

Price Optimization

Data Set

Original

Bid no	Units	Unit Price	Win(?)	Units Sold
1	12	16551	1	12
2	24	16272	0	0
3	16	21266	1	16
4	21	18805	0	0
5	27	15884	0	0
6	13	22168	0	0
7	15	15226	1	15
8	27	18850	0	0
9	29	18755	0	0
10	20	22003	0	0
11	11	22064	0	0
12	21	18016	1	21

Expanded

Bid no	Units	Unit Price	Win(?)	Units Sold	Unit Margin	Total Margin	Unit Price/MSRP	Police	Police x P	Size
1	12	16551	1	12	1551	18612	0.66204	1	0.66204	12
2	24	16272	0	0	1272	0	0.65088	1	0.65088	24
3	16	21266	1	16	6266	100256	0.85064	1	0.85064	16
4	21	18805	0	0	3805	0	0.7522	1	0.7522	21
5	27	15884	0	0	884	0	0.63536	1	0.63536	27
6	13	22168	0	0	7168	0	0.88672	1	0.88672	13
7	15	15226	1	15	226	3390	0.60904	1	0.60904	15
8	27	18850	0	0	3850	0	0.754	1	0.754	27
9	29	18755	0	0	3755	0	0.7502	1	0.7502	29
10	20	22003	0	0	7003	0	0.88012	1	0.88012	20
11	11	22064	0	0	7064	0	0.88256	1	0.88256	11
12	21	18016	1	21	3016	63336	0.72064	1	0.72064	21
13	26	15107	0	0	107	0	0.60428	1	0.60428	26

Optimal Price: Single price for all bids

Optimal Price

- First, I ran a logistic regression using
 Win(?) as my dependent variable and bid
 price as predictive variable
 Then, I estimated price as 0.5 in part two.
 Calculated Score, Probability of win,
 profits if win, and expected profits. I used
 solver to find the price that maximized
 - expected profits. I used MSRP and the Price I found to find
 - the optimal price
 - I calculated expected profits with new optimal price
 - Also calculated percent contribution improvement based on their previous model

			Y			
MSRP	25,000					
Unit Cost	15,000					
Logitistic Regression						
Model parameters (Variab	ble Win(?)):					
Source	Value	Standard error	Wald Chi- Square	Pr > Chi²		
Intercept	7.756	0.351	487.024	<0.0001		
Unit Price/MSRP	-9.164	0.452	411.432	< 0.0001		
1. a = 7.756, b = -9.164						
2. Optimal Price	\$20,818.67					
Price	0.83274665	saying 0.83 of 25	,000			
Score	0.124813589	Score = intercept	+ Pr/MSPbeta*	[•] price		
Prob of win	0.531162952	Prob = exp(score)	/(1+exp(score))		
Profits if I win	\$5,819	Profits = price x MSRP - cost				
Expected Profit	\$3,090.66	5 Expected Profits = Prob of win x Profits if I win				
3. Expected Contribution						
Total Expected Profit	\$241,083,838.33					
4. Comparison						
Existing Profit	\$171,829,002	% improvement	40.30%	(new-old)/old		

Optimal Prices: Police and Corporate Buyers Let's start with the first set of slides

New Information:

Selvage and Tobin continue their deliberations with Fjord sales team, they discovered that bids 1 through 2,000 were to various police departments, and that bids 2,001 through 4,000 were to corporate buyers

Optimal Price: Corporate

I ran a logistic regressions using Win(?) as my dependent variable and bid price as predictive variable for <u>corporate</u> buyers
I repeated the process from our last model to predict optimal price for corporate buyers

Model parameters (Variable Win(?)):									
	•								
Source	Value Star	ndard errorVal	d Chi-Squar	Pr > Chi ²	Lower bound	Upper bound			
Intercept	27.875	4.476	38.788	< 0.0001	19.103	36.647			
D	20.012	5 4 6 9	20.012	.0.0001	20.000	10.000			

Corporate Optimal Price	\$22,431.46
Price	0.89725824
Score	2.02349544
Prob of win	0.88324196
Profits if I win	7431.45589
Expected Profits	6563.77368
Current Wins	0.984

Optimal Price: Police

I ran a logistic regressions using Win(?) as my dependent variable and bid price as predictive variable for <u>police</u> buyers
I repeated the process from our first
model to predict optimal price for police buyers

Model parameters (Variable Win(?)):									
Source	Value S	tandard error	/ald Chi-Squar	Pr > Chi²	Lower bound	Upper bound			
Intercept	14.224	0.637	498.199	< 0.0001	12.975	15.473			
Р	-20.010	0.877	520.114	<0.0001	-21.730	-18.291			

Police Optimal Price	\$17,638.58
Price	0.70554301
Score	0.10608439
Prob of win	0.52649625
Profits if I win	2638.57523
Expected Profits	1389.19997
Current Wins	0.373

Improvements

- I calculated expected profits with new optimal prices
- Also calculated percent contribution
 improvement based on their previous
 model and our previous model
- 79% contribution improvement from original model and 28% contribution improvement from our last optimal price

3. Total Expected Contribution						
olice 54580277.6						
254116498						
4. Improvement in total expected contribution						
79.65%						
28.05%						
	tribution 54580277.6 254116498 cal expected o 79.65% 28.05%					

Optimal Prices: Different Buyers and Order Size

New Information:

Their discussions with the sales team reveal that order size is an important determinant for the buyers' price sensitivity with buyers ordering larger order fleet sizes being more sensitive to the prices.

Optimal Price

- I ran a logistic regressions using Win(?) as my dependent variable, bid price, Police, Police and Price interaction, and Size as predictive variables
- Dummy variables for Police
 Using the same procedure, I calculated
 the optimal price for police and
 corporate buyers taking size into
 consideration
- Also calculated percent improvement based on our previous model The contribution improvement of the model decreased

Model p	Model parameters (Variable Win(?)):									
Sour	ce Value	Standard error	Vald Chi-Squar	Pr > Chi ²	Lower bound	Upper bound				
Intercep	ot 28.887	4.500	41.212	< 0.0001	20.068	37.707				
Р	-29.310	5.203	31.736	< 0.0001	-39.507	-19.113				
Police	-13.918	4.537	9.409	0.002	-22.811	-5.025				
Police:P	9.077	5.275	2.961	0.085	-1.262	19.417				
Size	-0.030	0.007	17.870	< 0.0001	-0.044	-0.016				

2. Optimal Prices					
Police (20 cars)	\$17,619.93			Corporate (20 cars)	\$22,393.61
Price	0.704797185			Price	0.8957446
Score	0.113604967			Score	2.0370864
Prob of win	0.528370735			Prob of win	0.8846363
Profits if I win	2619.929629			Profits if I win	7393.6144
Expected Profits	1384.294145			Expected Profits	6540.6593
Police (40 cars)	\$17,258.03			Corporate (40 cars)	\$21,945.80
Price	0.690321049			Price	0.8778321
Score	-0.189441731			Score	1.9661636
Prob of win	0.452780701			Prob of win	0.8771984
Profits if I win	2258.026215			Profits if I win	6945.8023
Expected Profits	1022.390692			Expected Profits	6092.847
3. Total Expected Contribution	\$303,220,524.97	308696775.6	1B	% Improvement	-1.77%
Police	\$52,404,942.81				
Corporate	\$250,815,582.16				