
	

https://rotup.loheb.co.za/gdy?utm_term=gsap+tutorial+pdf

Gsap	tutorial	pdf

Animating	with	code	may	seem	intimidating	at	first,	but	don’t	worry,	our	platform	was	engineered	to	make	it	simple	and	intuitive.	The	menu	to	the	left	gives	you	access	to	every	tool	in	the	GreenSock	API	for	HTML5.	Select	a	tool	to	get	an	overview	and	list	of	every	method	and	property.	Every	method	and	property	has	its	own	detail	page	too	packed
with	descriptions	and	examples.	Be	sure	to	check	out	the	tools	in	Plugins	and	Utilities	packages	too.	You'll	be	amazed	at	what	GSAP	can	do	beyond	its	core	animation	abilities.	Not	sure	where	to	look?	Try	the	search	feature.	This	chart	shows	which	parts	of	GSAP	are	included	inside	of	TweenMax,	which	are	for	Club	GreenSock	members	only,	and
which	reside	on	the	public	CDN.	82153571827.pdf	All	tools	are	linked	to	their	docs	for	convenience.	
Official	GreenSock	Training	(videos	and	eBook)	If	you	want	to	learn	all	of	what	GSAP	can	do	check	out	our	official	video	training	Learn	HTML5	Animation	with	GreenSock	which	includes	over	5	hours	of	HD	video.	This	course	is	packed	with	real-world	projects	and	detailed	step-by-step	instructions.	If	you	prefer	to	learn	visually,	you	can	watch	this
lesson	in	video	format.If	you	want	to	follow	along	with	the	examples,	you	will	need	to	create	an	app	generated	by	the	Vue	CLI	.What	is	GreenSock	(GSAP)?	GSAP	is	a	Javascript	animation	library	that	helps	developers	script	performant	and	engaging	animations.GSAP	is	fast,	robust	with	features	and	handles	browser	compatibility	for	us	by	default.	And
because	it’s	framework-agnostic,	we	can	easily	integrate	and	use	it	with	Vue.To	install	the	GSAP	package,	open	a	new	terminal	and	navigate	to	your	project	folder,	then	run	the	following	command.tip	If	you’re	working	in	VSCode,	you	can	go	to	Terminal	>	New	Terminal	to	open	a	terminal	or	command	prompt	with	the	project	folder	already
selected.Command:	npm	install	gsapOnce	the	package	has	been	installed,	we	should	see	it	in	the	package.json	file	under	“dependencies”.Alternatively,	you	can	use	Yarn	to	install	the	package.Command:	yarn	add	gsapAs	with	any	other	dependency,	we	need	to	import	GSAP	into	the	file	or	component	where	we	want	to	use	it.Example:	import	gsapGSAP
Methods	GSAP	provides	us	with	multiple	methods	to	create	animations.Following	are	the	most	common	methods.gsap.to	allows	us	to	define	the	ending	values.	
In	other	words,	where	we	want	to	animate	to	and	how	it	should	happen.gsap.from	allows	us	to	define	the	starting	values.	In	other	words,	a	backwards	animation.gsap.fromTo	allows	us	to	define	both	the	start	and	end	values.These	methods	take	two	parameters.The	element	that	we	want	to	animate.A	vars	object	containing	the	properties	to	animate	as
well	as	animation	options	that	specify	the	duration,	easing	functionality	etc.GSAP	uses	short	codes	for	2D	and	3D	transform-related	properties.CSSGSAPtranslateX(100px)x:	100translateY(100px)y:	100rotate(360deg)rotation:	360rotateX(360deg)rotationX:	360rotateY(360deg)rotationY:	360skewX(45deg)skewX:	45skewY(45deg)skewY:	45scale(2,
2)scale:	2scaleX(2)scaleX:	2scaleY(2)scaleY:	2translateX(-50%)xPercent:	-50translateY(-50%)yPercent:	-50To	demonstrate,	let’s	set	up	a	heading	in	the	transition	component	with	the	before-enter	and	enter	hooks.In	the	beforeEnter	method,	we’ll	set	the	starting	state	of	the	heading.	In	other	words,	where	the	element	will	be	when	it	starts	the
animation.	In	the	enter	method,	we’ll	use	the	gsap.to	method	and	set	the	end	state	of	the	animation	with	a	duration.Example:	src/App.vueIf	we	run	the	example	in	the	browser,	the	heading	will	slide	down	from	the	top	of	the	page.How	to	delay	the	start	of	an	animation	GSAP	allows	us	to	specify	a	delay	before	the	animation	should	begin	with	the	delay
property.To	demonstrate,	let’s	add	a	2	second	delay	to	our	example.Example:	src/App.vueIf	we	run	the	example	in	the	browser,	the	heading	will	slide	down	into	the	page	after	2	seconds.How	to	repeat	an	animation	We	can	repeat	an	animation	by	specifying	the	number	of	times	we	want	it	to	repeat	in	the	repeat	property	of	the	vars	object.note	The
number	of	repetitions	is	added	to	the	initial	animation.	A	value	of	1	would	mean	the	animation	happens	once,	then	repeat	once	for	a	total	of	2.tip	To	infinitely	repeat	the	animation,	we	can	use	-1	as	the	value.To	demonstrate,	let’s	add	an	infinite	repeat	to	our	animation.	We’ll	also	remove	the	opacity	and	delay	for	now.Example:	src/App.vueIf	we	run	the
example	in	the	browser,	the	heading	will	slide	down	from	the	top	and	restart	the	animation	once	it	reaches	its	end	position.GSAP	easing	functions	GSAP	provides	us	with	a	lot	of	easing	functions	that	we	can	use	as	a	string	value	in	the	ease	property	of	the	vars	object.We	can	select	one	from	the	list	in	the	documentation	to	see	a	visual	representation	of
how	it	will	animate	and	also	choose	an	easing	type.There	are	three	types	of	easings	available.in	will	start	slowly,	then	go	faster	toward	the	end	of	the	animation.out	will	start	fast,	then	slow	down	toward	the	end	of	the	animation.inOut	wil	be	fast	through	the	middle,	but	start	and	end	slowly.By	default,	GSAP	uses	the	power1.out	ease	if	we	don’t	specify
our	own.To	demonstrate,	let’s	add	the	bounce	animation	with	a	type	of	out	to	our	example.Example:	src/App.vueIf	we	run	the	example	in	the	browser,	the	heading	will	slide	in	from	the	top	and	bounce	when	it	reaches	its	end	position.How	to	create	a	stagger	effect	GSAP	makes	it	easy	for	us	to	create	a	stagger	effect	with	the	stagger	property	of	the
vars	object.	Its	value	is	the	delay	in	seconds	between	the	elements.To	demonstrate,	we’ll	create	some	cards	and	iterate	through	them	with	a	v-for	based	on	id	data	properties.	This	time,	we’ll	use	the	from	animation	method	and	add	the	stagger	property	with	a	.1	second	delay.tip	Because	the	cards	are	in	a	container,	we	can	use	the	card’s	class	to
animate	each	element	separately.Example:	src/App.vueIf	we	run	the	example	in	the	browser,	the	cards	will	slide	down	into	the	page	one	after	another.How	to	indicate	a	completed	animation	Vue	doesn’t	know	when	a	GSAP	animation	will	complete.	This	can	cause	problems	with	our	animations	because	transition	hooks	may	fire	when	they’re	not
supposed	to.To	demonstrate,	we’ll	add	the	after-enter	hook	to	our	example	and	log	a	message	to	the	console	when	it	triggers.	We’ll	also	increase	the	duration	and	stagger	delay	of	the	animation	to	make	it	clear	what’s	happening.Example:	src/App.vueWhen	we	run	the	example	in	the	browser,	the	console	message	will	show	before	the	animation
completes.	This	would	be	true	for	all	the	leaving	hooks	as	well.If	we	had	any	following	animations,	the	whole	thing	would	break.Luckily,	we	can	tell	GSAP	when	an	animation	completes	with	the	onComplete	property.	Vue	also	gives	us	a	second	parameter	in	the	transition	hook	that	we	can	pass	to	the	GSAP	property.note	We	must	add	the	first
parameter	to	the	hook,	even	if	we	don’t	use	it.Syntax:	onComplete	and	done	functionTo	demonstrate,	let’s	add	it	to	our	example.	We’ll	remove	the	repeat	property	otherwise	the	after-enter	hook	will	never	be	executed	and	we	won’t	see	the	console	message.Example:	src/App.vueThis	time,	the	message	will	be	printed	to	the	console	only	after	the
animation	is	complete.Animations	in	lifecycle	hooks	instead	of	the	transition	component	We	can	execute	our	animations	inside	a	component’s	lifecycle	hooks	.	In	that	case,	we	don’t	need	to	use	the	transition	component	or	its	hooks.To	demonstrate,	let’s	remove	the	transition	component	from	our	example	and	move	the	GSAP	animation	over	to	the
mounted	lifecycle	hook.Example:	src/App.vueIf	we	run	the	example	in	the	browser,	everything	still	works	as	expected.Further	Reading	For	more	information	on	the	topics	covered	in	this	lesson,	please	see	the	relevant	sections	below.GreenSock	(GSAP)	DocumentationGSAP	CheatsheetGSAP	Forums	by	Nicholas	KramerA	primer	to	creating	timeline
based	animations	without	knowing	JavaScriptIntroductionThe	GreenSock	Animation	Platform	(GSAP	for	short)	is	a	powerful	JavaScript	library	that	enables	front-end	developers	and	designers	to	create	robust	timeline	based	animations.	This	allows	for	precise	control	for	more	involved	animation	sequences	rather	than	the	sometimes	constraining
keyframe	and	animation	properties	that	CSS	offers.The	best	part	about	this	library	is	that	it’s	lightweight	and	easy	to	use.With	GSAP,	you	can	start	creating	engaging	animations	with	little	to	no	knowledge	of	JavaScript.This	guide	will	show	how	to	set	up	and	use	GSAP’s	TweenMax	feature	and	also	dive	into	a	bit	of	Club	GreenSock’s	DrawSVG	plugin.
Each	of	the	examples	below	has	a	corresponding	CodePen	link	so	you	can	follow	along	in	another	tab.Getting	StartedBefore	coding,	we	first	need	to	add	the	GSAP	library	to	our	HTML	file.	

To	do	this,	you	will	need	to	grab	the	CDN	link	to	the	TweenMax	library.	You	can	find	links	to	TweenMax	and	other	GSAP	CDNs	here.Note:	CDN	stands	for	Content	Delivery	Network.	This	means	that	instead	of	hosting	the	JavaScript	files	on	your	site,	an	outside	source	like	CloudFlare	can	host	them	for	you.Once	you	have	the	CDN	link,	insert	it	in	a
That’s	all	you	need	to	get	started!	If	you’re	using	an	online	development	environment	like	CodePen,	you	can	install	GSAP	by	editing	the	Pen	Settings.Click	the	gear	icon	next	to	the	JS	text	editor	and	search	for	TweenMax	to	install	it	in	CodePenUnderstanding	TweensTweens	are	the	basic	animation	functions	from	within	GSAP.	To	animate	any	HTML
object,	we	must	call	the	object,	define	the	properties	that	we	are	going	to	animate,	the	duration	of	the	animation,	the	animation’s	easing,	and	any	other	parameters	like	delay	timing.For	example,	if	we	were	to	change	a	red	rectangle’s	color	to	black	while	also	moving	it	down	and	to	the	right,	the	Tween	would	look	like	this	in
JavaScript:TweenLite.to(“#rectangle”,	2,	{	left:100,	top:	75,	backgroundColor:"#000000",	ease:	Power4.easeIn});This	tween	gives	us	a	rectangle	that	moves	diagonally	and	changes	color.Let’s	break	this	down:TweenLite	lets	our	JavaScript	file	know	that	we	want	to	animate	using	GSAP.	The	.to	method	immediately	after	signifies	that	we	want	our
object	to	animate	from	its	original	static	state	defined	by	our	HTML	and	CSS	to	the	final	animated	state	defined	by	our	JavaScript.You	can	use	the	.from	method	instead	to	reverse	this.	We’ll	cover	this	a	little	later	on	in	this	article.Next,	we	define	the	object	that	we	want	to	animate.	
In	our	case,	it’s	an	HTML	object	with	the	ID	of	rectangle.	This	looks	like	“#rectangle”,	in	our	code.	

We	must	make	sure	that	we	have	our	object	wrapped	in	quotes	and	that	we	use	the	#	to	denote	that	we’re	calling	an	ID.	Any	ID	could	go	here	as	long	as	it’s	an	element	defined	in	your	HTML.	mrs	dalloway	quotes	with	page	numbers	
Also,	note	that	the	comma	following	the	end	quote	is	important	as	well.	Without	it,	the	animation	will	not	run.The	2,	after	the	element’s	ID	defines	the	duration	of	the	animation	in	seconds.	So	in	this	instance,	we’re	defining	the	animation’s	duration	as	2	seconds	long.	
If	we	wanted	it	to	be	a	half-second	long,	we	would	change	the	value	to	0.5,	instead.The	parameters	inside	the	brackets	represent	any	of	the	properties	you’d	like	to	animate.	In	this	example,	we’re	animating	the	left	top	and	background-color	CSS	properties.	
Notice	how	each	of	these	different	properties	use	camelCase	to	call	them	instead	of	the	typical	hyphen	notation	used	with	CSS.	You	can	add	as	many	different	properties	here	as	you’d	like	as	long	as	you	separate	them	with	commas	after	their	value.The	last	property	called	is	the	animation's	ease.	GSAP	comes	packaged	with	a	bunch	of	different	easing
options	that	you	can	add	to	your	animations.In	our	animation	above,	we	call	the	Power4	ease	and	have	it	set	to	easeIn	to	the	animation.	You	can	see	the	full	range	of	easing	options	in	the	documentation	here.	

If	you’re	unfamiliar	with	easing,	be	sure	to	check	out	a	previous	article	that	explains	different	easing	functions	in	depth.Finally,	you	must	close	the	parenthesis	and	the	brackets	of	the	Tween	to	prevent	any	errors	and	allow	the	animation	to	run.	Don’t	forget	to	include	the	semicolon	to	end	the	JavaScript	function.The	Tween	is	the	basic	foundation	for
GSAP	animations.	You	can	experiment	with	an	example	of	this	Tween	in	CodePen	here.Tweens	are	great	if	you	want	to	do	one-off	animations	but	if	you’d	like	to	create	multi-step	sequences,	timelines	are	the	best	alternative.Timeline	AnimationsIf	you’ve	ever	used	an	animation	or	prototyping	software	like	After	Effects	or	Principle,	you’re	already
familiar	with	timeline	animations.	

Traditional	timelines	are	usually	a	series	of	animations	that	occur	one	at	a	time	or	concurrently.	
Timelines	in	GSAP	are	not	any	different.A	visualization	of	a	timeline	in	After	Effects.	GSAP	timelines	are	not	much	different.To	call	a	timeline,	you	must	first	define	a	variable	at	the	top	of	your	JavaScript	file	as	a	new	TimelineLite:var	tl	=	new	TimelineLite;To	break	this	line	of	code	down	piece	by	piece,	know	that	var	is	short	for	variable.	If	you’re
unfamiliar	with	what	a	variable	is,	think	of	it	as	shorthand	for	a	larger	piece	of	code.	In	this	case,	we	defined	a	new	variable	as	tl	and	set	it	equal	to	new	TimelineLite.	This	means	that	every	time	that	we	input	tl	in	our	code,	it	will	stand	for	a	new	TimelineLite.Note	that	we	can	substitute	tl	for	any	shorthand	text	we’d	like.	

I’m	using	tl	because	it’s	short	for	timeline.	This	is	useful	because	if	we	have	multiple	timelines	in	our	file,	we	can	give	each	one	a	unique	variable	to	prevent	confusion.Let’s	now	recreate	our	first	animation	using	TimelineLite	instead	of	TweenLite	to	see	how	this	works.var	tl	=	new	TimelineLite;tl.to(“#rectangle”,	2,	{	x:100,	y:75,	backgroundColor:
“#000000”,	ease:	Power4.easeIn})Notice	how	it’s	rendering	the	exact	same	animation	as	the	tween	before.You’ll	notice	that	this	is	not	much	different	than	our	TweenLite	animation	from	above.	The	only	real	difference	is	that	instead	of	stating	TweenLite.to	we	are	using	tl.to	instead.	You’ll	also	notice	that	we	are	now	using	x	and	y	coordinates	instead
of	left	and	top	CSS	properties.	
These	more	or	less	behave	the	same	way.Also,	notice	how	there	is	no	semicolon	at	the	end	of	the	parenthesis.	This	is	because	we	are	going	to	add	a	second	animation	to	this	timeline,	tethering	them	together.For	this	second	animation,	let’s	make	the	rectangle	scale	up	150%	and	turn	gray	after	the	first	animation	is	complete.	roludatirip.pdf	To	do	this,
we	will	add	another	block	of	code	under	our	first	animation.	Altogether	it	will	look	like	this:var	tl	=	new	TimelineLite;tl.to(“#rectangle”,	2,	{	x:100,	y:	75,	backgroundColor:	“#000000”,	ease:	Power4.easeIn}).to(“#rectangle”,	1,	{	scaleX:	1.5,	scaleY:	1.5,	backgroundColor:	“#454545”,	ease:	Back.easeOut.config(1.7)});We’re	now	tethering	two
animations	together	in	a	timeline.You	can	see	that	this	second	block	of	code	doesn’t	have	the	tl.to	at	the	beginning	of	the	timeline.	Instead,	it	only	has	.to.This	is	because	multiple	animations	in	one	timeline	can	be	tethered	together	as	long	as	there’s	no	semicolon	separating	them.A	semicolon	signifies	the	end	of	a	timeline	and	should	only	be	used	at
the	end	of	the	last	animation	within	a	timeline.You’ll	also	notice	that	we’re	using	two	new	properties,	scaleX	and	scaleY.	These	properties	behave	exactly	how	they	sound,	they	increase	an	object’s	size	by	a	percent	amount.	In	this	case,	1.5	is	equivalent	to	150%.Finally,	we’re	using	a	unique	easing	function	here	called	Back.easeOut.config(1.7).	This
ease	gives	a	natural	rhythm	to	our	animation	by	overshooting	the	intended	value	and	then	coming	back	down	to	the	final	value.	We	can	see	in	this	animation’s	case	how	the	rectangle	grows	slightly	bigger	than	150%	and	then	scales	itself	back	down	afterward.Animating	Multiple	Objects	with	TimelineLiteTimelines	are	not	limited	to	animating	one
object.	You	can	animate	multiple	objects	in	a	timeline	by	adding	their	corresponding	IDs	in	different	functions.For	example,	if	we	were	to	create	an	HTML	object	of	a	circle	and	have	it	fade	in	after	our	rectangle	scales	larger,	our	code	would	look	like	this:var	tl	=	new	TimelineLite;tl.to(“#rectangle”,	2,	{	x:100,	y:	75,	backgroundColor:	“#000000”,
ease:	Power4.easeIn}).to(“#rectangle”,	1,	{	scaleX:	1.5,	scaleY:	1.5,	backgroundColor:	“#454545”,	ease:	Back.easeOut.config(1.7)}).from(“#circle”,	1,	{	opacity:	0,});This	latest	block	of	code	now	has	a	circle	fade	in	at	the	end	of	our	animation.We’ve	added	a	third	code	block	to	our	animation	that	calls	the	circle.Also	note	how	we’re	now	using	the
.from	method.	This	means	that	our	circle	animation	starts	at	0%	opacity	and	then	goes	to	100%	opacity.You	can	see	this	in	action	when	our	animation	has	the	circle	hidden	because	it	starts	at	0%	opacity.	After	the	rectangle	changes	color	and	scales	up,	the	circle	fades	in	at	100%	opacity,	just	as	intended.You	can	see	how	TimelineLite	works	in	this
CodePen	example	here.	I	encourage	you	to	try	and	add	new	elements	to	the	HTML	and	try	to	create	more	complicated	and	unique	sequences	with	the	provided	tools.	You	can	also	take	a	look	at	the	full	GSAP	TimelineLite	documentation	here	to	learn	about	other	methods	and	properties.DrawSVGAlong	with	the	free	TweenLite	and	TimelineLite
features,	GSAP	also	offers	premium	content	that	allows	you	to	manipulate	SVGs	with	ease.	
Luckily,	these	plugins	are	available	to	play	around	with	for	free	on	CodePen	by	searching	for	them	in	the	pen	settings	(the	gear	icon	next	to	the	JS	text	editor).The	DrawSVG	plugin	makes	it	easy	to	animate	the	lines	of	an	SVG.	To	show	this,	we’re	going	to	have	an	SVG	of	a	unicorn	in	a	hoodie	draw	itself.	You	can	follow	along	with	the	corresponding
CodePen	here.The	final	result	of	animating	the	SVG	lines.First,	we	need	to	export	our	SVG	and	import	it	into	our	text	editor.For	a	comprehensive	breakdown	on	how	to	properly	export	SVGs,	check	out	a	previous	article	here.Next,	we	need	to	give	each	of	our	individual	paths	an	ID	so	that	we	can	call	each	one	in	our	timeline.	This	may	take	some	time	if
you	have	a	complicated	SVG	with	a	series	of	different	animating	lines.	For	the	sake	of	simplicity,	I’m	going	to	name	the	first	path	#unicorn1	and	name	the	next	path	#unicorn2	and	so	on	until	they	all	have	a	unique	ID.Now	that	all	our	paths	have	an	ID,	we	can	jump	in	and	begin	developing	our	timeline	animation.	mike	meyers'	comptia	a	guide	to	man
Like	before,	we	need	to	create	a	variable	will	function	as	our	TimelineLite	variable:var	unicorndraw	=	new	TimelineLite();In	this	case,	we’re	going	to	be	using	the	variable	unicorndraw.The	last	step	we	need	to	do	is	to	create	a	TimelineLite	animation	that	calls	each	of	the	individual	paths:unicorndraw.from(“#unicorn1,	#unicorn2,	#unicorn3,
#unicorn4,	#unicorn5,	#unicorn6,	#unicorn7,	#unicorn8,	#unicorn9,	#unicorn10,	#unicorn11,	#unicorn12,	#unicorn13,	#unicorn14,	#unicorn15,	#unicorn16,	#unicorn17,	#unicorn18,	#unicorn19,	#unicorn20,	#unicorn21,	#unicorn22,	#unicorn23,	#unicorn24,	#unicorn25,	#unicorn26,	#unicorn27,	#unicorn28,	#unicorn29,	#unicorn30,
#unicorn31,	#unicorn32,	#unicorn33,	#unicorn34,	#unicorn35,	#unicorn36,	#unicorn37,	#unicorn38,	#unicorn39,	#unicorn40,	#unicorn41,	#unicorn42,	#unicorn43,	#unicorn44,	#unicorn45,	#unicorn46,	#unicorn47,	#unicorn48,	#unicorn49,	#unicorn50,	#unicorn51,	#unicorn52,	#unicorn53,	#unicorn54,	#unicorn55,	#unicorn56,	#unicorn57,
#unicorn58,	#unicorn59,	#unicorn60,	#unicorn61,	#unicorn62,	#unicorn63”,	3,	{drawSVG:”0",	delay:”1"})You	can	see	how	this	is	like	our	previous	.from	TimelineLite	animation	from	before.	We’re	calling	our	individual	objects	(in	this	case,	we’re	calling	more	than	one	at	a	time	so	that	they	all	animate	at	once)	and	we	define	the	duration	of	the
animation	as	3	seconds.The	only	difference	is	that	inside	the	brackets,	we’re	now	using	drawSVG:	“0”.	
This	calls	the	drawSVG	plugin	and	defines	each	path	to	have	a	value	of	0.	Because	we’re	using	a	.from	method,	the	paths	start	with	a	value	of	0	and	then	animate	to	100%	in	3	seconds.You	can	play	with	different	values	to	get	a	unique	animation	style.The	other	piece	of	code	inside	the	brackets	is	delay:	“1”.	This	determines	how	long	the	animation	will
wait	to	execute	in	seconds.	In	this	case,	we’re	stating	that	the	animation	will	wait	1	second	before	executing.This	is	the	fastest	way	to	get	started	with	the	drawSVG	plugin	but	you	can	manipulate	the	values	in	many	different	ways	to	get	some	interesting	effects.	To	learn	more	about	this	plugin,	check	out	GSAP’s	site.Final	ThoughtsGSAP	makes	it	easy
to	create	and	manipulate	your	own	timeline	animations	even	if	you	have	little	to	no	understanding	of	JavaScript.	This	was	a	small	amount	of	the	different	animations	you	can	do	with	GSAP.	Check	out	Greensock’s	site	to	learn	more	about	the	library	and	experiment	with	different	animation	techniques.Nicholas	Kramer	is	a	designer	currently	working	at
Barrel	in	New	York	City.	He	solves	design	problems	for	businesses	by	helping	them	simplify	ideas	and	communicate	their	value	to	customers.Stay	in	Touch!	Dribbble	|	LinkedIn	|	Website

https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/82153571827.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/nawozogefomowalegemokev.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/roludatirip.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/zixotegotawapuz.pdf

