000

TELAVIV TID'011IN
UNIVERSITY 2IN'TN

Sackler Faculty of Exact Sciences,
Blavatnik School of Computer Science

Statistical and computational methods
for studying genomic
spatial structure and properties

THESIS SUBMITTED FOR THE DEGREE OF
“DOCTOR OF PHILOSOPHY”
by
Shay Ben-Elazar

The work on this thesis has been carried out under the supervision of
Prof. Ben Zion Chor

Prof. Zohar Yakhini

Submitted to the Senate of Tel Aviv University
November 2019






Acknowledgements

To my academic advisors and mentors, Zohar Yakhini and Benny Chor — it has been my distinct
privilege to work with and learn from you. | am lucky to have had two sharp-witted and ego-
free supervisors guiding my journey and consider you true role models. To my managers as an
applied researcher at Microsoft, Daniel Sitton, Noam Koenigstein, Royi Ronen — Thank you for
enriching my toolset with ideas and perspectives of different domains, ideas that have
undoubtedly carried over and improved my academic work and capabilities as a researcher. To
my colleagues from Chor group, Yakhini group, Microsoft Recommendations team, Microsoft
Video Indexer and Microsoft Education Analytics — it was a pleasure working alongside each of
you and | hope to continue collaborating.

| would like to also thank all the sources who generously funded my research: Blavatnik
Computer Science Research Fund, Agilent Technologies University Relations grant,
Interdisciplinary Center Tuition grant, Microsoft tuition assistance program.

Finally, to my dear family, thank you for your love, support and understanding throughout the
years. To my parents, Lili and David, thank you for your encouragement during more frustrating
times. To my beloved wife, Yael, and daughter, Abigail — thank you for providing the drive to all
that | do.

“If we don’t mark the milestones, we’re just passing with the time“— Lara Axelrod



Preface

This thesis is based on the following three articles. At the time of writing, two of the three
papers below were published in scientific journals, one of which was presented in a leading
conference and the third paper was submitted and is awaiting peer review.

1. Extending partial haplotypes to full genome haplotypes using chromosome
conformation capture data
Shay Ben-Elazar, Benny Chor, Zohar Yakhini
Published in Bioinformatics 2016, Presented as poster and orally at ECCB 2016

2. The functional 3D organization of unicellular genomes
Shay Ben-Elazar, Benny Chor, Zohar Yakhini
Published in Nature Scientific Reports 2019

3. miRNA normalization enables joint analysis of several datasets to increase sensitivity
and to reveal novel miRNAs differentially expressed in breast cancer
Shay Ben-Elazar, Miriam Ragle Aure, Kristin Jonsdottir, Suvi-Katri Leivonen, Vessela N.
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Abstract

Genomes store and encode complex instruction sets for the production and regulation of
genes. In turn, genes interact with each other and with their environment to dictate the
phenotype and function of biological cells. Elucidating genomic mechanisms of operation can
potentially deliver innovation in healthcare, agriculture, ecology and even in encoding digital
information and computing. Technological advancements and emergent experimental
procedures continuously produce new sets of challenges in efficiently scaling and correctly
interpreting genomic observational data. This thesis addresses data analysis aspects related to
two molecular biology measurement techniques, focusing on specific challenges that have
emerged in the context of interpreting their results. We present three separate research
projects that share a common goal — deciphering genomic and epigenomic properties from
measurement data. We provide novel algorithms, motivate them with simulations, apply them
on real data and provide statistical evidence and biological interpretation of the analysis
findings. The approaches discussed in this thesis advance the state-of-the-art and provide new
insights on genomic and epigenomic characteristics of cells and their functional roles. In
particular, our contribution includes:

e An approach for using Hi-C data to infer full haplotypes from partially phased genotypes.

e A statistical approach to characterizing the functional 3D organization of unicellular
genomes using Hi-C data.

® A novel normalization approach to miRNA data, that enables the integration of several
datasets, leading to increased statistical power.
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Chapter 1:

Introduction

Chromosome conformation capture (3C), and related methods (e.g. High-throughput 3C, or Hi-
C), are a set of experimental biology protocols based on DNA sequencing technology that
produce a (sparse) map of paired read counts across chromosomes. These read counts are
(approximately) proportional to spatial proximities between pairs of chromosomal loci (Nynke
L. van Berkum et al., 2010a). A myriad of approaches embed Hi-C read counts into (qualitative)
3D models in order to smooth out sampling noise and offer an intuitive glimpse into the
underlying genome structure. 3C and related techniques have paved the way for experimentally
charting 3-dimensional structural properties of genomes in living cells at detail currently
unavailable to volumetric microscopy. Key discoveries attributable in part to 3C include:
Functional-organizational unit of TADs (topologically associating domains) as a structural
epigenetic mechanism enforcing promoter-enhancer contacts and enabling neighborhood
insulation. Systematic evidence for the “transcription factory” hypothesis. Namely, regulatory
co-factors and transcription machinery co-localize to sub-compartments in the nucleus

(Eukaryotes) / nucleoid (Prokaryote) along with their genomic targets.

In chapter 1.1 we introduce an approach that leverages information obtained by genome
conformation capture to address the “last-mile” sequence assembly problem of Haplotyping.
Haplotyping is the process of assigning nucleotide sequence variants and aberrations to one
corresponding homologous chromosome copy. In our work (S. Ben-Elazar et al., 2016) we

IH

demonstrate methods that are useful for both 1) de-multiplexing “traditional” averaged
pairwise-chromosome Hi-C proximity maps into maps containing pairwise-homologous copy
information and 2) “Phasing” (un-shuffling) homologous Hi-C maps to the correct homologous
block structure. Such de-multiplexed and phased Hi-C maps are important to improve the

precision and applicability of further interpretation of Hi-C data for other downstream tasks.
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In chapter 1.2 we revisit a problem related to the downstream analysis of 3D models derived
from Hi-C data. In this work (Ben-Elazar et al., 2019) we develop an algorithmic and statistical
framework to identifying 3D spherical compartments in which genomic elements with some
common biological property significantly co-localize. This approach overcomes a limitation of
our previous work where candidate enrichment spheres were centered on the 1D genome. We
provide rigorous analysis of this method and illustrate its benefit in detecting novel patterns

with plausible biological interpretation. We describe findings in several organisms.

MicroRNAs (miRNAs) are short RNA molecules that are typically functional although they do not
undergo translation to protein. miRNA has evolved to play a regulatory role in gene expression
as well as in immune system activity and modulation. miRNAs have been implicated in both
malignant tumor suppression and development depending on various conditions (Peng and
Croce, 2016). Of particular interest is the precise characterization of their relation to cancer

subtypes as potential biomarkers for driving personalized clinical care.

In chapter 1.3 we present a method for the normalization and integrative analysis of miRNA
expression data. Our methods mitigate batch-related effects. We apply this approach to jointly
analyze four cohorts of miRNA expression in breast cancer, present potential novel miRNA
biomarkers and discuss the statistical advantages of our approach. We also discuss some

specific observations that would not have emerged without normalization.

In the sections of this chapter we provide more background and a more detailed overview of
each of the aforementioned questions. In later chapters we present computational methods to
address these problems and discuss potential novel findings surfaced by our techniques along
with their detailed analysis. Finally, we conclude by discussing our work and offering directions

for future investigation.

1.1 Hi-C and Phasing

Haplotyping, or phasing, is the process of determining the physical co-occurrence of genomic

variations along intact maternal or paternal homologous chromosomes in diploid or polyploid
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organisms. Several methods aim to determine haplotype, ranging from population-genetics
based approaches that require some knowledge on the parental genomes, to methods based
on time consuming and elaborate molecular isolation of chromosomes prior to high-throughput

sequencing.

We developed a computational pipeline that combines Hi-C data with partial phasing data to
infer full haplotypes as well as the fully phased Hi-C proximity map (Shay Ben-Elazar, Chor,
Yakhini, et al., 2016). In this work we embedded genomic locations based on corrected Hi-C
maps and used this representation to apply a greedy partitioning method in order to decode
the correct homologous assignment of different alleles observed from a partially phased
genotype assay. We prove that our solution yields the global maximum likelihood configuration
in a statistical formalization of the problem. We show that embedding Hi-C data offers a better
proximity measure for haplotype decoding suggesting that embedding is an essential step in
smoothing Hi-C data which can be sparse and noisy. This is possibly true for other Hi-C analysis
pipelines as well. Additionally, we process reads that overlap mono-allelic (indiscernible
between maternal and paternal copies) loci and not only reads that overlap loci that are bi-
allelic for the measured individual. Such mono-allelic reads are softly assigned under a uniform
prior over its potential homolog copies of origin. Traditionally, such reads are ignored by many

state-of-the-art Hi-C data analysis approaches.

In chapter 2 we explore the problem of recovering phased Hi-C and full haplotype data using
un-phased Hi-C data and partial haplotype data. The proposed solution is exemplified by
analyzing its accuracy on human diploid Hi-C and ground-truth haplotype data available via
Trio-phasing (Auton et al., 2015). Our results show that the proposed method results in
haplotypes that have 98% agreement with ground truth data (averaged across chromosomes).
We show potential added value in correctly interpreting diploid Hi-C data by applying a co-
localization analysis that shows patterns in which single copies of genes on different
homologous chromosomes reside in a proposed transcription factory. For completeness, we
provide a more rigorous mathematical definition to the underlying geometric problem
addressed in the paper and available as an additional supplementary chapter directly following
chapter 2.

12



1.2 Hi-C, Spatial Enrichment and Transcription Factories

Chapter 3 discusses algorithmics and statistics for assessing spatial enrichment of a binary
property on a given spatially organized dataset (coordinates in R?, R3). We developed a method
to identify locations within a 2D-3D Euclidean space, around which a specific subset of elements
is localized with significantly high density. We studied the validity and efficiency of this method
on simulated data and applied it to 3D embeddings of Hi-C data from multiple unicellular
organisms and across multiple genomic annotation sets (Ben-Elazar et al., 2019). We compare

this method to directly studying raw paired read counts and discuss its advantages.

Previous studies, both by us and by others, have suggested heuristics for performing spatial co-
localization analysis on Hi-C data. In this work we explored a rigorous formal definition of the
spatial co-localization problem. We present compelling evidence to support our methodology
compared to those used previously and apply our method to obtain statistically significant
results suggesting potential novel biology. Applying spatial co-localization for obtaining a more
precise characterization and means of identifying transcription factories is of particular interest.
Transcription factories are a regulatory mechanism manifested as confined spaces within the
nucleus, where transcription machinery recruits relevant cofactors and genomic stretches such
as to regulate the activation of specific cellular functions (F. J. Iborra et al., 1996; Sutherland
and Bickmore, 2009a). Previous studies have attempted to statistically assess the existence of
transcription factories. The authors of (Dai and Dai, 2012) compared the number of interactions
in different functionally-related gene sets and observed statistical enrichment under the
hypergeometric null model for interactions among transcription factor (TF) targets. However, a
follow-up study (Witten and Noble, 2012) argued that edges in the 3C interaction graph are not
statistically independent, as was assumed under the model used by Dai and Dai, and that co-
localization events would therefore be over-counted. To correct for this issue, Witten and
Noble applied a re-sampling methodology under which no signal for TF target co-localization
was detected. Our approach, applied in both (Ben-Elazar et al., 2013a) and (Shay Ben-Elazar,
Chor, Yakhini, et al., 2016)), avoids comparing between populations of proximities altogether,

and so avoids any statistical dependence issues which arise in former methods. Instead, we

13



focused on the distances to a single pivot locus — a reference point around which we measure

co-localization statistical significance, as described below.

In our previous study, we identified transcription factory candidates by developing a statistical
model based on the minimum Hypergeometric (mHG) statistical framework (Eden et al., 2007,
2009a). In more detail, consider a genomic locus, I. Rank all other genomic loci [y, ..., [y by
some distance function to [, d(l;,1). Consider a transcription factor (TF) and its set of targets, T.
We consider T to represent the genomic locations at which transcription is driven by the TF.
Define a binary vector, A, of length N, where A(i) = 1iff [; € T. For 1 < n < N we define

A, = [A(1), ..., A(n)] as the prefix of length n of the binary vector A. Let b,, = ZA,, B = ZAy.
The mHG score is defined by the threshold, n, that minimizes the right tail of the

hypergeometric CDF of observed b,, values. That is,

min (n,B) (M\ (N — n
mHG(A) = min Z %
i=bn B

The null hypothesis in mHG is that given the number of B 1’s, they are uniformly distributed in
the binary vector of length N. In our context, rejecting the null hypothesis suggests that TF
targets are localized in significantly close proximity to the pivot locus. We repeat this

experiment for all loci and TFs, Bonferroni correcting for multiple testing.

The mHG statistic was used to measure the probability with which an observed ranking of
genes by their distance from a certain pivot point would surface an ‘unlikely’ number of genes
that are known targets of a specific TF to the ‘top’ of the ranked list. The observed value of this
statistic is assessed against a background model of random permutations, to which we add
appropriate controls for the 1D gene order, to isolate the effect of actual 3D spatial localization.
See an illustration of our previously developed method in Figure 1 taken from (Ben-Elazar et al.,

2013a).
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Figure 1. Comparing functional enrichment between the genomic and spatial regions of the genome. (A) Two
genomic distances. The schematic shows the gene neighborhood surrounding a particular gene (red). The
neighboring genes may be ranked by their genomic proximity (left) or their spatial proximity (right). (B) Detecting
areas of enrichment for TF-cohorts. In ranked gene lists, generated by either genomic or spatial proximity, the
genes annotated as targets of a particular TF are indicated as black lines. The p-value of the enrichment of the
targets for each threshold is indicated on the right. The threshold with the best p-value is indicated by the dashed
line (see Methods). This analysis is shown for two genomic loci surrounding genes YCLO12C and YHLO50C
respectively and querying for targets of GLN3. (C) Local structures of the two loci examined in B. Colors indicate
distinct yeast chromosomes. The red circles indicate the center gene around which co-localization was tested. The
center genes shown are YCLO12C (top) and both YHLO50C and YHLO50W-A (bottom). The content shown in each
sphere is the environment which corresponds to the mHG threshold, dictated by the most enriched spatial
environment for GLN3 targets. Bars on the right mark the loci along the linear genome which participate in the
most enriched environment by both the genomic and spatial rankings. Black dots, both in the bars and the
visualized structure, indicate gene targets of GLN3.

In the approach described above, we scanned genes along the 1-dimensional genome as pivots
to identify potential transcription factories, measuring whether TF targets are enriched in 3D
space around each such pivot. However, transcription factories need not be centered around a
gene and not even around a pivot along the 1D genome, as we show in the paper. In this work
swe expand the applicability of the 3D enrichment method described above and develop

approaches that relax the limits of considering pivots only along the 1D genome.

Venturing out of the discrete space of possible pivots along the 1D genome in order to cover all

possible pivots in 3D is generally intractable as there are infinitely many possible pivots.
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However, as our enrichment analysis is based on rank orders and not on actual distance values,
not all possible points in space need to be considered as pivots. We show that only a
polynomial number of sets of pivots can induce different rank orders and can yield different
mHG values. In our work we characterize the underlying combinatorial space precisely and
provide an online branch and bound approach to scan for co-localization in arbitrarily pivots.
Our algorithmics rely on properties of the hypergeometric distribution to efficiently discard
candidate regions and recursively refine potential enrichments. In continuation to our previous
work we applied this method to analyze Hi-C data and identify points in space as transcription
factory candidates based on genomic 3D configurations. We evaluated this method on multiple
datasets including simulated 3D data. More importantly — we applied it to Hi-C data from
unicellular organisms and discuss several interesting biological results: Spatially co-localized
peri-telomeric copy number increase in Rad21 knockout mutant, alluding to a deep connection
between a functional cohesion complex and peri-telomeric integrity presented in Figure 2 taken
from our paper. Co-localized genome replication genes partitioned to two copies that are in
close proximity to the ori and ter (origin and terminus of DNA replication, accordingly) providing

evidence for an evolved “backup” template useful for recovering stalled replication, etc.
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Figure 2. Example of spatial co-localization identified by our method.Left: sSNMDS embedding for S. pombe with
colour coded chromosomes. Middle (animation available as Supplementary Video 5): Bins are colour coded by
average aCGH value, with marked outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak
duplication signal on Chrll, and deletion on Chrl, Chrlll. Strongest duplication is evident at the telomeres. Right
(animation available as Supplementary Video 6): Red bins contain Loz1 transcription factor targets. The resulting
smHG pivot and corresponding ball are visible containing 4/6 TF targets.
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1.3 Integrative analysis of miRNA expression data

Chapter 4 describes an adjusted quantile-normalization approach (AQN) for the integrative
analysis of breast-cancer miRNA expression data from multiple experiments sampled using
different technologies. microRNAs (miRNAs) are endogenous, small non-coding RNAs (~22
nucleotides) that bind to target-specific sites most often found in the 3’-untranslated regions
(UTRs) of target messenger RNAs (mRNAs). By this binding miRNAs regulate gene expression,
inhibiting MRNA translation or marking the mRNA molecules for degradation. miRNA
expression profiling is an important tool for studying tumor biology and classification and has

shown to be important with respect to diagnostic and prognostic assessments.

The approaches to jointly analyze expression data from multiple sources (with source-specific
biases) can be split to two families: meta-analysis and integrative analysis. In meta-analysis we
study each dataset independently and combine results to make more robust conclusions. Meta-
analysis is considered to benefit less from the added statistical power of an increased sample
size when compared to integrative analysis. In contrast integrative analysis attempts to
overcome batch effects by shifting the distributions of expression values from different

experiments such that they are comparable, under different and specific considerations.

We develop a quantized and jittered variant of quantile normalization, denoted AQN, that
reduces batch related clustering effects. We show that when coupled with appropriate
downstream statistics our method is able to surface more differentially expressed miRNAs
between estrogen receptor (ER) positive and negative patients. In particular, using the
combined dataset, we implicate hsa-miR-193b-5p as a potential tumor suppressor. Our
approach yields expression values that correlate better with known miRNA targets and
increases GO (gene ontology) enrichment score for terms that are consistent with observational
studies. We compare our method to commonly used normalization schemes and provide

different lines of evidence in its favor.
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1.4 Summary of articles included in this Thesis

1.

2.

Extending partial haplotypes to full genome haplotypes using chromosome
conformation capture data

Shay Ben-Elazar, Benny Chor, Zohar Yakhini

Published in Bioinformatics 2016, Presented as poster and orally at ECCB 2016

Motivation: Complex interactions among alleles often drive differences in inherited
properties including disease predisposition. Isolating the effects of these interactions
requires phasing information that is difficult to measure or infer. Furthermore,
prevalent sequencing technologies used in the essential first step of determining a
haplotype limit the range of that step to the span of reads, namely hundreds of bases.
With the advent of pseudo-long read technologies, observable partial haplotypes can
span several orders of magnitude more. Yet, measuring whole-genome-single-individual
haplotypes remains a challenge. A different view of whole genome measurement
addresses the 3D structure of the genome — with great development of Hi-C techniques
in recent years. A shortcoming of current Hi-C, however, is the difficulty in inferring
information that is specific to each of a pair of homologous chromosomes.

Results: In this work we develop a robust algorithmic framework that takes two
measurement derived datasets: raw Hi-C and partial short-range haplotypes, and
constructs the full-genome haplotype as well as phased diploid Hi-C maps. By analyzing
both data sets together we thus bridge important gaps in both technologies — from
short to long haplotypes and from un-phased to phased Hi-C. We demonstrate that our
method can recover ground truth haplotypes with high accuracy, using measured
biological data as well as simulated data. We analyze the impact of noise, Hi-C
sequencing depth and measured haplotype lengths on performance. Finally, we use the
inferred 3D structure of a human genome to point at transcription factor targets nuclear

co-localization.

The functional 3D organization of unicellular genomes
Shay Ben-Elazar, Benny Chor, Zohar Yakhini
Published in Nature Scientific Reports 2019
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Genome conformation capture techniques permit a systematic investigation into the
functional spatial organization of genomes, including functional aspects like assessing
the co-localization of sets of genomic elements. For example, the co-localization of
genes targeted by a transcription factor (TF) within a transcription factory. We quantify
spatial co-localization using a rigorous statistical model that measures the enrichment of
a subset of elements in neighbourhoods inferred from Hi-C data. We also control for co-
localization that can be attributed to genomic order.

We systematically apply our open-sourced framework, spatial-mHG, to search for
spatial co-localization phenomena in multiple unicellular Hi-C datasets with
corresponding genomic annotations. Our biological findings shed new light on the
functional spatial organization of genomes, including: In C. crescentus, DNA replication
genes reside in two genomic clusters that are spatially co-localized. Furthermore, these
clusters contain similar gene copies and lay in genomic vicinity to the ori and ter
sequences. In S. cerevisae, Ty5 retrotransposon family element spatially co-localize at a
spatially adjacent subset of telomeres. In N. crassa, both Proteasome lid subcomplex
genes and protein refolding genes jointly spatially co-localize at a shared location. An

implementation of our algorithms is available online.

miRNA normalization enables joint analysis of several datasets to increase sensitivity
and to reveal novel miRNAs differentially expressed in breast cancer

Shay Ben-Elazar, Miriam Ragle Aure, Kristin Jonsdottir, Suvi-Katri Leivonen, Vessela N.
Kristensen, Emiel A.M. Janssen, Kristine Kleivi Sahlberg, Ole Christian Lingjeerde and
Zohar Yakhini

Submitted to PLOS Computational Biology 2019

Different miRNA profiling protocols and technologies introduce differences in the
resulting quantitative expression profiles. These include differences in the presence (and
measurability) of certain miRNAs. We present and examine a method based on quantile
normalization, Adjusted Quantile Normalization (AQN), to combine miRNA expression
data from multiple studies in breast cancer to a single joint dataset for integrative
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analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing
patterns that do not emerge as statistically significant when separately analyzing these
datasets. To merge several datasets, as we do here, one needs to overcome both
technical and batch differences between these datasets. We compare several
approaches to merging and jointly analyzing miRNA datasets. We investigate the
statistical confidence for known results and highlight potential new findings that
resulted from the joint analysis using AQN. In particular, we detect several previously
associated breast-cancer miRNAs to be differentially expressed in estrogen receptor (ER)
positive versus ER negative, thereby identifying new potential biomarkers and
therapeutic targets for both categories. More specifically, using the AQN-derived
dataset we detect hsa-miR-193b-5p to have statistically significant higher expression in
ER positive samples, a phenomenon that was not previously reported. Furthermore,
overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell
viability and expression of cancer-relevant proteins in addition to induced apoptosis,
suggesting a novel functional role for this miRNA in breast cancer. Packages

implementing AQN are provided for Python, Matlab and R.

1.5 Summary of contributions
The contributions of our work include:

e An approach for using Hi-C data to infer full haplotypes from partially phased genotypes.
At the time of writing this thesis, state-of-the-art haplotyping (and similarly,
metagenomic analysis) is typically accomplished using a hybrid of short range and long
range (e.g. Hi-C) sequencing technologies. We provide an advanced algorithmic
approach that better utilizes Hi-C data for improved performance, as we show in a direct
comparison. We demonstrate an interesting implication of haplotype information via a
downstream co-localization analysis on human (diploid) Hi-C data. Namely: we observe
genomic co-localization patterns in which a single copy of a homologous gene pair

appears to co-localize into a potential transcription factory.
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e A statistical approach to characterizing the functional 3D organization of unicellular
genomes using Hi-C data. We apply the approach to discover evidence of functional 3D
organization across multiple organisms and multiple functional annotation sets. We
present novel biological potential findings based on our analyses. An additional side-
product (and prerequisite) from this work is the 3D embedding of several Hi-C datasets.

® A novel normalization approach to miRNA data that enables the integration of several
datasets, leading to increased statistical power. We present statistically significant
differentially expressed miRNA in estrogen receptor (ER) positive compared to ER
negative breast-cancer patients, including a newly identified tumor suppressor miRNA

that could potentially aid with future prognosis and treatment.

Finally, packages and code implementing our work presented herein is available as open source

software for the community.
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Chapter 2:

Extending partial haplotypes to full genome
haplotypes using chromosome conformation
capture data
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2.1. Introduction

Chromosome conformation capture (3C), and derived high-throughput methods (Hi-C), are a
experimental protocols that yield a sparse map of read counts that are proportionally related to
spatial proximities between pairs of genomic loci (Nynke L van Berkum et al., 2010). Hi-C and
related methods have been used to assess structural properties of genomes (Ay and Noble,
2015). Haplotyping is the process of determining the physical co-occurrence of genomic
variations along intact maternal or paternal homolog chromosomes in diploid or polyploid
organisms. Co-localization and linkage of such variations are key factors in determining the
complex nature of some phenotypes and as essential tools in understanding genetics (Tewhey

etal., 2011).

Both haplotype information and genome conformation are typically investigated using “next
generation” DNA sequencing technology, which suffers from an inherent ambiguity in its
interpretability. In current state-of-the-art DNA sequencing methods, high-throughput short
reads are computationally aligned or assembled to recover contiguous regions of the genome.
The ambiguity in sequencing becomes evident when considering diploid genomes. Diploid
genomes, by definition, contain at least two copies of almost every genomic region (up to CNVs
and other genetic variations between homologous regions and sex chromosomes). Thus, when
two long genomically identical regions are flanked by bi-allelic genotypes (such as in single
nucleotide polymorphisms, SNPs) for a measured genome, we are unable to determine
whether said variations reside on the same copy of the chromosome homologs, or belong to
different homologs. The problem becomes practically intractable when considering the

combinatorics involved in accurate pairwise assignment of variations along an entire genome.

While many methods attempt to address the problem of haplotype phasing it is difficult to
achieve a satisfactory balance between the scalability and reliability required in practice.
Methods vary from population-based methods, to methods requiring vast sequencing depth
with multiple insert sizes, complex manual isolation or cutting-edge non-mainstream
technology. A good overview of these methods including their advantages and disadvantages is

presented in (Snyder et al., 2015; Glusman et al., 2014). In recent years technological progress
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enabled cost-effective long-read or pseudo-long-read sequencing such as Pacific Biosciences
SMRT and Oxford Nanopore and 10X (McCoy et al., 2014; Patterson et al., 2015; Pirola et al.,
2016; Eisenstein, 2015). With such technology, experimentally-derived short-range haplotypes
are becoming viable, and the algorithmic challenges, common to all combinatorial methods for
haplotype assembly, are shifting towards extending short-range phasing to cover longer
genomic stretches with hybrid approaches (Glusman et al., 2014; Auton et al., 2015; Kuleshov
et al., 2014). On the other hand, Hi-C and related technologies are becoming more accurate,
cheaper, and with higher coverage (Suhas S P Rao et al., 2014). Information about distances in
the genome can be used in the context of haplotyping, as shown in the pioneering work from
Selvaraj, Bafna and colleagues (Selvaraj et al., 2013). The authors developed ‘HaploSeq’, an
adjusted version of ‘HapCut’ (Bansal and Bafna, 2008) that was shown to recover haplotypes
with high coverage and quality. In their study, the authors utilize a Monte Carlo scheme to
maximize the agreement of a sampled phasing with the observed read counts, and iteratively
solve Min-Cut instances to identify and replace discordant phase assignments in a way that
guarantees convergence to a local minimum. By rerunning this process 0(n) times, where n is
the number of variation sites, they expect to find a single haplotype assignment that minimizes

an overall discordance score.

In this work we introduce an algorithmic approach to using Hi-C data to extend haplotype
information to longer genomic stretches. Several aspects of the approach presented in (Selvaraj
et al., 2013) can potentially be addressed to improve performance. First — distances measured
at any two loci can be used to more robustly infer a distance between these two loci. We
address this by computing the embedding of local similarities that induces a global proximity
measure among loci by using all available data to establish coordinate locations in the ambient
space. Embedding helps correct observed connections, which can be sparse and noisy. We also
process reads that overlap mono-allelic loci and not only reads that overlap loci that are bi-
allelic for the measured individual. Our algorithm is deterministic and therefore consistent in its

output.

The premise of this work relies on a fundamental duality between diploid genome structural

inference and haplotyping. In Hi-C data, one cannot determine an assignment of a read pair to
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the physical chromosomal copy directly from sequencing. Naive approaches average reads from
both chromosomal copies into the same co-occurrence matrix. Some biological phenomena can
survive this distortion and still be captured. However, this structure based on averages is
unlikely to capture the original structure of chromosome copies (Figure S1). Therefore, studies
based on distance averages become questionable and are likely to miss much of the
information related to the actual structure (Figure S6). With haplotype information, reads
spanning bi-allelic instances of SNPs would be uniquely-mappable to their chromosome copy of
origin, and a partial reconstruction of the manifold would potentially be achievable with a
sufficient amount of reads. On the dual side, if one had SNP allele specific positions along the
geometrical structure of the chromosomal manifold — it would potentially be possible to
interpolate a reasonable manifold structure and infer the haplotype by partitioning SNP alleles

based on their geometric relationships.

Recent studies (Suhas S P Rao et al., 2014; Servant et al., 2015) make use of fully phased Hi-C
data in a straight-forward way. These approaches produce a partial Hi-C co-occurrence matrix
in the resolution of single nucleotides and focus only on reads overlapping specific alleles in bi-
allelic loci. These can be uniquely mapped and then phased using measured haplotype data.
This enables inference from phased Hi-C data. One possible shortcoming is, however, the focus

on bi-allelic loci.
Our contribution consists of:

(1) An algorithmic approach that takes short range haplotype blocks (as can be inferred
from current and near future NGS techniques) and Hi-C data and produces much longer

blocks and phased Hi-C data.
(2) Performance analysis of the above and comparison to other approaches.

(3) Analgorithmic approach to computing a distance matrix between haplotype blocks,

using Hi-C data. In particular, we use mono-allelic as well as bi-allelic loci.

(4) A component of 1 above uses an embedding of the haplotype blocks into an inferred 3-

dimensional configuration.
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(5)  An example of how the phased Hi-C data can be used to better understand genome 3-
dimensional structure. Specifically — we address the spatial co-occurrence of TF
(transcription factor) targets, using inferred phased Hi-C data. We show that using
genomic order or averaged unphased Hi-C data is not sufficiently strong to identify this

CO-occurrence.

2.2 Methods

We present an algorithmic framework to computationally extend partial short-range
haplotypes based on Hi-C data. Our algorithm relies in its core on embedding of a Hi-C-based
n X n similarity data matrix, S, to a set of n coordinates, E = {c;|c; € R3}}. That is — we seek a
conformation of points that maintains the similarity values in S with minimal error. Because of
measurement noise values in the matrix S do not behave as a metric. Since E is forced to a
Euclidean space, the embedding approximates transitive relations possibly violated in S,
elucidating a viable geometrical interpretation of the similarity data. Based on an abstraction of
the resulting geometry, we partition bi-allelic coordinates and recover a haplotype. To
overcome several issues affecting our embedding strategy (elaborated in The Supplementary
section — 5.1) we introduce additional preliminary steps of computing dot product and
performing connected component analysis. Our algorithm for determining the complete

phasing is composed of five steps:
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Figure 3. lllustration of steps applied to parse Hi-C data into a similarity matrix between HT-blocks (A) Contiguous HT-blocks
(with known partial phasing data) along two pairs of homologous chromosomes, chromosome 1 and 2 with homolog pairs

(A, B) and (U, V) are illustrated. Following our notation, HT-block A, = (a,, as) is depicted as an orange section of the
chromosome and thus the correct underlying phasing for this chromosome should be (A4, B,, A3) and (B4, A, B3). Some gray
dots are connected with a red line representing a paired-end Hi-C read mapped to bi-allelic genomic loci on both ends. E.g., e =
(aq,uy) is one such read at the top of the illustration. (B) Reads depicted in Figure 3A, map to their corresponding pair of bi-
allelic loci shown as red dots. E.g., e = (ay,uy) is the top-left-most red dot. (C) lllustrated Hi-C paired-read that overlaps only
mono-allelic loci on both ends. (D) Showing the 2D Gaussian interpolation within the corresponding HT-block pair for the read
illustrated in Figure 3C. Since the read can potentially map to either block of the matrix, it is split proportionally according to
phased bi-allelic-overlapping reads in its genomic neighborhood in the bin (intersecting dashed lines). (E) Spy-plot of a resulting
enriched map with simulated HT-blocks (Supp. Methods) fully ordered by ground-truth phasing data.

Algorithm Overview — SPECTRALPHASING

Input: Aligned Hi-C data and partial short-range phasing data.
Do:
(1) Aggregate filtered sequencing reads to yield a matrix of similarities among haplotype blocks (Figure 3).
For each pair of homologous chromosomes:
(2) Compute dot product similarities for haplotype blocks (Figure 4).
(3) Identify connected components and partition accordingly.
(4) Embed HT-blocks to a 3D model using Multidimensional Scaling (MDS), per connected component.

(5) Compute Trellis phasing using the 3D Euclidean distances of the embedded representation of points.

Output: Report the extended phasing and a phased Hi-C map.
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We define the following notation: for a chromosome with homologs A and B we denote phased

alleles as ordered sets,

A= ((al, ...aj), (aj+1, ...,ak), .., (a, ...,an)) and

B = (b1, - by), (byass s bic)s s (byy e b)) )- {ay, by} are alleles belonging to bi-allelic locus j.
Denote |A| = |B| = m as the number of sets of phased alleles in the chromosome. We index
haplotype blocks (HT-blocks) in the homolog copies following the above notation. That is, for
example: 4, = (aj+1, e ak) is the 2"¥ (according to genomic order) HT-block of homolog A. An
HT-block is defined as the genomic region demarcated by a set of phased alleles assumed or
measured to be on the same homolog, according to partial phasing data. Finally, an ordered set

of HT-blocks, e.g. = (4, By, As, ... A,) & H = (B4, A,, Bs, ... B,), is the information that

extends a partial phasing to a complete one.

Figure 4. Computing dot products on a chromosome’s genome-wide map enriches intra-chromosomal maps. (A) Figure 3E shows
a single inter-chromosomal enriched contact map, while in fact, there are 23 maps for each pair of chromosomes, shown here
separated by a white grid. Multiplying the sub-matrices belonging to the first block-row with the first block-column (highlighted
in red), that correspond to all inter-chromosomal Hi-C data for Chromosome 1, yields the dot product of Chromosome 1 (B).
Intra-chromosomal map of Chromosome 1, before computing the dot product. (C) lllustration shows a bipartite graph
representation of an intra-chromosomal contact map. Nodes belong to HT-blocks and are colored by the homolog of origin of
the block. Edges represent observed contacts between HT-blocks in the Hi-C contact map. Dashed edge belongs to observations
that are eliminated by the algorithm. (D) Result of the dot product computation for Chromosome 1. (E) lllustration of the impact
of the dot product computation on edges in the underlying graph. In real data the graph is also enriched with edges spanning
different chromosomes, not shown here.
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2.2.1 Haplotype-block binned Hi-C contact maps
The first step of our algorithm aims to prepare diploid Hi-C similarity matrices by utilizing all

reads. Our algorithm is parallelized across pairs of both homologs of each two chromosomes.

23
2

matrices are produced. For this step we begin by binning sufficiently high quality Hi-C reads that

We produce similarity matrices for each two chromosomes. A total of ( ) + 23 similarity

overlap bi-allelic loci (Figure 3A, Figure 3B) on both ends into their HT-block pair to a read count
matrix, C. |.e., for a pair of HT-blocks K;, K, with homologous blocks K;, K, and bi-allelic loci

pair by, b,:
(1) Ck, k,(b1,by) = #reads overlapping b, € Ky, b, € K,

Once all such reads are mapped, we compute the ratio of observed reads for each HT-block pair

in the bi-allelic loci pair:

(2) RKl,KZ (b1, by) =
CKl,KZ (b1' bz)/ (CKl,KZ (b1; bz) + CKl,I?2 (b1. bz) + Cl?l,Kz (b1' bz) + Ci?l,I?z (b1' bz))
Next, we map each of the ambiguous reads, reads that have at least one end in a mono-allelic
region (Figure 3C) to the four corresponding bins in the ratio matrix R (for each HT-block pair)

and interpolate the ratio at its chromosomal loci along a chromosome with a 2D Gaussian

kernel (Figure 3D). The interpolant is given by

(3) f(x,)’) = le,Kz(x’Y) =

((x=b1)*+(y=b2)?)
e 20_2 X RK1,K2 (bl’ bZ)

bq,b, are bi—allelic;
x,b1€K1
Y.b2 €K,

The interpolated ratio for each bin is added to the final read-count matrix. Finally, since bins are
not equally-sized, all read counts are averaged by the product of the number of nucleotide in

K; and K,, i.e.

(4) Q(Kl; Kz) =
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(K- 1GDT Y Cbub)+ ) f@y)

bi€K; (x,y)e(Kq1,K2)

The final block-matrix (Figure 3E) represents a more robust picture of a similarity measure
between HT-blocks, in their genomic locations across both homologous chromosome pairs, for
all chromosomes. Note that utilizing the Gaussian interpolant enabled utilizing all mappable
reads to obtain the resulting similarity matrix. The choice of a Gaussian interpolant is further

elaborated in the Discussion section.

2.2.2 Mitigating noise and sparsity: dot-product similarities

Our algorithm is founded on the basis of constructing a global similarity measure that
integrates over observed local similarities in the partially phased Hi-C map. In the latent 3D
structure underlying our data, similarities are inherently transitive, a property that we aim to
exploit. Specifically, to determine for a certain HT-block, A;, whether it should be phased to the
same homolog with A;,; or with B;,; we would like to infer a robust measure of which

homolog is a more likely pairing based on spatially adjacency.

Embedding discovers the latent structure, however, it can be unfeasible for large matrices (see
Supplementary for more on embedding and spectral theory). With this in mind, we devise a
“divide and conquer” strategy, solving for each homologous chromosome pair separately. The
downside of dividing to sub problems is that informative inter-chromosomal similarities are
lost. To alleviate this loss, we introduce a step of computing the whole-genome dot product for

each homologous chromosome pair. This calculation is described in Figure 4.

Since both Hi-C and phasing data can have potential errors and biases, we perform a seemingly
heuristic step of removing all cross-homolog edges referencing the same HT-block, i.e. edges of
the form {(4;, B;)|Vi} shown in Figure 4B as a dashed edge. This is a noise-reduction step used
to avoid sequencing biases, as previously described (Suhas S P Rao et al., 2014). This type of
error appears to be prevalent in Hi-C data (see the light-colored secondary diagonal in Figure 4B
in inter-homolog block matrix) and cleaning it is essential to recovering a partitionable
embedding, as we show in Figure 7. We further justify this step in the discussion. Finally, the
diagonal, S(K, K) for every HT-block K is set to be 1.
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2.2.3 Connected components

The dot product matrix described above is not guaranteed to recover estimated weights on all
edges. In some cases, partially phased Hi-C can give rise to blocks that are completely
unreachable to one another by traversing graph edges. We therefore apply connected
component analysis (Dulmage and Mendelsohn, 1958) and perform the embedding and phasing
analysis per (non-trivial) component. This issue reduces the coverage of a possible complete

phasing that utilizes Hi-C, as discussed in the results section.

2.2.4 Embedding of HT-blocks with multidimensional scaling

In Figure 5 we show several iterations during the convergence process of a single embedding
from the ensemble, that contains most of Chromosome 1’s HT-blocks. The process is initialized
by setting coordinates to the top eigenvectors from the Classical Multidimensional Scaling
(Mead, 1992a) on the dot product matrix, that includes explicit zeros. This initialization is a
heuristic that helps converge to a local minimum that is more likely to treat a zero value as
dissimilar, rather than as a missing value. We then apply non-classical multidimensional scaling
(Kruskal, 1964a) where zeroes in the dot product matrix are masked as missing values and are
ignored in the optimization. Non-classical MDS attempts to minimize the mistakes between the
order of Euclidean distances in the embedding and (non-missing) distances in the input matrix,
D, orinourcase D = 1 —+/S. We observe that the quality of phasing increases as the stress

criterion for embedding diminishes, while the embedding is agnostic to phasing quality.
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Iteration

Figure 5. Embedding convergence. Showing the progression of the optimization for the embedding of a connected component in
Chromosome 1. Insets from left to right: Random initialization, Classical Multidimensional Scaling, Optimization convergence.
HT-blocks of different homologs (according to ground-truth) are colored in yellow and blue, accordingly. Dashed lines
correspond to phasing assignments according to the algorithm. The figure shows the stress optimization target function value in
blue and the phasing quality (unsupervised) in red. After 6 iterations of optimization the phasing already yields better quality
when relying on the embedding rather than relying on local Hi-C similarity. Note that quality is not guaranteed to monotonically
increase with embedding steps but is highly correlated. Animations showing convergence progression are available in Online
Materials.

2.2.5 Trellis recovery of phasing
Distances in an embedding can be used as estimators for the likelihood of HT-blocks to phase to
the same homolog. We apply a simple decision rule along consecutive homologous HT-blocks to

compute their best haplotype assignments. For HT-blocks 4;, B; Vi € {1, ...m} let,

_ d(ApAiv1) . 1
M Sa = d(AjAis1)+d(A;Birq) iWa=1=3

d(Bl'Bl+1) . WB — 1 _ SB

@ Sg, d(BiBit+1)+d(ByAir1)

Where d(-) is the 3D Euclidean distance between HT-block coordinates in the embedding latent

space. We define

s _{1 SAi+SBi =1
' 0 otherwise

If §; = 1 we call this a ‘stay’ transition, as we keep the order induced by the arbitrary HT-block

ordering, and if §; = 0 we call it a ‘switch’ transition. The set of assignments §;,i = 1..m — 1
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defines the full haplotypes H, H for the 1..m HT-blocks. To compute an optimal haplotype, we

maximize
m-1 8i 1=6;
© N Wi (SAi + SBi) (WAi + WBi)

We call attention to the fact that a “greedy” solution to this equation, or, taking the maximal P;
assignments Vj, yields the global maximum for Equation (3) by its definition. We visualize the
set of HT-blocks and relevant embedding distances in graph form using the Trellis graph (Figure

6).

Figure 6. Trellis diagram. Illustration of Trellis graph with selected transitions by ‘SpectraPh’ highlighted in bold. Nodes represent
HT-blocks with homologs along the graph in orange and blue. HT-blocks are randomly permuted between homologs to illustrate
the arbitrary order given by the partial phasing data. Edges are weighted by the Euclidean distance between the HT-blocks’
corresponding coordinates in latent space. The red asterix shows an erroneous selected a §, = 1, ‘stay’ transition, i.e. the
algorithm chose to traverse edges that are not validated by the ground truth phasing data. See an example of selected
transitions on real data for Chromosome 1 in Figure S4.

2.3 Results

To investigate the applicability of our algorithm we simulated partial short-range phasing data
(see Supp. Methods) at different HT-block lengths. We used the “gold standard” trio-phased
GM12878 genome (Auton et al., 2015) as our baseline and show that the algorithm is able to
recover the haplotype with high quality using experimentally available GM12878 Hi-C data from
(Selvaraj et al., 2013). To investigate the robustness of our method to noise we defined a
generative model to sample Hi-C-like data from a Log-Normal distribution. We inspected the
effect of noise on our algorithm and compared to ‘HapCut’. We define natural quality,

confidence and coverage scores, to be computed for each chromosome. Given k connected
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components for a chromosome, and each underlying Trellis ordered according to ground truth
phasing:
e Coverage is the percent of remaining Trellis transitions when factoring over all
K—1

components. Namely, 1 — —

e Confidence is computed per transition as the difference between ‘stay’ and ‘switch’

transition probabilities (E.g. Figure S4). Namely, Sy; + Sp, — Wy, — Wp,.

zm—lsi

e Quality is computed as the fraction of ‘stay’ out of all transitions. Namely, ;'n_l

We emphasize that ground truth order is assumed when computing Confidence and Quality

only for performance assessment when a ground-truth phasing is available.
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Figure 7. Showcasing impact of applying combinations of the algorithm on quality of phasing. Each bar group contains 23
columns corresponding to the different chromosomes, and a red horizontal line representing the average of the group (weighted
by number of transitions per chromosome). Columns below each bar group show which configurations of the algorithm were
applied. Bar group #8, that corresponds to applying all algorithm steps, shows near-perfect phasing quality compared to ground
truth. Covariance refers to computing the dot-product similarities of two homologs.

2.3.1 Extending partial haplotype in humans with Hi-C data
GM12878 has trio-based phasing data available. To emulate experimentally unavailable short-
range phasing, we scan each chromosome for SNP loci, adding ground truth phasing as long as

the resulting HT-block length is below a certain threshold. Quality of phasing for all
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chromosomes at <1Mb HT-block length is shown in Figure 7, including a breakdown of the
impact of different non-trivial steps in our algorithm. Figure S2 shows our results for different
simulated partial short-range phasing HT-block lengths. Collectively, these show that the
algorithm is able to completely recover the ground-truth data for most chromosomes, reaching
an average quality of 0.98. We observe that short chromosomes tend to yield poorer results.
This effect is amplified when we do not apply the “diagonal removal” heuristic, suggesting that
errors in mapping Hi-C reads or in ground-truth phasing data are more easily corrected by
taking into account more similarity observations. We have verified the quality results for 100Kb,

500Kb, 800Kb, 2Mb thresholds as well (Figure S2).

2.3.2 Simulated Hi-C data

To investigate the effect of noise we have simulated Hi-C-like data. We begin by generating two
3D curves by iteratively appending random unit vectors within a fixed angle range. Each curve is
normalized to its center of mass, and rotated in a random direction. We then sample values
from a log-normal distribution based on a transformation of the pairwise Euclidean distances
among resulting curves. u; ; = log (c/d; ;), where c is a normalizing constant used to control
the number of simulated ‘reads’ in the experiment reflecting a fixed sequencing depth. o is set
as a function of the coefficient of variation CV = a/u, to control the level of noise in the

simulation.

To compare robustness between our algorithm and HapCut, we have implemented a non-
optimized version of HapCut in Matlab that can accommodate the format of our simulated
data. This simplified version is able to handle the scale of our simulated data and was run for
0(n) iterations, as suggested by HapCut authors. Results for the analysis are shown in Figure 8
and indicate that HapCut suffers from inclusion of noise in simulation while our algorithm can

reach quality of ~0.87 for CV = 0.5.
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Figure 8. Simulated data signal-to-noise analysis. (Top) Each line at the top represents the average quality computed over 10
instances of simulated Hi-C data for a pair of simulated homologs. We compare our algorithm with HapCut (Blue). (Bottom) Left
to right: 1. Example of a generated pair of homologs. 2. Pairwise distances. 3. Transformation to noisy Hi-C data with a log
normal sampling with CV=0.2. 4. Embedding result overlaid on top of originally generated homologs.

2.3.3 Enrichment analysis on a diploid genome structure

Once a complete phasing is known we can utilize Hi-C to investigate co-localization of genomic
functions. In (Ben-Elazar et al., 2013a) we describe co-localization (in a haploid genome) of
yeast transcription factor (TF) targets. Such co-localization supports the existence of
Transcription Factories, regions in the nucleus where transcription machinery operates in
concert to regulate transcription activity. We now apply a similar enrichment analysis of TF
targets (Bovolenta et al., 2012) to demonstrate such analysis on phased Hi-C. Analysis of co-
localization in averaged Hi-C data for diploid genomes is also addressed in (Diament et al.,
2014). Our results indicate that diploid Hi-C maps provide insights into the distribution of genes
in the nucleus that current, averaging based Hi-C analysis approaches cannot identify. An

example for the TFAP2C transcription factor is shown in Figure 9. In our analysis we compute
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the mHG (Eden et al., 2007, 2009a) enrichment score of TF targets ordered by proximity to a
pivot locus. In this example we clearly see patterns that would not emerge from a naive
interpretation of Hi-C data. We can see that often only one homolog of each TF target is within
the suggested transcription factory according to the mHG threshold. In more detail, consider a
genomic locus, [. Rank all other genomic loci [, ..., [y by the distance to [, d(l;, ). Consider a TF
and its set of targets, T. Define a binary vector of length N, A(i) = 1iff l; € T. For n we define
A, = [A(1), ..., A(n)] as the prefix of length n of the binary vector. Let b,, = ZA,, B = ZAy.
The mHG score is defined by the threshold, n, that minimizes the right tail of the

hypergeometric CDF. l.e.,

mHG(A) = min

1<=nsN

mirf'g)(i)(B:?)

& ()

The null hypothesis in the mHG statistical framework is that all binary vectors of length N with
exactly B 1's are equi-probable. In our context, rejecting the null hypothesis suggests that TF
targets are localized in significantly close proximity to the pivot locus. We repeat this

experiment for all loci and TF, correcting for multiple hypotheses with Bonferroni correction.
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Figure 9. TFAP2C target 3D co-localization pattern. Human genome chromosomes in pairs of homologs. We mark the closest HT-
blocks to a pivot HT-block (200 HT-blocks, as determined by the optimal mHG threshold, p<10~1°, Bonferroni), colored by the
rank in the phased dot product similarity. The pivot HT-block is marked as a magenta triangle and arrow pointing to its position
on Chr 17’. Targets of the TFAP2C transcription factor that are positioned within the mHG threshold are marked as teal dots. The
co-localization pattern evident in the figure illustrates the importance of phasing homologs in Hi-C data, as mostly distinct

copies of each TF target inhabit the suggested transcription factory.

38




2.4 Discussion
The method presented in this paper can refine the haplotype signal in Hi-C data without

assuming a complex prior on the experimental setup.

We note that the quality achieved by our method is highly dependent on the genomic size of
partially phased HT-blocks (Figure S2). Short HT-blocks characteristically yield sparser maps as
the same number of Hi-C reads are binned to a quadratically larger contact matrix. This will
become less of a problem as sequencing depth improves with technology. More surprisingly,
perhaps, is that long HT-blocks also yield lower quality results. We observe that this
phenomenon is related to the skew of the distribution of similarity values used in the
embedding. In large HT-blocks the underlying structural signal is averaged over significant
portions of the chromosome, and the embedded structure no longer contains the information
required for phasing. This issue can be bypassed by preliminarily subdividing HT-blocks in the

known partial phasing to produce better Hi-C data for embedding.

Another issue plaguing short HT-blocks is the runtime complexity of the embedding algorithm.
To investigate the applicability of our algorithm on HT-block sizes < 100Kb would require a

higher-performance implementation of the algorithm, or a different algorithmic approach.

One seemingly heuristic step performed in our algorithm is the removal of cross-homolog edges
referencing the same HT-block, i.e. secondary diagonal. We argue that while this indeed has
impact on the resulting embedding, keeping these edges can only lower the quality of phasing
as they can only increase the ratio (W, + Wg)/(S4 + Sg) when the trellis is ordered according
to ground-truth phasing. This notion relates to another important distinction that we would like
to stress — while our method is completely reliant on embedding for phasing, it is by no means
suggesting that the recovered structures represent actual chromosomal conformation.
Specifically, embedding is used as a tool to integrate global similarities into Trellis edge weights

to facilitate phasing.

Another point worth discussing is the application of the Gaussian kernel as the interpolant used
on the ratio matrix. By utilizing an interpolant that includes a variance parameter we can

guarantee a small effect of genomically distant reads, as would be expected by the mechanical
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properties of DNA structure. This is especially beneficial when interpolating on large HT-blocks
to reduce the effect of genomically distant loci in the block on the interpolated value. In
analyses we performed we observe that inclusion of an interpolant is beneficial to the quality of

phasing.

Finally, in this work we only briefly address the problem of enrichment analysis on diploid
genomes to illustrate the potential advantages of correctly interpreting diploid Hi-C data. We
showed how Hi-C data assists haplotyping and the relevance of haplotyping to co-localization of
TF targets. It is of interest to further explore TF binding sites and to expand the analysis to other

genomic markers.
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2.5 Chapter Supplementary Materials

Online materials: Implementation available at https://github.com/YakhiniGroup/SpectraPh

Embedding convergence animations are available at http://imgur.com/a/fwzBD.

Supplementary Methods

Embedding and spectral theory

In the context of matrix theory our embedding approach is a simplified version of more general
Spectral methods (Chung, 1994; Spielman, 2007). Embedding theorem can be naturally
interpreted by treating values in our similarity matrix as probabilities of a random-walk
operator in a Markov Process. In certain conditions, an infinite random walk traversing edges in
the similarity graph converges to a stationary distribution which can be applied to compute
edge values which capture all transitive relations. Eigenvalue methods (Kruskal, 1964b; Ham et
al., 2004) solve this but tend to break down in simulations when we introduce missing edges
(Figure S3) as these are treated as explicit zeros in the linear equation solver (Van Der Maaten

et al., 2009).

We have previously (Ben-Elazar et al., 2013a) applied an optimization method (Kruskal, 1964a)
which avoids missing data in this context, however it does not scale very well and difficult to
apply to the entire human genome. To overcome this, we would like to distribute the workload
per homologous chromosome pair, without losing all inter-chromosomal transitivity. To this
end, we apply Step 2 of the algorithm (Figure 4), and compute the empirical dot product of the

full genome matrix which captures two-hop transitive relations in the graph.

Detailed formulation of the haplotyping problem

Let £(t), g(t):[0,1] » R3 be smooth and differentiable maps into two arbitrary curves in R3of

unit velocity, i.e. Vt € R, f(t),g(t) € R3 and f(t), g(t) are of differentiability class C*.

We are given (approximate, noisy, partial) pairwise distances, d(-), between n consecutively

sampled coordinates t; < t, < --- < t,, along each curve (2n in total). The distances between
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all pairs of points, f(tl-),g(tj), i,j € [1..2n], are given by the 2n X 2n distance matrix, D, as

follows:

p

d (f(ti),g(tj)) i<nj>n
B = | d (f(ti),f(tj)) i<nj<n
d (g(ti),g(tj)) i>nj>n
|d (g(ti),f(tj)) i>nj<n

Let I; be n independent coin tosses with p = 0.5, fori € [1..n].
We define D = [ - D, where [ is the following, 2n X 2n, permutation block-matrix:

i: [Iintra Iinter]
I

inter I intra

With the corresponding blocks,

L 0 0 1-1; O 0
lintra = [0 0]; Linter = [ 0 0 ]

0 0 I, 0 0 1-1,

More intuitively, [ “tosses a coin” to decide if it switches the distance values between
coordinate i and n + i (the ith coordinate of curve f and the ith coordinate of curve g). This
permutation causes the identity of the curve from which each coordinate was sampled
(previously encoded as the corresponding block in which its distance values appear in the
matrix D) to be lost.

The geometric task we address is as follows. Given D, assumed to be constructed by such

process, we would like to recover the most likely partitioning of the 2n coordinates into two
corresponding curves, representing f (t), g(t).
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Supplementary Figures
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Figure S1. Simulated naive Hi-C on diploid genome. (Top) Showing a simulated pair of homolog chromosome structures and
their underlying distances as a proxy to Hi-C. (Bottom) When naive approaches multiplex homolog data, the structure does not
resemble the original.
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Figure S2. Effect of HT-block size on phasing quality. (Top) We repeated our phasing analysis pipeline for multiple simulated HT-
block sizes. We see a pattern where large HT-blocks have lower phasing quality. (Bottom) Distribution of similarity values in our
normalized dot product matrix showing a more uniform distribution for large HT-block sizes (in log scale). This shows that at
some HT-block length bin size the structural signal is averaged over too many bases to a point where the algorithm cannot
phase accurately.
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Figure S3. Effect of sparsity on Eigenvalue based methods. (Top) We sample missing data uniformly over a simulated similarity
matrix of two homologs. As reference, the Hi-C dataset we use, binned at 500Kb resolution has >98% missing values. (Bottom)
Results of classical multidimensional scaling on the corresponding similarities above.
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Figure S4. Trellis graph edge weight example for real data. (A) lllustration of Trellis graph with selected transitions. Nodes
represent known partial phasing. Homologs in each column along the graph are randomly permuted to illustrate the arbitrary
order given in the partially phased Hi-C maps (when no ground truth is known). Edges represent transitions along consecutive
phased regions and are weighted by transition probability which is proportional to Euclidean distance between corresponding
coordinates in latent space. Edges colored black illustrate the ‘switch’ and ‘stay’ decisions the algorithm makes to complete the
phasing. Nodes are marked by predicted homolog number (numbered arbitrarily). (B) Showing decisions chosen by the
algorithm for chromosome 1. On the primary Y axis and bottom of the graph we see the decisions along the Trellis for a ground-
truth-ordered (non-permuted) Trellis. We see the algorithm makes 4 mistakes (chooses to cross from one homolog to the other)
along chromosome 1 in this case. On the secondary Y axis and related stem-plot we see the confidence for the choice calculated
as the difference between the sum of parallel edge weights and sum of cross edge weights. When the difference is zero the
algorithm is ‘Indecisive’, when the difference is positive the algorithm identifies the likely phasing is the same as ground truth
and when negative to ‘Switch’ from the ground-truth.
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Figure S5. Distribution of confidence, coverage and quality of phased haplotypes. (Left) Embedding of results from Figure S4
color coded by Confidence (see Results) shows correlation between 3D separation and Confidence. (Right) Distribution of all
confidence values across all ensembles of all chromosomes. Note that confidence is a signed quantity where positive values are
haplotyping decisions which correlate with the ground truth.

Figure S6. Presenting the under-determinism in naive multiplexing of Hi-C data. An example of co-localization analysis. (Left) We
illustrate a simplified diploid genome composed of two star-shaped 2D homologs, and 10 genes. In this toy example, white
colored circles represent genes that share a common function, and black circles genes that do not. For this specific configuration,
pivot genes 1,3,5,7,9 on the left-most chromosome homolog display a significant co-localization pattern (P < 0.005). (Right)
When averaging the pairwise distances of homologous genes to other genes, the resulting naive “haploid view” representing the
underlying diploid genome is presented, and the intricate details of the conformation are lost. Green dashed lines illustrate the
averaging effect on distances, wherein genes 1,2 alternate between short and long distances to the center of the homolog in the
true, diploid structure, and are averaged to be equally distant in the haploid view. Using the resulting model directly will not
yield significant co-localization patterns. Furthermore, the problem of recovering the details of the original, diploid,
conformation directly from this view is under-determined. l.e. There are an infinite number of equally valid diploid models that
yield the same resulting haploid view, some of which will not express an enriched co-localization pattern.
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Chapter 3:

The Functional 3D Organization of Unicellular
Genomes
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3.1 Introduction
Studying the co-localization of elements along the genome (Kanduri et al., 2018) is used for providing

evidence of evolutionary or mechanistic relationships between genomic elements and genomic
organization. There are well established functional mechanisms that are known to interact in cis via
genomic proximity, such as genes along an operon, promotors and their associated coding sequence,
nucleosome modifications and proximal chromatin accessibility, etc. Studying trans interactions has
remained elusive until recent technological breakthroughs that have enabled the assessment of the 3D
structural properties of genomes. Chromosome conformation capture (3C) and methods derived
therefrom (Hi-C) (Ay and Noble, 2015; Lin et al., 2018) are, generally speaking, experimental protocols
that yield a sparse map of paired sequencing read counts. These counts correlate with 3D spatial
proximities between pairs of genomic loci (Nynke L. van Berkum et al., 2010b). These methods allow for a
methodical examination of how the genome folds (Lieberman-Aiden et al., 2009; Suhas S.P. Rao et al.,
2014; Sanborn et al., 2015) and how genomic elements co-localize to potentially interact in three-
dimensional space (Varoquaux et al., 2015; Sanyal et al., 2012; Thévenin et al., 2014; Nurick et al.,

2018), opening the door to studying trans interaction systematically.

Hi-C has established a prominent and noteworthy contribution to our understanding of cis
chromatin order and epigenetics with progress in the study and characterization of topologically
associated domains (TADs) (Dixon et al., 2012; Nora et al., 2012; de Laat and Duboule, 2013). Such
domains are typically presented as local triangle-shapes in a triangular view of the Hi-C interaction matrix,
corresponding to local clusters of high intra-cluster, low inter-cluster read density. Studies pertaining to
the underlying mechanism of TAD formation have implicated the contribution of CTCF and cohesin, key
contributors to cell-type-specific genome conformation (Junier et al., 2012). TADs are believed to form
higher-order insulated intra-chromosomal neighbourhoods, regulating gene-enhancer interactions, and
their disruption has been shown to cause disease (Denker and de Laat, 2016).

Imaging and Hi-C data, as well as data collected from related techniques, have been used to
demonstrate co-localization of active genes in specific conditions and in a handful of organisms. The
authors of (Mahy et al., 2002) were among the first to experimentally assess the nuclear localization of
active genes. They applied FISH (fluorescence in situ hybridization) to provide evidence contrary to the
hypothesis that active genes co-localize at the periphery of chromosome territories. A later study
(Osborne et al., 2004), followed with a systematic analysis using independent 3C (chromosome
conformation capture) and 3D-FISH experiments. Their results provided early evidence to the dynamic
nature of co-localization of active genes. One purpose of this current work is to expand this investigation
of co-localization in a more systematic manner. To achieve this, we developed streamlined algorithmic

and statistical approaches as described herein.
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Transcription factories (Cook, 2010) are an example of an established regulatory mechanism
manifested as confined compartments within the nucleus, wherein transcription machinery recruits both
cis or trans cofactors and genomic elements to regulate specific cellular functions (A. Iborra et al., 1996;
Sutherland and Bickmore, 2009b; Junier et al., 2010). Previous studies have attempted to address the
task of statistically assessing the existence of transcription factories. The authors of (Dai and Dai, 2012)
compared the number of inter-chromosomal interactions in different functionally-related gene sets and
observed statistical enrichment under the hypergeometric null model for interactions among transcription
factor (TF) targets. However, a follow-up study (Witten and Noble, 2012) argued that edges in the inter-
chromosomal 3C interaction graph are not statistically independent, as was assumed under the model
used by (Dai and Dai, 2012), and that co-localization events would therefore be over-counted. To correct
for this issue, some studies (Witten and Noble, 2012) applied a re-sampling procedure under which no
signal for TF target co-localization was detected. Another study (Paulsen et al., 2013) developed an
extended approach that includes intra-chromosomal interactions along with a more elaborate sampling
methodology which controls for local genomic structural features and applied this method to discover 3D
co-localization of mutations in cancer and chromatin states. Studies from our group (Ben-Elazar et al.,
2013a; Shay Ben-Elazar, Chor, and Yakhini, 2016) took a different approach to statistically assess
transcription factories (Witten and Noble, 2012; Dai and Dai, 2012) that avoids comparing between
populations of pairwise proximities altogether, and so circumvents any statistical dependence issues that
fail some earlier methods. Specifically, in the aforementioned work (Ben-Elazar et al., 2013b; Shay Ben-
Elazar, Chor, and Yakhini, 2016) we compute our statistics independently on each genomic bin — a pivot
point centered at some locus along the genome around which we measure the statistical significance of
co-localization. Since this approach is only concerned with distances measured from a single fixed point,
it avoids dependence issues related to working with all interaction pairs. For example, this approach
never considers a triplet of significantly interacting genomic bin pairs (i, ), (j, k), (i, k) and therefore
avoids dependence arising from transitivity, which was correctly pointed out by (Witten and Noble, 2012).
We rank all genes according to the number of interactions recorded between them and the pivot point
under consideration. Using the ranked list of genes, we applied a statistical model to quantify whether
targets from the functional set are significantly localized close to that pivot. We then apply additional
safeguards to control for multiple hypotheses evaluated across different genomic bins and for events
confounded by genomic proximity. The approach of (Ben-Elazar et al., 2013b; Shay Ben-Elazar, Chor,
and Yakhini, 2016) is flexible in its inherent ability to detect partial co-localization of only a subset of the
query set of TF targets, where approaches based on averaged Hi-C signal would require exponentially
enumerating all possibilities. In addition to producing this subset, our method also produces the set of all
genomic bins that geometrically reside within the convex subset of co-localized TF targets, but are not
labelled as belonging to the query set. These bins could potentially hold elements that are functionally
related to group in questions. A shortcoming of the above is that, in reality, co-localization needs not be
geometrically restricted to a 3D point positioned precisely on a genomic locus but can be arbitrarily
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centered in space. Thus, events of significant colocalization may remain undetected by this method, as
shown by the synthetic construction in (Figure 10, Left). We later report a conceptually similar result on

actual biological data for Caulobacter crescentus, further illustrating the need for a method that can
overcome the shortcoming of such an approach. In both synthetic and real-data examples, none of the
genomic bins yield a statistically significant co-localization result and such phenomena would be

inadvertently ignored by methods that are limited to genomic bins as pivots.

N=100 B=34

1: pVai=0.010298 n*=6 b=6
X 2:pVal=0.0001237 n*=17 b=14
X 3: pVal=0.78936 n*=93 b=33

X x % /, :
N

] [2] [8 o N

1 0 1 . O .

b | by L]

1 0 1 . =R |

- ] - -~ . .. . 4

1 1 0 . o * P \

»u B vu B vu . . S

b [5 fel , 0 0 e

[} 1 1 b4 s O L° o o e o

— — — 5 O _— . |

0 1 1 * ofelhe ° 5 0

— — _— . ‘\...o.

o e A * . WP e ° . .

o] [o] [0 R

0 0 0 AN o e

L _— L .\.- . 'o. * e °

Figure 10. Synthetic examples of co-localization. Left: A construct showing that (2D) spatial co-localization might not be
identified by selecting positions along a 1D curve. Circles represent genomic bins. White circles contain TF targets; black circles
are bins without TF targets. Red and blue ‘X’ represent both possible distinct pivots due to symmetry. On the left side we show
the corresponding binary vectors reflecting the 2D (Euclidean) distance from each possible pivot. Green ‘X’ marks the optimal
position (yielding the most significant mHG p-Value, see methods) and would not be identified with previous methods. Right:
Showcasing three example pivots in a synthetic example. Three green discs representing three pivots (center of disc) with
corresponding mHG p-values (in legend) and thresholds are reported. Red points are treated as binary ‘1’ in the corresponding A
vectors. x3 represents the center of mass of red points, illustrating its sensitivity to the distribution of red and blue points. x, x,
show that the method can adjust to different densities in the data.

In this work, we aim to extend our previous studies by removing the requirements for the pivot to
reside on the genome. Our approach, as reported here, enables the study of co-localization of a set of
genomic elements centered at arbitrary points in 3D space representations of Hi-C data. Investigating cis
driven chromatin order, such as TADs, relies on the 1D topology of genomic order. Clearly, studying trans
chromatin order, as in transcription factories, benefits from understanding the embedding of measured
proximity data. We provide insights into the difficulty of solving this problem exactly and suggest several
heuristics to approach it. We provide code and software implementing these approaches efficiently. In the
discussion section, we compare our statistical enrichment approach to co-localization with a more simplistic
sampling-based assessment. While a sampling-based approach will find some of the co-localization events,
it will, as we show, miss several significant ones. Finally, we apply our method to multiple publicly available
datasets across several species. Our analysis is able to uncover previously unreported cases of various

genomic elements that appear significantly spatially co-localized. Co-localization alone cannot be used as
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direct evidence of an underlying mechanism due to potential confounding linkage. Although requiring
additional experimental validation, these results shed new light on the genomic 3D organization of

unicellular organisms.

3.2 Methods

We present a statistical-algorithmic framework, referred to as Spatial-mHG (smHG, in short), that can
quantify patterns of spatial co-localization of binary-labelled elements.

Intuitively, our method scans an input set of 3D locations (for example, genomic bins in a 3D embedding
of Hi-C data) labelled by some binary property, looking for ‘hotspots’. These are regions in which we
observe an enrichment of ‘1’-labelled and a depletion of ‘0’-labelled genomic bins. Our method identifies
hotspots as specified by 3D balls centered at pivot points. These events are statistically quantified for
each pivot under a null model. We specifically use the, previously developed (Eden et al., 2007, 2009a),
minimum hypergeometric null model. In the next two subsections we provide detailed formal definitions
and analyze the computational complexity of providing exact solutions. We consider different algorithmic
and heuristic strategies as well as statistical controls. This formal mathematical exposition can be skipped
by readers who are not interested in such details of the methodology. The results section uses graphical
representations that explain the nature of the results without relying on the mathematical details.

In the second part of this section, we list several Hi-C datasets as well as functional annotation sets
explored in this study. We conclude this section by presenting a novel smoothed embedding approach

that we applied for generating 3D configurations based on Hi-C data as input for smHG.

3.2.1 Spatial-mHG: statistics
Consider a set of points in 3D with binary labels:

D = {x, | {x €R®), y, € (0,13}
We define B = £y, to represent the number of ‘1’ labelled points in the data.
Let p € R? be some arbitrary point, also referred to as the ‘pivot’.
Define 4, = (¥r,, ¥r,» -, ¥ry ) the binary vector that satisfies ||p — x, ||, < [lp — x|, < = < |lp — x|,

That is 4, is the binary vector induced by ranking points x; according to their Euclidean distance from p.

Further consider

min (n,B) (Tl) (N - Tl)
@) =mHG(2,) = min > %
i=by, B

where b, = Z{'4,(i).
mHG is a, previously published (Eden et al., 2007, 2009a; Ben-Elazar et al., 2013b; Shay Ben-Elazar,
Chor, and Yakhini, 2016), statistical framework that inspects prefixes of a binary vector, such as 4,, for
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overabundance of ‘1’ under a hypergeometric null model. Intuitively, the likelihood of an overabundance
of ‘1’s is compared against a uniform distribution of such labels along 4,,.

Since any two prefixes are statistically dependent, the resulting score requires a correction scheme to be
applicable as a p-value. mHG corrects for multiple hypotheses by explicitly, and efficiently, computing the
cumulative probability distribution function (CDF) for a given configuration of N, B. Querying the CDF at
the resulting score yields a corrected p-value (Eden et al., 2007).

In smHG, ¢(p) would be small when ‘1’ labelled points co-localize around p (Figure 10, Right).

Recall that we are interested in points that minimize ¢(p), formally

(%) argsmHG = argminp{mHG(lp)”

The smHG framework is therefore seeking pivots where a statistically significant mHG is obtained for the
data, D. As stated, solving () naively requires searching through all 3D space - a continuum of pivots. A
relatively simple observation shows that the number of pivots that needs to be considered is actually
finite. For every pair of points such that one is labelled as ‘1’ and the other as ‘0’ we can divide R3 using a
plane that is perpendicular to their connecting line segment, and crosses in its middle. The arrangement
of such (perpendicular bisecting) planes, or ‘bisectors’, tessellates the space into convex polygonal
compartments, or ‘cells’. It is easy to see that given a single pivot from each cell (e.g. its centroid) we can
cover all distinct binary vectors, 4, for a given dataset. In Supplementary 10 we provide an exact

B(N3— B))

polynomial bound on the number of pivots that produce distinct 4,, vectors as G)( , leading to a

worst case bound of 0(N®), as previously described in (Yaglom and Yaglom, 1987).

Unfortunately, from a practical perspective, this number of cells quickly becomes intractable even for
moderately sized datasets, leading to statistical as well as algorithmic challenges. For a single cell (pivot)
we can report precise p-values using the exact distribution of the mHG statistic (Eden et al., 2007),
however, there is a vast number of multiple hypotheses, namely cells, investigated in a single spatial-
mHG instance as in (x). Characterizing a precise probability distribution for spatial-mHG remains a
difficult task and so we apply FDR correction and report g-values. We also apply statistical assessment
based on simulations as described below.

3.2.2 Spatial-mHG: algorithmics and heuristics
An approach to evaluate spatial enrichment for a given set of labelled 3D data is a function F: D — [0,1].

As indicated in the above discussion, the fast growth of the number of cells leads to algorithmic issues.
Specifically, a naive exhaustive approach for large N, although possible in principle, is practically
infeasible due to the O(N®) complexity. In our analysis, we compare several heuristic approaches that
aim to deal with this challenge. These approaches, denoted by smHG¢"¢ and smH GSem»'e
correspondingly, provide an upper bound on smHG. As described, our methods are designed to detect

significant results but cannot guarantee a recall of all significant results.
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See Supplementary 1,2 for discussion of the performance and trade-offs of the heuristics tested here and

See Supplementary 3 for more technical notes on our experimental set up. An illustration summarizing

the key differences between both approaches is available in Figure 11.
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Figure 11. Illlustration comparing implemented heuristics. Original points shown as red/teal and numbered from 0 to 7 where

B = 4. 16 Bisectors are drawn as dashed gray lines, yielding 120 (closed) cells. Left (animation available as Supplementary Video
1): pivots generated in smHGS*™PL€ gre red x’s. In this example our sampling algorithm is run to exhaustion Right (animation
available as Supplementary Video 2): pivots generated in smHG "¢ are teal ‘x’s and corresponding dynamic grid structure
colour coded by BFS depth in quad-tree. Here we stop the algorithm after yielding 120 pivots, illustrating the difference in
behaviour to smHGS¥mPle,

Grid approach: smHG ™. We recursively iterate over a uniform 3D-grid. Namely, we partition space into

eight disjoint, nested, cubes where the center of each cube is to be used as a pivot. This uses a common
underlying data structure called octree (Meagher, 1982), and a branch-and-bound algorithmic approach.
Let C,.,, be the t+15t - cube evaluated. C, is the root node in the tree referring to a cube bounding our
input data (with some slack to allow pivots outside the convex set to be considered). We dynamically
build the octree while traversing it in a breadth-first manner by maintaining a priority queue. Let OPT(t) be
the best observed smHG after t cubes are evaluated, and set Bi.,,, = {bisectors that intersect with C;, |
bisectors that intersected C,,,’s parent cube}. Denote smHG(PCm) the smHG score given by using the
center of C.q, Pc,,,, as a pivot. We observe that at this point we have enough information available to
compute a lower bound on the best theoretically-achievable p-value for all cells contained by the cube
C:+1- If this lower bound is > OPT(t) we stop the recursion at C,,, since no sub-cube can possibly
improve on OPT(t).

Assume there exists a hypothetical pivot, p"’? € C,,,, for which every bisector bi € Bic,,, is ‘satisfied: Let
{x,, 1}, {x,, 0} (W.L.O.G.) be the data points and labels which induced the bisector bi, p"¥? ‘satisfies’ bi if

lp"¥? — x;1l, < lIp"? — x,||,. Let k be the number of bisectors in Bi,,  that are not satisfied by P,,,. We

can compute smHG (P™?) by exploiting the data structure used to compute smHG(PCtH). Intuitively, we
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append k ‘1’s after every valid prefix of APCM (such that B does not increase) and evaluate the resulting

mHG p-value.
We note that this method guarantees a finite number of pivots, but each cell may be visited more than
once. Details on this and more caveats are available in Supplementary 3.

Sampling approach: smHGS%™?¢. Every three bisecting planes in general position (bisectors B; = a;X +

b)Y + ¢;Z + d; = 0) intersect at a point, pg = (x,y,z). We take an e-step along the gradient of each of the
three bisectors and average the resulting points to yield a pivot inside a cell p.. Formally,

(1 3 —(bjx(y+e)+cxz+d;) )
bc = —g ,V+e€z
i=1

3 a;
This procedure defines a one-to-one mapping for every bisector-point-intersection to cells such that every
such pivot point is “bottom-most” (w.r.t. dimension y) of some cell, as illustrated in Supplementary Figure
S14. With this in mind, we iterate over bisectors to yield combinations of three distinct bisectors and by

doing so recover all “bottom-most” pivots exactly once.

Given an actual data instance, D, we are interested in benchmarking the enrichment evaluated by any of
the above approaches against adequate controls. To do so, we apply the following controls:

‘Bead’ pivot control, denoted Bead Control. Uses every original x; (‘beads’ along genome) as a candidate

pivot, and only those. This is used to compare results with our previously published method (Ben-Elazar
et al.,, 2013b; Shay Ben-Elazar, Chor, and Yakhini, 2016).

Genomic order control, denoted 1D Control. Uses every original x; as a candidate pivot, but ranks

according to 1D genomic distance (i.e. for x;, x;, rank by (i — j)), rather than, 3D, Euclidean distance. We
restrict this analysis per chromosome where applicable, as genomic inter-chromosomal distance is
undefined. This analysis is used to filter out results driven entirely by genomic enrichment, rather than
spatial enrichment, as these are not the focus of this paper and can be identified without the need of Hi-C
data or smHG.

Simulations control, denoted Py;,,,. Runs 100X shuffles on the label vector, v, running both smHG97¢ and

smHGS¥™Pe p.. is then reported as the empirical CDF where the population is comprised of

100 X min{smHG ™4, smH G5*™"'¢} values. This evaluation is used as an additional approach of
computing an empirically determined corrected p-value, since, as previously mentioned, smHG conducts
multiple hypothesis testing (many dependent cells are treated independently) without an exact correction

scheme.
3.2.3 Hi-C datasets and annotation sets
We investigated several unicellular genomes and functional annotation sets, as follows:

e Bacteria: C. crescentus. Le et al. (Le et al., 2013) investigate expression of genes in chromosome

interacting domains and their organization under a plectonemic model.

53



Bacteria: B. subtilis. Marbouty et al. (Marbouty et al., 2015) focus on the 3D architecture of the
origin domain and its dynamics during the cell cycle.

Yeast: S. pombe. Mizuguchi et al. (Mizuguchi et al., 2014) experiment with Cohesin mutants
illustrating its globule-formation function and discuss the role of heterochromatin in facilitating
inter-chromosomal interactions.

Yeast: S. cerevisiae. Duan et al. (Duan et al., 2010) early work on structure reconstruction and
the study of transcription factories.

Fungi: N. crassa. Klocko et al. (Klocko et al., 2016) study sub-telomeric facultative

heterochromatin and the impact of various histone modifications wildtype chromatin conformation.

Given an annotation dataset, namely one that induces binary labelling on genomic loci, we map

annotation elements to genomic bins at the resolution, N, as provided in the aforementioned published Hi-

C datasets. We filter out resulting annotation sets that map to less than four ‘1’ labelled bins (B < 4). We

used several types of annotations, as applicable, for the different organisms.

Common annotation sets.

Gene Ontologies (GO) are acquired from (Ashburner et al., 2000;

The Gene Ontology Consortium, 2017) for all five organisms.

COGs/KOGs are acquired from (Galperin et al., 2015; Koonin et al., 2004) for bacteria and yeast.
Transcription factor target cohorts are acquired from (Novichkov et al., 2013) for bacteria and

from (Teixeira et al., 2018) for yeast.

Differential annotation sets.

We show how one can turn various types of genomic measurements into binary annotations that can be

studied using our proposed framework. To illustrate this capability, we use the data published in S.

pombe (Mizuguchi et al., 2014) which includes the following datasets for both wild-type and mutants:

CGH: Do copy number variations co-localize to some spatial locations?

CGH data was binned to the same resolution as Hi-C, averaged by ,/#mapped probes in bin.
Bins with less than 20 probes were removed. Resulting values, V = {v;} were binarized such that

bi={1 v > u+20

0 else where y, o are the mean and standard deviation of V/, accordingly.

Hi-C Data: Do genomic structural changes occur in spatial clusters?

To evaluate differential Hi-C structures we compute Z scores from the Hi-C datasets of reference
(REF) and variant (VAR). Then, per chromosome, we mask out (set as ‘0’) values in location i, j
where abs(i — j) > 5 and compute the pairwise Euclidean distance between the masked vectors
for locus i in REF and locus i in VAR and compute the Z scores on the results. Next, we binarize
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when |Z]| > 1.96 to produce y; for smHG. Intuitively, these are loci that have changed substantially
in (local structure) curvature between REF and VAR. We use x; from the embedding of REF.

3.2.4 sNMDS smoothing of embedded Hi-C data
Embedding Hi-C data attempts to recover a 3D conformation, or ensemble of, that explains the observed

data, with mounting qualitative evidence to support its reliability in capturing biological-structural
phenomena (Ay and Noble, 2015; Liu et al., 2018; Varoquaux et al., 2014; Ay et al., 2014; Mercy et al.,
2017; Treut et al., 2018). We have previously (Shay Ben-Elazar, Chor, and Yakhini, 2016) demonstrated
a quantitative advantage of using embedding distances over Hi-C read counts for the task of phasing
haplotypes in a human genome, reinforcing its importance for denoising raw Hi-C read counts. We note
that such embeddings cannot necessarily be conceived as representing an actual 3D genomic structure

(see Discussion).

NMDS (Nonmetric Multidimensional Scaling) (Ahrens, 2007; Mead, 1992b) is a well-established
embedding algorithm that iteratively minimizes a loss function measuring the violations of ordinality
between the embedding and the input distances. Meaning, it attempts to find a conformation where the
two closest points in the input will remain so in the embedding, and so forth. This property is desirable for
smHG as it implies the embedding will directly optimize 4, vectors for p € {x,, ... xy}, to reflect the
ordinality of observations as much as possible. Applying NMDS to Hi-C data often leads to unlikely
discontinuities in the resulting configuration. Such discontinuities are especially evident in degenerate
mapping of low-genomic-sequence-complexity regions and biased Hi-C measurements. For example, we
may get consecutive genomic bins from the same chromosome that are unreasonably distant in space

when compared to any other consecutive pair.

sNMDS (smoothed NMDS) iteratively corrects outliers in the embedding, enforcing smoothness
for 1D genomic neighbours. Outliers are defined according to the distribution of distances between all
genomically-consecutive bins (the discrete derivative) along the same chromosome. We compute Z-
scores and provide thresholds as parameters that determine outliers (genomic discontinuities) for each
iteration of the correction. These outliers are then corrected using linear interpolation. We demonstrate

that this process results in qualitatively superior embedding configuration in Supplementary 5.

3.3 Results

Using the method described herein we found evidence of functional 3D organization across multiple
organisms and multiple functional annotation sets, illustrating the prevalence of structure-function
relationship at a genomic scale, in unicellular organisms. Below we describe selected results chosen
according to their statistical significance as well as according to their potential biological implications. We
provide a supplementary table with more details for all results. as well as some descriptive meta-analysis
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is available in Supplementary 8. To further highlight the advantage of the grid method in identifying
particular cases of spatial enrichment we performed an additional meta-analysis directly comparing the
results among suggested heuristics in Supplementary 13. Finally, a discussion on several noteworthy
negative results where functionally related elements did not appear to co-localize is available in
Supplementary 9, for completeness.

3.3.1 sNMDS results for Hi-C data of unicellular genomes
The first step of our approach is to apply sNMDS to Hi-C data and produce a 3D embedding configuration

that is used to represent denoised distances from noisy measured population Hi-C read counts. We base
our enrichment analysis on these configurations. These embeddings should not necessarily be
considered as representing actual genomic 3D structure as further considered in the Discussion section.
We apply sSNMDS and smHG to elucidate distinct spatial enrichment patterns across multiple organisms
and provide insights into the variability and prevalence of genomic functional organization across phyla. In
the next subsections we list our key findings for each organism and discuss previously unreported
phenomena detected as significant by smHG, as related to the functional 3D organization of the

organisms studied.

3.3.2 Caulobacter crescents
In Figure 12 we present the sSNMDS embedding of Hi-C measurements in C. crescentus (at synchronized

cell cycle t=0, (Le et al., 2013)), displaying a saddle-like, crescent structure, similar to its bacterial cell
shape. A recently published (Yildirim and Feig, 2018) high resolution structural study provided

qualitatively similar models with experimental validation.
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Figure 12. C. crescentus results. Left: SNMDS embedding of C. crescentus from three viewing angles. Right
(animation: available as Supplementary Video 3): red spots are genomic bins which contain genes labelled as DNA
replication genes under GO:0006260. The floating x’ is the smHG optimal observed pivot. Translucent semi-sphere
represents the ball induced by the smHG threshold. Gray circles indicate bins within the threshold and
corresponding ball. Simplified gene labels in GO:0006260. Reductase in green, Helicase in red, Ligase in orange.

Genes annotated as elements of DNA replication (GO:0006260) appear polarized in two distinct sets
along the replication axis (smHGS™: [P < 6e~%;, Q < 8e~3; Py, < 0.01], Bead Control: [P < 0.02; Q <
0.32], 1D Control: [P < 0.03; Q < 0.85], Figure 12, middle). Note that this is a real data example

resembling the synthetic construction used in Figure 10 in the sense that smHG finds an enrichment

centered around a non-genomic pivot that is not evident under the bead pivot nor under the 1D genomic
based approaches. Focusing on the individual gene families the observed dichotomy coincides with ori
and ferlocations (origin and terminus of DNA replication, accordingly), alluding to evolutionary pressure
for duplicated machinery templates possibly related to the replication mechanism. A possible explanation
of this observation can come from having a fall-back template for critical elements in the replication
machinery in case of a stalled replisome blocking RNAP access (Yeeles et al., 2013). We also observe
more subunits from the DNA pol Il family available near the Ori, which may relate to the fact that the cell
exists longer in a state where these regions are replicated before meiosis.

The observed behavior of polarity along the replication axis appears to be a property of C. crescentus.
We performed a meta-analysis of our results (Details in Supplementary 6) that illustrate that this property
is consistent across available annotation sets and is significant (P = 0.01) under an appropriate statistical

model.

3.3.3 Bacillus subtilis
In Figure 13 we present four sSNMDS embeddings of Hi-C data from available time-course Hi-C

measurements in B. subtilis (Marbouty et al., 2015).
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Y

Figure 13. B. subtilis results. Left-to-right, Top-to-bottom (animation available as Supplementary Video 4):
Embeddings of time-course Hi-C of B. subtilis at t={0,5,30,60} minutes after release from synchronized G1 into S-
phase. Embeddings are aligned with Procrustes analysis. Color gradient along the chromosome is genomic position
(showcases the circular nature of the chromosome). Red circles indicate genomic bins that contain gene(s) targeted
by BSU00470 (Purine biosynthesis operon repressor). A single translucent ball in each subplot represents the smHG
result (pivot and threshold mapped to radius). A black arrow points to the location of the ball. Figure depicts the
dynamic nature of co-localization of the targets of the above TF. Next to each subplot we show a zoomed-in plot of
the sites of detected co-localization.

Targets of transcription factor BSU00470 (Purine biosynthesis operon repressor) co-localization signal
shifts and changes during cell cycle. We observe a substantial colocalization increase in T = 5 minutes

after release from G1 into S-phase, as defined by the original report (Marbouty et al., 2015). Results are

summarized in Table 1 and visualized in Figure 13, top right.

T smHGETd Bead Control 1D Control

0 P <2e7% Q <0.04 P<1e7™5, Q<0007 |P<1le8 Q<1le™®
5 P<1e®,Q<1e3 P, <001 P<le? Q<le® P<le® Q<le™®
30 P <1e7% Q <0.02 P<le® Q<le® P<le? Q<le®
60 P<1e™7;, Q <0.02 P<le % Q<le® P<le® Q<le™®

Table 1. TF target co-localization dynamics during cell cycle. B. subtilis BSU00470 (Purine biosynthesis).

Purine synthesis and salvage gene expression has been observed to fluctuate substantially during the
cell cycle and is known to respond quickly to changes in pool availability (Fridman et al., 2013; Nygaard
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and Saxild, 2005; Ye et al., 2009). We therefore observe a co-localization of purine biosynthesis targets in
the cell cycle period when they are indeed observed as active. Gram positive bacteria, such as B. subtilis,
have been demonstrated to have a strong strand-specific purine asymmetry, skewed positively to the
leading strand and related to the mechanism of DNA replication (Hu et al., 2007). The work by Nouri et al.
(Nouri et al., 2018) showed that carbon metabolism in B. subtilis affects DNA replication rates. This may
relate to our observation as purine biosynthesis requires the fusion of a pyrimidine ring with an imidazole
ring and therefore has a higher carbon demand. We propose that there may exist a regulatory link
between these phenomena, owing to the differences in strand replication progression that is mastered by
the metabolism of purine and pyrimidines. The observed co-localization signal is facilitated via 1D as
targets share an operon that appears to be spatially invaded by confounding genomic elements when T +#
5. Our analysis of the temporal dynamics of several TFs (further details in Supplementary 7) provides
compelling evidence for the transcription factory model where genes can dynamically co-localize in or out

of sites of transcription (Rieder et al., 2012).

3.3.4 Schizosaccharomyces pombe
In Figure 14 we present the SNMDS embedding of Hi-C measurements in S. pombe (Mizuguchi et al.,

2014), displaying a six-pronged claw shape. The authors of (Tanizawa et al., 2017) predicted a similar

mitotic configuration in their proposed model.
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Figure 14. S. pombe results. Left: SNMDS embedding for S. pombe with colour coded chromosomes. Middle
(animation available as Supplementary Video 5): Bins are colour coded by average aCGH value, with marked
outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak duplication signal on Chrll, and deletion on
Chrl, Chrlll. Strongest duplication is evident at the telomeres. Right (animation available as Supplementary Video
6): Red bins contain Loz1 transcription factor targets. The resulting smHG pivot and corresponding ball are visible
containing 4/6 TF targets.

Chromosomal rearrangement of rad21-K1 mutant (compared to Wild Type, based on aCGH data) are

spatially co-localized near the telomeres (smHG®"¢: [P < 1e73%; Q < 1e73%; P, <
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0.01], Bead Control: [P < 1e73%0; Q < 1e7399],1D Control: [P < 1e~%; Q < 1e~%], Figure 14, middle).
rad21-K1 is a mutant selected for partial loss of function in a Cohesin subunit (Tatebayashi et al., 1998).
Cohesin is a protein complex implicated in being involved in the determination of chromatin architecture
and mitotic domain organization (Mizuguchi et al., 2014; Tanizawa et al., 2017; Sofueva et al., 2013;
Lazar-Stefanita et al., 2017). Active chromosomal rearrangement near telomeres have been previously
reported using Cohesin mutants in mice and molecular evolution studies in primates (Adelfalk et al., 2009;
Trask et al., 2005). In a related observation we see that the transcription factor Loz1 has its targets
spatially confined near the telomeres (smHG%™: [P < 1.4e7%; Q < 0.02; Pgjy, < 0.02], smHGP™t: [P <
1e73;Q < 0.1], mHG'P: [P < 1e7%; Q < 0.4], Figure 14, Right). Two of its targets are SPBC1348.06¢ and

SPAC977.05¢, both known to be involved in telomeric duplication. Together, our results indicate a strong
relation between a functional Cohesin complex and peri-telomeric integrity, which may be facilitated by
DNA repair mechanisms operating during meiotic recombination.

To further inspect the structural conformation changes in rad21-k1, we performed a differential Hi-C
analysis (details provided in Methods). Our results show that the major changes in structure are localized
and manifested primarily at the middle of each chromosome arm (smHG®": [P < 1e7'2; Q <

1le”7; Py < 0.01], Bead Control: [P < 1e7%;Q < 1e73],1D Control: [P < 1e”7; Q < 1e~%], Figure 15).

The authors of (Tanizawa et al., 2010) present qualitatively similar interphase models.
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Figure 15. S. pombe mutant structural modifications (animation available as Supplementary Video 7). Left: Top — raw Hi-C read
matrix for wildtype. Bottom — resulting SNMDS embedding. Middle: Top — Hi-C data for rad21-k1 mutant. Bottom — resulting
sNMDS embedding. Right: Top — AZ-scores between both (masked) Hi-C datasets. Red asterix mark loci of Z>1.96 change.
Bottom — wildtype sNMDS embedding. Red bins indicate bins that substantially changed in their local structure according to our
differential Hi-C analysis (detailed in Methods).

3.3.5 Saccharomyces cerevisiae
In Figure 16 we present the SNMDS embedding of Hi-C measurements in S. cerevisiae (Duan et al.,

2010), displaying a Rabl (Taddei et al., 2010), Water-lily conformation. This result is qualitatively
consistent with previously published models (Ben-Elazar et al., 2013b; Lazar-Stefanita et al., 2017;
Capurso et al., 2016).

LtrType5 Q=6.6541e-08
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8 random

[EEmRandom
- - Ty5

0 —— al
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

Median pairwise distances

Figure 16. S. cerevisiae results. Left: SNMDS embedding for S. cerevisiae with 16 color-coded chromosomes Right
(animation available as Supplementary Video 8): Opaque red colored bins contain Ty5 family LTRs. Inset shows the

distribution of mean pairwise Euclidean distances for (32) telomeres. Red dashed vertical line indicates mean

8
pairwise Euclidean distances for the 8 Ty5 bins. An empirically determined cumulative distribution function

evaluated at this point yields p < 0.007.

S. cerevisiae long terminal repeats (LTRs) have been categorized to five distinct families, each with
different properties (Kim et al., 1998; Mita and Boeke, 2016). We observe a previously known preference
of family Ty5 to associate to peri-telomeric regions (smHGS¥™Ple: [P < 1e713; Q < 1le77; Py, <

0.01], Bead Control: [P < 1e~7; Q < 1e73],1D Control: [P < 1e~3; Q < 0.04], Figure 16). While this
association was already known, we offer a refinement in such that the 8 annotated Ty5 LTR elements
tend to co-localize at a specific hemisphere of the nucleus, on chromosomes Il (3 instances), V (2
instances), VII, VIII and XI. We present the likelihood of such an event to be random in Figure 16, Right

inset. We shuffle (10,000 times) the assignment of Ty5 elements to different telomeres and compute the
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median of their pairwise Euclidean distances. The resulting empirical CDF at the unpermuted (observed)
point yields p < 0.007. We propose that this co-localization phenomenon occurs due to the mechanism
by which retrotransposons propagate. The probability of a transposing element to integrate in a potential

target site is inversely proportional to the distance it needs to travel from its source.

3.3.6 Neurospora crassa
In Figure 17 we present the sSNMDS embedding of Hi-C measurements in N. crassa (Klocko et al., 2016),

displaying a balloon-like shape.

Pr lid sub plex (GO:0008541) Char:erone related_(G0:0042026)
P=1.367e-07 Q=1.3397e-05 P-Z.EZOQE-ES Q:_0.008_7442
N=550 B=6 n*=4 b=4 N=550 B=6 n*=16 b=4

Figure 17. N. crassa results. Left (animation available as Supplementary Video 9): SNMDS embedding of N. crassa.
Middle & Right (animations available as Supplementary Video 11 and Supplementary Video 12): Only subset of bins
containing mappable genes with GO terms are shown. Red coloured bins contain genes with GO (gene ontology)
annotation GO:0008541 and GO:0042026, “Proteasome lid subcomplex” and “Protein refolding” (Chaperone
related), accordingly. A black x’ and translucent sphere depict the resulting smHG position and radius (recovered
by mapping mHG threshold back to distance from x’) for each figure.

Protein folding genes and Proteasome lid subcomplex genes are poised to collaborate by genomic co-
localization. In our analysis we observe both gene ontology terms (8541, 42026) to individually co-localize
spatially (smHGS: [P < 1e™%; Q < 1e~3; Py, < 0.01], Bead Control: [P < 1e7%Q <

1e73],1D Control: [P < 1e7% Q < 1le™*] and smHG ;[P < 1e75; Q < 0.02; Py, <

0.01], Bead Control:[P < 1e™*;Q < 1e72],1D Control: [P < 1e~3; Q < 0.02] accordingly, Figure 17, Right).
Upon inspecting the resulting pivot locations and the sizes of enrichment balls they appear similar to one
another. To further validate this result, we compute smHG on the union of both GO term targets resulting
in B, = 10, indicating 2 bins overlap. we run smHG on the union without providing an exact statistical
model to treat these overlaps, providing an upper bound on the p-value (smHG®@: [P < 1e78; Q <

le™%; Py, < 0.01], Bead Control:[P < 1e77;Q < 1e~*],1D Control: [P < 1e~% Q < 1e~*]). Additionally,
we fixed the 6 target bins of GO: 0042026 and randomly picked 6 targets, computing the mean pairwise

distances between both sets of points. The tail of the empirical distribution yielded CDF < 1e73%° when
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evaluated at the pairwise distances between GO: 0042026 targets and GO: 0008541. These validations
further illustrate that these are independent genomic sites with overlapping spatial co-localizations. In
summary, we observe a significant co-localization of Proteasome genes as well as of Chaperone genes
and furthermore, these two putative transcription factories are spatially close to each other. It has been
previously observed that both machineries are intertwined, where chaperones mark for degradation by
ubiquitination, physically deliver and interact directly or via coefficients with the proteasome machinery
(Imai et al.; Carlisle et al., 2017). Our observation suggests that both mechanisms are tightly coupled on

the genomic level thereby offering an increased linkage and co-regulation.

3.4 Discussion
In this work we have developed and implemented methods for assessing the statistical significance of

spatial co-localization in binary data specified for 3D co-ordinates which overcomes the limitation of being
constrained to ‘Bead’ pivots. Our code is available to the community. We have applied our methods to
analyse several Hi-C datasets from unicellular genomes and report statistically significant results detailed

above.

Our analyses are performed on previously published “population Hi-C” datasets. That is, Hi-C read counts
correspond to evidence of proximity events sampled from millions of independent genomes of distinct
biological cells. In this work, as well as in some other Hi-C literature, results are based on analysing such
population data. The underlying biology may therefore be obscured by the non-homogeneous character
of the data. To mitigate the underlying variability, we focus on analysing datasets of monoclonal single-
celled organisms under shared environmental conditions. Furthermore, the bacteria datasets, C.
crescentus and B. subtilis were collected from colonies synchronized to the same cell cycle stages. We
therefore expect reduced effects coming from genetic, functional and environmental non-homogeneities.
Nonetheless, other factors that contribute to variability remain, and enrichment results should only be
interpreted as statistical observations derived from 3D configurations based on sampled population
measurements. Applying our methodology on more complex organisms, such as Humans, will require
several adjustments: First, methods that sample homogeneous cell populations, or single-cell methods.
Next, correctly embedding a polyploid genome. Third, adjustments to the statistical model of mHG to
better reflect the availability of gene copies in a gene set. Finally, mitigating the complexity issues
discussed above at larger genome scales by developing more advanced heuristics.

Furthermore, we base our analysis on 3D configurations derived from population data as above. sSNMDS
embeddings probably do not represent the genome structure of any individual biological cell or population
member. The spatial manifold in which elements are embedded cannot necessarily be directly interpreted
as physical 3D space. Instead, it serves as an abstract ‘latent’ space, primarily useful for mapping Hi-C
data to the geometry required for our statistical 3D enrichment methods, while smoothing out the noisy
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character of Hi-C read counts. The approach here could be re-interpreted not as identifying
"colocalization" of sets of genomic elements from a spatial model of a genome, but simply testing for
statistical enrichment at the level of bulk contact frequency, which hints at some cases of colocalization.
We view the fact that resulting embeddings visually correlate with our expectations of polymer behavior
without being strictly enforced in the embedding process along with the observed statistically significant
smHG results as added qualitative evidence of a population-driven structural signal of genome
organization. A quantitative quality control analysis of the embedding process, reinforcing the selection of
embedding algorithm and parameters, is displayed in Supplementary 11.

The algorithmic approach we take here is heuristic since the exact calculation of the best smHG pivots in
the data corrected for multiple testing is complex. It is clearly a low polynomial search problem as
indicated by the combinatorics of the bisector tessellation (see Methods), but still, for thousands of points
(as in small genomes), this becomes an unacceptably long calculation. One may consider the use of a
Voronoi tessellation. The latter has a far lower computational complexity. However, points in the same
Voronoi cell can induce dramatically different rankings on the ‘0’s and ‘1’s, as we illustrate in
Supplementary 12. Furthermore — the added complexity of correctly computing a statistically valid result
by many repeats to correct for multiple testing, requires even greater time efficiency. We do analyze
performance properties of our proposed heuristics, illustrating pros and cons of each.

Further investigation into heuristics may yield improved runtime performance for spatial enrichment
methodologies. Data reduction methods (Ehrenberg, 1982) may prove useful for filtering or replacing
objects of interest (such as input points or tessellation cells) by applying clustering and selecting
representatives. A specific noteworthy data reduction approach is to replace objects by fitting them with a
density function (Parzen, 1962; Davis et al., 2011). A multiscale density-based representation (Xia et al.,
2018) could provide an efficient means of sampling candidate pivots from areas of interest. Discrete non-
convex optimization methods (Floudas, 1995; Jain and Kar, 2017) such as applying local descent
(Snyman and Wilke, 2018) on the mHG p-value of neighboring cells, may offer a mechanism to traverse

between cells towards local minima, thereby enabling faster candidate elimination.

A simplistic approach to statistically assessing co-localization for a given set of genomic loci, S, would be
to compare the average Hi-C read counts within S to averages obtained over a big number of randomly
drawn samples of genomic loci with the same size, |S|. In Supplementary Figure S19 we show an
analysis comparing this approach with smHG on B. subtilis Hi-C data for targets of TF BSU29740 (ccpA),
a Lacl family transcriptional regulator. Our results in this analysis demonstrate the advantage of using
smHG compared to a sampling-based approach which would not report this significant co-localization
event. In general, from an algorithmic perspective, applying the sampling approach in a systematic way to

find within a moderately enriched functional set (such as a TF cohort) the subsets that are more
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significantly enriched, is intractable. Specifically, for a TF cohort S, this is equivalent to enumerating all

2151 subsets.

We applied our statistical methods to several organisms across phyla. To summarize our observations:
When analyzing data from TF cohorts we find some of them to be spatially enriched, with evidence that
functionally related cohorts can share a common transcription factory. We observe changes in co-
localization patterns along cell cycle using time course data, providing evidence for transcription factory
dynamics. We further show co-localized retrotransposon telomeric preference, potentially shedding new
light on its mechanism of propagation. We observe an axial partitioning of replication machinery genes

reinforcing evidence of a deep connection between genome replication and genome organisation.

Overall, we provide distinct lines of evidence for the role of spatial organization in unicellular organisms,
illustrating smHG’s applicability to studying both cis and trans functional-structural relationships in
genomes. Finally, our results and interpretation can benefit from follow-up studies and need to be
experimentally validated.
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3.5 Chapter Supplementary Materials

DATA AVAILABILITY

Spatial-mHG code is open source and available in the Yakhini Group GitHub repository

(https://qgithub.com/YakhiniGroup/SpatialEnrichment) along with animated 3D configurations and figures.

SUPPLEMENTARY DATA

Supplementary Data are available at Nature Communications online:
https://www.nature.com/articles/s41598-019-48798-7#Sec22

Supplementary Figures

1.

Empirical comparison of smHG9"¢ and smHG*"?'¢ on synthetic data: To allow some degree
of control on the optimal enrichment in a synthetically generated instance we provide the
following protocol. Pick {x;}¥, ¢ from a multivariate uniform, U(0,1), and desired minimal
enrichment p-value, p. Assume x; is ranked by Euclidean distance to c, i.e. ||x; — cll, < ||xj41 —
c|l,. Enumerate all entries in the HGT table (Supplementary Figure S9) that are < p. Weight each
entry with the number of possible non-decreasing paths that cross it (used in mHG multiple
hypothesis correction, see (Eden et al., 2007, 2009a) for details) and apply importance sampling
to select an entry proportionally to its weight. The entry corresponds to the underlying b, n*
parameters. Generate 1. by creating a shuffled prefix vector with b ‘1’s and n* — b ‘0’s, and ap
pending a shuffled suffix vector with B — b and N —n* ‘1’s and ‘0’s accordingly.
We emphasize that this process only guarantees an upper bound on the OPT smHG in this
generated instance.
We run the process described above 10 times each for N € {20,40,60,80,100} with desired p <
1e~3, and bound the runtime duration at 2 minutes. During the evaluation we record the best
observed p after iter pivot evaluations. The results, presented in Supplementary Figure S7 show
an advantage for smHG9™¢ over smHG**™' in both convergence time and magnitude (most
evident for larger instances) of detected enrichment.

Comparison of Grid vs Sample on 50 synthetic examples

+ +

g

® 67 o+ 4 @ 6 1
— o
s + 7 £ + *
£ - »

- T ’ s ¢ ’ y 1t

d | = + +
T boloT = 2 s +

5 1 = T
% 2 ! I i + (>“ 2 $_ - i i }
T El T T - & | ! [ o

& * = r‘—‘ ™ |
=0 | | ] ['I] [tl ; o g o0 \ I:":l I

2 I o1 o1+t § N L 1 _E ae _L
- | 1 8— +

£ L

g 2 2 + +

+ +
1T 2 3% 4 6 6 7 8 39 20 40 60 80 100
Iogm iter N
Figure S7. Synthetic data comparison of smHG9"'¢ and smH GS¥™P'¢_ showing an advantage for smHGI7*% over in both

convergence time and magnitude (most evident for larger instances) of detected enrichment.
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2. Additional notes on smHG*"¢ and smHG9"¢ differences: During our work we have
evaluated different approaches by simulating datasets with different tractable parameters where
we could compare convergence times to optimal results. Evidently, while smHG*™P'¢ provides a
guarantee to exhaustively cover the exact number of cells, it appears to suffer from one major
drawback by its hyper-sensitivity to the distribution of the data. In our simulations we sampled
x; < U(0,1), i.e. from a multivariate (2D or 3D) uniform distribution. Given x;, x; the midpoint of
their connecting line segment (where the bisector lays) is an average of two uniform random
variables, which, thus, in itself, is distributed under a special case of the (normalized) Irwin-Hall
triangular distribution (n=2). This implies that uniformly generated data would have a substantially
high concentration of bisectors at the center of the ambient space (0.5,0.5 for 2D and 0.5,0.5,0.5
in 3D). In turn, bisectors intersecting each other would yield a significant concentration of cells
around that region. Since smH GS%™! picks cells uniformly, it would adopt this skew and over-
represent this specific region of space. In a time-limited / truncated evaluation, we would miss
evidence of co-localization in the periphery.
smHGI™ adopts a multi-resolution approach, forfeiting on theoretical benefits (that have little
practical implications on large scale data) in order to inspect the input for possible co-localizations
with increased granularity of over time.

Figure $8. Showing how a single cell can be visited more than once by smH G974, different branches of the Octree (2D shows
quadtree) yield cubes that intersect it. (Left) 2D instance, bisectors shown as dashed lines. Cell of interest filled with red. Observe
that there are bisector intersections that fall outside the axis limits and are not accounted for by this method (Right)
corresponding tree graph of the resulting partitioning of running smH G972,

3. Spatial-mHG technical notes: We note that in our experiments we run the Grid and Sample
heuristics for a bounded duration of 5 minutes each on a dedicated Azure StandardA8v2
machine.

W.L.O.G. all input data is initially normalized to the unit ball and jittered to guarantee that the
bisectors are in general position (with high probability). We also add a virtual sphere containing
the normalized inputs, in order to make sure all cells are bounded.

A simplifying observation is that there are no intersections of more than three planes in the same
point due to the following argument: Assume by contradiction that four planes intersect in a point.
Choose one plane. Each of the three planes intersecting with it forms a line, and since they all
intersect in a point. Since every line is a perpendicular bisector for points x; € D, the point of
intersection is a circumcentre of a triangle where the triangle vertices are the bisected points in D.
Since we only employ bisectors from pairs that are differently labelled (a ‘1’ and a ‘0’), this means
that every pair of vertices in the triangle is differently labelled (or differently coloured). Since there
is obviously no way to 2-colour a clique of size 3 (the triangle vertices), we contradict the original
statement.

4. smHG9" recursion stopping criterion: 1, can be illustrated as a non-decreasing path in an
B x (N — B) matrix where each entry corresponds to a Hypergeometric CDF tail score and to a
prefix of some possible binary vectors. For this entry, its Manhattan distance from the bottom left
corner reflects the “number of draws” its row reflects the number of successes, and its column the
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number of failures (and implicitly the population size). The mHG score for a vector is the minimum
value in the cells visited by its corresponding non-decreasing path. During an smHG evaluation
we track the optimal score observed, p;. p; can be used to estimate the minimal number of cell
traversals from p that are necessary for obtaining a score that is better than p;. This number is
used as a stopping condition for the octree construction by comparing it to the number of
bisectors crossing the cube for which our pivot is close to the ‘0’ coordinate than the ‘1°. If A visual
representation is given in Supplementary Figure So.
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Figure S9. An example HGT matrix depicting all possible binary vectors of size N = 60 with B = 20 ‘1’s. Every entry is colored
proportionally to the hypergeometric CDF upper tail p-value. Blue path corresponds to some binary vector, A, the prefix of which
is displayed on the left. Vertical green lines emanating from this path towards the greed region of the table correspond to
“minimal distance to p; = 1e~°” at different thresholds in A. The overall minimal distance in this case is 5.

5. sNMDS outlier correction scheme: we present one of the NMDS resulting embeddings for B.
subtilis time-course (at the 5-minute mark). We applied 2 iterations of smoothing with Z>4, Z>8,
top row, visualized from left to right. Clusters identified in each iteration are and colour coded. We
see that after each iteration the resulting genomic structure appears smoother and more
coherent, unravelling more elaborate detail. We manually tune these hyperparameters to avoid
having long stretches of the genome collapse to a line (example of a bad choice of parameters is
presented in the bottom line).

genomic clustering structure z>4 genomic clustering structure z>8 genamic clustering structure z>Inf
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genomic clustering structure z>4 genomic clustering structure z>2 genomic clustering structure z>Inf

Figure $10. sNMDS outlier correction. (Top) showing two smoothing iterations of SNMDS on B. subtilis Hi-C data with Z>4 and
Z>8. Genomic bins are color-coded by clustering them according to the Euclidean distances of consecutive bins. (Bottom) Same

example with different parameters (Z>4, Z>2) showing the formation of an undesirable linear segment artifact. Note that this
also impacts axis scaling as part of the manifold flattens.

6. Principal directions of enrichment localization: We weigh every resulting smHG pivot across
the investigated annotation sets with its corresponding — log g-value. Next, we performed PCA on
these weighted pivots, yielding the principal directions to explain the main variation in spatial
enrichment in C. crescentus. The results, shown in Supplementary Figure Si11, left, illustrate a
primary axis along the direction of the replication axis which explains 58% of the variance in
enrichment directions. To quantify the significance of this observation we ran a simulation
analysis, shuffling the g-value weights across pivots. The distribution of the resulting PC1 and
PC2 explained variance are shown in Supplementary Figure S11, right. We fit a multivariant
gaussian and compute the density of the CDF at the empirically determined point (58%, 34%)
showing that our observation is at the tail of the distribution, around 1% of simulated
observations.

Explained variance distribution (shuffling qvalues) on a 2D simplex

Principal directions of enrichment localization

PC1:58%

% Explained variance of PC2
w w w
S o ©
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Figure S11. Principal directions of enrichment (Left animation available as Supplementary Video 1s) Principal directions of

enrichment as detected by our analysis. (Right) Permutation analysis showing there is a strong bias towards a single dominant
axis of enrichment.
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7. Investigating temporal dynamics in time-course Hi-C data: We plot each transcription factor’s
smHG -log g-value for each of the four available time-course Hi-C datasets. We map each
enrichment to the set of genomic bins within the corresponding enrichment ball. Next for each
temporally-consecutive pair of sets, we compute the Jaccard similarity to quantify the overlap
between their targets. We then manually inspected TFs with temporal dynamics in both Jaccard
and g-values.
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Figure S12. Temporal dynamics in B. subtilis TF target smHG results. (Left) Enrichment Q values. (Middle-left) Overlap between
bins inside the detected smHG enrichment ball for consecutive Hi-C datasets in the time course. (Middle-right) # of ‘1’s in the

enrichment ball. (Right) number of genomic bins in the ball.

8. Main results table:

Supplementary tables available in separate files online. Supplementary Figure S13 shows a meta-
analysis of all smHG runs computed in this study.
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Figure S13. Summary of 1D vs 3D Q values on all evaluated smHG instances. (Left) Empirical cumulative distribution plots of of
3D p and q values, and 1D g-value. We see FDR correction yields an empirical distribution that is approximately uniform, as
needed, illustrating our sensitivity/specificity as a probabilistic model. (Right) a 2D histogram of 3D vs 1D q values. Results
discussed in the main paper are overlaid and marked with a red asterix.

9. Negative results: in this section we detail a few noteworthy efforts that yielded no significant co-
localization with the goal of illustrating diverse hypotheses that can be evaluated with our
proposed framework.

Differential expression: We evaluated differential expression in two cases, and neither appeared to yield
significant co-localization.

e The authors in (Mizuguchi et al., 2014) published a tiling array expression for Chr Il in Pombe
WT vs Rad21-K1. We average genes per bin, remove bins <90" percentile in #mapped probes
and with high variance within the bin. We compute the Z-score for differential expression on
bins, and binarize with threshold Z > 1.96. When limiting our analysis to this subset of bins we
observe no spatial co-localization.

e The authors in (Castells-Roca et al., 2011) provide a Heat shock gene expression time course
for S. cerevisae. We binarized the relative abundance values by averaging genes in bin and
thresholding for RA = 5, and we do not observe significant spatial co-localization under our
model.

Other genomic element annotations:
e Pombe origins of replication (Ori) do not appear to spatially co-localization under our model.

10. Exact bound on the number of cells induced by the intersection of planes:

k

1) + 1 distinct 2D cells.

Theorem I: k lines partition the plane, R?, to at most (12() + (

n n
Corollary II: n points in R? induce a partitioning of the plane to at most <(2)> + <(2)> + 1 distinct 2D cells,
2 1

when considering all PBHP (perpendicular bisecting lines, in the 2D case) between the points.

Theorem III: k planes in R induce a partitioning to at most (g) + (g) + (Ilc) + 1 3D cells when considering the

cells formed by the intersection of all PBHPs between pairs of points.

71



@) +(G))+(G)
Corollary IV: n points in R3, 3D Euclidean space, induce a partitioning to at most ( 2 ) + ( 2 > + < 2 > +1
3 2 1

cells when considering the cells formed by the intersection of all PBHPs (perpendicular bisecting planes, in the 3D

case) between the points.

Theorem I Proof. We denote points of intersection between two or more lines as ‘vertices’. Note that cells are
equally defined by the lines that contain their edges (their boundary set), and by the vertices formed by the
intersection of these lines. We define a one to one correspondence between cells and their bottom- most vertex
(W.L.O.G. there is always such a vertex, otherwise we can tie-break arbitrarily, e.g. bottom-left vertex first).
Assuming at most two lines intersect in any point, every point of intersection of lines serves as the lowest vertex of

exactly one cell, thus there are (I;) such cells. We now observe that some cells do not have a lowest vertex (they

may be non-finite sets). To count them we “hallucinate” a k+1% horizontal line below any intersection of our
original k lines (see Supplementary Figure S14). To count the number of cells formed by the new line we assign
each such region to the original line intersected to create it, arbitrarily on the vertex to its left. This process would

end after k assignments with one region to spare. Thus, in total we have (]2{) + (Ilc) +1 cells. QED. m

y=a,X+b,

y=aX+b

Figure $14. Number of cells proof — (Left) Number of 2d cells created by k lines. Bottom vertex of each cell is assigned to it in a
one to one correspondence. The angle between the cell and the bottom vertex is colored in green. A horizontal line is added to

count non-finite cells on the bottom. Total count of cells is (126) + (]1{) + 1. (Middle) Constructive process to illustrate
tightness of result. Adding lines iteratively we can carefully place them in such a way as to ensure that their intersection
generates exactly (I;) + (llc

of 3 planes. In general position these intersect in a point. For each plane, traverse from the intersection a distance of € along the
gradient of the plane in the direction of y dimension. Average the 3 resulting points to yield a pivot inside the cell.

) + 1 cells. (Right) implementation of smHGS“™P'€ jljustrated in 2D. Compute plane intersection

Theorem Il Proof. By induction —

Basis — For k=1 (I;) + (Izc) + (]{) + 1 = 2 and indeed, a single plane (half-space) divides the space into two

halves.

Inductive step — Suppose that k planes have already been added and that the induction hypothesis holds, adding the

k + 1 plane intersects with the first k planes, forming k “new” lines on the k + 1% plane. From Theorem 1 these

k

. .. k
th
lines divide the k + 1™ plane to (2) + (1

) + 1 2D cells. Consequently, each such 2D cell splits a 3D cell in two and
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adds this amount to the total cell count. Let Ry, be the recurrence relation defining the maximum number of cells

formed by k planes,

Rges1) < Rao + (’2‘)+(’I’)+ 1< (§)+(’2‘) + (’1‘) + 1+(’2‘)+ ('1‘) +1

() + (G +O)+ (1) 1= (CE (5 (4 41

QED. m
Figure $15. Number of potential different order inducing cells in
ax103} 3D as a function of number of points. Showing the intractability
of the polynomial problem. X axis denotes the number of points
6x103F (Genes), and Y-axis denotes the maximum number of cells formed
n n
4x1023} by the bisecting planes between them i.e. ((2)) + ((2)> +
3 2
2x1053} (n)
2) |+ 1.
1

5000 10000 15000 20000
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11. C. crescentus NMDS quality controls: in Supplementary Figure S16 we provide further detail
on the quality controls performed during NMDS linear embedding on a sample dataset.

C. crescentus

MDS =2 1.=0.04109
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Figure S16. NMDS quality control — Subplots are numbered top-to-bottom, left-to-right. (Top) MDS dimensionality reduction
steps: 1) Raw Hi-C input matrix is transformed to represent a dissimilarity matrix. 2) Hi-C matrix is projected to a Euclidean space
with the centralized Gram matrix. Eigenvalues of the resulting matrix are shown ranked by magnitude. Top 3 eigenvalues,
corresponding to a 3D linear projection into a Euclidean space of Hi-C data, are colored in red and show a ‘knee’, hinting at an
intrinsic manifold dimensionality in this dataset. 3) MDS 3D embedding result represented by the first 3 eigenvectors with
corresponding largest eigenvalues. Normalized sum of eigenvalues (measure of captured variance from linear projection) and
Kruskal stress-1 criterion (measure of violations of monotonicity between distances and dissimilarities) values are displayed in
title. 4) Shepard plot showing correlation between dissimilarities in the Hi-C data, and distances in the resulting MDS 3D
embedding. Disparity line indicates deviations from monotonicity, in resulting embedding. Point cloud is overlaid with a density
plot. Spearman rank correlation between dissimilarities and distances, p, is displayed in title. (Bottom) NMDS dimensionality
reduction steps initialized from the MDS solution: 5) pairwise distances in the resulting NMDS embedding (later visualized in
subplot 7), a distinct ‘cross’ pattern emerges that was less visible in the raw Hi-C dissimilarities. 6) A Scree plot showing the
impact of selected target dimensionality on the resulting Kruskal stress values shows a ‘knee’ at 3 dimensions. 7) the resulting
NMDS embedding and corresponding Kruskal stress. 8) Shepard plot showing correlation between dissimilarities in the Hi-C
data, and distances in the resulting 3D NMDS embedding. We see a clear improvement on the spearman p compared to the
MDS embedding.
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12. A comparison between bisector and Voronoi tessellations:

Ul W N

.....* ...Q.* ...QO*

(G =N RN

Figure S17. An illustration of bisector tessellation from five points in 2D. Bisectors are presented as dashed black lines. A Voronoi
tessellation is induced by an intersection of a subset of bisectors, highlighted in green. Voronoi cells, represented as differently
colored polygons, are cells that induce different rankings on the original points such that neighboring cells have a different point
at the top of the ranked vector. An example of three pivots inducing different rankings are shown as blue, green and yellow
stars. The induced ranked point ids and corresponding labels are shown on the right. Running smHG at the granularity of
Voronoi cells would require deciding on a specific pivot for each cell. This example shows that selection of different pivots within
a Voronoi cell can have dramatic impact on the ranking and corresponding mHG enrichment results.

13. Pairwise empirical comparisons among methods: This figure provides a breakdown of the
main results (Supplementary 8) comparing these across evaluated methods. This result
empirically confirms that the bead approach is insufficient for detecting some co-localization
events that are detected by the grid method.
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Figure S18. A density plot of every experiment’s resulting Q values in a pair of methods (indicated by the row and column
labels). Red asterisks represent a single evaluation where the method labeled by the row detected (Q<0.1) a potential discovery
that the method indicated by column did not. Importantly, we observe potential discoveries that would remain undetected by
the bead-based method and vice-versa, showcasing that these methods complement one another.
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14. Comparison between smHG and permutation test on raw Hi-C read counts.

Permutations VS smHG
B. subtilis at T=0, TF BSU29740 targets

Hi-C distances permutation test Average Hi-C reads in set - Average Hi-C reads in c | 1tary set
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Figure $19. Comparing permutation test with smHG result in B. subtilis (t=0 in timecourse) for a functional group of TF targets
(BSU29740): Left) distributions of mean pairwise distances between groups of different sizes are shown in blue and yellow
histograms. Correspondingly, the mean pairwise distances between bins in the aforementioned functional group (of size B) is in
green. While these are relatively co-localized and are within the 999t"-quantile, smHG was able to uncover a substantially more
co-localized subset (of size b). While both results appear significant, the green result would not be reported when correcting for
hundreds of multiple hypotheses. Middle) a 3D embedding of the Hi-C dataset, bins in B are labled in red, bins in b are the ones
that also have a dark circle around them, and are within the translucent sphere to the right. We see that this subset is
substantially more clustered. Right) We plot a distribution of 10K random partitions of the genome into two, complementary
sets, and compute the difference between the average number of reads in both sets.
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Chapter 4:

miRNA normalization enables joint analysis of
several datasets to increase sensitivity and to
reveal novel miRNA differential expression in

breast cancer
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4.1 Introduction
microRNAs (miRNAs) are endogenous, small non-coding RNAs (~22 nucleotides) that bind to
target-specific sites most often found in the 3’-untranslated regions (UTRs) of target messenger
RNAs (mRNAs). By this binding, miRNAs regulate gene expression by conferring inhibition of
mMRNA translation or mRNA degradation (Bartel, 2009). miRNA expression profiling is an
important tool for studying tumor biology and classification and has shown to be important
with respect to diagnostic and prognostic assessments. Increasing technological and economic
viability of expression sampling methods has enabled the systematic study of miRNA expression
in cohorts of hundreds of patients (Aure et al., 2017; Cancer Genome Atlas Network, 2012;
Dvinge et al., 2013). On the other hand, inherent measurement noise coupled with complex
causes of biological variability affect the statistical confidence in ascertaining consistent
differences of low magnitude between populations with small sample sizes. Absolute
expression differences are not necessarily linearly correlated with downstream effects of the
expressed miRNA, therefore subtle but consistent differences may be of biological importance.

Abnormal miRNA expression in breast cancer has been repeatedly associated with cancer
proteins (Aure et al., 2015), molecular subtypes (Enerly et al., 2011), progression (Lesurf et al.,
2016; Haakensen et al., 2016; Tahiri et al., 2014) and prognosis (Aure et al., 2017). For example,
in one of the first genome-wide characterizations of miRNA expression in breast cancer we
identified 63 miRNAs differentially expressed between the two main clinically diverse groups of
breast cancer, the estrogen receptor (ER) positive and the ER negative tumors (Enerly et al.,
2011).

Combining experimentally measured data from multiple sources is both a challenging and a
worthwhile endeavor. Statistical estimation theory formulates a relation between sample size
and variance of estimate via the Fisher information that follows the chain rule for independent
samples. The ability of statistical hypothesis tests to detect subtle, yet consistent and possibly
genuine, differences between populations is directly related to sample size and is quantified as
a test’s power (Wang and Xu, 2019; Hong and Park, 2012). Increasingly larger power and
statistical significance is hindered by sampling costs that can prohibit large sample sizes. This, in
turn, leads to the incremental funding of repeated studies aiming to measure the same
phenomenon. Follow-up studies tend to vary from their former with newer or alternative
experimental protocols, reagents and technologies used for conducting the measurements,
introducing batch differences between samples. Such a ‘batching’ design, inadvertently,
introduces distinctions (batch effects) between samples that correlate with the batch and may
overshadow subpopulation differences in their magnitude. Blindly testing for hypotheses on
batch-collected dataset without taking such effects into account can lead to spurious and
erroneous conclusions and can hide significant effects behind batch differences. In this work we
address joint analysis of data batched using different miRNA profiling technologies that have
been shown to have systematic differences (Git et al., 2010; Mestdagh et al., 2014).
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There are various approaches commonly used in practice to address the analysis of combined
data containing batch effects. The authors of earlier work (Nygaard et al., 2016; Sims et al.,
2008) show that applying standard, parametric, batch correction approaches may introduce
bias from uneven sample sizes of the different groups and data idiosyncrasies. A recent study
(Gibbons et al., 2018) applied a non-parametric approach for correcting case-control
microbiome studies and have shown it compares favorably with former methods. Their method
resembles ours, as we further illustrate below.

In this work we apply a non-parametric, quantile-based, batch normalization approach. We use
this method for jointly analyzing miRNA expression data in four breast cancer cohorts to obtain
increased statistical confidence and power. We demonstrate that, coupled with appropriate
non-parametric statistics, our normalization approach mitigates batch effects. We observe
stronger statistical evidence of differential expression between ER positive and ER negative
samples in multiple miRNA when compared to individually analyzing the cohorts. Moreover,
our approach provides interpretable results and is advantageous to direct interpretation of the
data conducive to individual examination of findings, as demonstrated herein. Our differential
expression analysis surfaces known cancer-related miRNAs, as well as potential new ones.

4.2 Data and Methods
We used miRNA expression data from three previously published breast cancer datasets along
with a newly released, fourth, miRNA dataset. These datasets were acquired from frozen
material with different minimal amount of tumor cells, using different technologies and
experimental protocols as overviewed in Table 2. In addition, we utilized mRNA expression for
supporting evidence of the normalization results using one of the cohorts.

We examine miRNA normalization also in the context of jointly analyzing these measurements.
Below we elaborate our considerations in the selections made during the normalization process
and our means of providing evidence for validating these results.

Dataset Manufacturer Technology Version Accession
number

DBCG (Myhre et al., Agilent Human miRNA Microarray (V2 G44708B) GSE46934
2010) — miRNA Kit design id
019118
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Micma (Enerly et Agilent Human miRNA Microarray (V2 G44708B) GSE19536

al., 2011) — miRNA i design id
019118
Stavanger — miRNA | Exiqon miRCURY LNA Array v.11.0

Table 2. Technical details of platforms used for expression measurements for the four different cohorts. Datasets are color coded
consistently throughout the paper. miRNA expression colors are highlighted compared to mRNA measurements.

4.2.1 Dataset pre-processing and coverage
Each miRNA dataset is read from a single-channel image analysis output file acquired from their
corresponding GEO repositories (referenced in Table 2) and preprocessed in R using the Limma
(Ritchie et al., 2015) package. We note that while Stavanger (Exiqon) data contains a pooled-
reference second channel, this measurement is not utilized in our analysis (further discussed in
Supplementary 1). Initially, control probes are removed, and the data is corrected by
background intensity normalization . Same-probe replicates are replaced by their median value.
Probe ids are mapped to their corresponding miRbase v22 accession using miRBaseConverter
(Xu et al., 2018). Missing or deleted accession IDs are discarded. Multiple probes that map to
the same miRNAs are again replaced by their median value. Next, we apply arrayQualityMetrics
(Kauffmann et al., 2009) (resulting Quality Control reports are available in the Supplementary
materials) and filter out samples that are marked as outliers by all three outlier detection
criteria (L,-Distance between arrays, Boxplot, MA plot). We thereby filtered out 6, 30, 12 and 2
outliers from DBCG, Oslo2, Micma and Stavanger, respectively. Next, we apply minimum
subtraction to avoid log scaling issues with negative numbers where applicable. The joint
dataset table is then compiled by applying a “full outer-join” relational operation on the
miRbase accession IDs as key. The resulting miRNA cross-dataset table is visualized in Figure 18
(and available in the corresponding online Supplementary materials).
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DBCG, Oslo2, Micma, Stavanger (655) |

Intensity (Iogm)

DBCG, Oslo2, Micma (48) |

DBCG, Micma, Stavanger (73)
DBCG, Micma (11) |
Oslo2, Stavanger (78)

Oslo2 (84)
Stavanger (4)

DBCG Oslo2 Micma Stavanger

Figure 18. Overview of the miRNA coverage in the dataset. Each row represents one miRNA. Each entry represents the intensity
(logio) in a specific sample. Dashed vertical lines separate between samples from the four datasets. Dashed horizontal lines
separate between groups of miRNAs by their dataset availability. Blank (white) entries correspond to miRNAs that are missing
from a dataset.

4.2.2 Batch effects in joint data

We tested for rank-order consistency of miRNA among pairs of datasets (Figure 19). To do so,
we compute for each miRNA the average quantile across all samples belonging in each dataset.
We display the resulting value for each pair of datasets in a scatterplot matrix considering the
miRNAs (n=655) present in all four cohorts. This analysis shows that Stavanger appears to
behave differently than other datasets, presumably due to its fundamentally different
measurement technology (Exiqon LNA (Bartel, 2009) vs Agilent Microarray).
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Pairwise dataset miRNA correlations
DBCG Oslo2 Micma Stavanger
100 100 100

DBCG

Oslo2

Micma

Stavanger

20 60 100

Figure 19. Showing quantile normalized data miRNA expression reproducibility across dataset pairs. Each subplot depicts the
miRNA median expression across samples for a pair of datasets. The upper-diagonal-subplots show percentiles, and bottom-
diagonal shows log2 expression. A second degree polynomial curve is fitted and prediction intervals at confidence level 0.8 are
plotted as dashed lines. Spearman correlation is given for each subplot. Figures at the diagonal show percentile plotted against
expression and a circle represents the dataset colorcode as related to other figures in the paper.

We further visualize the batch-clustering behavior of the unnormalized joint dataset in Figure
20. On the left subplot we present hierarchical clustering of the data. Edges of sub-trees in the
dendrogram are color-coded by the dataset when all leaves belong to samples from the same
original dataset. We observe a visual clustering of colors, especially evident for yellow
(Stavanger) being clustered as an outgroup. In the middle subplot we show a silhouette plot,
depicting the clustering consistency according to dataset. We can see how a substantial portion
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of samples are well assigned to their cluster with large silhouette values, and only a small
portion are mis-assigned, again showcasing how batch effects dominate sample behavior.
Finally, on the right subplot we present a visualization of the sample-wise pairwise Euclidean
distance matrix with dashed lines separating between samples of the same dataset. The block
structure that evidently results from coloring according to distances corresponds well to the
dashed lines separating samples from different datasets. This analysis demonstrates the
prevalence of batch effects in the joint datasets.

Visualizing sample-wise batch effect in the joint dataset

Dendrogram . ) Silhouette plot Pairwise Euclidean distances

DBCG

DBCG
Oslo2
Micma
Stavanger

Oslo2

Micma

Stavanger

-04 -02 0 0.2 0.4 0.6 0.8 1
Silhouette Value

Figure 20. Batch effects in the combined cross-tech miRNA dataset considering the unnormalized data. (Left) Dendrogram with
edges colored by dataset. Note that the tree root is not shown. (Middle) Silhouette plot (Rousseeuw, 1987) showing that most
samples cluster according to the dataset they originate from. (Right) Pairwise Euclidean distances showing a block structure that
agrees with the sample dataset of origin.

4.2.3 Adjusted Quantile Normalization (AQN)
In this section we describe our quantile-normalization-based strategy for analyzing combined
cross-technology miRNA datasets.

Let X be a batch collected, joint dataset. X € R™™ where X (i, j) is the log measured intensity
value of miRNA i in sample j. Let X(:, j) be the j-th sample, corresponding to the j-th column in
X, and X(i,:) be the i-th miRNA, corresponding to the i-th row in X.

Define B(X(:,j)) = k as the experiment batch id during which sample j was collected.
We note the following distinction between missing values in X:

nan miRNA i was not sampled in B(X(:,j))
X(@,j) =7 0 miRNAiwas sampled in B(X(:,j)) but not detected in sample j
>0 otherwise
Let MFP(i,j) = 1if miRNA i is missing from platform B(X(:,j)) = k and MFP(i,j) =0
otherwise (indicates if i is missing in the platform j was measured in).
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Adjusted Quantile Normalization (X):

1. D« X+ N(0,¢) Jitter X to break rank ties.
5 Let P(i,j) = the percentile of D(i, j) within ignored nans in percentile computation.
- DG, ). Note: P(i,j) € [0,100]

Transforms values to the cross-sample-
{D(s,t): P(s,t) =p(i,j)}  median of the corresponding per-sample-
guantile.

median
1<t<m

3. Q)=

4. Q(i,j) =nanif MFP(i,j)=1

A description of this process in words is that it replaces present expression values with the
corresponding median value of all samples within the same percentile. The underlying
assumption is that a measured expression is volatile due to technical differences and
measurement noise, however, (sample-based) percentiles are assumed to be stable up to the
biological differences between samples.

The overall impact of applying AQN to the distribution of expression values and to quantified
batch effects as measured by the silhouette coefficient is further presented in Supplementary
Figure S20.

Packages implementing AQN are available online for Python, R and Matlab in
https://github.com/YakhiniGroup/PyAQN.

4.2.4 Functional experiments
Functional experiments were performed as previously described (Leivonen et al., 2009, 2014)
with the breast cancer cell lines MCF7 and KPL-4. The lysate microarray data measuring
apoptosis in the form of cleaved PARP (cPARP), HER2 and phosphorylated ERK (pERK) protein
levels after 72 hours were previously published (data taken from Supplementary table 2 of the
corresponding publication) (Leivonen et al., 2014). Values +2 x standard deviation (SD) were
considered as significant, which corresponded to a threshold of | 1.96]. For the cell viability
data, MCF7 cells were transfected with the Dharmacon miRIDIAN microRNA mimic library
v.10.1 (20 nM) and incubated for 72 hours. The cell viability was measured with CellTiter-Glo
assay (Promega Corp, Madison, WI, USA) according to manufacturer's protocol. The
experiments were done with two biological replicates. The data were normalized by a Loess
method (Boutros et al., 2006) and log2-transformed. Values +2 x SD, were considered as
significant, which corresponded to a threshold of |0.2]. In both experiments the average of two
different miRNA mimic controls from two replicates was used as negative controls (miRIDIAN
microRNA Mimic Negative Control #1 from Dharmacon and pre-miR negative control #2 from
Ambion).
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4.3 Results
We apply the Adjusted Quantile Normalization (AQN) process to the datasets described in
(Enerly et al., 2011; Aure et al., 2017; Myhre et al., 2010; Tramm et al., 2014) and illustrate the
benefit and effects of the normalization step as related to data properties and to various
downstream analysis steps in the subsections below.

4.3.1 Differential expression reveals novel breast-cancer associated miRNA
We performed a differential expression analysis between clinically relevant subgroups of breast
cancer. We measure differential expression of a specific miRNA on a pair of sample
subpopulations (e.g. ER positive vs ER negative). Fold-change is defined as the ratio (log>)
between median expression of both sets. We apply Wilcoxon Rank-sum 1-tailed test (where the
tail is determined empirically according the sign of the fold-change). Resulting p-values are
corrected across miRNAs using false discovery rates (FDR). Figure 21 showcases our differential
expression analysis results for ER status. In the top scatter plot, we observe that the normalized
dataset presents with more significant results (lower Q-values) for most miRNAs (482/655). The
middle volcano plots illustrate that the increase in significance is not necessarily correlated with
effect size (i.e. fold change), and that we gain confidence on lower effect sizes as anticipated by
a priori power analysis. At the bottom cumulative distribution function (CDF) plot we showcase
again the overall trend of increased statistical significance, contrasted by even lower statistical
significance that would be obtained from performing the differential expression analysis on
each dataset separately (shown as dashed lines). In addition, we present the CDF plots that
would be obtained by (individually) applying four commonly used normalization methods
(shown as dotted lines). Evaluated normalization methods include:

® Mean ratio: scales each sample by dividing it by its mean intensity.

® Median subtraction: subtracts the median of each sample, then sets the minimum of
each sample to the (global) minimum across samples.

e Vanilla quantile: MATLAB's implementation of Quantile Normalization also known as
Quantile Standardization (Amaratunga and Cabrera, 2001).

e ComBat (Johnson et al., 2007): empirical Bayes batch effect mitigation employing a
design matrix that includes dataset batching along with clinical labels and status of
Tumor grade, Subtype, ER, PR, HER2 and TP53.
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Figure 21. Differential miRNA expression between ER positive and negative. Title contains sample size details and dataset
distribution (Top) A scatter plot of differential expression p-values (-logio, Wilcoxon Rank-sum) for the unnormalized (x) vs
normalized (y) joint dataset. (Middle) Volcano plot showing the fold change and corresponding Wilcoxon Rank-sum FDR
corrected Q value ratio between the normalized and unnormalized datasets. High absolute values in X axis correspond to
substantial difference in median expression between ER negative over ER positive samples (for a particular miRNA). High values
in Y axis correspond to miRNAs that present substantial difference *after* normalization but not before. Low values in Y axis
correspond to miRNAs that present substantial difference *before* normalization but not after. Vertical dashed lines represent a
Fold change threshold of 2x (log2(2)=1) and horizontal dashed lines represent a Q-value threshold of 0.05 (-log10(0.05)=1.3)
(Bottom) a CDF plot showing many more substantially differentially expressed miRNAs after normalization (red line) than before
normalization (blue line), and substantially more than would be expected at random (compared to 20 random permutation of
labels, dashed black lines). Also shown are dashed colored lines corresponding to each appropriate single-dataset Q values
exemplifying the advantage of a joint-dataset analysis.

In Figure 22 we demonstrate the impact of normalization on single miRNAs (hsa-miR-190b, hsa-
miR-18a-5p) across samples and distinguish between differently labeled samples according to
ER status. Previous studies (Cizeron-Clairac et al., 2015) have shown hsa-miR-190b to be linked
to ER status and further suggested its use as a potential biomarker. Similarly, hsa-miR-18a-5p is
an oncogene and prognostic biomarker (Zhou et al., 2018). As we have shown in the volcano
plot in Figure 21, hsa-miR-190b would not have been identified as differentially expressed in ER
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positive vs negative samples prior to normalization. Similar plots for the top 40 differentially
expressed miRNA (post-normalization) are available in the Supplementary materials.
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Figure 22. Differential expression behavior of single miRNA. (Top - hsa-miR-190b, bottom — hsa-miR-18a) across datasets and
samples for a specific clinical label (estrogen receptor (ER) positive (pos) vs. negative (neg). (Left) Expression values (log;) of each
sample before quantile normalization. Samples are ranked by ER status label, then by dataset and finally by ascending
expression value. Top-Unnormalized joint dataset. Bottom-Normalized joint dataset. (Right) Actual vs expected (via a uniform
null model) rank distribution of ER negative (neg) vs positive (pos). Diagonal straight lines bounding a polygon represent a null
uniform distribution of positive and negative samples (when ranked by expression value). The colored surface represents
deviations from a uniform distribution. The boundary of the surface is calculated by the cumulative number of ER negative (x
axis) vs ER positive (y axis) samples in the ranked (descending) expression vector. Top-illustrating the rank distribution per-
dataset (without normalization). Bottom-comparing the joint-dataset distributions when ranking before or after normalization.

When inspecting the differential expression results of all normalization methods, the
unnormalized data and each dataset separately, there are 33 unique miRNAs that are only
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shown as significantly (Q value < 0.05) differentially expressed in ER positive vs ER negative as
identified by our normalization method (Supplementary Figure S21). Contrastingly, other
approaches yield far fewer significantly differentially expressed miRNAs. Of the 33 miRNAs
uniquely detected by our method, we present four in Table 3 that have fold change greater
than 0.15 (absolute log, > 0.15, i.e. > 10% change between median ER positive and negative
expression).

miRNA Q-value Fold Change (log:)
hsa-miR-601 0.048 -0.18
hsa-miR-424-3p 0.0003 -0.17
hsa-miR-936 0.027 -0.15
hsa-miR-193b-5p 0.0002 0.19

Table 3. Top differentially expressed miRNA. We present miRNA detected by applying AQN normalization on the joint dataset
and not detected by other approaches.

To study any functional significance of these top differentially expressed miRNAs between ER
positive and ER negative tumors, we performed miRNA gain-of-function studies in the ER-
positive MCF breast cancer cell line. Here, cell viability was measured as an endpoint after
overexpression of the miRNAs. Indeed, one of the miRNAs, hsa-miR-193b-5p, showed a
significant reduction in cell viability compared to miRNA negative controls (Figure 23).
Furthermore, we looked into data from another functional experiment previously published
(Leivonen et al., 2014) in the HER2 positive breast cancer cell line KPL4 and here we found that
hsa-miR-193b-5p induced apoptosis (as measured by the levels of cleaved PARP), and
downregulated the levels of HER2 and phosphorylated ERK upon overexpression. Altogether,
these results suggest that miR-193b-5p may exert a tumor-suppressor function in breast
cancer, both in an ER+ and a HER2+ context. Interestingly, the other miRNA originating from the
same precursor, hsa-miR-193b-3p has been previously shown to directly target ESR1 mRNA and
is thus a direct regulator of ER (Leivonen et al., 2009).
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Figure 23. Functional analyses on uniquely identified miRNA. Breast cancer cell lines were transfected with miRNA mimics
(20nM) and assayed for functional effects 72 hours after transfection. a) Cell viability measured in MCF7 breast cancer cells. b)
Apoptosis measured by levels of cleaved PARP (cPARP), HER2 and phosphorylated ERK (pERK) protein levels measured in KPL4
cells. The dashed lines indicate cut-off points that were considered significant (see Methods). Asterisks denote significant
effects. Original data from b) are taken from (Leivonen et al., 2014).

Further investigation of the three other top differentially expressed miRNAs shows prior
evidence linking them to cancer. hsa-miR-601 is a known prognostic marker and potential
tumor-suppressor in breast cancer (Hu et al., 2016). hsa-miR-936 was identified as a potential
tumor-suppressor miRNA in ovarian cancer (Li et al., 2019).

4.3.2 Joint analysis with mRNA data
A similar pipeline to the one described in section 2 (Dataset pre-processing and coverage) was
used to parse mRNA data, using Limma.

We want to assess the effect of normalization on the results of enrichment analysis as
performed using both mRNA and miRNA data. To this end we first form a ranked list of
transcripts as follows. For each miRNA, u, we rank all mRNAs according to the (ascending)
Spearman correlation between the miRNA expression pattern across the entire dataset and the
MRNA expression pattern across the entire dataset (paired on matching samples). We denote
the resulting ranked gene list, with u as a pivot, as G,.

4.3.3 Effect on gene target enrichment
For the first analysis we investigated the impact of normalization on correlations between
miRNA and the expression levels of their expected mRNA targets. We expect stronger negative
correlation after normalization to direct gene targets. To validate this hypothesis, we applied a
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non-parametric, rank-based analysis using the MiTEA (Eden et al., 2009b; Steinfeld et al.,
2013a) approach. MiTEA is used to evaluate the statistical association between G, and C;,
where C; is a ranked list of genes wherein the ranking is based on the affinity of the gene as a
target candidate for the miRNA A, taken from TargetScan (Agarwal et al., 2015). For each prefix
I15(C;) of B most-prominent candidate targets in C;, MiTEA produces a binary vector,

B(u, A, B), such that, g;, the i-th gene in G, is “1”if and only if it is in the candidate prefix, i.e.
gi € llg(C;). MIiTEA then computes an approximate minimum hypergeometric (mHG (Eden et
al., 2009b, 2007)) P-value to quantify whether the B proposed targets are enriched at the top
of the G, list or not. Finally — MITEA applies an FDR correction (using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995)) across evaluated As and reports the set of miRNAs
associated with the ranked target list G, and their associated Q-values.

We declare a matching if MiTEA returns a significant (< 0.05) Q-value when 1 = u. To
recapitulate, a matching occurs when the prominent predicted targets of u are enriched at the
top of the list of genes ranked (in ascending order) according to the rank correlation (across
samples) between their mRNA levels and the expression levels of u. When applying this
procedure on a non-normalized miRNA expression we find no matchings. When applying the
same procedure on normalized data we find 6 matchings as detailed in Table 4. For each
matched miRNA we also provide supporting evidence of several studies describing its role in
breast cancer.

Corroborating

studies
hsa-miR-29b 1.28E-08 1.73E-06 (Kwon et al., 2019; Wang et al., 2011; Shinden et al., 2015)
hsa-miR-106b ' 1.96E-06 1.11E-04 (Nietal., 2014; Lee et al., 2019; Zheng et al., 2015)
hsa-miR-200b 1.06E-04 5.54E-03 (Yeetal., 2014; Yao et al., 2015; Zheng et al., 2017)

miRNA P-value Q-value

hsa-miR-30d | 4.38E-04 1.19E-02 (Zhang; Yang et al., 2017)
hsa-miR-96 9.02E-05 1.53E-02 (Hong et al., 2016; Xie et al., 2018)
hsa-miR-182 | 4.58E-04 4.43E-02 (zhang et al., 2017; Chiang et al., 2013)

Table 4. Resulting MIiTEA matchings on normalized miRNA expression.P and Q values are color coded by magnitude where from
green (more significant results) to red (less significant results). None of these statistically significant associations between pivot
miRNAs and their targets is observed when using the raw, un-normalized data. Nor is any other matching miRNA target
enrichment observed in the unnormalized data.

We show one such analysis in detail for hsa-miR-29b in Figure 24. Here we follow MIiTEA’s
approach to obtain a statistical assessment of target enrichment for u = A = hsa-miR-29b and
B ={1, ...,|C;|} binary vectors B(u, A, B). We present the results on various Bs and the
optimal B* for both unnormalized and normalized miRNA expression.
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Enrichment analysis of hsa-miR-29b TargetScan
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Figure 24. Impact of normalization on the correlation between hsa-miR-29b expression and its in-silico predicted targets
according to TargetScan. Top) Normalized miRNA is more negatively correlated to the prominent hsa-miR-29b targets in
TargetScan as evident in stronger enrichment values. Bot) Scatter plot of spearman correlation on normalized miRNA or
unnormalized miRNA expression. If the target mRNA appears in TargetScan it is highlighted in orange. The marginal
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distributions and corresponding Kolmogorov-Smirnov test p-values are displayed showing an overall lowered correlation for
TargetScan candidates on normalized data.

4.3.4 Effect on Gene Ontology (GO) enrichment
We applied GOrilla (Eden et al., 2009b) to identify gene ontology enrichment in G, on both
unnormalized miRNA expression and on normalized miRNA expression. Given a ranked list G,
GOrilla produces a binary vector ‘B(gw a)) for each gene ontology term, w, in which a gene is
labeled as binary ‘1’ if it belongs to w. Next, GOrilla computes mHG p-values, correcting them
across GO terms. Figure 25 is a scatterplot comparing between our results on unnormalized and
normalized hsa-miR-29b lists. The findings from this analysis are in line with previous studies
that have linked the miR-29 family with tumor growth and metastasis (Wang et al., 2011; Luna
et al., 2009; Liu et al., 2017).

GOrilla enrichment analysis
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Figure 25. GOrilla enrichment analysis comparison of results before and after miRNA normalization. Right) Top 2 percentile of
results by Normalized-Unnormalized Q-value (-logio)
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4.4 Discussion
We have presented an integrative analysis technique and applied it to jointly analyze human
breast cancer miRNA expression datasets spanning different studies and utilizing different
measurement technologies. Our approach is powerful in its ability to increase statistical power
without apparent adverse effects on precision, as exemplified by several downstream tasks.
Our normalization method (AQN) is based on a slight adaptation to standard (a.k.a. vanilla)
guantile normalization. Vanilla quantile normalization averages values across samples with the
same rank, while our method averages values across samples within the same percentiles
(computed per sample). This has the effect of lowering the impact of within-quantile noise
when computing rank-based statistics. Additionally, our method is defined consistently for
normalizing samples with partial miRNA overlaps.

Correctly applying AQN requires a basic understanding of the impact it has on downstream
statistics. In this work we focused on applying nonparametric rank-based statistics to
downstream analyses. While not deemed a best practice, our normalization approach admits to
parametric analyses as well. Further discussing parametric analysis is out of scope for this work.

We distinguish between Sample-wise (a.k.a. column-wise) and miRNA-wise (a.k.a. row-wise)
impact. Sample-wise, we apply a monotonic transformation of raw expression values per
sample which should not affect rankings of miRNAs within each sample. As we observe in
Supplementary Figure S22, Left we see these samples almost fully correlated before and after
normalization. The minor differences are owed to two effects — jitter and quantization. Jitter
can swap miRNA ranks within a sample, especially for miRNA with low expression compared to
our jitter scale. We pre-process the data by min-max normalization and select a jitter scale such
that ranks are mostly unaffected by jitter. A stronger impact is due to quantization which
replaces values within the same percentile with a cross-sample median, creating ties.

miRNA-wise there are no guarantees of monotonicity, as evident in Supplementary Figure S22,
Right and as shown in improved results for analyses such as differential expression in section
4.1.

4.4.1 Comparison to per-dataset analysis
When comparing downstream analyses of the normalized joint dataset with per-dataset
analyses we observe stronger p-values, yielding more statistically significant candidates after
applying multiple hypothesis correction procedures. In Figure 21, bottom we illustrate this
result through a shift in the cumulative distribution of Wilcoxon Rank-sum FDR corrected Q-
values calculated for the differential expression of ER positive and negative samples. In Figure
26 we present a per dataset variation of the analysis as related to Figure 21, Middle. We
observe that some miRNA exhibit a tradeoff between higher absolute fold-change and higher
rank-sum -logio Q-values. For example observe hsa-miR-135b that has > —8 X fold change for
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Stavanger, but at a fairly low -logio Q-value < 4 while after joint analysis it yields only > —2 X
fold change but at -logio Q-value > 18.
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Figure 26. Per dataset Volcano plot of Differential Expression. Showing ER positive vs negative from Figure 21 Compared to joint
normalized data.

4.4.2 Statistical power analysis on the impact of increasing sample size
One of the main motivating reasons for jointly analyzing datasets collected in different places,
times and possibly using different measurement technologies is the fact that the combined
dataset supports higher statistical power.

We present a theoretical statistical a-priori power analysis (Faul et al., 2007) to put in context
the advantage of jointly analyzing the datasets investigated in the current work. Remember
that power is used in statistics to quantify the recall of a statistical test, i.e. the probability of
correctly rejecting the null hypothesis. The test evaluated in this analysis is Wilcoxon rank-sum
as applied for our differential expression analysis in section 4.1. Power is only meaningful in the
context of an expected effect size, as larger differences and less variance in samples implies a
smaller sample size is required to decide there is a difference between two populations. For the
purpose of this analysis we assume allocation ratio =1 (i.e. equal group sizes), while in the ER
examples shown in Figure 27 actual ratios of Negative vs Positive ER samples are 0.44, 0.24,
0.63 0.23 and 0.32 for DBCG, Oslo, Micma, Stavanger and Joint, accordingly — further reducing
expected power.
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Ranksum a-priori one-tailed power test
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Figure 27. Statistical power as a function of sample size and expected effect size (measured in Cohen’s d (Cohen,
1977)).0verlaid in squares and triangles are effect sizes, d, for the differential expression of hsa-miR-106b and hsa-miR-135b,
accordingly, in ER positive vs ER negative samples as estimated empirically over the joint dataset on non-normalized data.
Power values are estimated via (linear, 2D) interpolation on different dataset sizes.

4.4.3 Summary of contribution and next steps
Overall, we provide multiple lines of evidence for the advantageous joint analysis of miRNA
expression using nonparametric statistics. Our analysis yields potential novel biomarkers as
exemplified by hsa-miR-193b-5p and its potential tumor-suppressor role in breast cancer. While
these results require further validation, our approach provides directions to statistically
prominent candidates for follow up studies to pursue.
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4.5 Chapter Supplementary Materials

Supplementary Methods
Supplementary 1 — Joint one-colored and two-colored analysis.

Stavanger dataset contains a second color with pooled samples deliberately left out of our
analysis. Our downstream statistics are rank-based, assuming that, within a margin of error,
identical samples measured with different technologies produce similar ranked miRNA vectors.
Normalized Stavanger data using a pool reference second channel would cause substantial re-
rankings. E.g. housekeeping, or constitutive miRNAs that are highly expressed would effectively
“cancel out”, and differently expressed miRNAs compared to the background would emerge
instead. Therefore, to avoid an apples-to-oranges comparison, we decided to neglect the
background expression data available in Stavanger from our analysis.

Supplementary Figures
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Figure S20. Normalization impact on per dataset distributions Top) Kernel density estimates of each sample colored by their
corresponding dataset. The resulting normalized distribution is overlaid in black. Bottom) Impact of normalization on per-sample
silhouette coefficient measured for clustering by dataset. 602/745 samples have lower silhouette coefficients after

normalization in comparison to before normalization, demonstrating an overall alleviation of batch effect per dataset. Marginal
distributions are shown to highlight differences between datasets.
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Venn diagram of #miRNAs detected as significantly
differentially expressed (ER positive vs negative) after normalization
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Figure S21. Venn diagram of differentially expressed miRNAs surfaced by different normalizations. We observe a larger set of
unique miRNAs detected by our normalization approach compared to other approaches.

Rank correlations before vs. after normalization
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Figure S22. Correlations before and after normalization.Histograms of Sample-wise and miRNA-wise Spearman correlation
coefficient (p) between expression before and after normalization.
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Chapter 5:

Discussion

In this thesis we have developed computational approaches for studying genomic spatial
structure and properties. We demonstrated the applicability of our methods to biological data
and described our findings, which, pending additional experimental validation, may offer novel
biological insights. In the following chapter we summarize the algorithms detailed above offer
additional observations and characterize possible extensions of them by outlining future

research directions that may continue our work.

In Chapter 2 we presented an algorithmic framework to jointly completing a partial-haplotyping
and demultiplexing Hi-C reads from homolog chromosomes in diploid organisms. We applied
our approach to available ground-truth biological data to showcase its performance comparing
to naive approaches. Our approach is based on a novel sequence mapping algorithm which
softly assigns reads to the correct compartment in the Hi-C diploid chromosomal adjacency
block matrix by considering SNPs overlapping a sequencing read. We denoise the resulting Hi-C
adjacencies by dimensionality reduction and use a simple, but optimal, decoding schema to
assign each homologous pair of blocks a binary identity. The binary identity is assigned to

effectively phase the blocks into their homolog chromosomal copies by maximum likelihood.

A natural extension of this work would be to add support for higher-ploidy organisms. One can
consider replacing our argmax decoding algorithm with a dynamic programming one such as
Viterbi to that end. Another direction worth exploring is in depth analysis of the impact of
phasing Hi-C data on 3D modeling of genome conformation, co-localization including validating
reproducibility of results observed in Hi-C studies which ignore the phasing problem, etc. A
third direction of interest is resolving the need for a fixed binning resolution of Hi-C data which
we determined by hyperparameter optimization aimed at yielding optimal phasing due to the

tradeoff between sparsity when using small bins and averaging effects when using large bins.
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In Chapter 3 we revisited our earlier work on spatial co-localization (Ben-Elazar et al., 2013b) to
devise improved methodologies of identifying spatial co-localization using more rigorous
definitions and algorithmics. Using this new approach developed herein we are able to better
detect whether a given binary property on a set of points exhibits 3D spatial co-localization,
manifested as convex compartments with many target elements and few background elements.
We guantify co-localization using a non-parametric statistical model, the minimum
hypergeometric. By ignoring distances and considering ranks mHG offers an appropriate scale-
free interpretation of the embedded conformation. We note that this is an appropriate
approach considering our embedding methodology, NMDS (Seber, 1984), optimizes for rank-
consistency rather than distance measurements. An additional advantage of focusing on ranks
rather than distances is that the search space of possible compartments that one needs to

consider becomes finite, and as we show in fact polynomial in the number of input points.

It is worth noting the apparent connection between our definition of the co-localization
problem and a well-studied NP-hard problem, maxFS - maximum feasible subsystem (Amaldi
and Kann, 1995). In spatial-mHG, we seek the minimal mHG score across tessellation cells
induced by linear inequalities corresponding to the bisecting hyperplanes of pairs of differently-
labeled input points. In maxFS we are interested in finding a solution to satisfy a maximal
subset of a given set of linear inequalities. Spatial-mHG might be formalized as a more refined
optimization problem, where we may in fact prefer a solution that forgoes satisfying several
constraints that were induced by distant point pairs, in favor of satisfying few constraints that
are induced by nearby point-pairs. We have thus far been unable to find a direct reduction from
maxFS to spatial-mHG, however, this relaxation appears to make spatial-mHG at least as hard, if
not harder than maxFS. It is possible that some approximation schemes that apply to maxFS
could apply to spatial-mHG and may be used to initialize a solution, or when time constraints do

not permit more extensive search.

During our work we have also explored approaches based on optimization algorithms to more
efficiently traverse the bisector tessellation space. Our experiments show that the overhead of
relatively optimized data structures has overall underperformed compared to sampling cells
uniformly with replacement. However, we propose that a hybrid approach which quickly finds a
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local minimum and then applies local search methods on its neighbors (e.g. discrete gradient

descend) might empirically outperform our current approach.

Other directions to extend our work include: statistics to support target sets, e.g. in a polyploid
organism there are multiple copies of each gene. We may not care which copy of each set is co-
localized and want to reflect this in our search. Spatial co-localization for non-binary properties,
e.g. we present an analysis on Pombe CGH data that required binarization to admit to our

methodology. We could consider extending our work to support this input directly, for example

using mmHG (Steinfeld et al., 2013b).

In chapter 4 we present an adaptation of quantile normalization applied to integrative analysis
of four miRNA expression breast-cancer datasets. In this work we attempted to overcome
several challenges in jointly analyzing four miRNA datasets: partial miRNA target overlap, strong
batch effects due to the technological differences between collection platforms and correctly
interpreting normalized measurements in downstream statistical analyses. To overcome partial
miRNA target overlap we devised an adaptation to quantile normalization that acts on
percentile-binned rather than rank-binned miRNA expression. Our analysis provides evidence
that our normalization is capable of detecting statistically consistent differences at smaller
effect size than several standard methods, however this is by no means an exhaustive list of
normalization approaches, nor is it necessarily consistent across datasets. A more rigorous
understanding of the effect of different normalization approaches to different data
distributions and edge cases (outliers) is necessary to fully characterize and assign
normalization-approach-to-dataset and to analysis task. One direction to extend our work is to
compare with more normalization techniques and on other integrative datasets. We have also
deferred several downstream analysis tasks on available data to follow-up papers, including but
not limited to measuring impact on correlation between miRNA expression and copy number,
inclusion of more related miRNA expression datasets, such as TCGA, inclusion of more mRNA

datasets in the mRNA validation section.

Overall, this thesis embodies computational approaches to analyze properties of genomes

ranging from methodology to statistically analyzing their folding in space to improving the
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interpretability of measured expression for miRNA of cancerous genomes. With the rise of
more methods to measure genomes and increase in data availability, our approaches promise

to aid in correctly interpreting and basing conclusions as we have shown in this work.
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Acronyms

3C — Chromosome Conformation Capture
2D/3D - two/three dimensional

AQN — Adjusted quantile normalization

TF —transcription factor

ER — Estrogen receptor

GEO — Gene expression omnibus

Hi-C — High-throughput Chromosome Conformation Capture
RNA - ribonucleic acid

MRNA — messenger RNA

mMiRNA — micro RNA

nan — not a number

MFP — missing from platform

SNPs — Single nucleotide polymorphisms

MHG — minimum hypergeometric

smHG — Spatial mHG

SD —standard deviation

MmMHG — minimum-minimum hypergeometric
maxFS — maximum feasible subsystem / subset
CGH — comparative genomic hybridization

TCGA — the cancer genome atlas
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Figure 1. Comparing functional enrichment between the genomic and spatial regions of the genome. (A) Two genomic
distances. The schematic shows the gene neighborhood surrounding a particular gene (red). The neighboring genes may be
ranked by their genomic proximity (left) or their spatial proximity (right). (B) Detecting areas of enrichment for TF-cohorts. In
ranked gene lists, generated by either genomic or spatial proximity, the genes annotated as targets of a particular TF are
indicated as black lines. The p-value of the enrichment of the targets for each threshold is indicated on the right. The threshold
with the best p-value is indicated by the dashed line (see Methods). This analysis is shown for two genomic loci surrounding
genes YCLO12C and YHLO50C respectively and querying for targets of GLN3. (C) Local structures of the two loci examined in B.
Colors indicate distinct yeast chromosomes. The red circles indicate the center gene around which co-localization was tested.
The center genes shown are YCLO12C (top) and both YHLO50C and YHLO50W-A (bottom). The content shown in each sphere is
the environment which corresponds to the mHG threshold, dictated by the most enriched spatial environment for GLN3 targets.
Bars on the right mark the loci along the linear genome which participate in the most enriched environment by both the
genomic and spatial rankings. Black dots, both in the bars and the visualized structure, indicate gene targets of GLN3.
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Figure 2. example of spatial co-localization identified by our method. Left: SNMDS embedding for S. pombe with colour coded
chromosomes. Middle (animation available as Supplementary Video 5): Bins are colour coded by average aCGH value, with
marked outliers (opaque red for Z>2 and blue for Z<-2). We can observe a weak duplication signal on Chrll, and deletion on Chrl,
Chrlll. Strongest duplication is evident at the telomeres. Right (animation available as Supplementary Video 6): Red bins contain
Loz1 transcription factor targets. The resulting smHG pivot and corresponding ball are visible containing 4/6 TF targets.
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