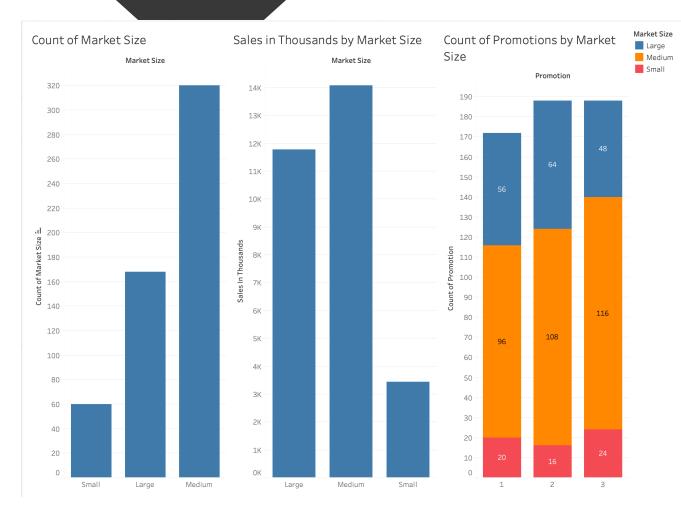
MARKETING ANALYTICS PROJECT

DATA SET

MarketID	MarketSize	LocationID	AgeOfStore	Promotion	week	SalesInThousands
1	Medium	1	4	3	1	33.73
1	Medium	1	4	3	2	35.67
1	Medium	1	4	3	3	29.03
1	Medium	1	4	3	4	39.25
1	Medium	2	5	2	1	27.81
1	Medium	2	5	2	2	34.67
1	Medium	2	5	2	3	27.98
1	Medium	2	5	2	4	27.72
1	Medium	3	12	1	1	44.54
1	Medium	3	12	1	2	37.94
1	Medium	3	12	1	3	45.49
1	Medium	3	12	1	4	34.75
1	Medium	4	1	2	1	39.28
1	Medium	4	1	2	2	39.8
1	Medium	4	1	2	3	24.77
1	Medium	4	1	2	4	30.98
1	Medium	5	10	2	1	30.37
1	Medium	5	10	2	2	24.82
1	Medium	5	10	2	3	37.47
1	Medium	5	10	2	4	23.35
1	Medium	6	10	3	1	32.9
1	Medium	6	10	3	2	22.18
1	Medium	6	10	3	3	42.98
1	Medium	6	10	3	4	26.68
1	Medium	7	15	1	1	42.92
1	Medium	7	15	1	2	42.16
1	Medium	7	15	1	3	51.72

Columns	Description
MarketID	unique identifier for market
MarketSize	size of market area by sales (small, medium, or large)
LocationID	unique identifier for store location
AgeOfStore	age of store in years
Promotion	one of three promotions that were tested (1,2, or 3)
week	one of four weeks when the promotions were run (1,2,3, or 4)
SalesInThousands	sales amount for a specific <i>LocationID</i> , <i>Pro motion</i> , and <i>week</i>

550 observations


LOG-LINEAR AND LINEAR REGRESSION

- The main goal was to predict which promotion had the greatest effect on sales
- Is there a relationship between sales, promotions, and different number of weeks?

DATA EXPLORATION

- The data has more Medium markets, followed by Large, and Small Markets
- Medium markets have the most Sales followed by Large and Small markets
- Promotions were approximately spread evenly across market sizes

METHODOLOGY

- Created dummy variables for each promotion and week
- Started by creating linear regression models for all markets and after discovering a low adjusted R² value I decided to run linear regressions for each market individually reaching the same result
- Decided to run log-linear models for the same scenarios as above looking for an improvement
- Further improved the model by building a stacked log-linear model including interactions
- Important: Sales was my dependent variable. Promotion 1 and Week 1 was my baseline

LINEAR REGRESSION MODELS

ALL MARKET

 $R^2 = 0.066$

Model param	neters (Salesli	nThousands):				
Source	Value	Standard error	t	Pr > t	Lower bound	Upper bound
Intercept	58.423	1.720	33.962	<0.0001	55.044	61.803
Promotion 2	-10.770	1.708	-6.304	<0.0001	-14.125	-7.414
Promotion 3	-2.735	1.708	-1.601	0.110	-6.090	0.621
Week 2	-0.404	1.956	-0.207	0.836	-4.247	3.439
Week 3	-0.316	1.956	-0.162	0.872	-4.159	3.527
Week 4	-0.578	1.956	-0.295	0.768	-4.420	3.265

MEDIUM MARKET

Model parameters (SalesInThousands):

 $R^2 = 0.128$

modelpai	anneters (s	arcontine				
					Lower	Upper
		Standard			bound	bound
Source	Value	error	t	Pr > t	(95%)	(95%)
Intercept	47.251	1.179	40.086	<0.0001	44.932	49.571
Promotior	-8.218	1.192	-6.895	<0.0001	-10.564	-5.873
Promotior	-2.706	1.153	-2.347	0.02	-4.975	-0.437
Week 2	1.074	1.315	0.817	0.415	-1.513	3.661
Week 3	0.967	1.315	0.736	0.463	-1.62	3.555
Week 4	-0.243	1.315	-0.185	0.853	-2.83	2.344

SMALL MARKET

$R^2 = 0.379$

Model param	eters (Salesl	n Thous and s):				
Source	Value	Standard error	t	Pr > t	Lower bound	Upper bound
Intercept	58.999	1.653	35.690	<0.0001	55.684	62.313
Promotion 2	-9.352	1.753	-5.334	<0.0001	-12.867	-5.837
Promotion 3	-0.648	1.583	-0.410	0.684	-3.821	2.525
Week 2	2.430	1.909	1.273	0.208	-1.397	6.257
Week 3	-0.897	1.909	-0.470	0.640	-4.724	2.930
Week 4	3.123	1.909	1.636	0.108	-0.704	6.950

LARGE MARKET

$R^2 = 0.184$

Model parameters (SalesInThousands):

						Lower	Upper
		Standard				bound	bound
Source	Value	error	t		Pr > t	(95%)	(95%)
Intercept	75.913	2.91		26.085	<0.0001	70.166	81.659
Promotion 2	-14.914	2.818		-5.293	<0.0001	-20.478	-9.349
Promotion 3	1.968	3.029		0.65	0.517	-4.014	7.95
Week 2	-2.137	3.36		-0.636	0.526	-8.773	4.499
Week 3	-0.146	3.36		-0.043	0.965	-6.782	6.49
Week 4	-0.424	3.36		-0.126	0.9	-7.06	6.212

ALL MARKET LOG LINEAR

- Better adjusted R² compared to linear regression model
- In all markets promotion 1 and Week 1 seems to be the best combination to increase sales
- There seems to be an indifference between Promotion 1 and 3
- <u>Significant coefficients</u>: Intercept, Promotion 2. Promotion 3 borderline depending on significance level
- Insignificant coefficients : Week 2,3, and 4

Observations	548							
Sum of weights	548	Model parameters (Log (SalesInThousands)):						
DF	542							
R ²	0.089						Lower	Upper
Adjusted R ²	0.081			Standard			bound	bound
MSE	0.087	Source	Value	error	t	Pr > t	(95%)	(95%)
RMSE	0.295	Intercept	4.033	0.031	128.688		3.971	
MAPE	5.744	Promotion 2	-0.216			< 0.0001	-0.277	
DW	0.364							
Ср	6	Promotion 3	-0.054	0.031	-1.739	0.083	-0.115	0.007
AIC	-1332.2	Week 2	-0.008	0.036	-0.219	0.827	-0.078	0.062
SBC	-1306.3	Week 3	-0.009	0.036	-0.264	0.792	-0.079	0.061
PC		Week 4	-0.017	0.036	-0.464	0.643	-0.087	0.053

Goodness of fit statistics (Log (SalesInThousands)):

SMALL MARKET LOG LINEAR

- Better adjusted R² compared to linear regression model
- In small markets promotion 1 and Week 1 seems to be the best combination to increase sales
- There seems to be an indifference between Promotion 1 and 3, but 3 is insignificant
- <u>Significant coefficients</u>: Intercept, Promotion 2
- Insignificant coefficients : Promotion 3 and Week 2,3, and 4

Model parameters (Log (SalesInThousands)):											
					Lower	Upper					
		Standard			bound	bound					
Source	Value	error	t	Pr > t	(95%)	(95%)					
Intercept	4.075	0.03	135.502	< 0.0001	4.014	4.135					
Promotion 2	-0.172	0.032	-5.399	< 0.0001	-0.236	-0.108					
Promotion 3	-0.011	0.029	-0.388	0.7	-0.069	0.047					
Week 2	0.042	0.035	1.202	0.234	-0.028	0.111					
Week 3	-0.023	0.035	-0.662	0.511	-0.093	0.047					
Week 4	0.057	0.035	1.641	0.107	-0.013	0.127					

Goodness of fit statistics (Log (SalesInThousands)):

Observations	60	
Sum of weights	60	
DF	54	
R ²	0.442	
Adjusted R ²	0.39	
MSE	0.009	
RMSE	0.095	
MAPE	1.713	
DW	1.825	
Ср	6	
AIC	-276.67	
SBC	-264.11	
PC	0.682	

MEDIUM MARKET LOG LINEAR

- Similar adjusted R² to linear regression model
- In medium markets promotion 1 and Week 1 seems to be the best combination to increase sales
- There seems to be an indifference between Promotion 1 and 3
- Significant coefficients: Intercept, Promotion 2, and Promotion 3
- Insignificant coefficients : Week 2,3, and 4

Goodness of fit st	statistics (Log (SalesInThousands)):	Model paramet	ters (Log (SalesInThousa	inds)):				
Observations	320						Lower	Upper
Sum of weights	320							
DF	314			Standard			bound	bound
R ²	0.141	Source	Value	error	t	Pr > t	(95%)	(95%)
Adjusted R ²	0.127						. ,	
MSE	0.043	Intercept	3.844	0.029	132.241	< 0.0001	3.787	3.901
RMSE	0.207	Promotion 2	-0.202	0.029	-6.857	< 0.0001	-0.259	-0.144
MAPE	4.497	Promotion 3	-0.062	0.028	-2.194	0.029	-0.118	-0.006
DW	0.976	Promotion 5	-0.002	0.020	-2.194	0.029	-0.110	-0.000
Ср	6	Week 2	0.019	0.032	0.572	0.568	-0.045	0.082
AIC	-1001.713	Week 3	0.018	0.032	0.552	0.581	-0.046	0.082
SBC	-979.103							
PC	0.892	Week 4	-0.012	0.032	-0.377	0.707	-0.076	0.052

Large Market Log Linear

- Better adjusted R² compared to linear regression model
- In large markets promotion 1 and Week 1 seems to be the best combination to increase sales

Model parameters (Log (SalesInThousands)).

- There seems to be an indifference between Promotion 1 and 3, but 3 is insignificant
- <u>Significant coefficients</u>: Intercept, Promotion 2

Goodness of fit statistics (Log (SalesInThousands)):

• Insignificant coefficients : Promotion 3, and Week 2,3, and 4

		would parameters (Log (Salesin mousanus)).						
Observations	168							
Sum of weights	168						Lower	Upper
DF	162			Standard			bound	bound
R ²	0.221			otanidara				
Adjusted R ²	0.197	Source	Value	error	t	Pr > t	(95%)	(95%)
MSE	0.052	Intercept	4.305	0.043	99.513	< 0.0001	4.219	4.39
RMSE	0.229	Promotion 2	-0.232	0.042	-5 53	<0.0001	-0.314	-0.149
MAPE	4.815							
DW	0.291	Promotion 3	0.028	0.045	0.617	0.538	-0.061	0.117
Ср	6	Week 2	-0.026	0.05	-0.521	0.603	-0.125	0.073
AIC	-489.53	Week 3	0.003	0.05	0.061	0.952	-0.096	0.102
SBC	-470.79							
PC	0.837	Week 4	0	0.05	0.004	0.997	-0.098	0.099

RESULTS FROM LOG LINEAR MODELS

- I came to the realization that the week in which a promotion ran had no relationship to sales, so I took it out for the next model
- The only variables affecting sales were promotions and the size of the market, so I created interactions
- I had to create dummy variables for the market sizes
- Important: Sales was my dependent variable. Large Market and Promotion 1 was my baseline

LARGE MARKET LOG LINEAR

Best adjusted R²

- Large market and promotion 1 seem to increase sales the most
- There seems to be an indifference between Promotion 1 and 3, but 3 is insignificant ٠
- There doesn't seem to be a relationship between markets and promotions ٠
- Significant coefficients: Intercept, Promotion 2 ٠
- Insignificant coefficients : Promotion 3, and Week 2,3, and 4

Observations	548	Model param	eters (Log (S	alesInThousa	nds)):			
Sum of weig	548							
DF	539	Course	Value	Standard			Lower	Upper
R²	0.565	Source	Value	error	t	Pr > t	bound	bound
Adjusted R ²	0.558	Intercept	4.299	0.027	157.333	<0.0001	4.245	4.353
MSE	0.042	Small	-0.206	0.053	-3.858	0.000	-0.310	-0.101
RMSE	0.204	Medium	-0.449	0.034	-13.066	<0.0001	-0.517	-0.382
MAPE	4.281	Promotion 2	-0.232	0.037	-6.190	<0.0001	-0.305	-0.158
DW	0.768	Promotion 3	0.028	0.040	0.691	0.490	-0.051	0.107
Ср	9.000	Small P2	0.059	0.078	0.760	0.447	-0.094	0.213
AIC	-1730.738	Small P3	-0.039	0.074	-0.527	0.598	-0.184	0.106
SBC	-1691.982	Medium P2	0.021	0.047	0.437	0.662	-0.072	0.113
PC	0.450	Medium P3	-0.078	0.049	-1.588	0.113	-0.175	0.018

SUMMARY: BUSINESS INSIGHTS

- We found that promotion 1 and large market were the most effective at increasing sales
 - However, this could be biased considering market size is broken down by sales and not income or population size
- The week a promotion ran did not have an effect of the total sales made by that specific promotion
- Based on the interactions between market size and promotions we concluded that promotion 1 seems to be the most effective at increasing sales
 - However, market has no significant effect
- Recommendation:
 - Run and market promotion 1 the same way in all markets because they all respond equally
 - No need to spend money making different marketing campaigns for each market (less cost)

LIMITATIONS

- Next time the organization conducts an A/B Test, they should randomize all variables equally (same number of markets, same number of promotions, etc.) to get better results
- Results were skewed due to the low sample size of certain markets & promotions
- Market size should be based on a better metric such as income level or population because basing it on sales skews the results since our dependent variable is sales

