 

analyses we performed we observe that inclusion of an interpolant is beneficial to the quality of 

phasing. 

Finally, in this work we only briefly address the problem of enrichment analysis on diploid 

genomes to illustrate the potential advantages of correctly interpreting diploid Hi-C data. We 

showed how Hi-C data assists haplotyping and the relevance of haplotyping to co-localization of 

TF targets. It is of interest to further explore TF binding sites and to expand the analysis to other 

genomic markers.  
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2.5 Chapter Supplementary Materials 

 

Online materials: Implementation available at https://github.com/YakhiniGroup/SpectraPh 

Embedding convergence animations are available at http://imgur.com/a/fwzBD. 

Supplementary Methods 

Embedding and spectral theory 

In the context of matrix theory our embedding approach is a simplified version of more general 

Spectral methods (Chung, 1994; Spielman, 2007). Embedding theorem can be naturally 

interpreted by treating values in our similarity matrix as probabilities of a random-walk 

operator in a Markov Process. In certain conditions, an infinite random walk traversing edges in 

the similarity graph converges to a stationary distribution which can be applied to compute 

edge values which capture all transitive relations. Eigenvalue methods (Kruskal, 1964b; Ham et 

al., 2004) solve this but tend to break down in simulations when we introduce missing edges 

(Figure S3) as these are treated as explicit zeros in the linear equation solver (Van Der Maaten 

et al., 2009).  

We have previously (Ben-Elazar et al., 2013a) applied an optimization method (Kruskal, 1964a) 

which avoids missing data in this context, however it does not scale very well and difficult to 

apply to the entire human genome. To overcome this, we would like to distribute the workload 

per homologous chromosome pair, without losing all inter-chromosomal transitivity. To this 

end, we apply Step 2 of the algorithm (Figure 4), and compute the empirical dot product of the 

full genome matrix which captures two-hop transitive relations in the graph. 

 

Detailed formulation of the haplotyping problem 

Let  be smooth and differentiable maps into two arbitrary curves in of 

unit velocity, i.e.  and  are of differentiability class . 

We are given (approximate, noisy, partial) pairwise distances, , between  consecutively 

sampled coordinates  along each curve (  in total). The distances between 
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all pairs of points, , are given by the  distance matrix, , as 

follows: 

 

Let  be  independent coin tosses with , for .  

We define , where  is the following, , permutation block-matrix:  

  

With the corresponding blocks, 

 

More intuitively,  “tosses a coin” to decide if it switches the distance values between 

coordinate  and  (the th coordinate of curve  and the th coordinate of curve ). This 

permutation causes the identity of the curve from which each coordinate was sampled 

(previously encoded as the corresponding block in which its distance values appear in the 

matrix ) to be lost. 

The geometric task we address is as follows. Given , assumed to be constructed by such 

process, we would like to recover the most likely partitioning of the  coordinates into two 

corresponding curves, representing . 
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Supplementary Figures 

 

Figure S1. Simulated naïve Hi-C on diploid genome.  (Top) Showing a simulated pair of homolog chromosome structures and 

their underlying distances as a proxy to Hi-C. (Bottom) When naïve approaches multiplex homolog data, the structure does not 

resemble the original.  

 

 

Figure S2. Effect of HT-block size on phasing quality.  (Top) We repeated our phasing analysis pipeline for multiple simulated HT-

block sizes. We see a pattern where large HT-blocks have lower phasing quality. (Bottom) Distribution of similarity values in our 

normalized dot product matrix showing a more uniform distribution for large HT-block sizes (in log scale). This shows that at 

some HT-block length bin size the structural signal is averaged over too many bases to a point where the algorithm cannot 

phase accurately. 
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Figure S3. Effect of sparsity on Eigenvalue based methods.  (Top) We sample missing data uniformly over a simulated similarity 

matrix of two homologs. As reference, the Hi-C dataset we use, binned at 500Kb resolution has >98% missing values. (Bottom) 

Results of classical multidimensional scaling on the corresponding similarities above. 

 

 

Figure S4. Trellis graph edge weight example for real data.  (A) Illustration of Trellis graph with selected transitions. Nodes 

represent known partial phasing. Homologs in each column along the graph are randomly permuted to illustrate the arbitrary 

order given in the partially phased Hi-C maps (when no ground truth is known). Edges represent transitions along consecutive 

phased regions and are weighted by transition probability which is proportional to Euclidean distance between corresponding 

coordinates in latent space. Edges colored black illustrate the ‘switch’ and ‘stay’ decisions the algorithm makes to complete the 

phasing. Nodes are marked by predicted homolog number (numbered arbitrarily). (B)  Showing decisions chosen by the 

algorithm for chromosome 1. On the primary Y axis and bottom of the graph we see the decisions along the Trellis for a ground-

truth-ordered (non-permuted) Trellis. We see the algorithm makes 4 mistakes (chooses to cross from one homolog to the other) 

along chromosome 1 in this case. On the secondary Y axis and related stem-plot we see the confidence for the choice calculated 

as the difference between the sum of parallel edge weights and sum of cross edge weights. When the difference is zero the 

algorithm is ‘Indecisive’, when the difference is positive the algorithm identifies the likely phasing is the same as ground truth 

and when negative to ‘Switch’ from the ground-truth. 

 



45 

 

 

Figure S5. Distribution of confidence, coverage and quality of phased haplotypes.  (Left) Embedding of results from Figure S4 

color coded by Confidence (see Results) shows correlation between 3D separation and Confidence. (Right) Distribution of all 

confidence values across all ensembles of all chromosomes. Note that confidence is a signed quantity where positive values are 

haplotyping decisions which correlate with the ground truth. 

 

 

Figure S6. Presenting the under-determinism in naïve multiplexing of Hi-C data. An example of co-localization analysis. (Left) We 

illustrate a simplified diploid genome composed of two star-shaped 2D homologs, and 10 genes. In this toy example, white 

colored circles represent genes that share a common function, and black circles genes that do not. For this specific configuration, 

pivot genes 1,3,5,7,9 on the left-most chromosome homolog display a significant co-localization pattern ( ). (Right) 

When averaging the pairwise distances of homologous genes to other genes, the resulting naïve “haploid view” representing the 

underlying diploid genome is presented, and the intricate details of the conformation are lost. Green dashed lines illustrate the 

averaging effect on distances, wherein genes 1,2 alternate between short and long distances to the center of the homolog in the 

true, diploid structure, and are averaged to be equally distant in the haploid view. Using the resulting model directly will not 

yield significant co-localization patterns. Furthermore, the problem of recovering the details of the original, diploid, 

conformation directly from this view is under-determined. I.e. There are an infinite number of equally valid diploid models that 

yield the same resulting haploid view, some of which will not express an enriched co-localization pattern. 
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Chapter 3:  

 

The Functional 3D Organization of Unicellular 

Genomes 
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3.1  Introduction 
Studying the co-localization of elements along the genome (Kanduri et al., 2018)  is used for providing 

evidence of evolutionary or mechanistic relationships between genomic elements and genomic 

organization. There are well established functional mechanisms that are known to interact in cis via 

genomic proximity, such as genes along an operon, promotors and their associated coding sequence, 

nucleosome modifications and proximal chromatin accessibility, etc. Studying trans interactions has 

remained elusive until recent technological breakthroughs that have enabled the assessment of the 3D 

structural properties of genomes. Chromosome conformation capture (3C) and methods derived 

therefrom (Hi-C) (Ay and Noble, 2015; Lin et al., 2018) are, generally speaking, experimental protocols 

that yield a sparse map of paired sequencing read counts. These counts correlate with 3D spatial 

proximities between pairs of genomic loci (Nynke L. van Berkum et al., 2010b). These methods allow for a 

methodical examination of how the genome folds (Lieberman-Aiden et al., 2009; Suhas S.P. Rao et al., 

2014; Sanborn et al., 2015) and how genomic elements co-localize to potentially interact in three-

dimensional space (Varoquaux et al., 2015; Sanyal et al., 2012; Thévenin et al., 2014; Nurick et al., 

2018), opening the door to studying trans interaction systematically. 

 

Hi-C has established a prominent and noteworthy contribution to our understanding of cis 

chromatin order and epigenetics with progress in the study and characterization of topologically 

associated domains (TADs) (Dixon et al., 2012; Nora et al., 2012; de Laat and Duboule, 2013). Such 

domains are typically presented as local triangle-shapes in a triangular view of the Hi-C interaction matrix, 

corresponding to local clusters of high intra-cluster, low inter-cluster read density. Studies pertaining to 

the underlying mechanism of TAD formation have implicated the contribution of CTCF and cohesin, key 

contributors to cell-type-specific genome conformation (Junier et al., 2012). TADs are believed to form 

higher-order insulated intra-chromosomal neighbourhoods, regulating gene-enhancer interactions, and 

their disruption has been shown to cause disease (Denker and de Laat, 2016). 

 

 Imaging and Hi-C data, as well as data collected from related techniques, have been used to 

demonstrate co-localization of active genes in specific conditions and in a handful of organisms.  The 

authors of (Mahy et al., 2002) were among the first to experimentally assess the nuclear localization of 

active genes. They applied FISH (fluorescence in situ hybridization) to provide evidence contrary to the 

hypothesis that active genes co-localize at the periphery of chromosome territories. A later study 

(Osborne et al., 2004), followed with a systematic analysis using independent 3C (chromosome 

conformation capture) and 3D-FISH experiments. Their results provided early evidence to the dynamic 

nature of co-localization of active genes. One purpose of this current work is to expand this investigation 

of co-localization in a more systematic manner. To achieve this, we developed streamlined algorithmic 

and statistical approaches as described herein. 
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Transcription factories (Cook, 2010) are an example of an established regulatory mechanism 

manifested as confined compartments within the nucleus, wherein transcription machinery recruits both 

cis or trans cofactors and genomic elements to regulate specific cellular functions (A. Iborra et al., 1996; 

Sutherland and Bickmore, 2009b; Junier et al., 2010). Previous studies have attempted to address the 

task of statistically assessing the existence of transcription factories. The authors of (Dai and Dai, 2012) 

compared the number of inter-chromosomal interactions in different functionally-related gene sets and 

observed statistical enrichment under the hypergeometric null model for interactions among transcription 

factor (TF) targets. However, a follow-up study (Witten and Noble, 2012) argued that edges in the inter-

chromosomal 3C interaction graph are not statistically independent, as was assumed under the model 

used by (Dai and Dai, 2012), and that co-localization events would therefore be over-counted. To correct 

for this issue, some studies (Witten and Noble, 2012) applied a re-sampling procedure under which no 

signal for TF target co-localization was detected. Another study (Paulsen et al., 2013) developed an 

extended approach that includes intra-chromosomal interactions along with a more elaborate sampling 

methodology which controls for local genomic structural features and applied this method to discover 3D 

co-localization of mutations in cancer and chromatin states. Studies from our group (Ben-Elazar et al., 

2013a; Shay Ben-Elazar, Chor, and Yakhini, 2016) took a different approach to statistically assess 

transcription factories (Witten and Noble, 2012; Dai and Dai, 2012) that avoids comparing between 

populations of pairwise proximities altogether, and so circumvents any statistical dependence issues that 

fail some earlier methods. Specifically, in the aforementioned work (Ben-Elazar et al., 2013b; Shay Ben-

Elazar, Chor, and Yakhini, 2016) we compute our statistics independently on each genomic bin – a pivot 

point centered at some locus along the genome around which we measure the statistical significance of 

co-localization. Since this approach is only concerned with distances measured from a single fixed point, 

it avoids dependence issues related to working with all interaction pairs. For example, this approach 

never considers a triplet of significantly interacting genomic bin pairs  and therefore 

avoids dependence arising from transitivity, which was correctly pointed out by (Witten and Noble, 2012). 

We rank all genes according to the number of interactions recorded between them and the pivot point 

under consideration. Using the ranked list of genes, we applied a statistical model to quantify whether 

targets from the functional set are significantly localized close to that pivot. We then apply additional 

safeguards to control for multiple hypotheses evaluated across different genomic bins and for events 

confounded by genomic proximity. The approach of (Ben-Elazar et al., 2013b; Shay Ben-Elazar, Chor, 

and Yakhini, 2016) is flexible in its inherent ability to detect partial co-localization of only a subset of the 

query set of TF targets, where approaches based on averaged Hi-C signal would require exponentially 

enumerating all possibilities. In addition to producing this subset, our method also produces the set of all 

genomic bins that geometrically reside within the convex subset of co-localized TF targets, but are not 

labelled as belonging to the query set. These bins could potentially hold elements that are functionally 

related to group in questions. A shortcoming of the above is that, in reality, co-localization needs not be 

geometrically restricted to a 3D point positioned precisely on a genomic locus but can be arbitrarily 
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centered in space. Thus, events of significant colocalization may remain undetected by this method, as 

shown by the synthetic construction in (Figure 10, Left). We later report a conceptually similar result on 

actual biological data for Caulobacter crescentus, further illustrating the need for a method that can 

overcome the shortcoming of such an approach. In both synthetic and real-data examples, none of the 

genomic bins yield a statistically significant co-localization result and such phenomena would be 

inadvertently ignored by methods that are limited to genomic bins as pivots.  

 

 

Figure 10. Synthetic examples of co-localization. Left: A construct showing that (2D) spatial co-localization might not be 

identified by selecting positions along a 1D curve. Circles represent genomic bins. White circles contain TF targets; black circles 

are bins without TF targets. Red and blue ‘X’ represent both possible distinct pivots due to symmetry. On the left side we show 

the corresponding binary vectors reflecting the 2D (Euclidean) distance from each possible pivot. Green ‘X’ marks the optimal 

position (yielding the most significant mHG p-Value, see methods) and would not be identified with previous methods. Right: 

Showcasing three example pivots in a synthetic example. Three green discs representing three pivots (center of disc) with 

corresponding mHG p-values (in legend) and thresholds are reported. Red points are treated as binary ‘1’ in the corresponding  

vectors. � represents the center of mass of red points, illustrating its sensitivity to the distribution of red and blue points. � � 

show that the method can adjust to different densities in the data.  

In this work, we aim to extend our previous studies by removing the requirements for the pivot to 

reside on the genome. Our approach, as reported here, enables the study of co-localization of a set of 

genomic elements centered at arbitrary points in 3D space representations of Hi-C data. Investigating cis 

driven chromatin order, such as TADs, relies on the 1D topology of genomic order. Clearly, studying trans 

chromatin order, as in transcription factories, benefits from understanding the embedding of measured 

proximity data. We provide insights into the difficulty of solving this problem exactly and suggest several 

heuristics to approach it. We provide code and software implementing these approaches efficiently. In the 

discussion section, we compare our statistical enrichment approach to co-localization with a more simplistic 

sampling-based assessment. While a sampling-based approach will find some of the co-localization events, 

it will, as we show, miss several significant ones. Finally, we apply our method to multiple publicly available 

datasets across several species. Our analysis is able to uncover previously unreported cases of various 

genomic elements that appear significantly spatially co-localized. Co-localization alone cannot be used as 
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direct evidence of an underlying mechanism due to potential confounding linkage. Although requiring 

additional experimental validation, these results shed new light on the genomic 3D organization of 

unicellular organisms. 

 
 

3.2  Methods 
We present a statistical-algorithmic framework, referred to as Spatial-mHG (  in short), that can 

quantify patterns of spatial co-localization of binary-labelled elements.  

Intuitively, our method scans an input set of 3D locations (for example, genomic bins in a 3D embedding 

of Hi-C data) labelled by some binary property, looking for ‘hotspots’. These are regions in which we 

observe an enrichment of ‘1’-labelled and a depletion of ‘0’-labelled genomic bins. Our method identifies 

hotspots as specified by 3D balls centered at pivot points. These events are statistically quantified for 

each pivot under a null model. We specifically use the, previously developed (Eden et al., 2007, 2009a), 

minimum hypergeometric null model. In the next two subsections we provide detailed formal definitions 

and analyze the computational complexity of providing exact solutions. We consider different algorithmic 

and heuristic strategies as well as statistical controls. This formal mathematical exposition can be skipped 

by readers who are not interested in such details of the methodology. The results section uses graphical 

representations that explain the nature of the results without relying on the mathematical details. 

In the second part of this section, we list several Hi-C datasets as well as functional annotation sets 

explored in this study. We conclude this section by presenting a novel smoothed embedding approach 

that we applied for generating 3D configurations based on Hi-C data as input for .  

 

3.2.1 Spatial-mHG: statistics 

Consider a set of points in 3D with binary labels: 

� � �
�

� �

�
 

We define �
�

� to represent the number of ‘1’ labelled points in the data. 

Let � be some arbitrary point, also referred to as the ‘pivot’.  

Define � �� �� ��
, the binary vector that satisfies �� � �� � �� �

. 

That is � is the binary vector induced by ranking points � according to their Euclidean distance from . 

Further consider  

�
�����

��� (�,�)

����

 

where � �
�

� .  

 is a, previously published (Eden et al., 2007, 2009a; Ben-Elazar et al., 2013b; Shay Ben-Elazar, 

Chor, and Yakhini, 2016), statistical framework that inspects prefixes of a binary vector, such as �, for 
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overabundance of ‘1’ under a hypergeometric null model. Intuitively, the likelihood of an overabundance 

of ‘1’s is compared against a uniform distribution of such labels along �. 

Since any two prefixes are statistically dependent, the resulting score requires a correction scheme to be 

applicable as a p-value.  corrects for multiple hypotheses by explicitly, and efficiently, computing the 

cumulative probability distribution function (CDF) for a given configuration of . Querying the CDF at 

the resulting score yields a corrected p-value (Eden et al., 2007). 

In ,  would be small when ‘1’ labelled points co-localize around  (Figure 10, Right).  

Recall that we are interested in points that minimize , formally 

     � �  

The  framework is therefore seeking pivots where a statistically significant  is obtained for the 

data, . As stated, solving  naively requires searching through all 3D space - a continuum of pivots. A 

relatively simple observation shows that the number of pivots that needs to be considered is actually 

finite. For every pair of points such that one is labelled as ‘1’ and the other as ‘0’ we can divide � using a 

plane that is perpendicular to their connecting line segment, and crosses in its middle. The arrangement 

of such (perpendicular bisecting) planes, or ‘bisectors’, tessellates the space into convex polygonal 

compartments, or ‘cells’. It is easy to see that given a single pivot from each cell (e.g. its centroid) we can 

cover all distinct binary vectors, �, for a given dataset. In Supplementary 10 we provide an exact 

polynomial bound on the number of pivots that produce distinct � vectors as , leading to a 

worst case bound of  , as previously described in (Yaglom and Yaglom, 1987).  

Unfortunately, from a practical perspective, this number of cells quickly becomes intractable even for 

moderately sized datasets, leading to statistical as well as algorithmic challenges. For a single cell (pivot) 

we can report precise p-values using the exact distribution of the mHG statistic (Eden et al., 2007), 

however, there is a vast number of multiple hypotheses, namely cells, investigated in a single spatial-

mHG instance as in . Characterizing a precise probability distribution for spatial-mHG remains a 

difficult task and so we apply FDR correction and report q-values. We also apply statistical assessment 

based on simulations as described below.  

 

3.2.2 Spatial-mHG: algorithmics and heuristics 

An approach to evaluate spatial enrichment for a given set of labelled 3D data is a function  

As indicated in the above discussion, the fast growth of the number of cells leads to algorithmic issues. 

Specifically, a naïve exhaustive approach for large N, although possible in principle, is practically 

infeasible due to the   complexity. In our analysis, we compare several heuristic approaches that 

aim to deal with this challenge. These approaches, denoted by !��" and #$%�&' 

correspondingly, provide an upper bound on . As described, our methods are designed to detect 

significant results but cannot guarantee a recall of all significant results. 
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See Supplementary 1,2 for discussion of the performance and trade-offs of the heuristics tested here and 

See Supplementary 3 for more technical notes on our experimental set up. An illustration summarizing 

the key differences between both approaches is available in Figure 11. 

 

 

Figure 11. Illustration comparing implemented heuristics. Original points shown as red/teal and numbered from 0 to 7 where 

. 16 Bisectors are drawn as dashed gray lines, yielding 120 (closed) cells. Left (animation available as Supplementary Video 

1): pivots generated in #$%�&' are red x’s. In this example our sampling algorithm is run to exhaustion Right (animation 

available as Supplementary Video 2): pivots generated in !��" are teal ‘x’s and corresponding dynamic grid structure 

colour coded by BFS depth in quad-tree. Here we stop the algorithm after yielding 120 pivots, illustrating the difference in 

behaviour to ($%�&'. 

 

Grid approach: !��". We recursively iterate over a uniform 3D-grid. Namely, we partition space into 

eight disjoint, nested, cubes where the center of each cube is to be used as a pivot. This uses a common 

underlying data structure called octree (Meagher, 1982), and a branch-and-bound algorithmic approach. 

Let )*� be the t+1st - cube evaluated. 
 is the root node in the tree referring to a cube bounding our 

input data (with some slack to allow pivots outside the convex set to be considered). We dynamically 

build the octree while traversing it in a breadth-first manner by maintaining a priority queue. Let  be 

the best observed  after  cubes are evaluated, and set +,��
bisectors that intersect with )*� | 

bisectors that intersected )*�’s parent cube}. Denote +,��
 the  score given by using the 

center of )*�, +,��
, as a pivot. We observe that at this point we have enough information available to 

compute a lower bound on the best theoretically-achievable p-value for all cells contained by the cube 

)*�  If this lower bound is  we stop the recursion at )*� since no sub-cube can possibly 

improve on . 

Assume there exists a hypothetical pivot, -.�
)*�, for which every bisector +,��

 is ‘satisfied’: Let 

� �  (W.L.O.G.) be the data points and labels which induced the bisector , -.� ‘satisfies’  if 

-.�
� �

-.�
� �. Let  be the number of bisectors in +,��

that are not satisfied by +,��
. We 

can compute -.�  by exploiting the data structure used to compute +,��
. Intuitively, we 
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append  ‘1’s after every valid prefix of /0,��
 (such that  does not increase) and evaluate the resulting 

 p-value.  

We note that this method guarantees a finite number of pivots, but each cell may be visited more than 

once. Details on this and more caveats are available in Supplementary 3. 

Sampling approach: #$%�&'. Every three bisecting planes in general position (bisectors � �

� � � ) intersect at a point, � . We take an -step along the gradient of each of the 

three bisectors and average the resulting points to yield a pivot inside a cell 1. Formally, 

1
� � �

�

�

���

 

This procedure defines a one-to-one mapping for every bisector-point-intersection to cells such that every 

such pivot point is “bottom-most” (w.r.t. dimension ) of some cell, as illustrated in Supplementary Figure 

S14. With this in mind, we iterate over bisectors to yield combinations of three distinct bisectors and by 

doing so recover all “bottom-most” pivots exactly once. 

 

Given an actual data instance, , we are interested in benchmarking the enrichment evaluated by any of 

the above approaches against adequate controls. To do so, we apply the following controls: 

‘Bead’ pivot control, denoted . Uses every original � (‘beads’ along genome) as a candidate 

pivot, and only those. This is used to compare results with our previously published method (Ben-Elazar 

et al., 2013b; Shay Ben-Elazar, Chor, and Yakhini, 2016). 

Genomic order control, denoted . Uses every original � as a candidate pivot, but ranks 

according to 1D genomic distance (i.e. for � 2, rank by ), rather than, 3D, Euclidean distance. We 

restrict this analysis per chromosome where applicable, as genomic inter-chromosomal distance is 

undefined. This analysis is used to filter out results driven entirely by genomic enrichment, rather than 

spatial enrichment, as these are not the focus of this paper and can be identified without the need of Hi-C 

data or . 

Simulations control, denoted (�%. Runs 100X shuffles on the label vector, , running both 3��" and 

($%�&'  (�% is then reported as the empirical  where the population is comprised of 

!��" ($%�&'  values. This evaluation is used as an additional approach of 

computing an empirically determined corrected p-value, since, as previously mentioned,  conducts 

multiple hypothesis testing (many dependent cells are treated independently) without an exact correction 

scheme. 

 

3.2.3 Hi-C datasets and annotation sets 

We investigated several unicellular genomes and functional annotation sets, as follows: 

• Bacteria: C. crescentus. Le et al. (Le et al., 2013) investigate expression of genes in chromosome 

interacting domains and their organization under a plectonemic model.  
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• Bacteria: B. subtilis. Marbouty et al. (Marbouty et al., 2015) focus on the 3D architecture of the 

origin domain and its dynamics during the cell cycle.  

• Yeast: S. pombe. Mizuguchi et al. (Mizuguchi et al., 2014) experiment with Cohesin mutants 

illustrating its globule-formation function and discuss the role of heterochromatin in facilitating 

inter-chromosomal interactions.  

• Yeast: S. cerevisiae. Duan et al. (Duan et al., 2010) early work on structure reconstruction and 

the study of transcription factories. 

• Fungi: N. crassa. Klocko et al. (Klocko et al., 2016) study sub-telomeric facultative 

heterochromatin and the impact of various histone modifications wildtype chromatin conformation. 

Given an annotation dataset, namely one that induces binary labelling on genomic loci, we map 

annotation elements to genomic bins at the resolution,  as provided in the aforementioned published Hi-

C datasets. We filter out resulting annotation sets that map to less than four ‘1’ labelled bins ( ). We 

used several types of annotations, as applicable, for the different organisms. 

Common annotation sets.  

• Gene Ontologies (GO) are acquired from (Ashburner et al., 2000; 

The Gene Ontology Consortium, 2017) for all five organisms. 

• COGs/KOGs are acquired from (Galperin et al., 2015; Koonin et al., 2004) for bacteria and yeast. 

• Transcription factor target cohorts are acquired from (Novichkov et al., 2013) for bacteria and 

from (Teixeira et al., 2018) for yeast. 

Differential annotation sets. 

We show how one can turn various types of genomic measurements into binary annotations that can be 

studied using our proposed framework. To illustrate this capability, we use the data published in S. 

pombe (Mizuguchi et al., 2014) which includes the following datasets for both wild-type and mutants: 

• CGH: Do copy number variations co-localize to some spatial locations? 

CGH data was binned to the same resolution as Hi-C, averaged by  in bin. 

Bins with less than 20 probes were removed. Resulting values, �  were binarized such that 

�
�   where  are the mean and standard deviation of , accordingly. 

• Hi-C Data: Do genomic structural changes occur in spatial clusters? 

To evaluate differential Hi-C structures we compute Z scores from the Hi-C datasets of reference 

(REF) and variant (VAR). Then, per chromosome, we mask out (set as ‘0’) values in location  

where  and compute the pairwise Euclidean distance between the masked vectors 

for locus  in REF and locus  in VAR and compute the Z scores on the results. Next, we binarize 
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when  to produce � for . Intuitively, these are loci that have changed substantially 

in (local structure) curvature between REF and VAR. We use � from the embedding of REF.  

 

3.2.4 sNMDS smoothing of embedded Hi-C data   

Embedding Hi-C data attempts to recover a 3D conformation, or ensemble of, that explains the observed 

data, with mounting qualitative evidence to support its reliability in capturing biological-structural 

phenomena (Ay and Noble, 2015; Liu et al., 2018; Varoquaux et al., 2014; Ay et al., 2014; Mercy et al., 

2017; Treut et al., 2018). We have previously (Shay Ben-Elazar, Chor, and Yakhini, 2016) demonstrated 

a quantitative advantage of using embedding distances over Hi-C read counts for the task of phasing 

haplotypes in a human genome, reinforcing its importance for denoising raw Hi-C read counts. We note 

that such embeddings cannot necessarily be conceived as representing an actual 3D genomic structure 

(see Discussion).  

NMDS (Nonmetric Multidimensional Scaling) (Ahrens, 2007; Mead, 1992b) is a well-established 

embedding algorithm that iteratively minimizes a loss function measuring the violations of ordinality 

between the embedding and the input distances. Meaning, it attempts to find a conformation where the 

two closest points in the input will remain so in the embedding, and so forth. This property is desirable for 

 as it implies the embedding will directly optimize � vectors for � � , to reflect the 

ordinality of observations as much as possible. Applying NMDS to Hi-C data often leads to unlikely 

discontinuities in the resulting configuration. Such discontinuities are especially evident in degenerate 

mapping of low-genomic-sequence-complexity regions and biased Hi-C measurements. For example, we 

may get consecutive genomic bins from the same chromosome that are unreasonably distant in space 

when compared to any other consecutive pair.  

sNMDS (smoothed NMDS) iteratively corrects outliers in the embedding, enforcing smoothness 

for 1D genomic neighbours. Outliers are defined according to the distribution of distances between all 

genomically-consecutive bins (the discrete derivative) along the same chromosome. We compute Z-

scores and provide thresholds as parameters that determine outliers (genomic discontinuities) for each 

iteration of the correction. These outliers are then corrected using linear interpolation. We demonstrate 

that this process results in qualitatively superior embedding configuration in Supplementary 5.  

 

3.3  Results 
Using the method described herein we found evidence of functional 3D organization across multiple 

organisms and multiple functional annotation sets, illustrating the prevalence of structure-function 

relationship at a genomic scale, in unicellular organisms. Below we describe selected results chosen 

according to their statistical significance as well as according to their potential biological implications. We 

provide a supplementary table with more details for all results. as well as some descriptive meta-analysis 
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is available in Supplementary 8. To further highlight the advantage of the grid method in identifying 

particular cases of spatial enrichment we performed an additional meta-analysis directly comparing the 

results among suggested heuristics in Supplementary 13. Finally, a discussion on several noteworthy 

negative results where functionally related elements did not appear to co-localize is available in 

Supplementary 9, for completeness.  

 

3.3.1 sNMDS results for Hi-C data of unicellular genomes 

The first step of our approach is to apply sNMDS to Hi-C data and produce a 3D embedding configuration 

that is used to represent denoised distances from noisy measured population Hi-C read counts. We base 

our enrichment analysis on these configurations. These embeddings should not necessarily be 

considered as representing actual genomic 3D structure as further considered in the Discussion section. 

We apply sNMDS and  to elucidate distinct spatial enrichment patterns across multiple organisms 

and provide insights into the variability and prevalence of genomic functional organization across phyla. In 

the next subsections we list our key findings for each organism and discuss previously unreported 

phenomena detected as significant by , as related to the functional 3D organization of the 

organisms studied.  

 

3.3.2 Caulobacter crescents 

In Figure 12 we present the sNMDS embedding of Hi-C measurements in C. crescentus (at synchronized 

cell cycle t=0, (Le et al., 2013)), displaying a saddle-like, crescent structure, similar to its bacterial cell 

shape. A recently published (Yildirim and Feig, 2018) high resolution structural study provided 

qualitatively similar models with experimental validation. 
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Figure 12. C. crescentus results. Left: sNMDS embedding of C. crescentus from three viewing angles. Right 

(animation: available as Supplementary Video 3): red spots are genomic bins which contain genes labelled as DNA 

replication genes under GO:0006260. The floating ‘x’ is the  optimal observed pivot. Translucent semi-sphere 

represents the ball induced by the  threshold. Gray circles indicate bins within the threshold and 

corresponding ball. Simplified gene labels in GO:0006260. Reductase in green, Helicase in red, Ligase in orange. 

 

Genes annotated as elements of DNA replication (GO:0006260) appear polarized in two distinct sets 

along the replication axis ( !��" � ��
(�%

, Figure 12, middle). Note that this is a real data example 

resembling the synthetic construction used in Figure 10 in the sense that  finds an enrichment 

centered around a non-genomic pivot that is not evident under the bead pivot nor under the 1D genomic 

based approaches. Focusing on the individual gene families the observed dichotomy coincides with ori 

and ter locations (origin and terminus of DNA replication, accordingly), alluding to evolutionary pressure 

for duplicated machinery templates possibly related to the replication mechanism. A possible explanation 

of this observation can come from having a fall-back template for critical elements in the replication 

machinery in case of a stalled replisome blocking RNAP access (Yeeles et al., 2013). We also observe 

more subunits from the DNA pol III family available near the Ori, which may relate to the fact that the cell 

exists longer in a state where these regions are replicated before meiosis. 

The observed behavior of polarity along the replication axis appears to be a property of C. crescentus. 

We performed a meta-analysis of our results (Details in Supplementary 6) that illustrate that this property 

is consistent across available annotation sets and is significant ( ) under an appropriate statistical 

model. 

 

3.3.3 Bacillus subtilis 

In Figure 13 we present four sNMDS embeddings of Hi-C data from available time-course Hi-C 

measurements in B. subtilis (Marbouty et al., 2015). 
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Figure 13. B. subtilis results. Left-to-right, Top-to-bottom (animation available as Supplementary Video 4): 

Embeddings of time-course Hi-C of B. subtilis at t={0,5,30,60} minutes after release from synchronized G1 into S-

phase. Embeddings are aligned with Procrustes analysis. Color gradient along the chromosome is genomic position 

(showcases the circular nature of the chromosome). Red circles indicate genomic bins that contain gene(s) targeted 

by BSU00470 (Purine biosynthesis operon repressor). A single translucent ball in each subplot represents the  

result (pivot and threshold mapped to radius). A black arrow points to the location of the ball. Figure depicts the 

dynamic nature of co-localization of the targets of the above TF. Next to each subplot we show a zoomed-in plot of 

the sites of detected co-localization. 

Targets of transcription factor BSU00470 (Purine biosynthesis operon repressor) co-localization signal 

shifts and changes during cell cycle. We observe a substantial colocalization increase in  minutes 

after release from G1 into S-phase, as defined by the original report (Marbouty et al., 2015). Results are 

summarized in Table 1 and visualized in Figure 13, top right. 

    

0    

5    

30    

60    

Table 1. TF target co-localization dynamics during cell cycle. B. subtilis BSU00470 (Purine biosynthesis).  

Purine synthesis and salvage gene expression has been observed to fluctuate substantially during the 

cell cycle and is known to respond quickly to changes in pool availability (Fridman et al., 2013; Nygaard 
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and Saxild, 2005; Ye et al., 2009). We therefore observe a co-localization of purine biosynthesis targets in 

the cell cycle period when they are indeed observed as active. Gram positive bacteria, such as B. subtilis, 

have been demonstrated to have a strong strand-specific purine asymmetry, skewed positively to the 

leading strand and related to the mechanism of DNA replication (Hu et al., 2007). The work by Nouri et al. 

(Nouri et al., 2018) showed that carbon metabolism in B. subtilis affects DNA replication rates. This may 

relate to our observation as purine biosynthesis requires the fusion of a pyrimidine ring with an imidazole 

ring and therefore has a higher carbon demand. We propose that there may exist a regulatory link 

between these phenomena, owing to the differences in strand replication progression that is mastered by 

the metabolism of purine and pyrimidines. The observed co-localization signal is facilitated via 1D as 

targets share an operon that appears to be spatially invaded by confounding genomic elements when 

. Our analysis of the temporal dynamics of several TFs (further details in Supplementary 7) provides 

compelling evidence for the transcription factory model where genes can dynamically co-localize in or out 

of sites of transcription (Rieder et al., 2012). 

 

3.3.4 Schizosaccharomyces pombe 

In Figure 14 we present the sNMDS embedding of Hi-C measurements in S. pombe (Mizuguchi et al., 

2014), displaying a six-pronged claw shape. The authors of (Tanizawa et al., 2017) predicted a similar 

mitotic configuration in their proposed model. 

 

Figure 14. S. pombe results. Left: sNMDS embedding for S. pombe with colour coded chromosomes. Middle 

(animation available as Supplementary Video 5): Bins are colour coded by average aCGH value, with marked 

outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak duplication signal on ChrII, and deletion on 

ChrI, ChrIII. Strongest duplication is evident at the telomeres.  Right (animation available as Supplementary Video 

6): Red bins contain Loz1 transcription factor targets. The resulting  pivot and corresponding ball are visible 

containing 4/6 TF targets. 

 

Chromosomal rearrangement of rad21-K1 mutant (compared to Wild Type, based on aCGH data) are 

spatially co-localized near the telomeres ( !��" ��

 ��


(�%
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��

 ��

 �4 �5 , Figure 14, middle). 

rad21-K1 is a mutant selected for partial loss of function in a Cohesin subunit (Tatebayashi et al., 1998). 

Cohesin is a protein complex implicated in being involved in the determination of chromatin architecture 

and mitotic domain organization (Mizuguchi et al., 2014; Tanizawa et al., 2017; Sofueva et al., 2013; 

Lazar-Stefanita et al., 2017). Active chromosomal rearrangement near telomeres have been previously 

reported using Cohesin mutants in mice and molecular evolution studies in primates (Adelfalk et al., 2009; 

Trask et al., 2005). In a related observation we see that the transcription factor Loz1 has its targets 

spatially confined near the telomeres ( !��" �5
(�%

/�67)

�� �8 �� , Figure 14, Right). Two of its targets are SPBC1348.06c and 

SPAC977.05c, both known to be involved in telomeric duplication. Together, our results indicate a strong 

relation between a functional Cohesin complex and peri-telomeric integrity, which may be facilitated by 

DNA repair mechanisms operating during meiotic recombination. 

 

To further inspect the structural conformation changes in rad21-k1, we performed a differential Hi-C 

analysis (details provided in Methods). Our results show that the major changes in structure are localized 

and manifested primarily at the middle of each chromosome arm ( !��" ���

�9
(�%

� �� �9 �5 , Figure 15). 

The authors of (Tanizawa et al., 2010) present qualitatively similar interphase models. 
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Figure 15. S. pombe mutant structural modifications (animation available as Supplementary Video 7). Left: Top – raw Hi-C read 

matrix for wildtype. Bottom – resulting sNMDS embedding. Middle: Top – Hi-C data for rad21-k1 mutant. Bottom – resulting 

sNMDS embedding. Right: Top – Z-scores between both (masked) Hi-C datasets. Red asterix mark loci of Z>1.96 change. 

Bottom – wildtype sNMDS embedding. Red bins indicate bins that substantially changed in their local structure according to our 

differential Hi-C analysis (detailed in Methods). 

 

3.3.5 Saccharomyces cerevisiae 

In Figure 16 we present the sNMDS embedding of Hi-C measurements in S. cerevisiae (Duan et al., 

2010), displaying a Rabl (Taddei et al., 2010), Water-lily conformation. This result is qualitatively 

consistent with previously published models (Ben-Elazar et al., 2013b; Lazar-Stefanita et al., 2017; 

Capurso et al., 2016). 

 

Figure 16. S. cerevisiae results. Left: sNMDS embedding for S. cerevisiae with 16 color-coded chromosomes Right 

(animation available as Supplementary Video 8): Opaque red colored bins contain Ty5 family LTRs. Inset shows the 

distribution of mean pairwise Euclidean distances for  telomeres. Red dashed vertical line indicates mean 

pairwise Euclidean distances for the 8 Ty5 bins. An empirically determined cumulative distribution function 

evaluated at this point yields  

 

S. cerevisiae long terminal repeats (LTRs) have been categorized to five distinct families, each with 

different properties (Kim et al., 1998; Mita and Boeke, 2016). We observe a previously known preference 

of family Ty5 to associate to peri-telomeric regions ( #$%�&' ��� �9
(�%

�9 �� �� , Figure 16). While this 

association was already known, we offer a refinement in such that the 8 annotated Ty5 LTR elements 

tend to co-localize at a specific hemisphere of the nucleus, on chromosomes III (3 instances), V (2 

instances), VII, VIII and XI. We present the likelihood of such an event to be random in Figure 16, Right 

inset. We shuffle (10,000 times) the assignment of Ty5 elements to different telomeres and compute the 
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median of their pairwise Euclidean distances. The resulting empirical CDF at the unpermuted (observed) 

point yields  . We propose that this co-localization phenomenon occurs due to the mechanism 

by which retrotransposons propagate. The probability of a transposing element to integrate in a potential 

target site is inversely proportional to the distance it needs to travel from its source. 

 

3.3.6 Neurospora crassa 

In Figure 17 we present the sNMDS embedding of Hi-C measurements in N. crassa (Klocko et al., 2016), 

displaying a balloon-like shape. 

 

Figure 17. N. crassa results. Left (animation available as Supplementary Video 9): sNMDS embedding of N. crassa. 

Middle & Right (animations available as Supplementary Video 11 and Supplementary Video 12): Only subset of bins 

containing mappable genes with GO terms are shown. Red coloured bins contain genes with GO (gene ontology) 

annotation GO:0008541 and GO:0042026, “Proteasome lid subcomplex” and “Protein refolding” (Chaperone 

related), accordingly.  A black ‘x’ and translucent sphere depict the resulting  position and radius (recovered 

by mapping mHG threshold back to distance from ‘x’) for each figure. 

 

Protein folding genes and Proteasome lid subcomplex genes are poised to collaborate by genomic co-

localization. In our analysis we observe both gene ontology terms (8541, 42026) to individually co-localize 

spatially ( !��" �: ��
(�%

� 

�� � �;  and !��" �5
(�%

�; �� ��  accordingly, Figure 17, Right). 

Upon inspecting the resulting pivot locations and the sizes of enrichment balls they appear similar to one 

another. To further validate this result, we compute  on the union of both GO term targets resulting 

in ∪ , indicating 2 bins overlap. we run  on the union  without providing an exact statistical 

model to treat these overlaps, providing an upper bound on the p-value ( !��" �4

�;
(�%

�9 �; � �; ). Additionally, 

we fixed the 6 target bins of GO: 0042026 and randomly picked 6 targets, computing the mean pairwise 

distances between both sets of points. The tail of the empirical distribution yielded ��

 when 
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evaluated at the pairwise distances between GO: 0042026 targets and GO: 0008541. These validations 

further illustrate that these are independent genomic sites with overlapping spatial co-localizations. In 

summary, we observe a significant co-localization of Proteasome genes as well as of Chaperone genes 

and furthermore, these two putative transcription factories are spatially close to each other. It has been 

previously observed that both machineries are intertwined, where chaperones mark for degradation by 

ubiquitination, physically deliver and interact directly or via coefficients with the proteasome machinery 

(Imai et al.; Carlisle et al., 2017). Our observation suggests that both mechanisms are tightly coupled on 

the genomic level thereby offering an increased linkage and co-regulation.  

 

3.4  Discussion  
In this work we have developed and implemented methods for assessing the statistical significance of 

spatial co-localization in binary data specified for 3D co-ordinates which overcomes the limitation of being 

constrained to ‘Bead’ pivots. Our code is available to the community. We have applied our methods to 

analyse several Hi -C datasets from unicellular genomes and report statistically significant results detailed 

above. 

 

Our analyses are performed on previously published “population Hi-C” datasets. That is, Hi-C read counts 

correspond to evidence of proximity events sampled from millions of independent genomes of distinct 

biological cells. In this work, as well as in some other Hi-C literature, results are based on analysing such 

population data. The underlying biology may therefore be obscured by the non-homogeneous character 

of the data. To mitigate the underlying variability, we focus on analysing datasets of monoclonal single-

celled organisms under shared environmental conditions. Furthermore, the bacteria datasets, C. 

crescentus and B. subtilis were collected from colonies synchronized to the same cell cycle stages. We 

therefore expect reduced effects coming from genetic, functional and environmental non-homogeneities. 

Nonetheless, other factors that contribute to variability remain, and enrichment results should only be 

interpreted as statistical observations derived from 3D configurations based on sampled population 

measurements. Applying our methodology on more complex organisms, such as Humans, will require 

several adjustments: First, methods that sample homogeneous cell populations, or single-cell methods. 

Next, correctly embedding a polyploid genome. Third, adjustments to the statistical model of mHG to 

better reflect the availability of gene copies in a gene set. Finally, mitigating the complexity issues 

discussed above at larger genome scales by developing more advanced heuristics. 

 

Furthermore, we base our analysis on 3D configurations derived from population data as above. sNMDS 

embeddings probably do not represent the genome structure of any individual biological cell or population 

member. The spatial manifold in which elements are embedded cannot necessarily be directly interpreted 

as physical 3D space. Instead, it serves as an abstract ‘latent’ space, primarily useful for mapping Hi-C 

data to the geometry required for our statistical 3D enrichment methods, while smoothing out the noisy 
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character of Hi-C read counts. The approach here could be re-interpreted not as identifying 

"colocalization" of sets of genomic elements from a spatial model of a genome, but simply testing for 

statistical enrichment at the level of bulk contact frequency, which hints at some cases of colocalization. 

We view the fact that resulting embeddings visually correlate with our expectations of polymer behavior 

without being strictly enforced in the embedding process along with the observed statistically significant 

 results as added qualitative evidence of a population-driven structural signal of genome 

organization. A quantitative quality control analysis of the embedding process, reinforcing the selection of 

embedding algorithm and parameters, is displayed in Supplementary 11. 

 

The algorithmic approach we take here is heuristic since the exact calculation of the best  pivots in 

the data corrected for multiple testing is complex. It is clearly a low polynomial search problem as 

indicated by the combinatorics of the bisector tessellation (see Methods), but still, for thousands of points 

(as in small genomes), this becomes an unacceptably long calculation. One may consider the use of a 

Voronoi tessellation. The latter has a far lower computational complexity. However, points in the same 

Voronoi cell can induce dramatically different rankings on the ‘0’s and ‘1’s, as we illustrate in 

Supplementary 12. Furthermore – the added complexity of correctly computing a statistically valid result 

by many repeats to correct for multiple testing, requires even greater time efficiency. We do analyze 

performance properties of our proposed heuristics, illustrating pros and cons of each. 

 

Further investigation into heuristics may yield improved runtime performance for spatial enrichment 

methodologies. Data reduction methods (Ehrenberg, 1982) may prove useful for filtering or replacing 

objects of interest (such as input points or tessellation cells) by applying clustering and selecting 

representatives. A specific noteworthy data reduction approach is to replace objects by fitting them with a 

density function (Parzen, 1962; Davis et al., 2011). A multiscale density-based representation (Xia et al., 

2018) could provide an efficient means of sampling candidate pivots from areas of interest. Discrete non-

convex optimization methods (Floudas, 1995; Jain and Kar, 2017) such as applying local descent 

(Snyman and Wilke, 2018) on the mHG p-value of neighboring cells, may offer a mechanism to traverse 

between cells towards local minima, thereby enabling faster candidate elimination. 

 

A simplistic approach to statistically assessing co-localization for a given set of genomic loci, , would be 

to compare the average Hi-C read counts within  to averages obtained over a big number of randomly 

drawn samples of genomic loci with the same size,  In Supplementary Figure S19 we show an 

analysis comparing this approach with  on B. subtilis Hi-C data for targets of TF BSU29740 (ccpA), 

a LacI family transcriptional regulator. Our results in this analysis demonstrate the advantage of using 

 compared to a sampling-based approach which would not report this significant co-localization 

event. In general, from an algorithmic perspective, applying the sampling approach in a systematic way to 

find within a moderately enriched functional set (such as a TF cohort) the subsets that are more 



65 

 

significantly enriched, is intractable. Specifically, for a TF cohort , this is equivalent to enumerating all 

|#| subsets. 

 

We applied our statistical methods to several organisms across phyla. To summarize our observations: 

When analyzing data from TF cohorts we find some of them to be spatially enriched, with evidence that 

functionally related cohorts can share a common transcription factory. We observe changes in co-

localization patterns along cell cycle using time course data, providing evidence for transcription factory 

dynamics. We further show co-localized retrotransposon telomeric preference, potentially shedding new 

light on its mechanism of propagation. We observe an axial partitioning of replication machinery genes 

reinforcing evidence of a deep connection between genome replication and genome organisation.  

 

Overall, we provide distinct lines of evidence for the role of spatial organization in unicellular organisms, 

illustrating ’s  applicability to studying both cis and trans functional-structural relationships in 

genomes. Finally, our results and interpretation can benefit from follow-up studies and need to be 

experimentally validated. 
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3.5  Chapter Supplementary Materials 
 

DATA AVAILABILITY 

Spatial-mHG code is open source and available in the Yakhini Group GitHub repository 

(https://github.com/YakhiniGroup/SpatialEnrichment) along with animated 3D configurations and figures.  

SUPPLEMENTARY DATA 

Supplementary Data are available at Nature Communications online: 

https://www.nature.com/articles/s41598-019-48798-7#Sec22 

 
Supplementary Figures 
 

1. Empirical comparison of >?@A and BCDEFG on synthetic data: To allow some degree 
of control on the optimal enrichment in a synthetically generated instance we provide the 
following protocol. Pick �

�  from a multivariate uniform, , and desired minimal 
enrichment p-value, . Assume � is ranked by Euclidean distance to , i.e. � � �*�

�. Enumerate all entries in the HGT table (Supplementary Figure S9) that are . Weight each 
entry with the number of possible non-decreasing paths that cross it (used in mHG multiple 
hypothesis correction, see (Eden et al., 2007, 2009a) for details) and apply importance sampling 
to select an entry proportionally to its weight. The entry corresponds to the underlying ∗ 
parameters. Generate 1 by creating a shuffled prefix vector with  ‘1’s and ∗  ‘0’s, and ap
 pending a shuffled suffix vector with  and ∗ ‘1’s and ‘0’s accordingly. 
We emphasize that this process only guarantees an upper bound on the OPT  in this 
generated instance. 
We run the process described above 10 times each for  with desired 

��, and bound the runtime duration at 2 minutes. During the evaluation we record the best 
observed  after  pivot evaluations. The results, presented in Supplementary Figure S7 show 

an advantage for 3��" over ($%�&' in both convergence time and magnitude (most 
evident for larger instances) of detected enrichment. 

 
Figure S7. Synthetic data comparison of 3��" and ($%�&'.showing an advantage for 3��" over in both 

convergence time and magnitude (most evident for larger instances) of detected enrichment. 
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2. Additional  notes on BCDEFG and >?@A differences: During our work we have 
evaluated different approaches by simulating datasets with different tractable parameters where 
we could compare convergence times to optimal results. Evidently, while ($%�&' provides a 
guarantee to exhaustively cover the exact number of cells, it appears to suffer from one major 
drawback by its hyper-sensitivity to the distribution of the data. In our simulations we sampled 

� , i.e. from a multivariate (2D or 3D) uniform distribution. Given � 2 the midpoint of 

their connecting line segment (where the bisector lays) is an average of two uniform random 
variables, which, thus, in itself, is distributed under a special case of the (normalized) Irwin-Hall 
triangular distribution (n=2). This implies that uniformly generated data would have a substantially 
high concentration of bisectors at the center of the ambient space (0.5,0.5 for 2D and 0.5,0.5,0.5 
in 3D). In turn, bisectors intersecting each other would yield a significant concentration of cells 
around that region. Since ($%�&' picks cells uniformly, it would adopt this skew and over-
represent this specific region of space. In a time-limited / truncated evaluation, we would miss 
evidence of co-localization in the periphery.  

3��" adopts a multi-resolution approach, forfeiting on theoretical benefits (that have little 
practical implications on large scale data) in order to inspect the input for possible co-localizations 
with increased granularity of over time.  

 

Figure S8. Showing how a single cell can be visited more than once by 3��". different branches of the Octree (2D shows 

quadtree) yield cubes that intersect it. (Left) 2D instance, bisectors shown as dashed lines. Cell of interest filled with red. Observe 

that there are bisector intersections that fall outside the axis limits and are not accounted for by this method (Right) 

corresponding tree graph of the resulting partitioning of running 3��". 

 
3. Spatial-mHG technical notes: We note that in our experiments we run the Grid and Sample 

heuristics for a bounded duration of 5 minutes each on a dedicated Azure StandardA8v2 
machine.  
W.L.O.G. all input data is initially normalized to the unit ball and jittered to guarantee that the 
bisectors are in general position (with high probability). We also add a virtual sphere containing 
the normalized inputs, in order to make sure all cells are bounded.  
A simplifying observation is that there are no intersections of more than three planes in the same 
point due to the following argument: Assume by contradiction that four planes intersect in a point. 
Choose one plane. Each of the three planes intersecting with it forms a line, and since they all 
intersect in a point. Since every line is a perpendicular bisector for points � , the point of 
intersection is a circumcentre of a triangle where the triangle vertices are the bisected points in . 
Since we only employ bisectors from pairs that are differently labelled (a  ‘1’ and a ‘0’), this means 
that every pair of vertices in the triangle is differently labelled (or differently coloured). Since there 
is obviously no way to 2-colour a clique of size 3 (the triangle vertices), we contradict the original 
statement. 

 
4. >?@A recursion stopping criterion: � can be illustrated as a non-decreasing path in an 

 matrix where each entry corresponds to a Hypergeometric CDF tail score and to a 
prefix of some possible binary vectors. For this entry, its Manhattan distance from the bottom left 
corner reflects the “number of draws” its row reflects the number of successes, and its column the 
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number of failures (and implicitly the population size). The mHG score for a vector is the minimum 
value in the cells visited by its corresponding non-decreasing path. During an  evaluation 
we track the optimal score observed, )

∗. )
∗ can be used to estimate the minimal number of cell 

traversals from  that are necessary for obtaining a score that is better than )
∗. This number is 

used as a stopping condition for the octree construction by comparing it to the number of 
bisectors crossing the cube for which our pivot is close to the ‘0’ coordinate than the ‘1’. If A visual 
representation is given in Supplementary Figure S9. 

 

 
 
Figure S9. An example HGT matrix depicting all possible binary vectors of size  with  ‘1’s. Every entry is colored 

proportionally to the hypergeometric CDF upper tail p-value. Blue path corresponds to some binary vector, , the prefix of which 

is displayed on the left. Vertical green lines emanating from this path towards the greed region of the table correspond to 

“minimal distance to )
∗ � ” at different thresholds in . The overall minimal distance in this case is  

 

5. sNMDS outlier correction scheme: we present one of the NMDS resulting embeddings for B. 
subtilis time-course (at the 5-minute mark). We applied 2 iterations of smoothing with Z>4, Z>8, 
top row, visualized from left to right. Clusters identified in each iteration are and colour coded. We 
see that after each iteration the resulting genomic structure appears smoother and more 
coherent, unravelling more elaborate detail. We manually tune these hyperparameters to avoid 
having long stretches of the genome collapse to a line (example of a bad choice of parameters is 
presented in the bottom line). 
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Figure S10. sNMDS outlier correction.  (Top) showing two smoothing iterations of sNMDS on B. subtilis Hi-C data with Z>4 and 

Z>8. Genomic bins are color-coded by clustering them according to the Euclidean distances of consecutive bins. (Bottom) Same 

example with different parameters (Z>4, Z>2) showing the formation of an undesirable linear segment artifact. Note that this 

also impacts axis scaling as part of the manifold flattens.  

 

 

6. Principal directions of enrichment localization: We weigh every resulting  pivot across 

the investigated annotation sets with its corresponding -value. Next, we performed PCA on 

these weighted pivots, yielding the principal directions to explain the main variation in spatial 

enrichment in C. crescentus. The results, shown in Supplementary Figure S11, left, illustrate a 

primary axis along the direction of the replication axis which explains 58% of the variance in 

enrichment directions. To quantify the significance of this observation we ran a simulation 

analysis, shuffling the q-value weights across pivots. The distribution of the resulting PC1 and 

PC2 explained variance are shown in Supplementary Figure S11, right. We fit a multivariant 

gaussian and compute the density of the CDF at the empirically determined point (58%, 34%) 

showing that our observation is at the tail of the distribution, around 1% of simulated 

observations. 

 

Figure S11. Principal directions of enrichment  (Left animation available as Supplementary Video 1s) Principal directions of 

enrichment as detected by our analysis. (Right) Permutation analysis showing there is a strong bias towards a single dominant 

axis of enrichment. 
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7. Investigating temporal dynamics in time-course Hi-C data: We plot each transcription factor’s 
 -log q-value for each of the four available time-course Hi-C datasets. We map each 

enrichment to the set of genomic bins within the corresponding enrichment ball. Next for each 
temporally-consecutive pair of sets, we compute the Jaccard similarity to quantify the overlap 
between their targets. We then manually inspected TFs with temporal dynamics in both Jaccard 
and q-values. 

 

 
Figure S12. Temporal dynamics in B. subtilis TF target smHG results.  (Left) Enrichment Q values. (Middle-left) Overlap between 

bins inside the detected smHG enrichment ball for consecutive Hi-C datasets in the time course. (Middle-right) # of ‘1’s in the 

enrichment ball. (Right) number of genomic bins in the ball. 

 
8. Main results table:  

Supplementary tables available in separate files online. Supplementary Figure S13 shows a meta-
analysis of all smHG runs computed in this study. 
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Figure S13. Summary of 1D vs 3D Q values on all evaluated smHG instances. (Left) Empirical cumulative distribution plots of of 

3D p and q values, and 1D q-value. We see FDR correction yields an empirical distribution that is approximately uniform, as 

needed, illustrating our sensitivity/specificity as a probabilistic model. (Right) a 2D histogram of 3D vs 1D q values. Results 

discussed in the main paper are overlaid and marked with a red asterix. 

 
9. Negative results: in this section we detail a few noteworthy efforts that yielded no significant co-

localization with the goal of illustrating diverse hypotheses that can be evaluated with our 
proposed framework. 

Differential expression: We evaluated differential expression in two cases, and neither appeared to yield 
significant co-localization. 

• The authors in (Mizuguchi et al., 2014) published a tiling array expression for Chr II in Pombe 
WT vs Rad21-K1. We average genes per bin, remove bins 90th percentile in #mapped probes 
and with high variance within the bin. We compute the Z-score for differential expression on 
bins, and binarize with threshold . When limiting our analysis to this subset of bins we 
observe no spatial co-localization. 

• The authors in (Castells-Roca et al., 2011) provide a Heat shock gene expression time course 
for S. cerevisae. We binarized the relative abundance values by averaging genes in bin and 
thresholding for , and we do not observe significant spatial co-localization under our 
model. 

 
Other genomic element annotations: 

• Pombe origins of replication (Ori) do not appear to spatially co-localization under our model. 

 
 

10. Exact bound on the number of cells induced by the intersection of planes: 
 

Theorem I: k lines partition the plane, �, to at most  distinct 2D cells. 

Corollary II:  points in 2 induce a partitioning of the plane to at most  distinct 2D cells, 

when considering all PBHP (perpendicular bisecting lines, in the 2D case) between the points. 

Theorem III:  planes in � induce a partitioning to at most   3D cells when considering the 

cells formed by the intersection of all PBHPs between pairs of points. 
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Corollary IV:  points in �, 3D Euclidean space, induce a partitioning to at most   

cells when considering the cells formed by the intersection of all PBHPs (perpendicular bisecting planes, in the 3D 

case) between the points. 

Theorem I Proof. We denote points of intersection between two or more lines as ‘vertices’. Note that cells are 

equally defined by the lines that contain their edges (their boundary set), and by the vertices formed by the 

intersection of these lines. We define a one to one correspondence between cells and their bottom- most vertex 

(W.L.O.G. there is always such a vertex, otherwise we can tie-break arbitrarily, e.g. bottom-left vertex first). 

Assuming at most two lines intersect in any point, every point of intersection of lines serves as the lowest vertex of 

exactly one cell, thus there are  such cells. We now observe that some cells do not have a lowest vertex (they 

may be non-finite sets). To count them we “hallucinate” a k+1th horizontal line below any intersection of our 

original k lines (see Supplementary Figure S14). To count the number of cells formed by the new line we assign 

each such region to the original line intersected to create it, arbitrarily on the vertex to its left. This process would 

end after k assignments with one region to spare. Thus, in total we have  cells. Q.E.D.  

 

Figure S14. Number of cells proof – (Left) Number of 2d cells created by k lines. Bottom vertex of each cell is assigned to it in a 

one to one correspondence. The angle between the cell and the bottom vertex is colored in green. A horizontal line is added to 

count non-finite cells on the bottom. Total count of cells is . (Middle) Constructive process to illustrate 

tightness of result. Adding lines iteratively we can carefully place them in such a way as to ensure that their intersection 

generates exactly   cells. (Right) implementation of BCDEFG illustrated in 2D. Compute plane intersection 

of 3 planes. In general position these intersect in a point. For each plane, traverse from the intersection a distance of  along the 

gradient of the plane in the direction of  dimension. Average the 3 resulting points to yield a pivot inside the cell.   

Theorem III Proof.  By induction –  

Basis –  For =1  and indeed, a single plane (half-space) divides the space into two 

halves. 

Inductive step – Suppose that  planes have already been added and that the induction hypothesis holds, adding the 

 plane intersects with the first  planes, forming  “new” lines on the th plane. From Theorem 1 these 

lines divide the th plane to  2D cells. Consequently, each such 2D cell splits a 3D cell in two and 
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adds this amount to the total cell count. Let I*� be the recurrence relation defining the maximum number of cells 

formed by  planes, 

(I*�) (I)

 

QED.  

 

 

Figure S15. Number of potential different order inducing cells in 

3D as a function of number of points. Showing the intractability 

of the polynomial problem. X axis denotes the number of points 

(Genes), and Y-axis denotes the maximum number of cells formed 

by the bisecting planes between them i.e. 

. 
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11. C. crescentus NMDS quality controls: in Supplementary Figure S16 we provide further detail 

on the quality controls performed during NMDS linear embedding on a sample dataset. 

 

 

 
Figure S16. NMDS quality control – Subplots are numbered top-to-bottom, left-to-right. (Top) MDS dimensionality reduction 

steps: 1) Raw Hi-C input matrix is transformed to represent a dissimilarity matrix. 2) Hi-C matrix is projected to a Euclidean space 

with the centralized Gram matrix. Eigenvalues of the resulting matrix are shown ranked by magnitude. Top 3 eigenvalues, 

corresponding to a 3D linear projection into a Euclidean space of Hi-C data, are colored in red and show a ‘knee’, hinting at an 

intrinsic manifold dimensionality in this dataset. 3) MDS 3D embedding result represented by the first 3 eigenvectors with 

corresponding largest eigenvalues. Normalized sum of eigenvalues (measure of captured variance from linear projection) and 

Kruskal stress-1 criterion (measure of violations of monotonicity between distances and dissimilarities) values are displayed in 

title. 4) Shepard plot showing correlation between dissimilarities in the Hi-C data, and distances in the resulting MDS 3D 

embedding. Disparity line indicates deviations from monotonicity, in resulting embedding. Point cloud is overlaid with a density 

plot. Spearman rank correlation between dissimilarities and distances, ρ, is displayed in title. (Bottom) NMDS dimensionality 

reduction steps initialized from the MDS solution: 5) pairwise distances in the resulting NMDS embedding (later visualized in 

subplot 7), a distinct ‘cross’ pattern emerges that was less visible in the raw Hi-C dissimilarities. 6) A Scree plot showing the 

impact of selected target dimensionality on the resulting Kruskal stress values shows a ‘knee’ at 3 dimensions. 7) the resulting 

NMDS embedding and corresponding Kruskal stress. 8) Shepard plot showing correlation between dissimilarities in the Hi-C 

data, and distances in the resulting 3D NMDS embedding. We see a clear improvement on the spearman ρ compared to the 

MDS embedding. 
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12. A comparison between bisector and Voronoi tessellations:  

  

Figure S17. An illustration of bisector tessellation from five points in 2D. Bisectors are presented as dashed black lines. A Voronoi 

tessellation is induced by an intersection of a subset of bisectors, highlighted in green. Voronoi cells, represented as differently 

colored polygons, are cells that induce different rankings on the original points such that neighboring cells have a different point 

at the top of the ranked vector. An example of three pivots inducing different rankings are shown as blue, green and yellow 

stars. The induced ranked point ids and corresponding labels are shown on the right. Running  at the granularity of 

Voronoi cells would require deciding on a specific pivot for each cell. This example shows that selection of different pivots within 

a Voronoi cell can have dramatic impact on the ranking and corresponding mHG enrichment results. 

 

13. Pairwise empirical comparisons among methods: This figure provides a breakdown of the 

main results (Supplementary 8) comparing these across evaluated methods. This result 

empirically confirms that the bead approach is insufficient for detecting some co-localization 

events that are detected by the grid method. 
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Figure S18. A density plot of every experiment’s resulting Q values in a pair of methods  (indicated by the row and column 

labels). Red asterisks represent a single evaluation where the method labeled by the row detected (Q<0.1) a potential discovery 

that the method indicated by column did not. Importantly, we observe potential discoveries that would remain undetected by 

the bead-based method and vice-versa, showcasing that these methods complement one another. 
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14. Comparison between smHG and permutation test on raw Hi-C read counts. 

 

Figure S19. Comparing permutation test with smHG result in B. subtilis  (t=0 in timecourse) for a functional group of TF targets  

(BSU29740): Left) distributions of mean pairwise distances between groups of different sizes are shown in blue and yellow 

histograms. Correspondingly, the mean pairwise distances between bins in the aforementioned functional group (of size B) is in 

green. While these are relatively co-localized and are within the 999th-quantile, smHG was able to uncover a substantially more 

co-localized subset (of size b). While both results appear significant, the green result would not be reported when correcting for 

hundreds of multiple hypotheses. Middle) a 3D embedding of the Hi-C dataset, bins in B are labled in red, bins in b are the ones 

that also have a dark circle around them, and are within the translucent sphere to the right. We see that this subset is 

substantially more clustered. Right) We plot a distribution of 10K random partitions of the genome into two, complementary 

sets, and compute the difference between the average number of reads in both sets. 
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Chapter 4:  

 

miRNA normalization enables joint analysis of 

several datasets to increase sensitivity and to 

reveal novel miRNA differential expression in 

breast cancer 
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4.1 Introduction 

microRNAs (miRNAs) are endogenous, small non-coding RNAs (~22 nucleotides) that bind to 

target-specific sites most often found in the 3’-untranslated regions (UTRs) of target messenger 

RNAs (mRNAs). By this binding, miRNAs regulate gene expression by conferring inhibition of 

mRNA translation or mRNA degradation (Bartel, 2009). miRNA expression profiling is an 

important tool for studying tumor biology and classification and has shown to be important 

with respect to diagnostic and prognostic assessments. Increasing technological and economic 

viability of expression sampling methods has enabled the systematic study of miRNA expression 

in cohorts of hundreds of patients (Aure et al., 2017; Cancer Genome Atlas Network, 2012; 

Dvinge et al., 2013). On the other hand, inherent measurement noise coupled with complex 

causes of biological variability affect the statistical confidence in ascertaining consistent 

differences of low magnitude between populations with small sample sizes. Absolute 

expression differences are not necessarily linearly correlated with downstream effects of the 

expressed miRNA, therefore subtle but consistent differences may be of biological importance.  

Abnormal miRNA expression in breast cancer has been repeatedly associated with cancer 

proteins (Aure et al., 2015), molecular subtypes (Enerly et al., 2011), progression (Lesurf et al., 

2016; Haakensen et al., 2016; Tahiri et al., 2014) and prognosis (Aure et al., 2017). For example, 

in one of the first genome-wide characterizations of miRNA expression in breast cancer we 

identified 63 miRNAs differentially expressed between the two main clinically diverse groups of 

breast cancer, the estrogen receptor (ER) positive and the ER negative tumors (Enerly et al., 

2011). 

Combining experimentally measured data from multiple sources is both a challenging and a 

worthwhile endeavor. Statistical estimation theory formulates a relation between sample size 

and variance of estimate via the Fisher information that follows the chain rule for independent 

samples. The ability of statistical hypothesis tests to detect subtle, yet consistent and possibly 

genuine, differences between populations is directly related to sample size and is quantified as 

a test’s power (Wang and Xu, 2019; Hong and Park, 2012). Increasingly larger power and 

statistical significance is hindered by sampling costs that can prohibit large sample sizes. This, in 

turn, leads to the incremental funding of repeated studies aiming to measure the same 

phenomenon. Follow-up studies tend to vary from their former with newer or alternative 

experimental protocols, reagents and technologies used for conducting the measurements, 

introducing batch differences between samples. Such a ‘batching’ design, inadvertently, 

introduces distinctions (batch effects) between samples that correlate with the batch and may 

overshadow subpopulation differences in their magnitude. Blindly testing for hypotheses on 

batch-collected dataset without taking such effects into account can lead to spurious and 

erroneous conclusions and can hide significant effects behind batch differences. In this work we 

address joint analysis of data batched using different miRNA profiling technologies that have 

been shown to have systematic differences (Git et al., 2010; Mestdagh et al., 2014). 
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There are various approaches commonly used in practice to address the analysis of combined 

data containing batch effects. The authors of earlier work (Nygaard et al., 2016; Sims et al., 

2008) show that applying standard, parametric, batch correction approaches may introduce 

bias from uneven sample sizes of the different groups and data idiosyncrasies. A recent study 

(Gibbons et al., 2018) applied a non-parametric approach for correcting case-control 

microbiome studies and have shown it compares favorably with former methods. Their method 

resembles ours, as we further illustrate below.  

In this work we apply a non-parametric, quantile-based, batch normalization approach. We use 

this method for jointly analyzing miRNA expression data in four breast cancer cohorts to obtain 

increased statistical confidence and power. We demonstrate that, coupled with appropriate 

non-parametric statistics, our normalization approach mitigates batch effects. We observe 

stronger statistical evidence of differential expression between ER positive and ER negative 

samples in multiple miRNA when compared to individually analyzing the cohorts. Moreover, 

our approach provides interpretable results and is advantageous to direct interpretation of the 

data conducive to individual examination of findings, as demonstrated herein. Our differential 

expression analysis surfaces known cancer-related miRNAs, as well as potential new ones. 

 

4.2 Data and Methods 

We used miRNA expression data from three previously published breast cancer datasets along 

with a newly released, fourth, miRNA dataset. These datasets were acquired from frozen 

material with different minimal amount of tumor cells, using different technologies and 

experimental protocols as overviewed in Table 2. In addition, we utilized mRNA expression for 

supporting evidence of the normalization results using one of the cohorts. 

We examine miRNA normalization also in the context of jointly analyzing these measurements. 

Below we elaborate our considerations in the selections made during the normalization process 

and our means of providing evidence for validating these results. 

 

Dataset Manufacturer Technology Version Accession 

number 

DBCG (Myhre et al., 

2010) – miRNA 

Agilent Human miRNA Microarray 

Kit 

(V2 G4470B) 

design id 

019118 

GSE46934 

Oslo2 (Aure et al., 

2017) – miRNA 

Agilent Human miRNA Microarray 

Kit (V2) 

v14 Rev.2 

design id 

029297 

GSE81000 

 

Oslo2 (Aure et al., 

2017) – mRNA 

Agilent SurePrint G3 Human GE 

8x60K Microarray  

(Probe Name 

Version) 

028004 

GSE80999 
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Micma (Enerly et 

al., 2011) – miRNA 

Agilent Human miRNA Microarray 

Kit 

(V2 G4470B) 

design id 

019118 

GSE19536 

Stavanger – miRNA Exiqon miRCURY LNA Array v.11.0  

Table 2. Technical details of platforms used for expression measurements for the four different cohorts. Datasets are color coded 

consistently throughout the paper. miRNA expression colors are highlighted compared to mRNA measurements. 

4.2.1 Dataset pre-processing and coverage 

Each miRNA dataset is read from a single-channel image analysis output file acquired from their 

corresponding GEO repositories (referenced in Table 2) and preprocessed in R using the Limma 

(Ritchie et al., 2015) package. We note that while Stavanger (Exiqon) data contains a pooled-

reference second channel, this measurement is not utilized in our analysis (further discussed in 

Supplementary 1). Initially, control probes are removed, and the data is corrected by 

background intensity normalization . Same-probe replicates are replaced by their median value. 

Probe ids are mapped to their corresponding miRbase v22 accession using miRBaseConverter 

(Xu et al., 2018). Missing or deleted accession IDs are discarded. Multiple probes that map to 

the same miRNAs are again replaced by their median value. Next, we apply arrayQualityMetrics 

(Kauffmann et al., 2009) (resulting Quality Control reports are available in the Supplementary 

materials) and filter out samples that are marked as outliers by all three outlier detection 

criteria ( -Distance between arrays, Boxplot, MA plot). We thereby filtered out 6, 30, 12 and 2 

outliers from DBCG, Oslo2, Micma and Stavanger, respectively. Next, we apply minimum 

subtraction to avoid log scaling issues with negative numbers where applicable. The joint 

dataset table is then compiled by applying a “full outer-join” relational operation on the 

miRbase accession IDs as key. The resulting miRNA cross-dataset table is visualized in Figure 18 

(and available in the corresponding online Supplementary materials). 
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Figure 18. Overview of the miRNA coverage in the dataset. Each row represents one miRNA. Each entry represents the intensity 

(log10) in a specific sample. Dashed vertical lines separate between samples from the four datasets. Dashed horizontal lines 

separate between groups of miRNAs by their dataset availability. Blank (white) entries correspond to miRNAs that are missing 

from a dataset. 

4.2.2 Batch effects in joint data 

 

We tested for rank-order consistency of miRNA among pairs of datasets (Figure 19). To do so, 

we compute for each miRNA the average quantile across all samples belonging in each dataset. 

We display the resulting value for each pair of datasets in a scatterplot matrix considering the 

miRNAs (n=655) present in all four cohorts. This analysis shows that Stavanger appears to 

behave differently than other datasets, presumably due to its fundamentally different 

measurement technology (Exiqon LNA (Bartel, 2009) vs Agilent Microarray).  
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Figure 19. Showing quantile normalized data miRNA expression reproducibility across dataset pairs. Each subplot depicts the 

miRNA median expression across samples for a pair of datasets. The upper-diagonal-subplots show percentiles, and bottom-

diagonal shows log2 expression. A second degree polynomial curve is fitted and prediction intervals at confidence level 0.8 are 

plotted as dashed lines. Spearman correlation is given for each subplot. Figures at the diagonal show percentile plotted against 

expression and a circle represents the dataset colorcode as related to other figures in the paper. 

We further visualize the batch-clustering behavior of the unnormalized joint dataset in Figure 

20. On the left subplot we present hierarchical clustering of the data. Edges of sub-trees in the 

dendrogram are color-coded by the dataset when all leaves belong to samples from the same 

original dataset. We observe a visual clustering of colors, especially evident for yellow 

(Stavanger) being clustered as an outgroup. In the middle subplot we show a silhouette plot, 

depicting the clustering consistency according to dataset. We can see how a substantial portion 
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of samples are well assigned to their cluster with large silhouette values, and only a small 

portion are mis-assigned, again showcasing how batch effects dominate sample behavior. 

Finally, on the right subplot we present a visualization of the sample-wise pairwise Euclidean 

distance matrix with dashed lines separating between samples of the same dataset. The block 

structure that evidently results from coloring according to distances corresponds well to the 

dashed lines separating samples from different datasets. This analysis demonstrates the 

prevalence of batch effects in the joint datasets. 

 

Figure 20. Batch effects in the combined cross-tech miRNA dataset considering the unnormalized data.  (Left) Dendrogram with 

edges colored by dataset. Note that the tree root is not shown. (Middle) Silhouette plot (Rousseeuw, 1987) showing that most 

samples cluster according to the dataset they originate from. (Right) Pairwise Euclidean distances showing a block structure that 

agrees with the sample dataset of origin.  

 

4.2.3 Adjusted Quantile Normalization (AQN) 

In this section we describe our quantile-normalization-based strategy for analyzing combined 

cross-technology miRNA datasets. 

Let  be a batch collected, joint dataset.  where  is the log measured intensity 

value of miRNA  in sample . Let  be the -th sample, corresponding to the -th column in 

, and  be the -th miRNA, corresponding to the -th row in .  

Define  as the experiment batch id during which sample  was collected. 

We note the following distinction between missing values in : 

 

Let  if miRNA  is missing from platform  and  

otherwise (indicates if  is missing in the platform  was measured in). 
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Adjusted Quantile Normalization ( ):  

1.  Jitter  to break rank ties. 

2. 
Let  the percentile of  within 

.  

ignored s in percentile computation. 

Note:  

3.  

Transforms values to the cross-sample-

median of the corresponding per-sample-

quantile. 

4.  if =1  

 

A description of this process in words is that it replaces present expression values with the 

corresponding median value of all samples within the same percentile. The underlying 

assumption is that a measured expression is volatile due to technical differences and 

measurement noise, however, (sample-based) percentiles are assumed to be stable up to the 

biological differences between samples.  

The overall impact of applying AQN to the distribution of expression values and to quantified 

batch effects as measured by the silhouette coefficient is further presented in Supplementary 

Figure S20. 

Packages implementing AQN are available online for Python, R and Matlab in 

https://github.com/YakhiniGroup/PyAQN. 

4.2.4 Functional experiments 

Functional experiments were performed as previously described (Leivonen et al., 2009, 2014) 

with the breast cancer cell lines MCF7 and KPL-4. The lysate microarray data measuring 

apoptosis in the form of cleaved PARP (cPARP), HER2 and phosphorylated ERK (pERK) protein 

levels after 72 hours were previously published (data taken from Supplementary table 2 of the 

corresponding publication) (Leivonen et al., 2014). Values ±2 × standard deviation (SD) were 

considered as significant, which corresponded to a threshold of |1.96|. For the cell viability 

data, MCF7 cells were transfected with the Dharmacon miRIDIAN microRNA mimic library 

v.10.1 (20 nM) and incubated for 72 hours. The cell viability was measured with CellTiter-Glo 

assay (Promega Corp, Madison, WI, USA) according to manufacturer's protocol. The 

experiments were done with two biological replicates. The data were normalized by a Loess 

method (Boutros et al., 2006) and log2-transformed. Values ±2 × SD, were considered as 

significant, which corresponded to a threshold of |0.2|. In both experiments the average of two 

different miRNA mimic controls from two replicates was used as negative controls (miRIDIAN 

microRNA Mimic Negative Control #1 from Dharmacon and pre-miR negative control #2 from 

Ambion). 
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4.3 Results 

We apply the Adjusted Quantile Normalization (AQN) process to the datasets described in 

(Enerly et al., 2011; Aure et al., 2017; Myhre et al., 2010; Tramm et al., 2014) and illustrate the 

benefit and effects of the normalization step as related to data properties and to various 

downstream analysis steps in the subsections below. 

4.3.1 Differential expression reveals novel breast-cancer associated miRNA 

We performed a differential expression analysis between clinically relevant subgroups of breast 

cancer. We measure differential expression of a specific miRNA on a pair of sample 

subpopulations (e.g. ER positive vs ER negative). Fold-change is defined as the ratio (log2) 

between median expression of both sets. We apply Wilcoxon Rank-sum 1-tailed test (where the 

tail is determined empirically according the sign of the fold-change). Resulting p-values are 

corrected across miRNAs using false discovery rates (FDR). Figure 21 showcases our differential 

expression analysis results for ER status. In the top scatter plot, we observe that the normalized 

dataset presents with more significant results (lower Q-values) for most miRNAs (482/655). The 

middle volcano plots illustrate that the increase in significance is not necessarily correlated with 

effect size (i.e. fold change), and that we gain confidence on lower effect sizes as anticipated by 

a priori power analysis. At the bottom cumulative distribution function (CDF) plot we showcase 

again the overall trend of increased statistical significance, contrasted by even lower statistical 

significance that would be obtained from performing the differential expression analysis on 

each dataset separately (shown as dashed lines). In addition, we present the CDF plots that 

would be obtained by (individually) applying four commonly used normalization methods 

(shown as dotted lines). Evaluated normalization methods include:  

• Mean ratio: scales each sample by dividing it by its mean intensity. 

• Median subtraction: subtracts the median of each sample, then sets the minimum of 

each sample to the (global) minimum across samples.  

• Vanilla quantile: MATLAB’s implementation of Quantile Normalization also known as 

Quantile Standardization (Amaratunga and Cabrera, 2001). 

• ComBat (Johnson et al., 2007): empirical Bayes batch effect mitigation employing a 

design matrix that includes dataset batching along with clinical labels and status of 

Tumor grade, Subtype, ER, PR, HER2 and TP53. 
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Figure 21. Differential miRNA expression between ER positive and negative. Title contains sample size details and dataset 

distribution (Top) A scatter plot of differential expression p-values (-log10, Wilcoxon Rank-sum) for the unnormalized (x) vs 

normalized (y) joint dataset. (Middle) Volcano plot showing the fold change and corresponding Wilcoxon Rank-sum FDR 

corrected Q value ratio between the normalized and unnormalized datasets. High absolute values in X axis correspond to 

substantial difference in median expression between ER negative over ER positive samples (for a particular miRNA). High values 

in Y axis correspond to miRNAs that present substantial difference *after* normalization but not before. Low values in Y axis 

correspond to miRNAs that present substantial difference *before* normalization but not after. Vertical dashed lines represent a 

Fold change threshold of 2x (log2(2)=1) and horizontal dashed lines represent a Q-value threshold of 0.05 (-log10(0.05) 1.3) 

(Bottom) a CDF plot showing many more substantially differentially expressed miRNAs after normalization (red line) than before 

normalization (blue line), and substantially more than would be expected at random (compared to 20 random permutation of 

labels, dashed black lines). Also shown are dashed colored lines corresponding to each appropriate single-dataset Q values 

exemplifying the advantage of a joint-dataset analysis. 

In Figure 22 we demonstrate the impact of normalization on single miRNAs (hsa-miR-190b, hsa-

miR-18a-5p) across samples and distinguish between differently labeled samples according to 

ER status. Previous studies (Cizeron-Clairac et al., 2015) have shown hsa-miR-190b to be linked 

to ER status and further suggested its use as a potential biomarker. Similarly, hsa-miR-18a-5p is 

an oncogene and prognostic biomarker (Zhou et al., 2018). As we have shown in the volcano 

plot in Figure 21, hsa-miR-190b would not have been identified as differentially expressed in ER 
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positive vs negative samples prior to normalization. Similar plots for the top 40 differentially 

expressed miRNA (post-normalization) are available in the Supplementary materials. 

 

Figure 22. Differential expression behavior of single miRNA.  (Top - hsa-miR-190b, bottom – hsa-miR-18a) across datasets and 

samples for a specific clinical label (estrogen receptor (ER) positive (pos) vs. negative (neg). (Left) Expression values (log2) of each 

sample before quantile normalization. Samples are ranked by ER status label, then by dataset and finally by ascending 

expression value. Top-Unnormalized joint dataset. Bottom-Normalized joint dataset. (Right) Actual vs expected (via a uniform 

null model) rank distribution of ER negative (neg) vs positive (pos). Diagonal straight lines bounding a polygon represent a null 

uniform distribution of positive and negative samples (when ranked by expression value). The colored surface represents 

deviations from a uniform distribution. The boundary of the surface is calculated by the cumulative number of ER negative (x 

axis) vs ER positive (y axis) samples in the ranked (descending) expression vector. Top-illustrating the rank distribution per-

dataset (without normalization). Bottom-comparing the joint-dataset distributions when ranking before or after normalization. 

 

When inspecting the differential expression results of all normalization methods, the 

unnormalized data and each dataset separately, there are 33 unique miRNAs that are only 
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shown as significantly ( ) differentially expressed in ER positive vs ER negative as 

identified by our normalization method (Supplementary Figure S21). Contrastingly, other 

approaches yield far fewer significantly differentially expressed miRNAs. Of the 33 miRNAs 

uniquely detected by our method, we present four in Table 3 that have fold change greater 

than 0.15 (absolute log2 > 0.15, i.e. > 10% change between median ER positive and negative 

expression).  

miRNA Q-value Fold Change (log2) 

hsa-miR-601 0.048 -0.18 

hsa-miR-424-3p 0.0003 -0.17 

hsa-miR-936 0.027 -0.15 

hsa-miR-193b-5p 0.0002 0.19 

Table 3. Top differentially expressed miRNA. We present miRNA detected by applying AQN normalization on the joint dataset 

and not detected by other approaches. 

To study any functional significance of these top differentially expressed miRNAs between ER 

positive and ER negative tumors, we performed miRNA gain-of-function studies in the ER-

positive MCF breast cancer cell line. Here, cell viability was measured as an endpoint after 

overexpression of the miRNAs. Indeed, one of the miRNAs, hsa-miR-193b-5p, showed a 

significant reduction in cell viability compared to miRNA negative controls (Figure 23). 

Furthermore, we looked into data from another functional experiment previously published 

(Leivonen et al., 2014) in the HER2 positive breast cancer cell line KPL4 and here we found that 

hsa-miR-193b-5p induced apoptosis (as measured by the levels of cleaved PARP), and 

downregulated the levels of HER2 and phosphorylated ERK upon overexpression. Altogether, 

these results suggest that miR-193b-5p may exert a tumor-suppressor function in breast 

cancer, both in an ER+ and a HER2+ context. Interestingly, the other miRNA originating from the 

same precursor, hsa-miR-193b-3p has been previously shown to directly target ESR1 mRNA and 

is thus a direct regulator of ER (Leivonen et al., 2009). 
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Figure 23. Functional analyses on uniquely identified miRNA. Breast cancer cell lines were transfected with miRNA mimics 

(20nM) and assayed for functional effects 72 hours after transfection. a) Cell viability measured in MCF7 breast cancer cells. b) 

Apoptosis measured by levels of cleaved PARP (cPARP), HER2 and phosphorylated ERK (pERK) protein levels measured in KPL4 

cells. The dashed lines indicate cut-off points that were considered significant (see Methods). Asterisks denote significant 

effects. Original data from b) are taken from (Leivonen et al., 2014). 

 

Further investigation of the three other top differentially expressed miRNAs shows prior 

evidence linking them to cancer. hsa-miR-601 is a known prognostic marker and potential 

tumor-suppressor in breast cancer (Hu et al., 2016). hsa-miR-936 was identified as a potential 

tumor-suppressor miRNA in ovarian cancer (Li et al., 2019).  

 

4.3.2 Joint analysis with mRNA data 

A similar pipeline to the one described in section 2 (Dataset pre-processing and coverage) was 

used to parse mRNA data, using Limma.  

We want to assess the effect of normalization on the results of enrichment analysis as 

performed using both mRNA and miRNA data. To this end we first form a ranked list of 

transcripts as follows. For each miRNA, , we rank all mRNAs according to the (ascending) 

Spearman correlation between the miRNA expression pattern across the entire dataset and the 

mRNA expression pattern across the entire dataset (paired on matching samples). We denote 

the resulting ranked gene list, with  as a pivot, as .  

4.3.3 Effect on gene target enrichment 

For the first analysis we investigated the impact of normalization on correlations between 

miRNA and the expression levels of their expected mRNA targets. We expect stronger negative 

correlation after normalization to direct gene targets. To validate this hypothesis, we applied a 
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non-parametric, rank-based analysis using the MiTEA (Eden et al., 2009b; Steinfeld et al., 

2013a) approach. MiTEA is used to evaluate the statistical association between  and , 

where  is a ranked list of genes wherein the ranking is based on the affinity of the gene as a 

target candidate for the miRNA , taken from TargetScan (Agarwal et al., 2015). For each prefix 

 of  most-prominent candidate targets in , MiTEA produces a binary vector, 

, such that, , the -th gene in  is “1” if and only if it is in the candidate prefix, i.e. 

. MiTEA then  computes an approximate minimum hypergeometric (mHG (Eden et 

al., 2009b, 2007)) P-value to quantify whether the  proposed targets are enriched at the top 

of the  list or not.  Finally – MITEA applies an FDR correction (using the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995))  across evaluated s and reports the set of miRNAs 

associated with the ranked target list  and their associated Q-values. 

We declare a matching if MiTEA returns a significant ( ) Q-value when . To 

recapitulate, a matching occurs when the prominent predicted targets of  are enriched at the 

top of the list of genes ranked (in ascending order) according to the rank correlation (across 

samples) between their mRNA levels and the expression levels of . When applying this 

procedure on a non-normalized miRNA expression we find no matchings. When applying the 

same procedure on normalized data we find 6 matchings as detailed in Table 4. For each 

matched miRNA we also provide supporting evidence of several studies describing its role in 

breast cancer. 

miRNA P-value Q-value 
Corroborating 

studies 

hsa-miR-29b 1.28E-08 1.73E-06 (Kwon et al., 2019; Wang et al., 2011; Shinden et al., 2015) 

hsa-miR-106b 1.96E-06 1.11E-04 (Ni et al., 2014; Lee et al., 2019; Zheng et al., 2015) 

hsa-miR-200b 1.06E-04 5.54E-03 (Ye et al., 2014; Yao et al., 2015; Zheng et al., 2017) 

hsa-miR-30d 4.38E-04 1.19E-02 (Zhang; Yang et al., 2017) 

hsa-miR-96 9.02E-05 1.53E-02 (Hong et al., 2016; Xie et al., 2018) 

hsa-miR-182 4.58E-04 4.43E-02 (Zhang et al., 2017; Chiang et al., 2013) 
Table 4. Resulting MiTEA matchings on normalized miRNA expression.P and Q values are color coded by magnitude where from 

green (more significant results) to red (less significant results). None of these statistically significant associations between pivot 

miRNAs and their targets is observed when using the raw, un-normalized data. Nor is any other matching miRNA target 

enrichment observed in the unnormalized data. 

We show one such analysis in detail for hsa-miR-29b in Figure 24. Here we follow MiTEA’s 

approach to obtain a statistical assessment of target enrichment for  hsa-miR-29b and 

 binary vectors .  We present the results on various s and the 

optimal  for both unnormalized and normalized miRNA expression. 
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Figure 24. Impact of normalization on the correlation between hsa-miR-29b expression and its in-silico predicted targets 

according to TargetScan. Top) Normalized miRNA is more negatively correlated to the prominent hsa-miR-29b targets in 

TargetScan as evident in stronger enrichment values. Bot) Scatter plot of spearman correlation on normalized miRNA or 

unnormalized miRNA expression. If the target mRNA appears in TargetScan it is highlighted in orange. The marginal 
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distributions and corresponding Kolmogorov-Smirnov test p-values are displayed showing an overall lowered correlation for 

TargetScan candidates on normalized data. 

4.3.4 Effect on Gene Ontology (GO) enrichment 

We applied GOrilla (Eden et al., 2009b) to identify gene ontology enrichment in  on both 

unnormalized miRNA expression and on normalized miRNA expression. Given a ranked list , 

GOrilla produces a binary vector  for each gene ontology term, , in which a gene is 

labeled as binary ‘1’ if it belongs to . Next, GOrilla computes mHG p-values, correcting them 

across GO terms. Figure 25 is a scatterplot comparing between our results on unnormalized and 

normalized hsa-miR-29b lists. The findings from this analysis are in line with previous studies 

that have linked the miR-29 family with tumor growth and metastasis (Wang et al., 2011; Luna 

et al., 2009; Liu et al., 2017).  

 

Figure 25. GOrilla enrichment analysis comparison of results before and after miRNA normalization. Right) Top 2 percentile of 

results by Normalized-Unnormalized Q-value (-log10) 
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4.4 Discussion 

We have presented an integrative analysis technique and applied it to jointly analyze human 

breast cancer miRNA expression datasets spanning different studies and utilizing different 

measurement technologies. Our approach is powerful in its ability to increase statistical power 

without apparent adverse effects on precision, as exemplified by several downstream tasks. 

Our normalization method (AQN) is based on a slight adaptation to standard (a.k.a. vanilla) 

quantile normalization. Vanilla quantile normalization averages values across samples with the 

same rank, while our method averages values across samples within the same percentiles 

(computed per sample). This has the effect of lowering the impact of within-quantile noise 

when computing rank-based statistics. Additionally, our method is defined consistently for 

normalizing samples with partial miRNA overlaps. 

Correctly applying AQN requires a basic understanding of the impact it has on downstream 

statistics. In this work we focused on applying nonparametric rank-based statistics to 

downstream analyses. While not deemed a best practice, our normalization approach admits to 

parametric analyses as well. Further discussing parametric analysis is out of scope for this work. 

We distinguish between Sample-wise (a.k.a. column-wise) and miRNA-wise (a.k.a. row-wise) 

impact. Sample-wise, we apply a monotonic transformation of raw expression values per 

sample which should not affect rankings of miRNAs within each sample. As we observe in 

Supplementary Figure S22, Left we see these samples almost fully correlated before and after 

normalization. The minor differences are owed to two effects – jitter and quantization. Jitter 

can swap miRNA ranks within a sample, especially for miRNA with low expression compared to 

our jitter scale. We pre-process the data by min-max normalization and select a jitter scale such 

that ranks are mostly unaffected by jitter. A stronger impact is due to quantization which 

replaces values within the same percentile with a cross-sample median, creating ties.  

miRNA-wise there are no guarantees of monotonicity, as evident in Supplementary Figure S22, 

Right and as shown in improved results for analyses such as differential expression in section 

4.1.  

 

4.4.1 Comparison to per-dataset analysis 

When comparing downstream analyses of the normalized joint dataset with per-dataset 

analyses we observe stronger p-values, yielding more statistically significant candidates after 

applying multiple hypothesis correction procedures. In Figure 21, bottom we illustrate this 

result through a shift in the cumulative distribution of Wilcoxon Rank-sum FDR corrected Q-

values calculated for the differential expression of ER positive and negative samples. In Figure 

26 we present a per dataset variation of the analysis as related to Figure 21, Middle. We 

observe that some miRNA exhibit a tradeoff between higher absolute fold-change and higher 

rank-sum -log10 Q-values. For example observe hsa-miR-135b that has  fold change for 
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Stavanger, but at a fairly low -log10 Q-value < 4 while after joint analysis it yields only  

fold change but at -log10 Q-value > 18. 

 

Figure 26. Per dataset Volcano plot of Differential Expression. Showing ER positive vs negative from Figure 21 Compared to joint 

normalized data.  

4.4.2 Statistical power analysis on the impact of increasing sample size 

One of the main motivating reasons for jointly analyzing datasets collected in different places, 

times and possibly using different measurement technologies is the fact that the combined 

dataset supports higher statistical power. 

We present a theoretical statistical a-priori power analysis (Faul et al., 2007) to put in context 

the advantage of jointly analyzing the datasets investigated in the current work. Remember 

that power is used in statistics to quantify the recall of a statistical test, i.e. the probability of 

correctly rejecting the null hypothesis. The test evaluated in this analysis is Wilcoxon rank-sum 

as applied for our differential expression analysis in section 4.1. Power is only meaningful in the 

context of an expected effect size, as larger differences and less variance in samples implies a 

smaller sample size is required to decide there is a difference between two populations. For the 

purpose of this analysis we assume allocation ratio = 1  (i.e. equal group sizes), while in the ER 

examples shown in Figure 27 actual ratios of Negative vs Positive ER samples are 0.44, 0.24, 

0.63 0.23 and 0.32 for DBCG, Oslo, Micma, Stavanger and Joint, accordingly – further reducing 

expected power. 
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Figure 27. Statistical power as a function of sample size and expected effect size  (measured in Cohen’s d (Cohen, 

1977)).Overlaid in squares and triangles are effect sizes, d, for the differential expression of hsa-miR-106b and hsa-miR-135b, 

accordingly, in ER positive vs ER negative samples as estimated empirically over the joint dataset on non-normalized data. 

Power values are estimated via (linear, 2D) interpolation on different dataset sizes.  

 

4.4.3 Summary of contribution and next steps 

Overall, we provide multiple lines of evidence for the advantageous joint analysis of miRNA 

expression using nonparametric statistics. Our analysis yields potential novel biomarkers as 

exemplified by hsa-miR-193b-5p and its potential tumor-suppressor role in breast cancer. While 

these results require further validation, our approach provides directions to statistically 

prominent candidates for follow up studies to pursue. 
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4.5  Chapter Supplementary Materials 

 

Supplementary Methods 

Supplementary 1 – Joint one-colored and two-colored analysis. 

Stavanger dataset contains a second color with pooled samples deliberately left out of our 

analysis. Our downstream statistics are rank-based, assuming that, within a margin of error, 

identical samples measured with different technologies produce similar ranked miRNA vectors. 

Normalized Stavanger data using a pool reference second channel would cause substantial re-

rankings. E.g. housekeeping, or constitutive miRNAs that are highly expressed would effectively 

“cancel out”, and differently expressed miRNAs compared to the background would emerge 

instead. Therefore, to avoid an apples-to-oranges comparison, we decided to neglect the 

background expression data available in Stavanger from our analysis. 

 

Supplementary Figures 
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Figure S20. Normalization impact on per dataset distributions Top) Kernel density estimates of each sample colored by their 

corresponding dataset. The resulting normalized distribution is overlaid in black. Bottom) Impact of normalization on per-sample 

silhouette coefficient measured for clustering by dataset. 602/745 samples have lower silhouette coefficients after 

normalization in comparison to before normalization, demonstrating an overall alleviation of batch effect per dataset. Marginal 

distributions are shown to highlight differences between datasets. 
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Figure S21. Venn diagram of differentially expressed miRNAs surfaced by different normalizations. We observe a larger set of 

unique miRNAs detected by our normalization approach compared to other approaches. 

 

 

Figure S22. Correlations before and after normalization.Histograms of Sample-wise and miRNA-wise Spearman correlation 

coefficient ( ) between expression before and after normalization.   
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Chapter 5:  

 

Discussion 
 

In this thesis we have developed computational approaches for studying genomic spatial 

structure and properties. We demonstrated the applicability of our methods to biological data 

and described our findings, which, pending additional experimental validation, may offer novel 

biological insights. In the following chapter we summarize the algorithms detailed above offer 

additional observations and characterize possible extensions of them by outlining future 

research directions that may continue our work. 

In Chapter 2 we presented an algorithmic framework to jointly completing a partial-haplotyping 

and demultiplexing Hi-C reads from homolog chromosomes in diploid organisms. We applied 

our approach to available ground-truth biological data to showcase its performance comparing 

to naïve approaches. Our approach is based on a novel sequence mapping algorithm which 

softly assigns reads to the correct compartment in the Hi-C diploid chromosomal adjacency 

block matrix by considering SNPs overlapping a sequencing read. We denoise the resulting Hi-C 

adjacencies by dimensionality reduction and use a simple, but optimal, decoding schema to 

assign each homologous pair of blocks a binary identity. The binary identity is assigned to 

effectively phase the blocks into their homolog chromosomal copies by maximum likelihood. 

A natural extension of this work would be to add support for higher-ploidy organisms. One can 

consider replacing our argmax decoding algorithm with a dynamic programming one such as 

Viterbi to that end. Another direction worth exploring is in depth analysis of the impact of 

phasing Hi-C data on 3D modeling of genome conformation, co-localization including validating 

reproducibility of results observed in Hi-C studies which ignore the phasing problem, etc. A 

third direction of interest is resolving the need for a fixed binning resolution of Hi-C data which 

we determined by hyperparameter optimization aimed at yielding optimal phasing due to the 

tradeoff between sparsity when using small bins and averaging effects when using large bins.  
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In Chapter 3 we revisited our earlier work on spatial co-localization (Ben-Elazar et al., 2013b) to 

devise improved methodologies of identifying spatial co-localization using more rigorous 

definitions and algorithmics. Using this new approach developed herein we are able to better 

detect whether a given binary property on a set of points exhibits 3D spatial co-localization, 

manifested as convex compartments with many target elements and few background elements. 

We quantify co-localization using a non-parametric statistical model, the minimum 

hypergeometric. By ignoring distances and considering ranks mHG offers an appropriate scale-

free interpretation of the embedded conformation. We note that this is an appropriate 

approach considering our embedding methodology, NMDS (Seber, 1984), optimizes for rank-

consistency rather than distance measurements. An additional advantage of focusing on ranks 

rather than distances is that the search space of possible compartments that one needs to 

consider becomes finite, and as we show in fact polynomial in the number of input points.  

It is worth noting the apparent connection between our definition of the co-localization 

problem and a well-studied NP-hard problem, maxFS - maximum feasible subsystem (Amaldi 

and Kann, 1995). In spatial-mHG, we seek the minimal mHG score across tessellation cells 

induced by linear inequalities corresponding to the bisecting hyperplanes of pairs of differently-

labeled input points. In maxFS we are interested in finding a solution to satisfy a maximal 

subset of a given set of linear inequalities. Spatial-mHG might be formalized as a more refined 

optimization problem, where we may in fact prefer a solution that forgoes satisfying several 

constraints that were induced by distant point pairs, in favor of satisfying few constraints that 

are induced by nearby point-pairs. We have thus far been unable to find a direct reduction from 

maxFS to spatial-mHG, however, this relaxation appears to make spatial-mHG at least as hard, if 

not harder than maxFS. It is possible that some approximation schemes that apply to maxFS 

could apply to spatial-mHG and may be used to initialize a solution, or when time constraints do 

not permit more extensive search. 

During our work we have also explored approaches based on optimization algorithms to more 

efficiently traverse the bisector tessellation space. Our experiments show that the overhead of 

relatively optimized data structures has overall underperformed compared to sampling cells 

uniformly with replacement. However, we propose that a hybrid approach which quickly finds a 
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local minimum and then applies local search methods on its neighbors (e.g. discrete gradient 

descend) might empirically outperform our current approach. 

Other directions to extend our work include: statistics to support target sets, e.g. in a polyploid 

organism there are multiple copies of each gene. We may not care which copy of each set is co-

localized and want to reflect this in our search. Spatial co-localization for non-binary properties, 

e.g. we present an analysis on Pombe CGH data that required binarization to admit to our 

methodology. We could consider extending our work to support this input directly, for example 

using mmHG (Steinfeld et al., 2013b).  

In chapter 4 we present an adaptation of quantile normalization applied to integrative analysis 

of four miRNA expression breast-cancer datasets. In this work we attempted to overcome 

several challenges in jointly analyzing four miRNA datasets: partial miRNA target overlap, strong 

batch effects due to the technological differences between collection platforms and correctly 

interpreting normalized measurements in downstream statistical analyses. To overcome partial 

miRNA target overlap we devised an adaptation to quantile normalization that acts on 

percentile-binned rather than rank-binned miRNA expression. Our analysis provides evidence 

that our normalization is capable of detecting statistically consistent differences at smaller 

effect size than several standard methods, however this is by no means an exhaustive list of 

normalization approaches, nor is it necessarily consistent across datasets. A more rigorous 

understanding of the effect of different normalization approaches to different data 

distributions and edge cases (outliers) is necessary to fully characterize and assign 

normalization-approach-to-dataset and to analysis task. One direction to extend our work is to 

compare with more normalization techniques and on other integrative datasets. We have also 

deferred several downstream analysis tasks on available data to follow-up papers, including but 

not limited to measuring impact on correlation between miRNA expression and copy number, 

inclusion of more related miRNA expression datasets, such as TCGA, inclusion of more mRNA 

datasets in the mRNA validation section. 

Overall, this thesis embodies computational approaches to analyze properties of genomes 

ranging from methodology to statistically analyzing their folding in space to improving the 
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interpretability of measured expression for miRNA of cancerous genomes. With the rise of 

more methods to measure genomes and increase in data availability, our approaches promise 

to aid in correctly interpreting and basing conclusions as we have shown in this work. 
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Acronyms 
 

3C – Chromosome Conformation Capture 

2D/3D – two/three dimensional 

AQN – Adjusted quantile normalization 

TF – transcription factor 

ER – Estrogen receptor 

GEO – Gene expression omnibus 

Hi-C – High-throughput Chromosome Conformation Capture 

RNA - ribonucleic acid 

mRNA – messenger RNA 

miRNA – micro RNA 

nan – not a number 

MFP – missing from platform 

SNPs – Single nucleotide polymorphisms 

mHG – minimum hypergeometric 

smHG – Spatial mHG 

SD – standard deviation 

mmHG – minimum-minimum hypergeometric 

maxFS – maximum feasible subsystem / subset 

CGH – comparative genomic hybridization 

TCGA – the cancer genome atlas  
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  תקציר

 High-throughput) ונגזרותיה (כגוןChromosome conformation capture - 3Cלכידת תצורה כרומוזומלית ( 

3C,   או Hi-C (,  הם אוסף שיטות ונהלים ניסויים המבוססים על טכנולוגיות ריצוףDNA   אשר מייצרות מיפוי דליל

קריאות אלה פרופורציונים (בקירוב) לקירבה בין זוגות   שכיחותזוגות רצפי קריאות על גבי כרומוזומים. שכיחות של 

. גישות רבות ומגוונות משבצות את (Nynke L. van Berkum et al., 2010a)של מיקומים על גבי הכרומוזומים 

על מנת ולהחליק רעשי דגימה  (באופן איכותי) מייצגים  למודלים תלת מימדיים   Hi-Cיסוי מספרי הקריאות מנ

רות לו סללו את הדרך באופן  ת הקשוושיטו 3C .הצצה אינטואיטיבית אל המבנה הגנומי אשר בבסיסם קולספ

טכניקות  אמפירי לשרטוט התכונות המבניות התלת מימדיות של גנומים בתאים חיים ובפירוט אשר לא נגיש ל

 מיקרוסקופיה נפחיות. 

יחידת   -  ) TAD  )topologically associated domainכוללות:   3C- תגליות מרכזיות שניתן לייחס באופן חלקי ל

מבני אשר אוכף מגע בין מקדם ומעצם ומאפשר בידוד של שכונות  הזוהתה כמנגנון אפיגנטיארגון תפקודית 

משותפים ומנגנון השיעתוק שיעתוק ראיות שיטתיות להיפותזת "מפעלי השיעתוק". כלומר, גורמים גנומיות. 

  ת שלהם.יחד עם המטרות הגנומיו תאים בגרעין (אאוקריוטים) / גרעינון (פרוקריוטים) - מתגייסים לתתי 

אנו מציגים גישה אשר ממנפת מידע אשר הושג על ידי לכידת תצורה כרומוזומלית על מנת להתייחס  1.1בפרק 

קביעת הפלוטיפ הינו התהליך שבו משייכים שונויות וסטיות   לבעית "מייל אחרון" בריצוף גנטי של קביעת הפלוטיפ.

 (S. Ben-Elazar et al., 2016)בעבודתנו  כרומוזום. העותקים ההומולוגים של ברצף חומצות הגרעין לאחת משתי 

אשר מוצעו "באופן מסורתי" לכדי   Hi-C) פיצול מפות קרבה מנתוני 1גים שיטות אשר שימושיות עבור אנו מצי

הכוללות נתוני   Hi-C(סידור) של מפות הפרדה  ) 2 הכוללות נתוני שכיחות לכל זוג הומולוגים. Hi-Cקבלת מפות 

מופרדות שכאלה חשובות לשיפור   Hi-Cים אחד לשני. מפות ושיוך נכון של בלוקים הומולוגשכיחות להומולוגים  

  בעזרת ניתוחי המשך.  Hi-Cדיוק וישימות של פירושים נוספים מנתוני 

.  Hi-Cאנו חוזרים בשנית להתמודד עם בעיית המשך בניתוח מודלים תלת מימדיים שנגזרו מנתוני  1.2בפרק 

ית לזיהוי תאים כדורים בחלל אנו מפתחים תשתית אלגוריתמית וסטטיסט (Ben-Elazar et al., 2019)בעבודה זו 

התלת מימדי אשר בתוכם רכיבים גנומיים בעלי תכונה ביולוגית משותפת מתמקמים יחדיו באופן מובהק 

גישה זו מתגברת על מגבלה של עבודה קודמת שלנו אשר בה תאים כדוריים אשר מועמדים לבדיקה  סטטיסטית.

מימדי. אנו מספקים ניתוח ריגורוזי של שיטה זו וממחישים את יתרונה - זים על גבי הגנום החדממורכ להיות חייבים

בלזהות תבניות ייחודיות אשר מספקות פירושים ביולוגים מתקבלים על הדעת. אנו מתארים ממצאים במספר 

  אורגניזמים.

אשר לרוב מבצעות פעילות כלשהי    RNAת הן מולקולו   MicroRNAs (miRNAs)ריבונוקלאיות  - חומצות- מיקרו

התפתחו אבולוציונית בכדי לשחק תפקיד כמנגנון בקרה של  RNA- למרות שהן לא עוברות תרגום לחלבון. מיקרו



 ד

 

התגלו כמעורבים בדיכואי וכמו כן בזירוז   RNA- בפעילות וויסות המערכת החיסונית. מיקרוכן - ביטוי גנים וכמו

. ישנו עניין מיוחד באפיון  (Peng and Croce, 2016)סביבה שונים לתנאי בתלות התפתחות של גידולים ממאירים 

סמנים פוטנציאלים להנעת טיפולים קלינים מותאמים - ובתור ביוסרטן  גים שלמדויק של הקשר שלהם לתתי סו

  אישית. 

. השיטה שלנו מקלה על RNA- אנו מציגים שיטה לנירמול ולאנליזה משולבת של נתוני ביטוי מיקרו 1.3בפרק 

ת של ). אנו מפעילים שיטה זו בכדי לנתח באופן משולב ארבעה עקבוbatchתופעות הקשורות לאפקט אצוה ( 

סמנים פוטנציאלים חדשים ומתדיינים ביתרונות הסטטיסטיים של - בסרטן שד, מציגים ביו RNA- יטוי מיקרותוני בנ

  הגישה שלנו. בנוסף, אנו מתארים תצפיות מסויימות אשר לא היו צפות ללא הנירמול.

. ת לעילמוזכרו סוקרים לעומק את כל אחת מהשאלות הבחלקים השונים של פרק זה אנו מספקים רקע נוסף ו

בפרקים שלאחר מכן אנו מציגים שיטות חישוביות על מנת לנסות ולענות על שאלות אלה ומנתחים לעומק 

לבסוף, אנו מסכמים את החיבור בדיון על   ומתדיינים על ממצאים פוטנציאלים חדשניים שהשיטות שלנו הציפו.

 במחקרים עתידיים.   כההעבודה ובהצעות להמש

 

1.1 Hi-C וקביעת הפלוטיפ 

 

לאורך כרומוזומים הומולוגים שזוהו שינויים גנומיים   שיוכם של לעקביעת הפלוטיפ הינו תהליך קבלת ההחלטה 

לעותק הכרומוזומלי הפיזי שלהם ביצורים דיפלואידים או פוליפלואידים. קיימות מספר שיטות לקביעת הפלוטיפ 

י של הגנומים של ההורים, זקוקות למידע גנומל אוכלוסיות ובכך אשר נעות בין גישות המבוססות על ניתוח גנטי ש

ועד גישות מתוחכמות ובעלות עלות זמן גבוהה של בידוד מולקולות להפרדת עותקי הכרומוזומים פיזית לפני ריצוף 

  בתפוקה גבוהה של כל עותק לחוד. 

נת להסיק את  בי הפלוטיפים על מעם מידע חלקי לג  Hi-Cאנחנו פיתחנו צינור עיבוד נתונים אשר משלב נתוני 

 ,.Shay Ben-Elazar, Chor, Yakhini, et al)מופרדות לפי ההפלוטיפ  Hi-Cטיפ המלא וכמו כן מפות  ההפלו 

והשתמשנו בייצוג זה בכדי להפעיל שיטה   Hi-C. בעבודה זו שיבצנו מיקומים גנומיים על סמך תיקון למפות (2016

השיוך של אללים שונים שהתקבלו מניתוח הפלוטיפ חלקי לעותק  לייצירת חיץ באופן חמדני אשר מובילה לפיענוח 

רציה תרון שלנו מוביל לקונפיגו הבעיה אנחנו מוכיחים שהפ בניסוח סטטיסטי של ההומולוגי הנכון שלהם.

מהווה מדד טוב יותר לפיענוח  Hi-Cשממקסמת את הניראות באופן גלובלי. אנחנו מראים ששיבוץ מידע 

אשר יכולים להיות דלילים    Hi-Cההפלוטיפ, דבר אשר מרמז לכך ששיבוץ הוא צעד הכרחי בהחלקת נתוני 

למטרות שונות. בנוסף, אנו מנתחים  Hi-Cרות עיבוד נתוני להיות נכונה וחשובה בצינוורועשים. עובדה זו עלולה 

אלליים), מקומות שלא ניתן לשייך לעותק האמהי או - קריאות רצפים אשר חופפות מיקומים הומוזיגוטיים (מונו

רצפים    .מדידהה כהאלליים) באדם בו נער- אבהי ולא רק קריאות רצפים אשר חופפות אתרים הטרוזיגוטיים (בי



 ה

 

ופן רך תחת הנחה של הסתברות פריורית אחידה על גבי העותקים ההומולוגים  שכאלה משוייכים בא אלליים - מונו

  . Hi-Cשיטות עדכניות רבות נוהגות להתעלם מקריאות שכאלה בניתוח נתוני  הרלוונטים עבורו.

תוני  מופרד לפי הפלוטיפ ושחזור הפלוטיפ מלא מנ Hi-Cאנחנו חוקרים את הבעיה של שחזור מידע   2בפרק 

מבן אנוש,   Hi-C. הפתרון שהצענו מודגם על ידי ניתוח הדיוק שלו על מידע Hi-Cהפלוטיפ חלקיים ומידע 

. התוצאות שלנו מראות  (Auton et al., 2015)דיפלואידי, ונתוני אמת אשר הושגו מקביעת הפלוטיפ בשלשה 

הכרומוזומים). (בממוצע על גבי  98%- שהשיטה שהצענו מובילה להפלוטיפים אשר מסכימים עם נתוני האמת ב

דיפלואידים מופרדים בעזרת אנליזה של מיקום משותף אשר  Hi-Cאנו מראים ערך מוסף אפשרי בניתוח נתוני 

מוזומים הומולוגים שונים שוכנים בתוך מפעל שיעתוק מראה תבניות מיקום משותף שבהן גנים מעותקים של כרו

תוספת ובה הגדרות מתמטיות ריגורוזיות יותר   2 אפשרי. למען שלמות העבודה, אנו מספקים ישירות לאחר פרק

 לבעיה הגיאומטרית שניסינו לתת לה מענה במאמר.

  

1.2 Hi-C העשרה מרחבית ומפעלי שיעתוק , 

 

תכונה בינארית הניתנת על סטיקות לאמידה של העשרה מרחבית של אנו דנים באלגוריתמים וסטטי  3בפרק 

). פיתחנו שיטה לזיהוי של מיקומים במרחב דו או תלת מימדי - (קואורדינטות בנתונים מאורגנים מרחבית 

אוקלידי אשר סביבן תת קבוצה מסויימת של אלמנטים ממוקמים בצפיפות גבוהה באופן משמעותי סטטיסטית. 

ממספר   Hi-C חנו את תוקף והיעילות של השיטה הזו על נתונים מלאכותיים ויישמנו אותה על שיבוצים של נתוניב

. אנו משווים את  (Ben-Elazar et al., 2019)תאיים בתלת מימד ולאורך אנוטציות גנומיות מרובות - אורגניזמים חד 

  זורים גנומיים ודנים ביתרונותיה.השיטה הזו לבחינה ישירה של מספרי זוגות קריאות רצפים בין אי 

העשרה לזיהוי    Hi-Cמחקרים קודמים שנערכו על ידנו ועל ידי אחרים הציעו היוריסטיקות לביצוע ניתוח נתוני 

ת ההעשרה המרחבית. אנו מציגים ראיות משכנעות . בעבודה זו חקרנו הגדרה רשמית ריגורוזית של בעיימרחבית

לים את השיטה שלנו לקבלת תוצאות תומכות במתודולוגיה שלנו ביחס לאלו שהשתמשו בהן לפנינו ומפעיאשר 

  משמעותיות באופן סטטיסטי אשר מרמזות על תגליות ביולוגיות חדשות. 

יותר מדיוק של ועל מנת לזהות מפעלי  קיים עניין רב בהפעלת ניתוח העשרה מרחבית על מנת לקבל אפיון 

ם במרחב הגרעין שבהם מפעלי שיעתוק הם מנגנון בקרת ביטוי גנים אשר מתבטא באיזורים תחומי שיעתוק.

מכונת השיעתוק מגייסת רכיבי בקרה ורצפים גנומיים על מנת לבקר את ביטויה של תוכנית פעילות תאית מסויימת 

(F. J. Iborra et al., 1996; Sutherland and Bickmore, 2009a) מחקרים קודמים ניסוי לאמוד באופן .

השוו את מספר האינטראקציות בין    (Dai and Dai, 2012)של  סטטיסטי את קיומם של מפעלי שיעתוק. הכותבים

טטיסטית תחת מודל בעל השערת אפס היפרגאומטרית קבוצות גנים בעלי פעילות משותפת וזיהוי העשרה ס

  לאינטראקציות בין גנים שהם מטרות של פקטורי שיעתוק מסויימים.  



 ו

 

הן לא   Hi-C- טען כי קשתות בגרף המושרה על ידי ניסוי ה (Witten and Noble, 2012) צד שני, מחקר עוקבמ

לפי כן ארועי העשרה מרחבית   השתמשו בו מניח, וכי  Dai and Daiבלתי תלויות סטטיסטית, כפי שהמודל ש

 Noble- ו Witten יספרו באופן רב מכפי שהנחת מודל תקינה הייתה מספקת. על מנת להציע תיקון לבעיה זו,

הפעילו מתודולוגיית דגימה אשר תחתה לא הופיע אות שמצביע על העשרה מרחבית למטרות של פקטורי 

 ,Shay Ben-Elazar, Chor, Yakhini)- וב (Ben-Elazar et al., 2013b) - שיעתוק. הגישה שלנו, אשר הפעלנו ב

et al., 2016)כך נמנעת מבעיות תלות סטטיסטיות  , נמנעת מהשוואה בין אוכלוסיות של דגימות קירבה לגמרי, וב

נקודת ייחוס אשר  –צצות בשיטות הקודמות. במקום זאת, אנו מתמקדים במרחקים לנקודת ציר מסויימת  אשר

  סביבה מודדים העשרה מרחבית באופן סטטיסטי כפי שמתואר בהמשך.

טי מבוסס על המבחן במחקר קודם זיהינו אתרים מועמדים להיות מפעלי שיעתוק על ידי פיתוח מודל סטטיס

בפירוט, קחו בחשבון מיקום    .mHG  (Eden et al., 2007, 2009a) ,רגיאומטרי המינימליהסטטיסטי של ההיפ

. בהינתן פקטור , - בעזרת פונקציית מרחק ל . דרגו את כל המיקומים הגנומיים האחרים גנומי,  

, כלומר המיקומים הגנומים שבהם שיעתוק מבוקר על ידי פקטור השיעתוק. שיעתוק וסט גני המטרות שלו,  

 נגדיר  עבור   .אם ורק אם  , שבו , באורך רי, נגדיר ווקטור בינא

. התוצאה של ,    . יהישל הווקטור הבינארי  בתור הרישא באורך  

mHG  תפלגות המצטברת אשר מביא למקסימום את הזנב הימני של פונקציית הה מוגדרת על ידי הסף

  ערכים. כלומר, ההיפרגיאומטרית כשנצפים  

�

 

ם מפולגים באופן שווה לאורכו של הווקטור הבינארי , ה Bהיא שבהינתן מספר האחדות   mHG- השערת האפס ב

לדחות את השערת האפס מרמז על כך שהמטרות של פקטור השיעתוק ממוקמות שלנו,  . בהקשרבאורך 

אורך אנו חוזרים על ניסוי זה לכל נקודות הציר לבסמיכות לנקודת הציר שבחרנו בריכוז מפתיע באופן סטטיסטי. 

  .Bonferroniהגנום ועבור כל פקטורי השיעתוק, ומתקנים השערות מרובות בעזרת תיקון  

שימש בכדי למדוד את ההסתברות שבה דירוג נצפה של גנים על פי מרחקם מנקודת הציר   mHGשל  הסטטיסטי

הערך  רגת.מציף מספר 'לא סביר' של גנים שהם מטרות ידועות של פקטור השיעתוק לראש רשימת הגנים המדו

אנו מוסיפים  הנצפה של הסטטיסטי מוארך כנגד מודל רקע של פרמוטציות על גבי רשימת הגנים, אשר עליו  

את האות מהשערה  מימדי ועל מנת לבודד- בקרות בכדי לשלוט בהשפעות הסדר של הגנים לאורך הגנום החד

 .(Ben-Elazar et al., 2013b)אשר נלקח מ  1איור במרחבית ממשית. אילוסטרציה של שיטה זו מוצגת  



 ז

 

 

Figure 1. Comparing functional enrichment between the genomic and spatial regions of the genome.  (A) Two genomic 

distances. The schematic shows the gene neighborhood surrounding a particular gene (red). The neighboring genes may be 

ranked by their genomic proximity (left) or their spatial proximity (right). (B) Detecting areas of enrichment for TF-cohorts. In 

ranked gene lists, generated by either genomic or spatial proximity, the genes annotated as targets of a particular TF are 

indicated as black lines. The p-value of the enrichment of the targets for each threshold is indicated on the right. The threshold 

with the best p-value is indicated by the dashed line (see Methods). This analysis is shown for two genomic loci surrounding 

genes YCL012C and YHL050C respectively and querying for targets of GLN3. (C) Local structures of the two loci examined in B. 

Colors indicate distinct yeast chromosomes. The red circles indicate the center gene around which co-localization was tested. 

The center genes shown are YCL012C (top) and both YHL050C and YHL050W-A (bottom). The content shown in each sphere is 

the environment which corresponds to the mHG threshold, dictated by the most enriched spatial environment for GLN3 targets. 

Bars on the right mark the loci along the linear genome which participate in the most enriched environment by both the 

genomic and spatial rankings. Black dots, both in the bars and the visualized structure, indicate gene targets of GLN3. 

מימדי בתור נקודות ציר וזיהינו מיקום והופעת מפעלי - ישה המוצגת לעיל, סרקנו גנים לאורך הגנום החדבג

שיעתוק אפשריים על ידי מדידת ההעשרה המרחבית בתלת מימד סביב כל נקודת ציר שכזו. עם זאת, מפעלי  

מימדי, כפי  - על גבי הגנום החדשיעתוק לא מוכרחים להיות ממורכזים סביב גן או אפילו סביב נקודת ציר שנמצאת 

שאנו מראים במאמר. בעבודה זה הרחבנו את הישימות של בדיקת ההעשרה המרחבית שתיארנו לעיל בכדי  

  להקל על הדרישה שנקודות ציר יהיו על גבי הגנום החד מימדי. 

נקודות הציר מימדי על מנת לכסות את כל - לצאת מהמרחב הדיסקרטי של נקודות ציר אפשריות לאורך הגנום החד

למרות כן,    קשה באופן כללי מפני שיש מספר אינסופי של נקודות ציר אפשריות.האפשריות בתלת מימד זו בעיה 

  מכיוון שמבחן ההעשרה הסטטיסטי שלנו מבוסס על סדרי הדירוג של הגנים ולא על המרחקים הממשיים בינהם, 

כי ישנו מספר פולינומי של קבוצות של נקודות ציר  אין צורך לבדוק את כל נקודות הציר האפשריות. אנו מראים

אפשריים שונים. בעבודתנו אנו מאפיינים את המרחב   mHGשכל קבוצה משרה דירוג אחר על הגנים ובכך ערכי 

וחסום על מנת לסרוק  -הקומבינטורי אשר תחת בעיה זו באופן מדוייק ומספקים אלגוריתם מקוון בשיטת הסתעף

  שרירותיות.  נקודות ציר רלוונטיות
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האלגוריתמיקה שלנו מסתמכת על תכונות של ההתפלגות ההיפרגאומטרית על מנת לדלג על איזורים מועמדים  

באופן יעיל ולחדד באופן רקורסיבי העשרות פוטנציאליות. בהמשך לעבודתנו הקודמת, הפעלנו שיטה זו בכדי  

   פשריים בהסתמך על תצורות תלת מימדיות.ולגלות נקודות במרחב שמהוות מפעלי שיעתוק א Hi-Cלנתח נתוני 

יישמנו את   –הערכנו את שיטה זו על מספר קבצי נתונים בנוסף לנתונים תלת מימדיים מלאכותיים. חשוב מכך 

מספר תופעת הגדלה של ונדונו בכמה תוצאות ביולוגיות מעניינות: תאיים - מאורגניזמים חד  Hi-Cהשיטה על נתוני 

קשר עמוק , דבר אשר מצביע על Rad21במוטאנט הנוקאאוט של במרחב  ת כזרומ  יםריטלומ- הפרי  י הרצפיםעותק

שנלקחה  2מוצגת באיור . תופעה זו טלומרי- פרימתפקד לבין שלמותו של הרצף ה Cohesinבין קומפלקס 

מיכות  ריכוז משותף במרחב של גנים האחריים לשכפול הגנום מועתקים לשני עותקים אשר בס מהמאמר שלנו.

עובדה המספקת ראייה להתפתחות אבולוציונית של תבנית "גיבוי" היכולה לשמש ,  ter- וה ori- ה לאיזורי הגבוה

  בכדי להציל שכפול מושהה, וכו'.

 

Figure 2. example of spatial co-localization identified by our method. Left: sNMDS embedding for S. pombe with colour coded 

chromosomes. Middle (animation available as Supplementary Video 5): Bins are colour coded by average aCGH value, with 

marked outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak duplication signal on ChrII, and deletion on ChrI, 

ChrIII. Strongest duplication is evident at the telomeres.  Right (animation available as Supplementary Video 6): Red bins contain 

Loz1 transcription factor targets. The resulting  pivot and corresponding ball are visible containing 4/6 TF targets.  

1.3 miRNA  משולב של נתוני ביטויניתוח  ו 

) למטרה של ניתוח משולב של נתוני AQNמתאר גישה מותאמת המבוססת על נורמליזציה בשברונים (   4פרק 

  RNA) הם מולקולות RNA  )miRNAs- מיקרום אשר נדגמו בעזרת טכנולוגיות שונות. ממספר ניסויי miRNAביטוי 

'  3- רות לאתרי מטרה ספציפיים שלרוב נמצאים בצד הנוקלאוטידים) לא מקודדות לחלבון, אשר נקש 22קטנות (~

מבקרים את רמות הביטוי   miRNAשליח המטרה שלהן. על ידי הקשרות זו,  RNAשל  ) UTRsהלא מתורגם ( 

הינו כלי חשוב  miRNAל קביעת פרופיל הביטוי ש  .mRNAבעזרת דיכוי פעילות תרגום או על ידי הגרעה של 

  ולים והתגלה כחשוב באבחון וקביעת פרוגנוזה.למחקר הביולוגיה וסיווג של גיד

הגישות השונות בניתוח משותף של נתוני ביטוי ממקורות שונים (בעלי הטיות  ניתן לחלק לשני משפחות את 

ונים באופן נפרד ומשלבים את  אנו בוחנים כל קובץ נתעל - על וניתוח משולב. בניתוח - ניתוח: התלויות במקור) 
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על נחשב כמרוויח פחות מיתרונת של תוספת  - ות יותר חסינות סטטיסטית. ניתוח התוצאות על מנת לקבל מסקנ

לכוח הסטטיסטי שמתקבלות מהגדלת גודל המדגם ביחס לניתוח משולב. מנגד, ניתוח משולב מנסה להתגבר על 

 הביטוי מניסויים שונים כך שהם יהיו ברי השוואה בהתחשבתופעות אצווה על ידי הסטה של התפלגויות רמות 

  בהנחות מסויימות. 

, אשר AQN), בשם Quantile normalizationאנו מפתחים גרסה מכומתת ומורטטת של נורמליזציה בשברונים ( 

ם  הבאות לידי ביטוי באשכול. אנו מראים שכשמצמידים את הניתוח עם מבחני אצווהשל תופעות מורידה השפעות 

שמבטאים רמות ביטוי דיפרנציאליות    miRNAsיפה יותר סטטיסטים מתאימים לאנליזות שניוניות, השיטה שלנו מצ

שלא תואר  miRNAבין חולים בעלי קולטני אסטרוגן בתאי הגידול לעומת כאלו שאין להם קולטני אסטרוגן, ובפרט 

פקת רמות ביטוי אשר במתאם גבוהה יותר , שנמצא כמדכא גידולי. הגישה שלנו מסhas-miR-193b-5pבספרות, 

(אונטולוגיות של גנים) עבור מונחים שנראים  GO- י המטרות שלהן, והעשרה גבוהה יותר לעם הביטוי של גנ

שייכים לפי מחקרי תצפיות. אנו משווים את השיטה שלנו לשיטות אשר משתמשים בהם בתחום לנירמול ומציגים 

 מספרי קווי ראיות בעדה.
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 תמצית 

  

גנים משפיעים על אופן הייצור והבקרה של גנים.   מקודדים אוסף הוראות שמטרתן להורותמאכסנים ו גנומים  

הבהרת דרכי    ופועלים הדדית זה על זה ועם סביבתם במטרה להכתיב את הפנוטיפ והפעילות של תאים ביולוגים.

  אקולוגיה ואף על דרכי קידוד מידע דיגיטלי וחישוב.הפעולה של גנומים יכולה להוביל לחדשנות ברפואה, חקלאות,  

פירוש בגודל והסדרי העלאת לאתגרים ב, באופן שוטף  ,מוביליםופורצי דרך ית ונהלי ניסוי חדשניים קידמה טכנולוג

. תיזה זו מתייחסת להיבטים של ניתוח נתונים משני טכניקות מדידה ניסויות  נכון של מדידות ותצפיות גנומיות

אנו מציגים שלושה   צאות אלה.יה מולקולרית, ובפרט מתרכזת באתגרים מסויימים בהקשר של פירוש תומביולוג

) מנתוני גנומיות- אפי( גנומיות  - חוץפיענוח תכונות גנומיות ו  – פרויקטי מחקר נפרדים בעלי מטרה משותפת אחת 

ציות, מפעילים אותם על על נתוני אנו מציגים אלגוריתמים חדשניים, נותנים להם מוטיבציה בעזרת סימולמדידה.  

הגישות עליהן אנו דנים בתיזה זו  רשנות ביולוגית לממצאים מניתוח התוצאות.אמת ומציגים ראיות סטטיסטיות ופ

- גנומיים וחוץמאפיינים ) בתחומם ומספקות תובנות חדשות על state-of-the-artהעדכני ביותר (  מקדמות את

  ופעילותם התפקודית. בפרט, התרומה של עבודה זו כוללת: נומיים של תאים ג

 רובבים.מ טיפיםלהסקה של הפלוטיפים מגנו Hi-Cגישה לשימוש בנתוני  •

מימד בעזרת - תאיים בתלת- גישה סטטיסטית לאפיון הארגון הפונקציונלי של גנומים באורגניזמים חד  •

 . Hi-Cנתוני 

ילוב של מספרי ערכות נתונים ומובילה להגדלת אשר מאפשרת ש miRNAגישה חדשנית לנירמול נתוני  •

 הכוח הסטטיסטי.
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