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1 Abstract

This dissertation embodies two separate research projects with a common goal - exploring gene
regulation. In Biology, gene regulation encompasses a broad field which attempts to describe the
molecular interactions between various cellular factors that conspire to silence or activate the
machinery in charge of compiling a gene from its source code — the DNA, to an executable
thread — Protein, which in turn works in cohort with other active machinery in the cell to
determine the organism’s phenotype. In the first project, we examine the environment’s’ effect
on gene regulation through the lens of evolution, comparing gene expression of 5 strains of the
nematode C. elegans grown in 5 different mediums. We use robust statistical methods to show
that highly regulated genes, as distinguished by intergenic lengths, motif concentration, and
expression levels, are particularly biased towards genotype-environment interactions.
Sequencing these strains, we find that genes with expression variation across genotypes are
enriched for promoter SNPs, as expected. However, genes with genotype-environment
interactions do not significantly differ from background in terms of their promoter SNPs.
Collectively, these results suggest that the highly-regulated nature of particular genes predispose
them for exhibiting genotype-environment interaction as a consequence of changes to upstream
regulators. This observation may provide a deeper understanding into the origin of the
extraordinary gene expression diversity present in even closely related species..

In the second project, we take a pragmatic approach and provide an analytical framework of
exploring both the structure of DNA and of detecting spatial co-localization of genomic markers.
We go on to deploy this framework and provide a 3D structural model of the Saccharomyces
Cerevisae genome, and use it to provide evidence of widespread co-localization of the targets of
cellular factors, termed Transcription Factors (TFs). We also describe additional work aimed at
exploring the space of structural conformations of the genome in an attempt to cluster chromatin

conformations.

2 Abbreviations

3C — Chromatin Conformation Capture
MDS — Multidimensional Scaling
mHG — Minimum hypergeometric
MSE — Mean square error



TF — Transcription Factor

3 Introduction

3.1. Background

This thesis focuses on computational tools designed to studying gene regulation and their
application in two different types of domains.

The relative ease by which DNA and RNA can be determined using sequencing
technologies has revolutionized our understanding of gene regulation. On one hand, this has led
to the identification of massive amounts of gene expression changes across different strains or
species, and various environmental perturbations (1-5). On the other hand, the particular
conformation of the genome, which determines in turn its regulatory state (6-10), is steadily
being elucidated in different conditions (11,12) at specific loci (13,14). New experimental
methods (15) now enable the systematic unbiased exploration of these observations. In
particular, chromosomal conformation capture (3C) followed by high-throughput sequencing has
produced a quantum leap in our ability to globally model genomic structure. Using this approach
and its derivatives, the genomic structure of S. Cerevisae, S. pombe, D. melanogaster, and

human has been determined for particular conditions.

3.1.1. Gene-environment interactions

A genotype-environment interaction occurs when the effect of a genetic locus on expression is
different in magnitude or direction across environments (16). As an example of a genotype-
environment interaction, consider a gene induced under heat relative to non-heat in one
geographical isolate but uniformly expressed in both conditions in another isolate (Figure 1A).
Intuitively, the interaction arises since the environmental expression profile across genotypes is
not different by a global factor but rather different for particular environments. While, genomic
sequences are now readily available, predicting the effect of specific mutations on gene
expression profiles presents a formidable problem. An even bigger systems biology challenge is
to predict the effect of a mutation for different environmental conditions, thereby predicting

genotype-environment interactions at the level of gene expression.
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Figure 1 A systematic examination of gene expression variation across genotypes and environments.

(A) The measured gene expression levels across the 5 genotypes and 5 environments are shown for the scrm-4 gene. For
each pairing, the colors in the periphery and center of the circle indicate the triplicate data and mean, respectively. Note
the genotype-environment interaction. (B) Expression profiles for 50 other genes are shown in the same format. (C) Venn
diagram indicating the number of genes with significant variation across genotypes (genotypic), environments
(environmental), as well as genotype-environmental interactions (non-additive variation). These sets were delineated
using two-way ANOVA with a threshold for significance established by randomization experiments (Figure S12).

Genotype-environment interactions have been identified at the level of a handful of genes
and the genome, for single- and multi-cellular organisms, and across both strains and species
(1,17-21). In particular, evidence has been provided for the notion that much of the observed
gene expression variation within a species is due to changes at distant genomic positions (trans
changes) (17-20,22). Furthermore, work in yeast has shown that genes with high expression
plasticity tend to have a TATA-box in their promoter (4) and also a nucleosome occluded
upstream region (23). However, it is not well understood how such trans effects targeting
particular genes contribute to genotype-environment interactions. In the first work, we describe

an investigation into the genomic properties of genes exhibiting genotype-environment
interactions.

3.1.2. Chromatin structure

The initial analyses of 3C datasets have already led to insights into the structure of the genome,
including the fractal nature of the human genome (24), the centromere co-localization and Rabl
conformation in brewer’s yeast (25), the proximity of functionally related genes in fission yeast
(26), and the physical demarcation of chromosomal domains in Drosophila (27). The ability to

measure genomic architecture in three dimensions (3D) provides an opportunity to address long




standing questions involving how genomic structure encodes the phenotype and addressing these
will require new computational tools with an appropriate framework for analysis.

Of particular interest is the notion of nuclear transcription factories, and their role in establishing
the regulatory states that underlie physiological stages. Most gene targets of S. cerevisiae
transcription factors (TFs) have been determined with high confidence, revealing an average of
70 gene targets per TF (28,29). Coupling this data with genome structure enables the study of the
co-localization of TF targets. For example, are the targets of the same TF co-localized to the
same spatial arrangement as the transcription factory model suggests? Under which conditions
does such co-localization occur? Previous analyses have addressed this question leading to
contradictory results. Dai and Dai compared the number of interactions in different gene sets and
observed statistical enrichment under the hypergeometric null model for interactions among TF
targets (30). However, Witten and Noble argued that edges in the 3C interaction graph are not
statistically independent, as was assumed by Dai and Dai, and as such co-localization events
would be over-counted (31). To correct for this, Witten and Noble applied a re-sampling
methodology under which no signal for TF target co-localization was detected.

Importantly, while the previous studies treated genomic proximity differently than spatial
proximity, this was done by examining only inter-chromosomal distances. In additional, the
spatial organization of the genome was not directly compared to the primary gene order in terms
of their respective functional enrichment. This latter point is important since genomic analyses
have revealed that neighboring genes tend to have similar expression profiles (32). Furthermore,
genes with housekeeping functions in particular tend to be co-positioned along chromosomes
(33). In particular, gene targets of the same TF are enriched for proximity in their genomic order
(34). Thus, controlling for the genomic clustering is crucial for unbiased evidence regarding the
degree to which the spatial clustering contributes to regulating functionally related genes.

Here we introduce a statistical framework for modeling chromatin structure and assaying the
spatial proximity of functionally related genes while controlling for effects from linear co-
localization along the genome. Our analysis is more subtle and flexible in refining gene sets for
detecting the optimally clustered subset and defines enrichment environments more loosely
based on this subset. Additionally, we apply a direct approach for controlling against results that
may have emerged primarily from genomic proximity thereby focusing our results on the

phenomenon of spatial co-localization. We applied this approach on a model of the genomic
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structure generated using a method for the interpolation and the embedding of 3C data that
circumvents observer bias by relying on a minimum set of assumptions. Our results indicate that
for most TFs, the targets are significantly more co-localized in space than they are co-localized
in genomic loci. We further found that TFs with spatially co-localized targets are also expressed
higher under the same measurement condition, suggesting that regulatory activity is correlated
with the presence of transcription factories. As more genomic structures are produced our

method promises to be of importance to the study of transcription factories.

3.1.3. Open challenges in analyzing chromatin physical conformation

Recent attempts at modeling chromatin structure (24,26,35) have been prone to observer bias as
state-of-the-art methods are based on solving a constrained optimization problem with a mostly
arbitrary rule-set. The problem with such methods is that they tend to rely on an underdetermined
set of equations with infinitely many possible solutions, or local minima, sometimes completely
different from one another but with equal scores in their given target function. To resolve this
issue, most approaches are to fall back to generating a torrent of such possible structures and
comparing them for locally isomorphic patches. These patches are then heuristically assembled
to a single structure. A different problem is systematically inspecting the co-localization of
genomic annotations, e.g. functionally related genes, early replication genes, tRNA genes. The
solutions for this problem tend to rely on the raw data, comparing the population of
dissimilarities between the annotation group and the background. These methods are inherently
prone to non-specific events and outliers and are not sensitive enough to detect significant effects
that are localized to a particular subset of the annotation group. Additionally, these methods do
not control for a known phenomenon which could potentially bias such observations of co-
localization which stem from observed genomic clustering of functionally related genes which

can arise from tandem duplications, for example.

Overall, the following major challenges in exploring gene conformation require consideration:

o A data-driven approach to genome modeling is required, along with a metric (such as
MSE) to measure the quality of the model, and thus, the data.

o A need for a robust and sensitive statistic to measure an exact P-value for co-localization

in the genome.



o An internal control for the known genomic clustering of genes.

o A method which can be shown to avoid false positives using a negative control.

3.1.4. Overview

The rest of this manuscript is divided into two main parts: in section 4 (Methods) we develop the
framework for studying both Gene-environment datasets and characterizing genes by their 2-
dimensional profiles which we apply to data we collected from C. elegans, and the framework to
model and study the structure of genomes which we apply to a dataset published for S.
Cerevisae. In section 5 (Results) we describe novel biological findings that were obtained by

applying our method to biological data.

4 Materials and Methods

4.1. Gene-environment interaction

4.1.1. Compiling a Gene-environment dataset

4.1.1.1. Strains and conditions. The five C. elegans strains used in this study are
previously collected geographical isolates. N2 was originally collected by L.N. Staniland from a
mushroom compost near Bristol, England (36) and is the standard lab strain used in C. elegans
research (37). CB4857 was collected from mushrooms in Claremont, California by E.M.
Hedgecock (38). RC301 was collected in 1983 by R. Cassada from a compost heap in the
Botanical Garden of the University of Freiburg in Germany (38). CB4856 was isolated from a
pineapple field in Hawaii in 1972 by L. Hollen (38). AB2 was collected from soil in Adelaide,
Australia by D. Riddle and A. Bird (38). The strains were propagated under control conditions:
nematode growth medium (NG) with B. subtilis as a non-pathogenic food source. Embryos were
collected by bleaching and ~2000 were placed into each of 5 conditions: 1) Control: 20°C with
B. subtilis on NG plates; 2) Heat: 25°C with B. subtilis on NG plates, 3) pH/Salt/E. coli: 20°C
with E. coli on high salt (4x regular NG) and high pH (8.5 relative to pH of 6 for NG) plates; 4)
Liquid culture: 20°C with B. subtilis in S-medium in a shaker incubator; and 5) Pathogen: 20°C

with M. nematophilum on NG plates. B. subtilis was used here as the standard food source in all



but one of the conditions since it is preferred by C. elegans relative to the E. coli OP50 strain
(39).

4.1.1.2. Embryo collection and RNA processing. Four-cell stage embryos were isolated
by mouth pipette (40). Each sample comprised 50 pooled embryos. For each
genotype/environment combination there were triplicates, thus the dataset comprises 25*50*3 =
3,750 individually isolated embryos. RNA was isolated using Trizol as previously described.
RNA was amplified using the Ambion MessageAmplI for two rounds in order to produce
sufficient quantities for microarray analysis. mMRNA was isolated, amplified, and hybridized

along with Agilent Spike-ins onto one color microarrays as previously described (41).

4.1.1.3. Gene expression. We designed a custom 15K C. elegans microarray which was
then manufactured by Agilent. The 60-mer probes were determined using OligoWiz2 (42) to
target the coding region based upon the following factors: melting temperature, position along
the transcript, folding potential, low-complexity in the sequence, and cross-hybridization to other
coding sequences. The probes were also restricted against spanning splice junctions to avoid
missing transcripts due to errors in gene structure predictions. For each gene, the best scoring
probe with no significant match in other coding sequences (E-value < 0.001) was selected. This
procedure yielded 16,831 gene-specific probes out of the total 20,074 genes searched. We then
selected the 15,208 best scoring probes for the microarray. Data was extracted using Feature
Extraction (Agilent). The raw data was normalized using quantile normalization. Analysis was
done on log;o of the normalized data. The complete data set and array platforms have been
deposited in the Gene Expression Omnibus with accession codes GSE34650 and GPL15046. The
data is also available in Supplementary Table 5.

4.1.14. Genome sequencing of C. elegans strains. The strains RC301, CB4856,
CB4857, and AB2 were sequenced so that together with the previously published strain, the N2
strain (43), the genomes of all examined strains were known. Genomic DNA was extracted by
proteinase K digestion followed by two rounds of phenol-chloroform extraction, with an
intermediate step of RNase A digestion in TE. Genomic DNA libraries were built using

Illumina’s standard paired-end protocol and 100x2 bp were sequenced on the Illumina HiSeq
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2000 following the manufacturer’s recommendations. The numbers of reads mapped to the N2
genome (Wormbase release 220) were: 119,071,331 (CB4857), 109,807,250 (RC301),
58,309,757 (CB4856) and 113,429,439 (AB2) with a coverage of 116X, 107X, 58X and 111X,
respectively. SNP calling was performed using samtools utilities with the N2 genome as
reference. SNPs with a variant quality score of at least 30 were selected. Overall 100,919
(CB4857), 85,776 (RC301), 184,912 (CB4856) and 98,415 (AB2) SNPs relative to N2 strain
were detected. Probes on the microarray that were found to include SNPs in one or more of the
strains were excluded from analysis. For this exclusion we used SNPs with all range of variant
quality scores, i.e. even those with a quality score <30. 600 genes were excluded from analysis
based upon this criterion. The complete sequencing data has been submitted to the NCBI SRA
database with accession ID SRP011413.1 for the study. The accessions for the particular strains
are SRS299995.1 (CB4857), SRS299996.1 (RC301), SRS299997.1 (CB4856), and
SRS299999.1 (AB2). The SNPs in mpileup format are included as Table S6.

4.1.15. Gene properties. Intergenic distances and expression clusters were retrieved
from Wormbase (44). Constitutively expressed genes were defined as those genes with a mean
expression greater than 4 logyo units in all strains/conditions and an absolute expression range
less than 0.2. Gene regulatory information in terms of the number of regulatory motifs per 1kb
region of a genes’ promoter was identified using the CISRED server (http://www.cisred.org).
Motifs were required to have a P-value less than 0.05 and be conserved between C. elegans and

C. briggsae.

4.1.2. Analyzing Gene-environment interactions
Gene-environment interactions were detected by applying a two-way ANOVA test per gene

using Matlab’s anova2 function. Each gene is characterized by a 5x5x3 expression matrix where
each entry is sampled under a specific condition for an orthologous variant of the gene from
different strains of C. elegans performed in triplicates. ANOVA returns three P-values for the
genes in question quantifying how much genes vary in response to environmental change, vary
across evolutionary change (strain specific expression) or have Gene-environment interactions —

expression which evolved specifically in a strain in response to an environment.



4.2. Chromatin structure

4.2.1. Compiling chromatin structure
4.2.1.1. Natural neighbor interpolation of 3C data. The raw frequency measurements

provided by the yeast 3C experiment (25) was represented as a scattered sparse block matrix
where each block corresponds to chromosomal pairs. Each read of a mapped paired-end insert is
assigned to the mid-base of a restriction enzyme fragment in its unique genome location. Each
block of the raw data matrix is then subjected to interpolation using a continuously differentiable
C' interpolant. The natural neighbor interpolation method (45) was implemented at 1kb
resolution using the TriScatteredlInterp function in Matlab with the following modifications.
First, the frequency of each position with itself was set to the highest observed frequency in the
dataset. These measurements are not captured by the 3C method for technical reasons (25), but
are required for the multi-dimensional scaling (MDS) in order preserve positive-definiteness.
The results are robust to a wide range of different set diagonal frequencies (Figure S3). For each
diagonal block matrix, “ghost points” (46) were added at 10% the distance of the chromosome
size away and set to a frequency of zero. This enabled extrapolation near telomeres where there
is little to no data. Finally, due to rounding errors in the interpolation the resulting matrix was
non-symmetric which is resolved by averaging it with its transpose. The VVoronoi tessellation,
upon which natural neighbor interpolation relies, is shown in Figure 4A, where the colored
domains are VVoronoi cells. Each cell is generated by the intersect of all half-spaces imposed by
the orthogonal separating planes between the point inside the cell and every other point
separately.

4.2.1.2. Modeling genome structure. The interpolated contact frequency matrix was used
as input for modeling the structure. The matrix was embedded to coordinates in an arbitrary 3-
dimensional Euclidean space using non-linear metric multi-dimensional scaling (MDS, also
referred to as principle coordinate analysis) (47). The three principle dimensions from the linear
embedding were used as a starting reference for the genomic coordinates. Coordinates in these 3-
dimensions were subjected to isotonic least-squares optimization. This approach attempts to
minimize the deviation between the distances between coordinates in the resulting embedding
from the distances provided as the input matrix, while also best preserving the order of pairwise

distances. The target function queried which we attempt to minimize at each step of the
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optimization process is the Kruskal stress-1 criterion (47), which measures relative deviations
from the input matrix:

ZZ(xij—dij)z
2 3(dy)°

1) stress-1=
where d;; is the distance between coordinates i, j in the original input data, and x;; is the distance
between coordinates i, j in the resulting model. For the whole-genome embedding, we re-
sampled the genome using 5kb resolution per coordinate. This lower resolution allowed the
embedding process to converge at the whole-genome scale. To visualize this model at 1kb

resolution, we use piecewise cubic Hermite interpolation, a C' interpolant for univariate data
(48).

4.2.2. Analyzing chromatin structure

4.2.2.1. Functional enrichment of 3D and 1D loci. For each gene g, we compute the
functional enrichment in 3D and 1D neighborhoods of g, genes which are proximal to g,
according to the following metrics. All other genes are ordered separately according to:

1. Their interpolated contact frequency with respect to g (3D proximity to g),

2. Their genomic distance (1D) from g.

For any given TF we compute the minimum hypergeometric statistic (mHG) (49,50) for the
enrichment of its target in both the 1D and 3D neighborhoods of g. Annotation data for TF
targets was taken from a previous analysis (orfs_by factor p0.005_consl from (28)). Briefly, for
a given ranked list of genes (for an example see Figure 5A), mHG finds a prefix of the list that
maximizes the statistical enrichment of genes pertaining to an annotation set. The mHG p-value
represents the likelihood of observing such an enrichment, at some prefix, under a null model
(see (49,50)). We obtain a bound on the mHG p-value, per annotation term, and per centered
gene g by multiplying the calculated mHG statistic by the number of genes in the annotation
term. If we use mHG — pval(4) to denote the mHG value for a given binary vector, A, then the
bound described above is referred to as mHG (1) where

2) mHG(A) = B-mHG(A) = mHG — pval(1)
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With B indicating the number of 1’s in the binary vector, A.

To further correct for multiple testing across multiple binary vectors (annotation terms) these
values are later Bonferroni-corrected. Since the process is applied on both the genomic and
spatial orderings of genes, we limit the threshold search to the size of g’s chromosome which
results in comparable p-values for the most enriched spatial and genomic environments centered
around g. Hence, this implementation of mHG is partition limited as previously described
(49,50). When analyzing peaks of enrichment (Figure 6A) we call for Matlab’s findpeaks
function. We limited the peak calling to a minimum distance of 10 from one another and a height
of —10g10(0.05).

The last analysis we describe in the results compares the observed enrichment results, for a fixed
given TF (specifically, the binary vector A where its targets are true), to a background model. we
took the following approach.

For each gene we compute:

3) L(g) = —logq, <mHG(3D(g))/mHG(1D(g))>

Where 3D(Qg) is the A vector reordered according to the spatial proximity of its corresponding
genes to g (and truncated after the number of genes on g’s chromosome). 1D(g) is similarly
calculated, only ordered according to the genomic proximity to g. Finally, L(g) was sorted
across genes to produce L.

Separately, the same quantities were computed for each of 100 shuffled genomes (with gene
identities randomly permuted). We denote L(g)* and L* as the corresponding quantities which
were computed for permutation k. Using these quantities, we compute Z-scores on each rank, i,
of L in the following way:

4 Z — score(i) = M
std(L¥)

Where Li is the i-th value in L. L¥ and std(L¥) are the mean value and standard deviation of the
i-th value of L* across all k permutations, accordingly. This comparison is further exemplified in
Figure 7A.

3.14.1. A method for clustering structural genomic elements. In this section we

develop a method for the pairwise comparison of substructures in the genome which lay in the
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nuclear space, given a complete genomic contact matrix - A. We first define the specific set of
substructures of interest by focusing on substructures which are each defined by a ball of radius,
p, centered on a locus in the genome, c. In practice we directly use the interpolated contact
information, instead of a genome model, and therefore work with contact frequency threshold, 6,

rather than radii. Such a structure is completely defined by the distances in the sub-matrix 4| ,:
F(c,p) = {l|A(c, 1) = 6}
Algp = [ai,j“i,j € F(c,p)

i.e. Al is the square sub-matrix of A which describes the contact frequencies between all loci in

(5)

a ball of radius p as represented by contact > 8, centered on c.

We will utilize in our shape comparison algorithm the observation that A| , is a block matrix
composed of |F(c,p)| = r = 1 distinct stretches of consecutive loci along the genome, termed
segments.

Consider A1 ,1 ,A| 2,2, two genomic structures centered upon c*, ¢ with radii p*, p? and
which have r;, r, segments, accordingly. If both substructures do not have the same number of
points a structural alignment of pairs of points and the mean-square deviation between the
structures cannot be defined. We assume W.L.O.G. that |F(c?, p1)| < |F(c?, p?)|, and to resolve
this discrepancy we resample A| .1 , by linearly interpolating each block, b', with a grid of size

i [|bi| FE o[,

©) “TFL ol T

Where m' is used to round off remainders:
& IF(c2 p?)] -

@) m' = ;mod <|bl|*—|F(c1,p1)|'1> —;mf
The resulting equal-sized shapes can then be compared by defining a pairing on their
coordinates. Note, that the number of segments for each one of the structures does not change,
and that both structure may still have a different such number. To find the optimal pairing of
segments and coordinates which reduces the mean-square-error between the shapes we attempt
to heuristically search for two permutations which determine the order and direction of segments

in each of the shapes. Formally, P;c( o3 are permutations on the ordered-set {1, ..., 7;} where P;
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determines the order and orientation (by inversion) of each segment. Finally, the distance

function D between shapes A1 , ,A|z , is then defined as:

8) D(Alcp,Alcz,) = min||PAlca Pt — PoAl 2, P7 |
1,52 F

|.e. the distance between two shapes is the Frobenius distance between their corresponding
frequency matrices, where the minimum distance across all permutations which change the
order, and thus pairing, of coordinates which belong to a consecutive interval on a chromosome.
An example is shown in Figure 9A. We note that computing D(A|.1,, 4|,z ,) precisely requires
covering 0(2"*"2 - r; 1 r,!) permutations exhaustively. Our algorithm does complete this task for
feasibly small number of segments. Specifically, if r; - , < 5 we cover all possible such
permutations. For larger r;, r, we employ the following search strategy using a Simulated

Annealing approach:

Next permutation Computes Py ,(t) given Py ,(t — 1), ry , and temperature - ¢.

1. for 1...t — Annealing temperature:

2:  defineS = {1 Terlrz , c1~U(0,1) and ¢, cs~U([1, 5] N Z*)
2 else

3: ifc; <0.5:

4. Ps(t) = Ps(t — 1) S.t. segment is ¢, inverted.

5. else

6: Ps(t) = Ps(t — 1) S.t. segments c,, c5 are transposed.

As for parameters to the Matlab annealing function, simulannealbnd, we set the stalling
termination to 200 iterations, and regular termination to 800 iterations.

Using the above described distance function to systematically compare all pairs of loci in the
genome required that we first reduce bias from overlapping conformations sampled in the
genome. To do so, we use a greedy set-cover strategy, thereby eliminating all loci which are
overlapping in their genomic coordinate composition by at least 30%. The resulting pair-wise
distance matrix, D, is then clustered using CAST (51) with T =15" percentile of the

dissimilarities of D. To display a resulting cluster visually, we align the 3D embedding of
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clustered shapes to a common Euclidean space using Procrustes alignment (52) and calculate the

mean position of each coordinate | across members of the cluster.

4 Results

4.1. Gene-environment interactions

4.1.1. A comprehensive Gene-environment expression dataset

To study genotype-environment interactions at a genomic level, mRNA was collected from C.
elegans embryos extracted from animals of five distinct geographical isolates (genotypes)
examined in five conditions (environments) and subjected to microarray analysis. Each of the 25
genotype-environment combinations was assayed by a pool of 50 embryos collected individually
at the four-cell stage, in triplicates. The four-cell stage is easy to identify morphologically and
allows query of the composition of the large maternal mRNA dowry deposited in the embryo
with low variability, therefore providing high sensitivity to detecting differences (40). The
resulting dataset exhibited expected distributions of expression levels, high reproducibility across
replicates, linear expression values of spiked-in transcripts, and congruence with a previous
dataset (Figure S8-Figure S11).

4.1.2. Detecting a myriad of expression patterns

To systematically identify genes showing genotype-environment interactions, we invoked two-
way ANOVA to compute the statistical significance of the variance across genotypes,
environments, and their interaction. For example, the two-way ANOVA P-values for the scrm-4

0% (across genotypes), 10°® (across environments), and 10 (genotype-environment

gene were 1
interaction), indicating a high significance for the observed changes across all three factors
(Figure 1A). Figure 1B shows the expression of other genes exhibiting different patterns of
variation. We filtered the dataset to score only those genes with a range of expression within the
linear dynamic range of the microarray (2 to 5 logso units, see Figure S10) and a minimum level of
variation (0.5 logjo units, see Table S1 for robustness to this parameter). This filter reduced the
set to 4,083 genes, of which 787 and 767 show significant variation across genotypes (but not

environments) and environments (but not genotypes), respectively (Figure 1C), and henceforth
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refer to these as genotypic and environmental genes. Consistent with previous work in yeast (4),
we found that the set of genes that vary across genotypes and the set of genes that vary across
environments significantly overlap (P < 10?%, Hypergeometric distribution). Similarly, we used
two-way ANOVA to define 198 genes with genotype-environment interactions (Figure 1C and
Figure S13) and proceeded to query their defining properties.

4.1.3. Genomic properties correlate with a higher complexity of regulatory

interactions

We first asked whether intergenic lengths might vary across sets of genes with particular
expression patterns, since the intergenic distance upstream of a gene’s coding region is a proxy
for the length of the promoter (53). Thus, longer intergenic regions generally reflect a higher
complexity in regulation (54). Constitutively expressed genes — defined as those with high
expression without significant genotypic or environmental variation — have significantly shorter
intergenic regions (Figure 2A), consistent with their potentially simple requirements for regulation
(55) (P<10™?2, Kolmogorov-Smirnov test, henceforth KS-test). Genes showing environmental
changes do not have a different intergenic lengths distribution than the background, while
genotypic genes have slightly longer intergenic regions (P<10™, KS-test). This result suggests
that an extensive promoter region may be a liability in terms of an inherent bias for producing
aberrant expression patterns. Strikingly, interaction genes have intergenic regions that are
significantly longer, suggesting complex regulation upon these genes (P<107, KS-test).
Consistently, we found a higher motif concentration in the 1kb promoter region immediately 5’
of the coding region of interaction genes relative to that of all genes (Figure 2B, P<0.039, KS-
test). The properties of intergenic length and motif concentration are significantly correlated
(P<10°, correlation coefficient, Table S2) providing evidence for the notion that longer
intergenic lengths indeed reflect increased regulation. These results implicate the interaction
genes as a class of highly regulated genes in which the promoter sequence is longer and includes
more motifs. Examining other genomic properties, we further found that interaction genes are
also enriched in their nucleosome occupancy at the promoter region consistent with our

observation of their high expression variability (Figure S14) (23).
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Figure 2 Genes with genotype-environment interactions show the hallmarks of highly regulated genes.

Distribution of (A) intergenic lengths, (B) motif concentration, and (C) expression levels for the indicated gene categories.
Expression levels were defined according to the median across genotypes and environments. The plots indicate the
normalized frequencies of the measurements across each gene set. (D) SNP analysis. For each gene set, the fraction of
genes with at least one independent SNP across the strains is indicated for each 100 nucleotide promoter bin.

4.1.4. Intermediate expression of interaction genes

To further query the properties of the interaction genes we examined expression levels.
Constitutively expressed genes were highly expressed (by their definition as highly and steadily
expressed) while the genotypic and environmental genes had generally low expression (Figure
2C). By contrast, interaction genes occupied an intermediate position along this scale, expressed
significantly higher than the environmental and genotypic genes (P<10°, KS-test). This
predisposition towards higher expression provides additional support for the notion that
interaction genes are under distinct regulation relative to the other gene classes. Since intergenic
distance and basal expression levels may be thought of as proxies for highly regulated genes, we
asked whether such a class of genes is enriched for genes with genotype-environment
interactions. We defined a set of presumably highly regulated genes as those with long intergenic
distance (>5kb) and a mid-range of expression (>2.5 and <3.5 log units); these two properties
are only weakly correlated (Table S2). This set of 477 genes is enriched for genotype-
environment interactions (P<0.007, hypergeometric distribution CDF), while lowly expressed
genes (<2.5 log units) are depleted in interactions (P<0.02, hypergeometric distribution CDF).
These trends are supported by the complete pattern of enrichments for interactions along the

dimensions of intergenic distance and expression level as shown in Figure S15.

Changes in expression in the interaction genes may be due to local changes to the promoter (cis)
(56) or to changes to either the regulators or remote regulatory regions (trans) (19). To
distinguish between these we attempted to map the genomic changes that correlate with

expression differences. We sequenced the four non-Bristol (N2) strains (see Supplementary
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Information) and mapped single nucleotide polymorphisms (SNPs) across the strains to the

motif-rich 1kb promoter region upstream of the start of translation of all genes. We first

examined the number of promoter SNPs found in the constitutively expressed genes. These show

a paucity of SNPs relative to all genes suggesting strong selection on maintaining the coherence

of the promoter region (P<10™, KS-test relative to background, Figure 2D). Interestingly, the

genotypic genes showed a higher SNP density, suggesting that a significant fraction of the

changes in these genes are caused by local (cis) changes as opposed to changes to other factors

that impinge upon its expression (P<10™3, KS-test). However, the genes showing genotype-

environment interactions (interaction genes), were not significantly distinguished in their SNP

content (P=0.93, KS-test relative to all genes), suggesting that their expression changes are

predominantly caused by trans effects.

If trans effects dominate genotype-environment
interactions, our set of interaction genes are expected to
be enriched for particular functions reflecting a
coordinated change due to a common source. To test for
this, we screened through sets of functionally related
genes using Gene Ontology, Pfam, and Wormbase
Expression Clusters, and queried for enrichment in
similarity among the gene expression in our dataset. We
found 16 gene sets with an enrichment for genotype-
environment interactions (P<0.01, Table S3,
hypergeometric distribution). One such gene set
comprises the potential targets of the deps-1 gene
initially defined by the up regulation after deps-1 loss of
function (57). Of these potential targets, scrm-4 was
shown in Figure 1A with elevated expression in heat and
Hawaiian and ten other genes from this set are shown in
Figure 1B. These show striking interactions as also
evidenced by the significant ANOVA interaction P-

values associated with this gene set (Figure S16).
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Figure 3 Genes with genotype-environment
interactions following functional disruption of
sid-1/haf-6 also show the hallmarks of highly
regulated genes.

A. Distributions of intergenic distances, shown
as boxplots, comparing the 12 genes with a
genotype-environment interaction in the sid-
1/haf-6 analysis (mutant and N2 strain across
the five environments, P<0.005) with the
background set and the 198 interaction genes in
the geographical isolates analysis (Figures. 1,2).
B. The data for expression levels in the same
format.



Interestingly, the deps-1 gene itself does not show expression variation across the strains in our
dataset suggesting that the difference in expression across strains may be post-transcriptional, or
in a different co-regulator of these targets. The causal changes may also have occurred
specifically in each of the targets, but this is unlikely since the promoters of deps-1 targets do not
show enrichment in SNPs relative to background (P<0.96, KS-test).

4.1.5. Interactions are caused by trans effects

Our results suggest that genes with long promoters and a mid-range level of expression have a
disproportionately higher likelihood to develop genotype-environment interactions following
trans changes. We next asked if a transgenic strain with introduced mutations will produce
genotype-environment interactions with this same pattern. Therefore, we compared expression
levels across the five conditions on the same microarray platform in triplicate for the N2 strain
and a nematode strain deficient for sid-1 and haf-6 function in the N2 background (HC445). As
expected, sid-1 and haf-6 transcripts were significantly reduced (P<102% and 107,
respectively). Querying the data for genotype-environment interactions we detected 12 genes
with significant genotype (N2 vs. sid-1/haf-6) -environment interactions (P<0.005, two-way
ANOVA, Table S4). Consistent with the above results, these 12 interaction genes also showed
increased intergenic distances and higher expression on average (Figure 3). Although the P-value
for the intergenic genes was greater than 0.1, when examining the 100 genes with the best P-
values, we found a P<0.001. This independent analysis provides strong support for our findings
from the geographically distributed strains that interaction genes are highly regulated and that the

genotype-environment interaction is due to trans effects.

4.2. Insights from chromatin structure

4.2.1. Anunconstrained 1kb-resolution model of the yeast genome using natural
neighbor interpolation and embedding

The systematic analysis of genome structure and of 3D features of genome organization requires
a coherent and comprehensive representation of the contacts between genomic loci. However,

actual data resulting from 3C measurement assays are scattered across irregular genomic

intervals. Thus, our first goal was to utilize the previously determined dataset (25) to study the
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characteristics of the yeast genomic structure as it relates to function. To accomplish this we first
set out to regularize and provide a uniformly spaced contact matrix. For this purpose we

employed a natural neighbor interpolation to arrive at a 1kb resolution frequency matrix.

Since the median size of the intervals in the primary data is 1800bp (median restriction fragment
length) (25) we chose to interpolate at a 1kb interval. This choice stemmed from the notion that
the interpolated resolution must not greatly exceed that inherent in the primary data. We thus
effectively binned the linear yeast genome to 12,071 regularly spaced 1kb coordinates. Figure
4A shows a representation of the raw data from the 3C measurement assay (25) such that each
measured data point (pair of observed restriction fragments, represented by a black dot in Figure
4A) is mapped to the respective genomic loci in chromosome I. We note the sparseness of the
data at some loci, as reflected by the large and irregular domains for many of the data points (see
Methods), indicating the limited resolution of the data for the interaction between the respective
loci. Related to this sparse sampling are the sharp discontinuities present in the data (Figure 4A).
Figure 4B shows our implementation of a natural neighbor interpolation (see Methods) on the
same data for chromosome I, which addresses this sparseness and sharpness by setting the local
contact behavior to what would be expected of a continuously differentiable (smooth) curve.
From the perspective of its differential geometry, a chromosome is expected to behave
continuously due to its polymer structure and be differentiable due to the mechanical angular
limitations imposed by its chemistry.
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Figure 4 Studying genome structure using 3C at 1kb interpolated-resolution.

(A) 3C data for the S. cerevisiae chromosome | superimposed upon the estimated chromosomal relationships (tessellation
cells) they represent. Black dots represent pairs of restriction fragment mid-points with evidence of cross-linking. Cell
color indicates the observed frequency (effectively identical to a nearest neighbor interpolant). The diagonal areas are
artificially inserted to overcome inherent lack of self-contacts in the method (see also Figure S3). (B) Natural neighbor
interpolation of the 3C data at 1kb resolution. The colors indicate the likelihood of proximity of the genomic loci. (C) A
3D model of chromosome | generated using non-linear dimensionally reduction on the interpolated dataset shown in B.
Color indicates proximity to the mid-point of the chromosome — marked with a red arrow. Note that the distance is not
equivalent to the distance on the primary sequence (indicated by the left color bar) as the shape projects inwards. (D) A
model of the yeast genome by non-linear dimensionally reduction as in C but extended to all chromosomes by sampling
(see Methods). Note that the chromosomes lie at the periphery in a spherical fashion with the ends extended and
centromeres joined.

In order to model the structure of the genome using the interpolated frequency matrix, we
invoked a non-linear multi-dimensional scaling (47). This method is grounded in the well-
established algebraic method of non-classical dimensionality reduction and yields a deterministic
3D view of the yeast genome using an unconstrained, and unsupervised methodology (see
Methods). The linear embedding reduced the dimensionality of the dataset to orders-of-

-20-




magnitude-more dimensions than is expected of a shape measured in 3D space, reflecting the
biological and measurement noise inherent in the 3C method (Figure S2). Applying this method
on the intra-chromosomal interaction data of chromosome | resulted in a crescent-like curve,
crumpled near the centromere (Figure 4C). Figure 4D shows the application of the method to the
entire genome, resulting in a “water-lily” conformation of the chromosomes, consistent with
other models proposed in the literature (25), with centromeres somewhat interwoven in one end,
and chromosome arms extending outward. The quality of this embedding was quantified using
the Kruskal stress-1 criterion (58). The resulting stress value of our model is 0.28, which we
propose as a measure of the noisiness of the 3C data. This model is stable under small
perturbations, as we show in Figure S3. In summary, our natural neighbor interpolation coupled
with non-linear multidimensional scaling provides a natural 3D model of the genome at 1kb

resolution.

The systematic analysis of genome structure and of 3D features of genome organization requires
a coherent representation of the distances between genomic loci. However, measurements
resulting from chromosome conformation capture experiments are scattered across irregular
genomic intervals. Thus, our first goal in constructing a distance based description of the yeast
genome (25) was to regularize and provide a uniformly spaced distance matrix. For this we
employed natural neighbor interpolation to arrive at a 1kb resolution frequency matrix.

Since the median size of the intervals in the data is 1800bp (median restriction fragment length)
(25) we chose to interpolate at a 1kb interval. This choice stemmed from the notion that the
interpolated resolution must not greatly exceed that inherent in the primary data. We thus
effectively binned the linear yeast genome to 12,071 regularly spaced 1kb coordinates. Figure
4A shows a representation of the raw data from the conformation capture experiment (25) such
that each pair of observed restriction fragments is mapped to the respective genomic loci in yeast
Chromosome I, represented by the black dots in Figure 4A. We note the sparseness of the data at
some loci, as reflected by the large and irregular domains relating many of the data points,
indicating the limited resolution of the data for the interaction between the respective loci. We
further note the sharp discontinuities in the data. Figure 4B shows our implementation of natural

neighbor interpolation on the same data for Chromosome |I.
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4.2.2. Statistical assessment of spatial functional enrichment controlled by genomic

order

Using the structural model of the genome, we asked whether genes regulated by the same TF
cluster together in the nuclear space. To address this question we developed a method for
assessing the functional enrichment in a 3D environment. We designed the method based on
three principles: 1. Direct comparison of any spatial enrichment with that observed for the linear
genomic ordering, 2. Detection of enrichment of a subset rather than of correlation for the entire
set (49,50), and 3. Detecting enrichment for variable-size environments, as the exact size of
enriched regions was not known. The first was done to correct for the known functional co-
localization of genes along the chromosomes (34). In the comparison, enrichment was favored
over correlation as it is more sensitive at detecting signals at individual genomic locations,
whereas genome-wide correlation methods will be dominated by noise and by effects outside of
the scope of a possible transcription factory. As a statistical method we invoked the robust,
sensitive and threshold-free minimum hypergeometric method (mHG) that has been successfully
applied in other contexts (49,50,59,60). For each gene in the yeast genome, our method proceeds
by ranking all other genes by either their genomic (linear) or their spatial (three-dimensional)
distance to the gene (Figure 5A). Given a specific TF of inetrest, the mHG test is then applied to
both of these two rankings in order to test whether the targets of that TF are enriched in the
genomic and spatial neighborhoods of that gene (see Methods). Of particular interest are the
most enriched environments, both in the genomic and in the spatial perspective, centered around
a gene, as they can be compared on an equal setting. For any given locus, we quantify whether
the spatial enrichment of targets is more significant than the genomic enrichment, for example,

by examining the log odds ratio of the 3D and 1D enrichment p-values.
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Figure 5 Comparing functional enrichment between the genomic and spatial regions of the genome.

(A) Two genomic distances. The schematic shows the gene neighborhood surrounding a particular gene (red). The
neighboring genes may be ranked by their genomic proximity (left) or their spatial proximity (right). (B) Detecting areas
of enrichment for TF-cohorts. In ranked gene lists, generated by either genomic or spatial proximity, the genes annotated
as targets of a particular TF are indicated as black lines. The p-value of the enrichment of the targets for each threshold is
indicated on the right. The threshold with the best p-value is indicated by the dashed line (see Methods). This analysis is
shown for two genomic loci surrounding genes YCL012C and YHLO050C respectively, and querying for targets of GLN3.
(C) Local structures of the two loci examined in B. Colors indicate distinct yeast chromosomes. The red circles indicate
the center gene around which co-localization was tested. The center genes shown are YCL012C (top) and both YHLO050C
and YHLO050W-A (bottom). The content shown in each sphere is the environment which corresponds to the mHG
threshold, dictated by the most enriched spatial environment for GLN3 targets. Bars on the right mark the loci along the
linear genome which participate in the most enriched environment by both the genomic and spatial rankings. Black dots,
both in the bars and the visualized structure, indicate gene targets of GLN3.

We demonstrate the method in Figure 5B with two specific loci in the yeast genome. In the first
example (Figure 5B, top) we compare the enrichment of the targets of the TF GLN3 in the linear
genomic and spatial neighborhoods centered at YCL012C on chromosome VIII. The spatial
enrichment, measured by the hypergeometric p-value, of the targets of GLN3 increases (Figure
5B, blue line) as the radius of the ball examined (centered at YCL012C) is expanded (i.e., more
genes at greater distances are included). In the very close neighborhood of YCL012C the
enrichment is the same for both spatial and genomic proximity, suggesting that the genes most
spatially proximate to YCLO12C are identical to those proximate to it in the linear genomic order.
Interestingly, as the number of genes included exceeds the first 100, the spatial enrichment
becomes even more significant, surpassing the linear genomic enrichment. This enrichment then

peaks for an environment containing ~125 genes (hypergeometric P<10™%), after which the
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addition of more distant genes diminishes the statistical significance. In comparison, the most
significant enrichment based upon the genomic order alone is P<107 obtained at a neighborhood
that includes the nearest 80 genes. Thus, we conclude that for the environment centered on
YCLO12C, GLNS3 targets are significantly more highly enriched in space than along the linear

genome.

A similar pattern is observed in the other example of GLN3 targets when considering
neighborhoods centered around YHL050C and YHLO50W-A, whose transcription start sites map
to the same 1kb region. For the first 140 genes added according to either genomic or spatial
distance the enrichment is similar. However, as the spatial distance is allowed to increase, the
enrichment sharply increases in contrast to the respective genomic distance enrichment (Figure
5B, bottom). The analysis is terminated at 200 genes, since the end of the chromosome is
reached (chromosome I11) and so the comparison with the linear genomic ordering is no longer
possible for large neighborhoods. We note that when randomly shuffling the genomic positions
of the genes we did not find any significant enrichment of co-localization, spatial or genomic,
such as those shown in Figure 5B.

Examining the structural environments of the two genomic loci described above (Figure 5B)
provided insight into the detected enrichments. Figure 5C shows the environments along with the
corresponding genomic regions that are mapped to them. In both cases, regions from different
chromosomes contribute to the significant spatial enrichment. The thin part of the chromosome
on which the center gene (marked in red) is located indicates the interval with the most

significant linear genomic enrichment around the center gene.

4.2.3. Widespread spatial regions enriched for TF targets

Our method allowed us to systematically test the spatial and genomic enrichments of TF targets
surrounding each gene in the genome, as shown for GLN3 targets in YCL012C (Figure 5B). The
genomic landscape depicted in Figure 6A highlights the most significant spatial enrichment
results surrounding each locus (marked in red) as well as the most significant linear genomic

enrichment (marked in blue). The two specific regions shown in Figure 5C are noted with dashed
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boxes. Strikingly, in many loci we observe significant spatial enrichment that is higher than that
obtained for genomic order enrichment. To evaluate this result we employed two controls. First
we tested whether a shuffled genomic ordering — maintaining the locations of the genes but
randomizing their identities — would still lead to enrichment results, and found that as expected it
does not (Figure S6). We also tested cyclic permutations of gene identities in each chromosome,
and observed that the linear genomic enrichment is conserved (as clearly expected) while the

spatial enrichment is eliminated (Figure S1).

To further quantify the observed higher spatial enrichment, compared to that obtained in linear
genomic order, we first examined for each TF, the region with maximum enrichment at the 3D
level and compared it with the 1D region that is most enriched. For GLN3 the most significant
3D region has an associated p-value of 10°°, while the most significant 1D region has a p-value
of 10® (Figure 6A). Examining all 116 TF’s, we found that 32 TFs have a more significant 3D
region, while 6 have a more significant 1D region (Figure 6B). This indicates that when
examining neighborhoods of genes, the 3D region captures more significant enrichment than an

examination of solely the 1D order.
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Figure 6 Gene targets of the same TF generally spatially cluster in the yeast genome.

(A) For each position in genome (x-axis, chromosomes are separated by vertical dashed lines), the p-value of the
enrichment for GLN3 gene targets is shown (y-axis, -log10 of the mHG corrected p-value, see Methods). The enrichments
values are shown for both the 3D (red) and 1D (blue) distances. Dotted boxes correspond to the environments shown in
Figure 5B. Points in the grayed out region are below the significance threshold (P>0.05, mHG, corrected). Peaks over the
significance threshold are indicated by arrows. Figure S5 shows the effect of running the same analysis on one random
permutation of the target genes of GLN3 (B-C) Analysis on the gene targets of 107 TFs. GLN3 is marked in red. (B) A
comparison between the maximal —log10 p-value for 3D and 1D enrichments for each examined TF. (C) A comparison of
the number significant spatial (3D) and genomic (1D) regions (peaks; marked with arrows in A, see Methods) for each
examined TF. The line indicates a unity relationship.
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Next, we deployed a peak detection algorithm on the genomic landscape to identify distinct
regions of locally maximal enrichment. We assigned each peak to either the 3D or 1D
enrichment depending upon which is more significant, delineated to both in the case of a tie.
Using GLN3 again as an example, we detected 70 and 5 for the 3D enriched peaks and 1D
enriched 1D peaks, respectively (Figure 6A, black arrows). A paired t-test on the 3D and 1D
enrichments peaks indicated the significance of spatial enrichment (P<10®). Thus, for this
transcription factor more enrichment is detected at the spatial level than in the genomic level,
providing evidence for the tendency of the genome to co-localize its targets in transcription
factories. Expanding these analyses to the rest of the TFs, we found an overall preponderance of
3D clusters relative to 1D clusters (P<10~3° Kolmogorov-Smirnov test between the distributions
of the number of peaks in 3D versus those in 1D). For some TFs this effect is particularly strong
(Figure 6C), while for three TFs — ROX1, YRR1, and ARG81 — the signal is reversed; a more
significant 1D clustering than 3D. SIP4 shows the most extreme spatial co-localization relative to
genomic order (84 to 5, respectively, Figure S4). 64 of 117 TFs show a significant (P<0.05, FDR
corrected, one-tailed two-sample t-test) enrichment of spatial (and 10 of 117 a significant

enrichment of genomic) co-localization of their targets.

The peak analysis may be biased since we filter out genomically consecutive signals (1D) but not
potentially overlapping 3D signals. To address this, we compared our observed enrichments to a
suite of 100 genomes whose gene order has been shuffled using a ranking based approach (see
Methods). Comparing with the randomly annotated genomes has the additional feature of direct
p-value estimations without recourse to multiple testing corrections and parametric distribution
assumptions. For GLN3, filtering for genes with two orders of magnitude more significant 3D to
1D and vice versa (non-grey region), the Z-scores indicate strong significance relative to the
shuffled genomes (Figure 7A). Repeating this analysis for all of the available TFs, we found that
for most TFs the Z-scores are positive, indicating that 3D enrichment is significantly greater than
1D enrichment when comparing to the random background model. Interestingly, some TFs show
a wide bimodal distribution, indicating that the TF has both significant 1D and 3D regions of
significant enrichment. We conclude that for most TFs we detect significant spatial co-

localization of the targets.
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Figure 7 Comparing enrichment significance against a random model.

(A) Ranking of the relative 3D to 1D enrichment (-log odds) for GLN3 targets in the regions surrounding all genes is
shown in red. The same is also shown for mean value of 100 gene order permutations is shown in blue. The Z-score is
shown in green. Ranked indices with log odds which cross a significance threshold are used in downstream analysis (see
Methods). (B) Showing the distribution of selected Z-scores for each TF. The dashed line separates the TFs which have
positive median Z-score values from those with negative ones. TFs left of the line have more 3D enrichment than expected
at random whereas TFs right of the line are ones with more 1D enrichment than expected by random.

4.2.4. TFs whose gene targets are spatially enriched are highly expressed

If the targets of a particular TF show significant co-localization in the genome, one would expect
that TF to be functional under the conditions sampled for the genomic structure. A proxy for the
function of a TF is its expression level, and thus we asked whether those TFs showing the

strongest signals of co-localized targets are also more highly expressed (61).

We sorted TFs according to the ratio of spatial to genomic co-localization of their targets, an
indication of their 3D co-localization. The expression of the top 50 TFs was then compared to
that of the bottom 50. We detected a significant difference in expression (Kolmogorov-Smirnov
P<107) shown in Figure 8A. Overall, the correlation between the degree of target co-localization
(significance of target co-localization p-value) and the gene expression was r=0.25 (P<107?).
This correlation between expression levels and large-scale target co-localization suggests that as
the cell regulates the expression of TFs, the genomic structure may rearrange to accommodate

different transcription factories.

Finally, we queried for the spatial location of the apparent transcriptional factories. For each
gene, we computed the number of instances in which a spatial region including that gene is

enriched for TF gene targets more than for the genomic order, across the set of 107 TFs. Figure
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8B shows these locations superimposed upon the genomic structure. We found that regions that
are enriched for such ‘transcriptional factories’ indeed form distinct clusters. In particular, we
observe a high degree of association of genes with transcription factories in the periphery,
mainly located on chromosome 11, and also on chromosome XV and chromosome XV1 (Figure
8B). Comparing the expression of the set of genes highly associated with factories (>25 TF sets)
relative to the genes only weakly associated with factories (<25 TF sets) we find that the former
genes are more highly expressed (P<0.05, Kolmogorov-Smirnov, Figure S6). This provides
further evidence that transcriptional factories generally correspond to transcriptionally active

regions.

107

log2(Expression)
N

N J

TFs with targets  TFs with targets
in factories not in factories

Figure 8 Gene expression is higher for genes in regions of functional co-localization.

(A) Violin plots of expression levels of TFs with and without spatially co-localized gene targets. The expression values are
compared for the 50 TFs with the highest and lowest spatial localization score (-log of the ratio of t-test p-value comparing
genomic and spatial enrichment co-localization). TFs with spatial co-localized targets have a significantly higher
expression (P<0.01, KS-test). (B) Spatial locations of transcriptional factories. Superimposed on the genome structure, for
each gene the color indicates the number of instances that the 3D structure is more significantly enriched in gene targets
with respect to the linear order.

4.2.5. Genome structure shows recurring patterns at large scales with no evidence
of related functionality

Covering the genome in semi-overlapping shapes (upto 30% identity in coordinates) and running
our structural clustering algorithm has produced small (<40 instances) clusters of reoccurring
conformations with ~150kb mean genomic coordinate content (Figure 9B). Clusters of structures
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at this scale normally consist of a single chromatin fiber with one or few segments (Figure 9C).
Reoccurring elements are found across the genome (Figure 9D). Extensive study into the
properties of genes in each structural cluster has yielded no insight into functionality of such

structural clusters.
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Figure 9 Exploring the space of substructures in the genome.

(A) Hlustrating the method of matching conformations. Top left is a distance matrix for a sample of 35 coordinates spread
across 4 chromosomes from the genome. Top row and left column are an example of two subsets of the 35 coordinates,
each shown with 4 permutations on the order and direction of the 4 chromosomes. The matrix to the bottom right is the
Frobenius distance between each pair of permuted subsets, indicating the importance of the order of coordinates when
comparing a pair of conformations. (B) Clustergram generated by CAST with T = 0.85 of 530 selected shapes at p = 20
(see Methods) with the resulting distances among them. Clusters with more than three representatives are marked at the
bottom and numbered 1 to 15. (C) Mean representation of the shapes in each of the 15 resulting clusters. Each cluster is
graphically aligned to its centroid using the Procrustes algorithm (see Methods). The average location of each coordinate
is shown as tubes generated using a frenet-frame. The width of the tube at each coordinate is a function of the standard
deviation. (D) Each cluster is superimposed to the linear genome. Chromosomes are aligned at the centromere
horizontally. Each position which belonged to a clustered shape was colored by the best representing shape around it at
p = 20 (see Methods).
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5 Discussion

In summary, we have provided evidence that genotype-environment interactions are enriched for
highly regulated genes whose differential expression across strains and conditions is most likely
due to trans effects. This ease by which new expression can arise in an environment-specific
manner may itself be under selection. Such facilitated variation (62) for gene expression
diversity may also explain in part the large amounts of divergent expression observed between
species (41,63). We expect that future work will be directed towards generalizing the approach to
developmental time-points, cell types, and conditions. These can be expected to provide an
understanding of how genotype-environment interactions arise in the transcriptome; a readily
assessable and quantifiable phenotype of the genetic material. However, gene expression in the
fullest sense must include protein activity and contributions to fitness (64) and these provide a
challenging goal for the greater understanding of the influence of the genotype and the

environment on the organism.

Any advancement of biological methods to identify the precise structure of the genetic material
throughout the life of an organism must be matched in rigor by the computational and statistical
platforms that are used to interpret their measurement results. 3C has emerged as the most
generalized method for establishing the structure of the genome in a systematic fashion (15).
However, the statistical methods to make the most of the resulting data are only starting to be
developed (24,25,65,66). Here, we report a novel approach to several aspects of the analysis of
spatial conformation data. We model the structure of the S. cerevisae genome without the
previously imposed assumptions (see below), thus capturing an unbiased representation of the
data in 3D. Our method is based upon standard approaches in computational geometry, statistics
and linear algebra (47), invoked here for the first time to the problem of genomic structure. We
use the resulting contact matrix to ask whether functionally related genes are co-localized in the
3D structure. Using a rigorous and controlled statistical approach we provide evidence for this
notion. In this section, we consider the advantages and limitations of all aspects of our
methodology including the choice of interpolation and embedding procedures, internal reference
to the one dimensional gene order as a control. Finally we discuss the notion of widespread

transcriptional-control by spatially-defined factories.
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Existing literature which addresses directly the problem of contact map completion in the context
of 3C data relies either on a convolution with a fixed environment size (25,26,35) or a statistical
background model to estimate either enrichment or depletion of observed contacts (27,66).
Convolution based approaches lead to locally smoothed regions, while disproportionately
distorting structures in data-sparse or outlier-rich regions. Both of these previously used
approaches are dependent on a subjective choice of parameters such as the environment size and
latent variables for statistical model. Since our method is fully reliant upon a complete contact
map, we established a robust approach to generate a full contact map by interpolating missing
data. We propose that the most appropriate interpolation method for completing 3C data is a
modification of natural neighbor interpolation (C' family of interpolants). Natural neighbor
interpolation is immune to the disadvantages inherent in nearest neighbor interpolation, where
different genomic loci may optimally occupy the same position in space and tie-breaking
scenarios are typically addressed in an arbitrary fashion. Further, natural neighbor is not as
simplistic as bilinear interpolation, where only the two flanking data points in each dimension
contribute to the interpolated value. Additionally, natural neighbor interpolation has been
previously applied successfully for problems of smooth surface reconstruction (67) which relate
to our problem in nature. Based upon a tessellated view of the data (see Methods), natural
neighbor interpolation computes the weighted average of all the neighboring data points that can
contribute to the information of the contact between the locations under interpolation. We note
that our interpolation approach — and likewise all interpolations — does not necessarily yield
inter-point contacts that mathematically qualify as a metric, and as such, the resulting contact
map does not necessarily describe a structure residing in a Euclidean space precisely. To
visualize the resulting interpolated contact map we attempted to generate a structural model

which best captures the data.

Previous studies attempting to generate a structural model for chromatin used supervised rule
sets, a random starting conformation, and optimization algorithms in order to fix each coordinate
pair in its expected distance (if available) from one another (25,26,35). We propose that since
such methods rely upon an underdetermined process, they cannot be rigorously applied to

explore the most likely conformation. Our approach utilizes metric dimensionality reduction as a

-32-



starting point, which sets as a starting conformation the principle three dimensional outline of the
shape. This outline is expected to capture the essence of the underlying geometry of the data. The
optimization process preserves the order among contacts, maintaining the coherence of contacts
in the resulting structure. Multidimensional scaling (MDS) is a classical algebraic and statistical
approach which is well-established in the literature (47). MDS relies on a practical assumption
and attempts to minimize the square error of inter-point distances while maintaining their order
when comparing the input data to the resulting model. Our approach thus minimally intervenes
with the underlying measurements applying a parsimonious genome modeling preferences.

We provide a solid statistical framework to determine enrichment in the spatial co-localization of
genomic elements and apply it to detect a significant co-localization of TF targets. We also show
a correlation between co-localization and higher expression of the targeting TF. Our results are
thus consistent with previous studies attempting to link gene organization with control and
regulation of transcription (11,12,14,68-72), and further extends previous systematic approaches

to provide the imperative comparison to the genomic proximity of co-regulated genes.

Collectively, these results indicate that genome remains poised for the expression of co-regulated
genes by adjusting their conformation to enrich for their co-localization. This conformation may
likely have benefits in terms of the operations of an activated TF, which if shuttled to a region
with enriched targets it will have a reduced number of possible gene targets to interact with by
diffusion. This scenario would suggest that the mechanism for co-localization (whether active, or
passively selected for), along with higher expression for the active TF, work in concert to
regulate gene circuits and the interplay between them is crucial to understanding expression

regulation.

Future directions will no doubt include a comprehensive analysis of co-localization of genomic
elements to detect functional partitioning and to better characterize transcription factories.
Additionally, it will be interesting to examine the extent of which these findings will be
conserved across organisms and tissues. Single-cell based 3C methods — currently unavailable
but sorely needed — will be able to produce a more accurate picture of genome structure, rather
than a population-mean approach. Using sophisticated statistics for the detection of co-

enrichment of ordinal measurements, similar methodology will surely be applied directly to non-
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binary or thresholded experimental results, such as the ones from ChIP experiments to provide

more unbiased views on annotated features.

Jointly, this manuscript describes innovative approaches to the study of gene expression.
Unifying these methods is both the goal of deciphering some of the epigenetic principles of how
genes are dynamically regulated and the rigor with which the applied computational frameworks
were chosen. Collectively, these works provide compelling evidence for gene expression
regulation by physical states of chromatin, and its imposing plasticity on the localization of
genes. These results potentially add additional layers of complexity to the mechanisms of
regulation which warrant further studies. The methods provided herein will no doubt provide a
fertile basis for such studies and others as similar datasets surface with the onset of the next-

generation sequencing revolution.
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Figure S1 Effect of cyclic permutation on spatial and genomic co-localization enrichments.

Cyclically permuting the assigned annotations of TF gene targets of each chromosome conserves the relative genomic order of
the annotations but disrupts the spatial order. This is evident by the ratio shift of the number of significant loci of 3D TF target
enrichment vs. genomic TF target enrichment.
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Figure S2 Cumulative sum of the eigenvalues associated with the linear embedding.
Eigenvalue magnitudes of the linear multidimensional scaling showing the underlying doubling dimension to be in the thousands,

and not three as expected from a distance measurements of 3D shape.
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Figure S3 Effect of diagonal forcing on embedding.

Different non-linear embeddings of chromosome | show a decrease of ordinality conservation (Kruskal stress-1) with lower
diagonal values prior to interpolation. Max frequency is selected as to not “drown out” local signals along the chromatin.
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Figure S4 Enrichment landscape for SIP-4.
As one of the more extreme examples of 3D enrichment over 1D detected by the peak calling procedure, SIP-4 shows a diverse
pattern of enrichment.
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Figure S5 The effect of a permutation on gene identities to the enrichment of co-localized targets of GLN-3.
As is evident in this figure, there are no significant enrichments once running a permutation on the gene identities, indicating that
the enrichment of gene co-localization is statistically significant and stems from non-random proximity.
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Figure S6 Expression of genes which participate in many co-localized regions compared to genes which participate in few
co-localized regions.

The expression for the group of genes which participate in 25 or more regions with significant co-localization is higher than
genes which participate in less than 25 regions.
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Figure S7 Correlation between expression and spatial organization of TF targets.
TFs with peaks that have a significant 3D over 1D enrichment of their targets (one sided paired t-test log-ratio, see Methods) also
tend to have higher expression. Regression line of a positive correlation (r=0.25, P<10-2).
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Figure S8 Distribution of expression levels at the four-cell stage of N2 under control conditions.
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The four cell stage transcriptome is bimodal in its distribution of expression levels as previously described in Grishkevich et al.
Genome Research 2011.
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Figure S9 Reproducability of the microarray as estimated by replicates.

Comparing the 25 triplicate arrays for each strain/environment combination, we found a mean correlation of R=0.979 between
replicates, highlighting the reproducibility of the dataset. The figure shows the correlations between each pair of the triplicates for
each of the environments / strains combinations. The length indicates the expression divergence (1 — Pearson’s correlation
coefficient). The scale is shown in the N2 control element of the matrix.
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Figure S10 Spike-in control in the microarray data.

RNA from a Spike-in kit (Agilent) that included ten different species of RNA at various known concentrations was added to the
total RNA from each sample. For each spiked-in RNA, the microarray contained 30 independent identical probes to measure the
concentration. The figure shows for a representative microarray, the mean and standard deviation of the measured concentrations
(across the 30 probes) relative to the known concentrations (x-axis). A linear range is observed between 2 and 5 log10 units. 89%
of the genes probed on the microarray are within this range, and thus our data faithfully recovers

linear increases in their expression levels.
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Two of the examined genotypes (N2 and CB4856) were previously assayed in a similar condition using microarrays, and the
correspondence between the datasets was high (R=0.92) despite using slightly different lab conditions, microarrays design and
probes. The control condition was different in terms of the bacterial food B. subtilis (presently) vs. E. coli OP50 (Yanai and

Hunter, Genome Research 2011).
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Figure S12 Determination of the ANOVA significance thresholds.

The plots show the cumulative fraction of genes found significant for each P-value cutoff. The randomized sets refer
to a permutation of all replicate data (75 columns) per gene. For a false discovery of 0.01 the FDR corrected P-values were
5.1x10*, 5x10, and 4.7x10™, for the genotypic (g), environmental () and interaction (i) gene sets, respectively.

-44 -



¢$9 L3
coe 5800 ® &
$ooce £858e
& 4434
cwn-1 daf 3 dhp-2  nhr-135 nlp-9 odc-1
. 8 [ Ll e 200
> @
H b3
1 00009 - e g
lin-66 gln-3 gly-14  pgn-73 pgn-89  ptr-15 rcn- rgsG skr-21  spe-11
; 4 0008 & g“ [ 2 >
sd HE Y b B B "i‘
.4 o099 © 99999 3o
hil-3  srx-117 sto-4  tag-19 tag-89 tag- 163 C02C6.3 CO6B3.6
2o 8. 8.828 6 $3822
cee. o ees 90 ¢ &G ¢
20080 3308 8 3338 &S
lin-17  C09G5.7 C11E4.6 C13C4.5 C14H101 C15C6 1 C17G1.5 C18D11.1
608 & 600 0808 _oioc & @D eD O 8
i B g g
8900 00000 ©988® o O 50 09500 o0
lin-18 lys-2 nas-28 ncr-2 nhr-45 C34C125 C38D9.2 (C46C2.3 C55A6.6 D2030.12 FO7C6.3 s
® »C &
e ‘\ 2 22 ® b 34 ® 4
$38: 3 3 $

F14F4‘1 F14F11.1 F19C6.2 F32H2.7 FBQBZ 8 W09H1 1Y18D10A 8dct 10 Y41C4A.13 YA5F10A.3 pnc-. 2 Y71

e L +4 ;
® o 5o ¢
u, £ ¢ 3 ’ ’ : i" ‘! zii > .".g’.
1000 4 Soess ssees 25988 6O
F44Es4F49c12 15 F53864 F53H4.3 F54Eg.§ FS367.1 1 fwvmscs;x 14Y105C58.9Y113G7A.147K512.1 ZK673.4 K899.2 R13H4.2.
434 $ rree is:ﬁ J220L 2 s0e 1 ++404 2059 29222 2222
5 @ 630 AN bodse o 3 & o 2 (.o ¢ 28 (336‘3
8 x P9 8. C9LES 9 & ; P © 98" 8988
FSSE107 dct18 F59B2.9 KOACLA KOSEA4 KOSGLL sodhl BO2861 BO303.7 BO410.3 C02C25 the6 COSD2.8 CO7FIL2
® L ‘4 E R N g €
2820 28288 2230 2%es of2:8 8 o 36 83e
b 1 29092 98000 ® ; 9 > o0 oo ®
00060 coees © e o os ® 3 ] 38
RO1E6.7 ROSD7.1 RO6C1.4 R11A8.1 qdpr-1 TOSF1.13 TO7F10.1 C08692 €0988.4 hex2 C16HM3.3 C24A3.4 clec-266 npr-11
2222 - sseee eseed o & 28888 cosce ce. o sosce
‘s 220 o2 b+ 44 > ‘ v
1 W DA “@ie :3 %# m 230 o 8 o ‘3‘32
80 *0000 oo 95500 GO088 9000 O3 & 00000
T10B10. 8T166§2 4T236¥,1 T24F13 WO01C9.1 WOI£02 WO01C9.4 QQBQ ; cgg 2:1 c311;124 C336§4 djr- 1,; 30§76, ifta-1
F8d . B
oS o £ % S ao. té,. I & o $00 909 :
:'o < 0:" R 3358 S%e 3 83332 22333 ¢ : 33388
C55C3.3 tyra2 FO7B7.2 FI0E79 F13H88 FA2A96 F43E2.1 T28F22 jmjc-l sulp-6 WO9B7.2Y37E11B.2 Y43B11AL1Y45GSAM.6
¢ 8.0 L6088 ssese sones o -4 4 . b
v B § i i
o« " 2 29 ) > ) @

e
F46C8.3 F:7012.6 asna-2  srsx- 8 F5383 5 F55G1.6 sago-2 Y51H7C.12 mab-31 Y67DSA 3Y71F9AL 7Y71FQB 13 lgc- 10 Y74C10AL.2
> e

209 > . n P00 L 4-»
g a Q : +hée x :
o eeeed e eseve 939 T ®
F57C9.6 F59A64 H06104.6 H14E04.3 ’le 20 KO3£6.7 KO4F10.2Y77E11A.2 Y102A11A.67C513.3 ZK154.6 ZK484.7 C36A4.11 FASEES
295 © o 88232 o o281 26 & ®
{g 0.0 090 s [ &4 .,4\; 00 So0ee
o550 S:i8 2 269 o <38 83388
KO7E3.2 6 K10B3.5 K10B4.3 K11D12.7K12H6.12 RO9E12 5 YSSF3C.10F34D109
og:oo & @ A e 2
ao p 39 ¢ ¢
+1 ‘- !
99009 oo *®

TO3F1.6 TO7F8.2 T10D4.3 T19D7.4 T20D4.19 T22B7.4 Igc-40

Figure S13 Expression profiles for all 198 identified genes with genotype-environment interactions.

The profiles are in the same format as Figure 1A. We point out the following classes of patterns: Class 1: changes are unique to
one (or a few) combinations of the environment and the genotype. Examples of this are F44E5.4, hex-2, spe-11, C38D9.2, dct-10,
hsp-16.11, F44F4.1, ifta-1, and W01C9.4. Class 2: For a particular genotype, variation across 9 conditions not found in the other
genotypes. Examples of this are: cpin-1, plk-3, fkb-5, F54E4.3, sago-2, C11E4.6, fbxa-192, B0303.7. Class 3: For a particular
environmentally induced expression there is particular variation across the genotypes. Examples are odc-1, gcy-37, RO1E6.7,
Y77E11A.2, asna-2. Class 4: There is variation across both the genotype and environment dimensions and in the intersection
there is a non-additive change. Examples of this are scrm-4 (as in Fig. 1A), FO7B7.2, and K10B3.5.
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Second MANOVA coordinate

-4

MANOVA was invoked on the matrix with parameters for the intergenic distance, expression levels, number of SNPs and
chromosomal location. CISRED motifs were excluded from the analysis as they are only available for a smaller subset of the
genes; when included the results are similar. The figure shows a clear separation of the constitutively expressed genes and the
others, as well as the interaction genes from the others. The distribution is similar to that found for expression levels and for

+ genotypic
* environmental
+ interaction

constitutively expressed

intergenic regions (Figure 2).
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Figure S14 Multivariate analysis of the four gene sets.
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Figure S15 Genomic properties of genes with genotype-environment interactions.

Genes with genotype-environment interaction are not significantly different from the background in their gene length (A),
number of exons (B), length of the first exon (C), combined intron length (D) and protein length (E), but have increased

-46 -




nucleosome occupancy at their promoters (F) (P<10~*, KS-test relative to all genes). Nucleosome data was obtained from
Valouev, A., et al. (2008). Genome Research 18: 1051-1063.

-log,, P-value

intergenicrange (log,, scale)
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Figure S16 Genes with long intergenic distances and mid-range expression levels are enriched for genotype-environment
interactions.

We divided genes into five populated bins with borders 0, 472, 928, 1,818, 4,214, and the maximum distance 57kb. We also
binned genes according to their expression with steps of 0.5 log10 expression level units. For each set of genes with a particular
combination of intergenic distance bin and expression level bin we compute the enrichment with genes with genotype-
environment interactions. This is indicated in the graph according to the -logy, of the P-value of the enrichment as computed
using the cumulative hypergeometric distribution.
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Figure S17 Interaction genes in a functional set.
Two-way ANOVA interaction P-values for the 16 deps-1 targets (Spike et al. 2008 Development, 135, 983-993). The expression

data for ten of these is shown in Figure 1B.
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Table S1 Sensitivity analysis to the threshold of expression difference used to define the filtered gene set. We selected 0.5 as the
threshold for required expression changes but the results hold for all other thresholds.

Threshold . I;rrfe’rgﬂl'n'r dis fances E.\;uf'fssr'an :Ffre’h
Cuantile | (P-val, inferaction vs | (P-val, inferaction vs all,
value all, KS-test) KS-test)
0.1521 01 237E-08 5.30E-18
0.223 02 4.00E-08 2.37E-19
0.313 03 1.06E-08 2 27E-20
0.4059 04 1.30E-07 8.05E-19
0.3023 03 1. 80E-08 1.86E-12
0.3999 0.6 2 29E-07 1.07E-17
0.7144 07 741E-08 2 60E-16
0.8675 08 6.88E-08 1.08E-13
1.1103 09 3 43E-06 2. 76E-07

Table S2 Pairwise correlations among the five examined genomic properties.

See Table S3 regarding chromosomal position.

Position in the
R(P) cisred SNps Expression chromosome
Intergenic R=0.2749 R=-0.0681 R=-0.0481 R=0.0893
distances (P=3 07E-16) (P=149E-05) (P=0.0023) (P<1.24E-08)
cisred A=-0.0530 R=0.0471 RE=-00125
(P=0.0625 (P=0.1695) (P<0.716)
snps R=-00056 R=02621
(P=0.724) (P2 40E-64)
Expression F=0.064
(P4 73E-05)
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Table S3 Chromosomal location biases.

Each of the four gene sets was examined for enrichment/depletion within the chromosomal centers, using hypergeometric
distribution. We found that interaction genes are not biased towards chromosomal centers. Genotypic genes are enriched (green)
towards the gene poor regions suggesting that their increased intergenic sizes (Fig. 2a) may be due to their location in gene sparse
chromosomal ends. Environmental and constitutively expressed genes are overrepresented in gene-dense chromosomal centers
(red) reflecting their shorter intergenic regions. Definition of chromosomal partitions are as previously

determined by Rockman and Kruglyak (PLoS Genetics, 2009).

P-value
Genotypic
Environmental GE-8
Genotype-environment interaction 0.3892
Constitutively expressed 10E-100

Table S4 Functional gene sets with enrichment for interaction genes.

Gene sets were delineated using common GO terms, PFAM domains, and Wormbase expression clusters. For each gene set, we
asked whether the genes had a coherent expression profile in our dataset as computed by comparing the distribution of their
pairwise correlation coefficients relative to that of randomly paired genes. Enrichment was estimated by a Kolmogorov-Smirnov
test between these two distributions. Enrichment for genes with interactions was computed using the hypergeometric distribution.
Gene sets with enrichment for both coherent expression (P<10-4) and interaction genes (P<10-2) among the members of the set
are shown in the table. See Table S8 for the same for the analogous table the genotypic and environmental gene sets.

Number of
genes in the
Set with
Enriched Number | inferactions
Set Cn]lere_nl Enri.ch_n.td ol'_ Genes {out of _lhe
Expression Interactions in the 198, Fig_
Tvpe Name ID (P-val) {P-val) Set 1Cy
GO Nucleosome 786 | 5.02E-00 | 0.00551% 52 3
GO Nucleosome assembly 6334 | 497E-09 | 0.005148 51 3
Pfam Leucine Rich Repeat 560 | 2.67E-05 | 0.001578 37 3
Pfam Piwi domain 2171 | 1.13E-05 | 0.003654 23 2
WBPaper(0031477:
Exp Cluster up deps-1 vs WT 443 | TO04E-05 | 0.00124 16 2
WBPaper(0027111:
Exp Cluster | rrf~1(pk1417) upregulated | 101 1.32E-09 | 0.004112 147 6
WBPaper(0025032:
Exp Cluster Cluster 24 172 1.15E-07 | 0.001924 39 3
WEPaper00032165:
differentially expressed
Exp.Cluster with age medoid 1 207 | 3.05E-17 | 0.003847 184 7
WBPaper(0025032:
Exp Cluster Cluster 12 218 | 3.80E-12 | 0.000601 76 5
Exp Cluster cocd3Bocluster 3 6 235 6.13E-06 | 0.004065 77 4
Exp.Cluster cgcs767 cluster 5 236 1.24E-25 | 8.16E-08 119 11
WEPaper00025032:
Exp Cluster Cluster 2 248 | 479E-93 | 1.23E-09 168 15
WBPaper(0025032:
Exp Cluster Cluster 17 204 | 1.65E-07 | 0001144 34 3
cgc5767: Expression class
Exp Cluster SE pi (122 min) 320 | 2.61E-08 | T.31E-05 75 6
cgc5767: Expression class
Exp Cluster SE pi1 (66 min) 335 1.59E-06 | 0.003544 46 3
WBPaper(0025032:
Exp Cluster PAT -1 target genes 92 0 85E-45 | 0.000132 | 141 8
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Table S5 12 genes with significant genotype (N2 vs. sid-1/haf-6) -environment interactions (P<0.005, two-way ANOVA).

Gene Description
hil-1 C. elegans HIL-1 protein; contains similarity to Pfam domain PF00538 linker
histone H1 and HS family contains similarity to Interpro domains IPR011991
(Winged helix-turn-helix transcription repressor DINA-binding), IPRO05819
(Histone H5), IPR005818 (Histone HI/HS)
shw-3 C. elegans SHW-3 protein; contains similarity to Pfam domains PF02214 (E+
channe] tetramerization domamn) , PFO7885 (Ion channel) ., PFO0520 (Ton
transport protein) contains similarity to Interpro domains IPRO05821 (Ton
transport), IPR000210 (BTB/POZ-like). IPR0O11333 (BTB/POZ fold).
[PE.003971 (Potassium channel, voltage dependent. Kv®), IPR0O03968
(Potassinm channel, voltage dependent, Ev), IPR003131 (Potassium channel,
voltage dependent, Kv, tetramerisation), [PR0O03091 (Voltage-dependent
potassium channel), TPR0O13099 (Ton transport 2), IPR003974 (Potassium
channel, voltage dependent, Ev3)
CO9G3.7 contains similarity to Homo sapiens Isoform 1 of Neurofilament heavy
polypeptide; FNSEMBL:ENSP00000311097

C17Gl.5
T10B10.8 contains similarity to Pfam domains PFO1501 (Glycosyl transferase family 8) |

PF11051 (Mannosyltransferase putative) contains similarity to Interpro domains
IPRO22751 (Alpha-mannosyltransferase), IPRO02495 (Glycosyl transferase,

family §)

Y105C5A 14

djr-1.2 C. elegans DIR-1.2 protein; contains similarity to Pfam domain PF01965 DJ-
1/Pfpl family contains similanty to Interpro domams IPRO06287 (DJ-1),
[FRO02818 (ThiJ/Pipl)

Klf-1 C. elegans KLF-1 protein; contains similarity to Interpro domains IPR015880

(Zinc finger, C2H2-like), IPRO13087 (Zinc finger, C2H2-type/integrase, DINA-
binding), IPRO07087 (Zinc finger. CZH2-type).

arl-13 C. elegans ART-13 protein; contains similarity to Pfam domains PFO0025 (ADP-
ribosylation factor family) , PFO0503 (G-protein alpha subunit) contains
similarity to Interpro domains IPRO06687 (Small GTPase SAFR1-tvpe),
IPRO01019 (Guanine nucleotide binding protein (G-protein), alpha subunit),
IPRO0DG688 (ADP-ribosvylation factor), IPRO0D6689 (ARF/SAR. superfamily)

YHE3AL

ZE1055.2 contains similarity to Pfam domain PF03314 Protemn of unknown function,
DUF273 contains similarity to Interpro domain IPRO04988 (Protein of unknown
function DUF273)

C3eA4.11
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Table S6 Functional gene sets with enrichment for the gene sets.
Same format as Table S4 for the genotypic and environmental groups, as well as the group of genes that are both
genotypic and environmental but lacking interaction.

Enriched Number of
Ser Collere.ut Eurj.tll.e-d Number gemes in the Set
Expression | Imteraction: | of Genes with members
Name Type ID (P-val) {P-val) in the Set | from the Group
Group: Genotypic genes
ligand-dependent nuclear receptor 0.0027834
activity GO 4870 | 9.04E-32 86 199 20
0.0074354
axon GO 30424 | 5.89E-07 02 53 7
Ligand-binding domain of muclear 0.0074196
hormone receptor Pfam 104 2.30E-32 24 176 17
Metallo-beta-lactamase 0.0002702
superfamily Pfam 753 | 6.39E-05 29 12 4
0.0005752
cec4489 group 23 Exp.Cluster 85 3.30E-06 05 185 21
[cec3767] expression_class_SE p
1(83 min) Exp.Cluster lod | 347E-18 | 290E-05 101 16
0.0010105
WEPaper00025032:cluster 24 Exp.Cluster 172 1.13E-07 49 39 7
WEBPaper00032165 differentially 0.0054617
expressed with age medoid 1 | Exp.Cluster 207 | 3.03E-17 96 184 18
WEBPaper00025032:cluster 2 ExpCluster | 248 | 479E-93 | 2.80E-08 165 28
[cgc5767] expression class SE p 0.0023241
1{122 min) ExpCluster | 320 | 2.61E-08 35 75 10
[cge5T67] expression class SE p 0.0042853
123 min) ExpCluster | 323 | 7.75E-73 31 81 10
WEBPaper00027111:rde- 0.0005431
3(r459) upregulated ExpCluster | 361 | 3.89E-11 a3 165 19
0.0053054
[cge5T767]cluster 12 ExpCluster | 363 | 6.49E-03 02 40 ]
0.0011350
WBPaper00025032:cluster 14 ExpCluster | 408 | 1.08E-03 34 23 5
0.0003045
WEPaper00025032:cluster 9 ExpCluster | 441 | 3.82E-08 03 33 7
WEPaper00031477:-Up_deps-
1 vs WT Exp.Cluster | 443 | 7.04E-05 [ 323E-08 16 3
Group: Environmental genes
0.0045133
structural molecule activity GO 5198 | 8.31E-09 12 146 15
0.0022112
phosphate transpert GO 6817 | 1.62E-22 82 161 17
0.0004217
structural constituent of cuticle GO 42302 | 8.55E-28 01 128 16
MSP (Major sperm protein) 0.0028763
domain Pfam 635 | 53.90E-18 23 57 8
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haloacid dehalogenase-like

0.0081943

hydrolase Pfam 702 | 6.75E-05 29 34 3
Histone-like transcription factor 0.0051176
(CBE/NF-Y) and archaeal histone Pfam 808 | 2.02E-05 85 14 3
Nematode cuticle collagen M- 0.0004623
ternunal domain Pfam 1484 [ 8.13E-31 07 129 16
WEPaper00035892-EIM5 vs OP 6.38E- | 0.0005683
50 Up Exp.Cluster 58 148 53 36 12
00004064
[cec5976]:class 1 Exp Cluster oo 3.31E-27 08 188 21
[cec5767)-expression class ET 0.0068167
max(83_min) Exp.Cluster | 107 | 242E-67 69 179 17
WEPaper00006465:IV_ethanol 1 00018579
ate_repression Exp.Cluster 166 | 1.14E-05 26 64 9
WEPaper00028782:PA14 vs OP 0.0068167
30 downrepulated Shr Exp.Cluster 177 | 3.32E-17 69 179 17
[cge5T67] expression class SE p 0.0039281
(186 _min) Exp.Cluster | 191 | 4.02E-06 52 49 7
00095694
WBFPaperd0025032:chuster 5 ExpCluster | 192 | 447E-05 86 105 11
WEPaper00028782:PA14_vs_OP 00005653
30 downregulated 4hr Exp.Cluster | 195 | 1.39E-03 55 36 12
00004240
WEPaper00025090:NI specific | Exp.Cluster | 277 | 4.78E-06 78 63 10
WEPaper00027111 13-
1{mg366) downregulated Exp.Cluster | 291 | 6.05E-11 | 5.26E-06 101 17
[cec3767]-expression_class_SE p 0.0026132
166 min) Exp.Cluster | 335 | 1.59E-06 93 46 7
00046113
[cec5T6T]cluster 12 Exp.Cluster | 363 | 6.49E-03 4 40 &
czcd386 cluster 1 1 Exp.Cluster | 375 | 2.17E-55 | 4.82E-11 100 24
WBPaper00028789: pmlk- 00045942
1 upregulated Exp.Cluster 442 2.08E-19 49 61 8
WEPaper00027722:Microbacteri 0.0028763
mm nematophilum vpresulated Exp. Cluster 447 4 41E-06 23 57 8
Group: Genotvpic and Environmental (but not Interaction)
ligand-dependent nuclear receptor
activity GO 4879 | 9.04E-32 | 2.93E-08 199 39
7 transmembrane receptor 0.0054318
(rhodopsin family) Pfam 1 1.06E-06 61 187 24
Ligand-binding domain of muclear
hormone receptor Pfam 104 | 2.30E-32 | 9.04E-08 176 33
Zinc finger, C4 type (two
domains) Pfam 105 | 8.88E-43 | 3.90E-10 187 41
00060080
WEPaper00032048:MoltOssilate | Exp.Cluster a3 2.35E-17 72 186 24
WBFPaper00025032:PAL- 00034448
1 target senes Exp Cluster 92 0.83E-45 99 141 20
WBPaper00027738:Group IV Exp.Cluster 93 2.78E- | 0.0002781 77 15
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109 16
[cec3T767):expression class ET 0.0017606
max(33 min) Exp.Cluster 107 | 242E-57 34 179 25
[cEc3T767] expression_class_SE p
1(83 nun) Exp.Cluster 164 | 3.47E-18 | 4.65E-08 101 25
0.0006851
WEBPaper(00025032:cluster 24 Exp.Cluster 172 1.13E07 72 39 9
WEPaper00031850:medt- 0.0010436
15 FNA1 Down Exp.Cluster 178 | 1.66E-05 88 137 21
WBPaper00025032:cluster 5 Exp.Cluster 192 | 447E-05 | 1.09E-07 105 25
0.0018983
[cge5T767]cluster 7 Exp.Cluster 201 | 447E-20 87 59 11
WEPaper0032165:differentially 0.0001071
expressed with age medoid 1 | Exp.Cluster | 207 | 3.05E-17 11 184 29
"WBPaper00025032:cluster 12 Exp.Cluster | 218 | 380E-12 | 1.87E-05 76 17
[cgc576T]:cluster 5 Exp.Cluster | 236 | 1.24E-25 | 422E07 119 26
0.0018401
[ege5T767]cluster 4 Exp.Cluster | 242 1.30E-21 42 152 22
WBPaper00025032:cluster 2 ExpCluster | 248 | 479E-93 | 485E-05 168 28
[cec3767].expression_class_SE p 0.0054483
1(122 min) ExpCluster | 320 | 261E-08 13 75 12
[cgc5T67].expression class SE p 0.0005070
1(23 mun) ExpCluster | 323 | 7.73E-75 51 81 15
[cec3767]-expression_class_SE p
1(66_min) ExpCluster | 335 1.59E-06 | 3.70E-05 46 12
WEPaper00031477:Up deps- 0.0063263
1 vs WT ExpCluster | 443 | T04E05 81 16 4
WEBPaper(00025032:chuster_61 Exp.Cluster | 500 | 807E-06 | 6.81E05 15 &
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