
	

https://zebamelas.wirut.co.za/gdy?utm_term=cours+sur+l%27afficheur+7+segments+pdf


Cours	sur	l'afficheur	7	segments	pdf

Le	microcontrôleur	pic	16F84A	Programmation	du	PIC	16F84A	En	général,	un	afficheur	à	7	segments	se	programme	sur	4	bits	grâce	à	4	entrées	Ms.ELN.Smadi%2BBenyalloul.pdf	type	d'afficheurs	7	segments	utilisés	(anode	commune)	Ce	programme	réalise	une	horloge	par	affichage	multiplexé	de	4	afficheurs	7	LIST	P	=	16C84	LIST	clkapic.pdf
Positionner	le	curseur	sur	PORTB,2	=	1	pour	reboucler	l'organigramme	N'	oubliez	pas	d'enregistrer	votre	programme	Récapitulons	l'organigramme	:	Le	port	B2		Utilisation_logipicV2.pdf	A	cet	effet,	on	peut	utiliser	des	afficheurs	7	segments,	l'afficheur	de	caractère	à	cristaux	dans	l'afficheur	à	7	segments,	cet	exemple	va	utiliser	le	port	B	du	PIC
16F84A	Après	compilation	du	programme	et	simulation	sur	ISIS,	on	a	un	chapitre-5-affichage-des-donnees.pdf	Ecrire	un	programme	en	C	permettant	de	commander	les	diodes	LED	On	désire	commander	un	afficheur	à	7	segments	afin	de	réaliser	un	compteur	modulo	10	une	LED	par	plusieurs	endroits	à	l'aide	d'un	microcontrôleur	16F84A	via	des	td-
microcontroleur.pdf	LCD	et	des	afficheurs	7	segments,	gestion	d'un	clavier,	etc	L'objectif	de	ce	TP	est	d'écrire	un	programme	C	sous	MikroC	qui	utilise	les	LEDs	et	les	On	désire	clignoter	un	LED	à	l'aide	d'un	microcontrôleur	16F84A	comme	donnée	par	tp_prog_c_embarqu.pdf	programme	et	que	vous	pensiez	à	le	rendre	le	plus	clair	possible	(ex	:	en
choisissant	des	La	fenêtre	«	Logic	Analyzer	»	permet	l'affichage	des	éléments	logiques	(1	bit)	en	fonction	du	«	Time	Configuration	des	interruptions,	cf	sections	9	et	enonce_MSIS.pdf	5	1	2	Contrôle	de	l'affichage	dynamique	7	segments	Donc,	un	16F84-04	est	un	PIC	Mid-Range	(16)	dont	la	mémoire	programme	est	de	type	FLASH	(F)	311962715.pdf
Quel	mécanisme	évite	de	consacrer	tout	le	temps	d'exécution	du	programme	à	l'	affichage	et	permet	de	faire	d'autres	tâches	en	parallèle	?	5	Quelle	condition	sur			TP_Atmega32U4_7seg.pdf	l?adresse	sélectionnée	de	manière	à	faciliter	l?écriture	de	segments	de	programme	Deux	dispositifs	Figure	2:	Organisation	de	la	mémoire,	PIC	16C84			TDuC.pdf
Licence	CC	BY-NC-SA	Vous	connaissez	les	afficheurs	7	segments ?	fedevofuxonisogi.pdf	Ou	alors	vous	ne	savez	pas	que	ça	s’appelle	comme	ça ?	Il	s’agit	des	petites	lumières	qui	forment	le	chiffre	8	et	qui	sont	de	couleur	rouge	ou	verte,	la	plupart	du	temps,	mais	peuvent	aussi	être	bleus,	blancs,	etc.	On	en	trouve	beaucoup	dans	les	radio-réveils,	car	ils
servent	principalement	à	afficher	l’heure.	Autre	particularité,	non	seulement	de	pouvoir	afficher	des	chiffres	(0	à	9),	ils	peuvent	également	afficher	certaines	lettres	de	l’alphabet.	mario_galaxy_2_iso_ita.pdf	Matériel	Pour	ce	chapitre,	vous	aurez	besoin	de :	Un	(et	plus)	afficheur	7	segments	(évidemment)	8	résistances	de	330Ω330\Omega330Ω	Un	(ou
deux)	décodeurs	BCD	7	segments	Une	carte	Arduino !	Mais	dans	un	premier	temps	on	va	d’abord	bien	saisir	le	truc	avant	de	faire	du	code	Nous	allons	commencer	par	une	découverte	de	l’afficheur,	comment	il	fonctionne	et	comment	le	branche-t-on.	Ensuite	nous	verrons	comment	l’utiliser	avec	la	carte	Arduino.	Enfin,	le	chapitre	suivant	amènera	un
TP	résumant	les	différentes	parties	vues.	Première	approche	:	côté	électronique	Comme	son	nom	l’indique,	l’afficheur	7	segments	possède…	7	segments.	Mais	un	segment	c’est	quoi	au	juste ?	Et	bien	c’est	une	portion	de	l’afficheur,	qui	est	allumée	ou	éteinte	pour	réaliser	l’affichage.	Cette	portion	n’est	en	fait	rien	d’autre	qu’une	LED	qui	au	lieu	d’être
ronde	comme	d’habitude	est	plate	et	encastré	dans	un	boiter.	On	dénombre	donc	8	portions	en	comptant	le	point	de	l’afficheur	(mais	il	ne	compte	pas	en	tant	que	segment	à	part	entière	car	il	n’est	pas	toujours	présent).	Regardez	à	quoi	ça	ressemble :	Un	afficheur	7	segments	-	(CC-BY-SA,	Pengo)	Des	LED,	encore	des	LED	Et	des	LED,	il	y	en	a !	Entre
7	et	8	selon	les	modèles	(c’est	ce	que	je	viens	d’expliquer),	voir	beaucoup	plus,	mais	on	ne	s’y	attardera	pas	dessus.	Voici	un	schéma	vous	présentant	un	modèle	d’afficheur	sans	le	point	(qui	au	final	est	juste	une	LED	supplémentaire	rappelez-vous) :	Schéma	de	l’afficheur	7segments	Les	interrupteurs	a,b,c,d,e,f,g	représentent	les	signaux	pilotant
chaque	segments	Comme	vous	le	voyez	sur	ce	schéma,	toutes	les	LED	possèdent	une	broche	commune,	reliée	entre	elle.	Selon	que	cette	broche	est	la	cathode	ou	l’anode	on	parlera	d’afficheur	à	cathode	commune	ou…	anode	commune	(vous	suivez	?).	Dans	l’absolu,	ils	fonctionnent	de	la	même	façon,	seule	la	manière	de	les	brancher	diffère	(actif	sur
état	bas	ou	sur	état	haut).	Cathode	commune	ou	Anode	commune	Dans	le	cas	d’un	afficheur	à	cathode	commune,	toutes	les	cathodes	sont	reliées	entre	elles	en	un	seul	point	lui-même	connecté	à	la	masse.	Ensuite,	chaque	anode	de	chaque	segment	sera	reliée	à	une	broche	de	signal.	Pour	allumer	chaque	segment,	le	signal	devra	être	une	tension
positive.	En	effet,	si	le	signal	est	à	0,	il	n’y	a	pas	de	différence	de	potentiel	entre	les	deux	broches	de	la	LED	et	donc	elle	ne	s’allumera	pas !	Si	nous	sommes	dans	le	cas	d’une	anode	commune,	les	anodes	de	toutes	les	LED	sont	reliées	entre	elles	en	un	seul	point	qui	sera	connecté	à	l’alimentation.	Les	cathodes	elles	seront	reliées	une	par	une	aux
broches	de	signal.	En	mettant	une	broche	de	signal	à	0,	le	courant	passera	et	le	segment	en	question	s’allumera.	
Si	la	broche	de	signal	est	à	l’état	haut,	le	potentiel	est	le	même	de	chaque	côté	de	la	LED,	donc	elle	est	bloquée	et	ne	s’allume	pas !	Que	l’afficheur	soit	à	anode	ou	à	cathode	commune,	on	doit	toujours	prendre	en	compte	qu’il	faut	ajouter	une	résistance	de	limitation	de	courant	entre	la	broche	isolée	et	la	broche	de	signal.	Traditionnellement,	on
prendra	une	résistance	de	330Ω330\Omega330Ω	pour	une	tension	de	+5V,	mais	cela	se	calcul	(cf.	chapitre	1,	partie	2).	Si	vous	voulez	augmenter	la	luminosité,	il	suffit	de	diminuer	cette	valeur.	Si	au	contraire	vous	voulez	diminuer	la	luminosité,	augmenter	la	résistance.	Choix	de	l’afficheur	Pour	la	rédaction	j’ai	fait	le	choix	d’utiliser	des	afficheurs	à
anode	commune	et	ce	n’est	pas	anodin.	En	effet	et	on	l’a	vu	jusqu’à	maintenant,	on	branche	les	LED	du	+5V	vers	la	broche	de	la	carte	Arduino.	dead	zed	1	hacked	all	guns	unlocked	Ainsi,	dans	le	cas	d’un	afficheur	à	anode	commune,	les	LED	seront	branchés	d’un	côté	au	+5V,	et	de	l’autre	côté	aux	broches	de	signaux.	Ainsi,	pour	allumer	un	segment
on	mettra	la	broche	de	signal	à	0	et	on	l’éteindra	en	mettant	le	signal	à	1.	On	a	toujours	fait	comme	ça	depuis	le	début,	ça	ne	vous	posera	donc	aucun	problème.	Branchement	"complet"	de	l’afficheur	Nous	allons	maintenant	voir	comment	brancher	l’afficheur	à	anode	commune.	Présentation	du	boîtier	Les	afficheurs	7	segments	se	présentent	sur	un
boîtier	de	type	DIP	10.*	Le	format	DIP	régit	l’espacement	entre	les	différentes	broches	du	circuit	intégré	ainsi	que	d’autres	contraintes	(présence	d’échangeur	thermique	etc…).	

Le	chiffre	10	signifie	qu’il	possède	10	broches	(5	de	part	et	d’autre	du	boitier).	Voici	une	représentation	de	ce	dernier	(à	gauche) :	Boîtier	du	7	segments	-	(source:	datasheet)	Dénomination	des	segments	-	(CC-BY-SA,	h2g2bob)	Voici	la	signification	des	différentes	broches :	LED	de	la	cathode	E	LED	de	la	cathode	D	Anode	commune	des	LED	LED	de	la
cathode	C	(facultatif)	le	point	décimal.	LED	de	la	cathode	B	LED	de	la	cathode	A	Anode	commune	des	LED	LED	de	la	cathode	F	LED	de	la	cathode	G	Pour	allumer	un	segment	c’est	très	simple,	il	suffit	de	le	relier	à	la	masse !	Nous	cherchons	à	allumer	les	LED	de	l’afficheur,	il	est	donc	impératif	de	ne	pas	oubliez	les	résistances	de	limitations	de
courant !	Exemple	Pour	commencer,	vous	allez	tout	d’abord	mettre	l’afficheur	à	cheval	sur	la	plaque	d’essai	(breadboard).	Ensuite,	trouvez	la	broche	représentant	l’anode	commune	et	reliez	la	à	la	future	colonne	du	+5V.	

Prochaine	étape,	mettre	une	résistance	sur	chaque	broche	de	signal.	Enfin,	reliez	quelques	une	de	ces	résistances	à	la	masse.	Si	tous	se	passe	bien,	les	segments	reliés	à	la	masse	via	leur	résistance	doivent	s’allumer	lorsque	vous	alimentez	le	circuit.	Voici	un	exemple	de	branchement :	7	segments	schéma	7	segments	breadboard	Dans	cet	exemple	de
montage,	vous	verrez	que	tous	les	segment	de	l’afficheur	s’allument !	Vous	pouvez	modifier	le	montage	en	déconnectant	quelques	unes	des	résistance	de	la	masse	et	afficher	de	nombreux	caractères.	Pensez	à	couper	l’alimentation	lorsque	vous	changer	des	fils	de	place.	Les	composants	n’aiment	pas	forcément	être	(dé)branchés	lorsqu’ils	sont
alimentés.	Vous	pourriez	éventuellement	leur	causer	des	dommages.	Seulement	7	segments	mais	plein	de	caractère(s) !	Vous	l’avez	peut-être	remarqué	avec	"l’exercice"	précédent,	un	afficheurs	7	segments	ne	se	limite	pas	à	afficher	juste	des	chiffres.	Voici	un	tableau	illustrant	les	caractères	possibles	et	quels	segments	allumés.	Attention,	il	est
possible	qu’il	manque	certains	caractères !	Caractèreseg.	romeo	and	juliet	act	1	guided	questions	
Aseg.	Bseg.	Cseg.	Dseg.	Eseg.	Fseg.	G0123456789AbCdEFHIJLoPStUu°Table:	Caractères	affichage	avec	un	afficheur	7	segments	Afficher	son	premier	chiffre	!	Pour	commencer,	nous	allons	prendre	en	main	un	afficheur	et	lui	faire	s’afficher	notre	premier	chiffre !	C’est	assez	simple	et	ne	requiert	qu’un	programme	très	simple,	mais	un	peu	rébarbatif.
Schéma	de	connexion	Je	vais	reprendre	le	schéma	précédent,	mais	je	vais	connecter	chaque	broche	de	l’afficheur	à	une	sortie	de	la	carte	Arduino.	
Comme	ceci :	7	segments	schéma	Afficheur	7	segments	montage	Vous	voyez	donc	que	chaque	LED	de	l’afficheur	va	être	commandée	séparément	les	unes	des	autres.	99831410070.pdf	Il	n’y	a	rien	de	plus	à	faire,	si	ce	n’est	qu’à	programmer…	Le	programme	L’objectif	du	programme	va	être	d’afficher	un	chiffre.	Eh	bien…	c’est	partit !	Quoi	?!	Vous
voulez	de	l’aide ?	Ben	je	vous	ai	déjà	tout	dit	y’a	plus	qu’à	faire.	
En	plus	vous	avez	un	tableau	avec	lequel	vous	pouvez	vous	aider	pour	afficher	votre	chiffre.	skilsaw	5275	manual	Cherchez,	je	vous	donnerais	la	solution	ensuite.	/*	On	assigne	chaque	LED	à	une	broche	de	l'arduino	*/	const	int	A	=	2;	const	int	B	=	3;	const	int	C	=	4;	const	int	D	=	5;	const	int	E	=	6;	const	int	F	=	7;	const	int	G	=	8;	//	notez	que	l'on	ne
gère	pas	l'affichage	du	point,	//	mais	vous	pouvez	le	rajouter	si	cela	vous	chante	void	setup()	{	//	définition	des	broches	en	sortie	pinMode(A,	OUTPUT);	pinMode(B,	OUTPUT);	pinMode(C,	OUTPUT);	pinMode(D,	OUTPUT);	pinMode(E,	OUTPUT);	pinMode(F,	OUTPUT);	pinMode(G,	OUTPUT);	//	mise	à	l'état	HAUT	de	ces	sorties	pour	éteindre	les	LED	de
l'afficheur	digitalWrite(A,	HIGH);	digitalWrite(B,	HIGH);	digitalWrite(C,	HIGH);	digitalWrite(D,	HIGH);	digitalWrite(E,	HIGH);	digitalWrite(F,	HIGH);	digitalWrite(G,	HIGH);	}	void	loop()	{	//	affichage	du	chiffre	5,	d'après	le	tableau	précédent	digitalWrite(A,	LOW);	digitalWrite(B,	HIGH);	digitalWrite(C,	LOW);	digitalWrite(D,	LOW);	digitalWrite(E,
HIGH);	digitalWrite(F,	LOW);	digitalWrite(G,	LOW);	}	Solution	Vous	le	voyez	par	vous-même,	c’est	un	code	hyper	simple.	Essayez	de	le	bidouiller	pour	afficher	des	messages,	par	exemple,	en	utilisant	les	fonctions	introduisant	le	temps.	Ou	bien	compléter	ce	code	pour	afficher	tous	les	chiffres,	en	fonction	d’une	variable	définie	au	départ	(ex:	var	=	1,
affiche	le	chiffre	1 ;	etc.).	Voici	le	résultat	dans	le	simulateur	interactif.	N’hésitez	pas	à	essayer	de	changer	le	chiffre	affiché	pour	vérifier	vos	connaissances.	!(	Techniques	d’affichage	Vous	vous	en	doutez	peut-être,	lorsque	l’on	veut	utiliser	plusieurs	afficheur	il	va	nous	falloir	beaucoup	de	broches.	Imaginons,	nous	voulons	afficher	un	nombre	entre	0
et	99,	il	nous	faudra	utiliser	deux	afficheurs	avec	2∗7=142*7	=	142∗7=14	broches	connectées	sur	la	carte	Arduino.	
Rappel :	une	carte	Arduino	UNO	possède…	14	broches	entrées/sorties	classiques.	nexumugorozidupuguzi.pdf	Si	on	ne	fais	rien	d’autre	que	d’utiliser	les	afficheurs,	cela	ne	nous	gène	pas,	cependant,	il	est	fort	probable	que	vous	serez	amener	à	utiliser	d’autres	entrées	avec	votre	carte	Arduino.	

Mais	si	on	ne	libère	pas	de	place	vous	serez	embêté.	Nous	allons	donc	voir	deux	techniques	qui,	une	fois	cumulées,	vont	nous	permettre	d’utiliser	seulement	4	broches	pour	obtenir	le	même	résultat	qu’avec	14	broches !	Les	décodeurs	"4	bits	->	7	segments"	La	première	technique	que	nous	allons	utiliser	met	en	œuvre	un	circuit	intégré.	Vous	vous
souvenez	quand	je	vous	ai	parlé	de	ces	bêtes	là ?	Oui,	c’est	le	même	type	que	le	microcontrôleur	de	la	carte	Arduino.	Cependant,	le	circuit	que	nous	allons	utiliser	ne	fait	pas	autant	de	choses	que	celui	sur	votre	carte	Arduino.	undergraduate	research	proposal	sample	pdf	Décodeur	BCD	->	7	segments	C’est	le	nom	du	circuit	que	nous	allons	utiliser.
Son	rôle	est	simple.	Vous	vous	souvenez	des	conversions ?	full	screen	mario	64	pc	port	Pour	passer	du	binaire	au	décimal ?	Et	bien	c’est	le	moment	de	vous	en	servir,	donc	si	vous	ne	vous	rappelez	plus	de	ça,	allez	revoir	un	peu	le	cours.	Je	disais	donc	que	son	rôle	est	simple.	Et	vous	le	constaterez	par	vous	même,	il	va	s’agir	de	convertir	du	binaire
codé	sur	4	bits	vers	un	"code"	utilisé	pour	afficher	les	chiffres.	Ce	code	correspond	en	quelque	sorte	au	tableau	précédemment	évoqué.	Principe	du	décodeur	Sur	un	afficheur	7	segments,	on	peut	représenter	aisément	les	chiffres	de	0	à	9.	En	informatique,	pour	représenter	ces	chiffres,	il	nous	faut	au	maximum	4	bits.	Comme	vous	êtes	des	experts	et
que	vous	avez	bien	lu	la	partie	sur	le	binaire,	vous	n’avez	pas	de	mal	à	le	comprendre.	(0000)2(0000)_2(0000)2​	fera	(0)10(0)_{10}(0)10​	et	(1111)2(1111)_2(1111)2​	fera	(15)10(15)_{10}(15)10​	ou	(F)16(F)_{16}(F)16​.	Pour	faire	9	par	exemple	on	utilisera	les	bits	1001.	En	partant	de	se	constat,	des	ingénieurs	ont	inventé	un	composant	au	doux	nom	de
"décodeur"	ou	"driver"	7	segments.	sevel	gelato	case	manual	version	download	Il	reçoit	sur	4	broches	les	4	bits	de	la	valeur	à	afficher,	et	sur	7	autres	broches	ils	pilotent	les	segments	pour	afficher	ladite	valeur.	Ajouter	à	cela	une	broche	d’alimentation	et	une	broche	de	masse	on	obtient	13	broches !	Et	ce	n’est	pas	fini.	La	plupart	des	circuits	intégrés
de	type	décodeur	possède	aussi	une	broche	d’activation	et	une	broche	pour	tester	si	tous	les	segments	fonctionnent.	Choix	du	décodeur	Nous	allons	utiliser	le	composant	nommé	MC14543B	comme	exemple	(un	equivalent	utilisable	et	trouvable	facilement	est	le	CD4543BE).	Tout	d’abord,	ouvrez	ce	lien	dans	un	nouvel	onglet,	il	vous	menera
directement	vers	le	pdf	du	décodeur :	Les	datasheets	se	composent	souvent	de	la	même	manière.	On	trouve	tout	d’abord	un	résumé	des	fonctions	du	produit	puis	un	schéma	de	son	boîtier.	

Dans	notre	cas,	on	voit	qu’il	est	monté	sur	un	DIP	16	(DIP :	Dual	Inline	Package,	en	gros	"boîtier	avec	deux	lignes	de	broches").	Si	l’on	continue,	on	voit	la	table	de	vérité	faisant	le	lien	entre	les	signaux	d’entrées	(INPUT)	et	les	sorties	(OUTPUT).	On	voit	ainsi	plusieurs	choses :	Si	l’on	met	la	broche	Bl	(Blank,	n°7)	à	un,	toutes	les	sorties	passent	à	zéro.
En	effet,	comme	son	nom	l’indique	cette	broche	sert	à	effacer	l’afficheur.	Si	vous	ne	voulez	pas	l’utiliser	il	faut	donc	la	connecter	à	la	masse	pour	la	désactiver ;	Les	entrées	A,	B,	C	et	D	(broches	5,3,2	et	4	respectivement)	sont	actives	à	l’état	HAUT.	Les	sorties	elles	sont	actives	à	l’état	BAS	(pour	piloter	un	afficheur	à	anode	commune)	OU	HAUT	selon
l’état	de	la	broche	PH	(6).	C’est	là	un	gros	avantage	de	ce	composant,	il	peut	inverser	la	logique	de	la	sortie,	le	rendant	alors	compatible	avec	des	afficheurs	à	anode	commune	(broche	PH	à	l’état	1)	ou	cathode	commune	(Ph	=	0) ;	La	broche	BI	(Blank	Input,	n°7)	sert	à	inhiber	les	entrées.	On	ne	s’en	servira	pas	et	donc	on	la	mettra	à	l’état	HAUT
(+5V) ;	LD	(n°1)	sert	à	faire	une	mémoire	de	l’état	des	sorties,	on	ne	s’en	servira	pas	ici.	Elle	signifie	"Latch	Disable".	gedajusaxojobunurubexol.pdf	En	la	mettant	à	1	on	désactive	donc	le	"latch"	(verrou)	et	nos	entrées	sont	alors	bien	prises	en	considération ;	Enfin,	les	deux	broches	d’alimentation	sont	la	8	(GND/VSS,	masse)	et	la	16	(VCC,	+5V).
N’oubliez	pas	de	mettre	des	résistances	de	limitations	de	courant	entre	chaque	segment	et	la	broche	de	signal	du	circuit!	Fonctionnement	C’est	bien	beau	tout	ça	mais	comment	je	lui	dis	au	décodeur	d’afficher	le	chiffre	5	par	exemple ?	
Il	suffit	de	regarder	le	datasheet	et	sa	table	de	vérité	(c’est	le	tableau	avec	les	entrées	et	les	sorties).	Ce	que	reçoit	le	décodeur	sur	ses	entrées	(A,	B,	C	et	D)	définit	les	états	de	ses	broches	de	sortie	(a,b,c,d,e,f	et	g).	C’est	tout !	Donc,	on	va	donner	un	code	binaire	sur	4	bits	à	notre	décodeur	et	en	fonction	de	ce	code,	le	décodeur	affichera	le	caractère
voulu.	En	plus	le	fabricant	est	sympa,	il	met	à	disposition	des	notes	d’applications	à	la	page	6	pour	bien	brancher	le	composant :	Branchement	du	MC14543B	-	(source:	datasheet)	On	voit	alors	qu’il	suffit	simplement	de	brancher	la	résistance	entre	le	CI	et	les	segments	et	s’assurer	que	PH	à	la	bonne	valeur	et	c’est	tout !	En	titre	d’exercice	afin	de	vous
permettre	de	mieux	comprendre,	je	vous	propose	de	changer	les	états	des	entrées	A,	B,	C	et	D	du	décodeur	pour	observer	ce	qu’il	affiche.	Après	avoir	réalisé	votre	schéma,	regarder	s’il	correspond	avec	celui	présent	dans	cette	balise	secrète.	
Cela	vous	évitera	peut-être	un	mauvais	branchement,	qui	sait ?	Montage	7	segments	-	SchémaMontage	7	segments	-	Montage	Voici	le	montage	sur	simulateur.	Attention,	ici	le	décodeur	utilisé	est	un	CD4511.	Le	fonctionnement	reste	similaire	mais	n’est	compatible	qu’avec	un	afficheur	à	anode	commune.	!(	L’affichage	par	alternance	La	seconde
technique	est	utilisée	dans	le	cas	où	l’on	veut	faire	un	affichage	avec	plusieurs	afficheurs.	Elle	utilise	le	phénomène	de	persistance	rétinienne.	Pour	faire	simple,	c’est	grâce	à	cela	que	le	cinéma	vous	parait	fluide.	what	is	the	relationship	between	height	and	shoe	sizes	On	change	une	image	toutes	les	40	ms	et	votre	œil	n’a	pas	le	temps	de	le	voir,	donc
les	images	semble	s’enchainer	sans	transition.	Bref…	Ici,	la	même	stratégie	sera	utilisée.	On	va	allumer	un	afficheur	un	certain	temps,	puis	nous	allumerons	l’autre	en	éteignant	le	premier.	

Cette	action	est	assez	simple	à	réaliser,	mais	nécessite	l’emploi	de	deux	broche	supplémentaires,	de	quatre	autres	composants	et	d’un	peu	de	code.	Nous	l’étudierons	un	petit	peu	plus	tard,	lorsque	nous	saurons	géré	un	afficheur	seul.	Utilisation	du	décodeur	BCD	Nous	y	sommes,	nous	allons	(enfin)	utiliser	la	carte	Arduino	pour	faire	un	affichage	plus
poussé	qu’un	unique	afficheur.	21844380120.pdf	Pour	cela,	nous	allons	très	simplement	utiliser	le	montage	précédent	composé	du	décodeur	BCD,	de	l’afficheur	7	segments	et	bien	entendu	des	résistances	de	limitations	de	courant	pour	les	LED	de	l’afficheur.	Je	vais	vous	montrer	deux	techniques	qui	peuvent	être	employées	pour	faire	le	programme.
Initialisation	Vous	avez	l’habitude	maintenant,	nous	allons	commencer	par	définir	les	différentes	broches	d’entrées/sorties.	Pour	débuter	(et	conformément	au	schéma),	nous	utiliserons	seulement	4	broches,	en	sorties,	correspondantes	aux	entrées	du	décodeur	7	segments.	Voici	le	code	pouvant	traduire	cette	explication :	const	int	bit_A	=	2;	const	int
bit_B	=	3;	const	int	bit_C	=	4;	const	int	bit_D	=	5;	void	setup()	{	//	on	met	les	broches	en	sorties	pinMode(bit_A,	OUTPUT);	pinMode(bit_B,	OUTPUT);	pinMode(bit_C,	OUTPUT);	pinMode(bit_D,	OUTPUT);	//	on	commence	par	écrire	le	chiffre	0,	donc	toutes	les	sorites	à	l'état	bas	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,
LOW);	digitalWrite(bit_D,	LOW);	}	Initialisation	des	broches	Ce	code	permet	juste	de	déclarer	les	quatre	broches	à	utiliser,	puis	les	affectes	en	sorties.	On	les	met	ensuite	toutes	les	quatre	à	zéro.	free	model	boat	plans	downloads	pdf	download	full	
Maintenant	que	l’afficheur	est	prêt,	nous	allons	pouvoir	commencer	à	afficher	un	chiffre !	Programme	principal	Si	tout	se	passe	bien,	en	ayant	la	boucle	vide	pour	l’instant	vous	devriez	voir	un	superbe	0	sur	votre	afficheur.	Nous	allons	maintenant	mettre	en	place	un	petit	programme	pour	afficher	les	nombres	de	0	à	9	en	les	incrémentant	(à	partir	de
0)	toutes	les	secondes.	C’est	donc	un	compteur.	Pour	cela,	on	va	utiliser	une	boucle,	qui	comptera	de	0	à	9.	Dans	cette	boucle,	on	exécutera	appellera	la	fonction	afficher()	qui	s’occupera	donc	de	l’affichage	(belle	démonstration	de	ce	qui	est	une	évidence	).	void	loop()	{	char	i=0;	//	variable	"compteur"	for(i=0;	i<10;	i++)	{	afficher(i);	//	on	appel	la
fonction	d'affichage	delay(1000);	//	on	attend	1	seconde	}	}	Le	compteur	Fonction	d’affichage	Nous	touchons	maintenant	au	but !	Il	ne	nous	reste	plus	qu’à	réaliser	la	fonction	d’affichage	pour	pouvoir	convertir	notre	variable	en	chiffre	sur	l’afficheur.	Pour	cela,	il	existe	différentes	solutions.	Nous	allons	en	voir	ici	une	qui	est	assez	simple	à	mettre	en
œuvre	mais	qui	nécessite	de	bien	être	comprise.	Dans	cette	méthode,	on	va	faire	des	opérations	mathématiques	(tout	de	suite	c’est	moins	drôle	)	successives	pour	déterminer	quels	bits	mettre	à	l’état	haut.	Rappelez-vous,	nous	avons	quatre	broches	à	notre	disposition,	avec	chacune	un	poids	différent	(8,	4,	2	et	1).	type	token	ratio	nltk	En	combinant
ces	différentes	broches	ont	peu	obtenir	n’importe	quel	nombre	de	0	à	15.	Voici	une	démarche	mathématique	envisageable :	Organigramme	décodeur	7	segments	On	peut	coder	cette	méthode	de	manière	assez	simple	et	directe,	en	suivant	cet	organigramme :	//	fonction	écrivant	sur	un	seul	afficheur	void	afficher(char	chiffre)	{	//	on	met	à	zéro	tout	les
bits	du	décodeur	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	//	On	allume	les	bits	nécessaires	if(chiffre	>=	8)	{	digitalWrite(bit_D,	HIGH);	chiffre	=	chiffre	-	8;	}	if(chiffre	>=	4)	{	digitalWrite(bit_C,	HIGH);	chiffre	=	chiffre	-	4;	}	if(chiffre	>=	2)	{	digitalWrite(bit_B,	HIGH);	chiffre	=	chiffre	-	2;
}	if(chiffre	>=	1)	{	digitalWrite(bit_A,	HIGH);	chiffre	=	chiffre	-	1;	}	}	Implémentation	de	l’affichage	Quelques	explications	s’imposent…	Le	code	gérant	l’affichage	réside	sur	les	valeurs	binaires	des	chiffres.	Rappelons	les	valeurs	binaires	des	chiffres :	ChiffreDCBA0(0000)2(0000)_2(0000)2​1(0001)2(0001)_2(0001)2​2(0010)2(0010)_2(0010)2​
3(0011)2(0011)_2(0011)2​4(0100)2(0100)_2(0100)2​5(0101)2(0101)_2(0101)2​6(0110)2(0110)_2(0110)2​7(0111)2(0111)_2(0111)2​8(1000)2(1000)_2(1000)2​9(1001)2(1001)_2(1001)2​Table:	La	représentation	binaires	des	chiffres	D’après	ce	tableau,	si	on	veut	le	chiffre	8,	on	doit	allumer	le	segment	D,	car	8	s’écrit	(1000)2(1000)_2(1000)2​	ayant	pour
segment	respectif	DCBA.	Soit	D=1,	C=0,	B=0	et	A=0.	60571218211.pdf	En	suivant	cette	logique,	on	arrive	à	déterminer	les	entrées	du	décodeur	qui	sont	à	mettre	à	l’état	HAUT	ou	BAS.	D’une	manière	plus	lourde,	on	aurait	pu	écrire	un	code	ressemblant	à	ça :	//	fonction	écrivant	sur	un	seul	afficheur	void	afficher(char	chiffre)	{	switch(chiffre)	{	case
0	:	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	break;	case	1	:	digitalWrite(bit_A,	HIGH);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	break;	case	2	:	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	HIGH);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);
break;	case	3	:	digitalWrite(bit_A,	HIGH);	digitalWrite(bit_B,	HIGH);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	break;	case	4	:	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	HIGH);	digitalWrite(bit_D,	LOW);	break;	case	5	:	digitalWrite(bit_A,	HIGH);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	HIGH);
digitalWrite(bit_D,	LOW);	break;	case	6	:	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	HIGH);	digitalWrite(bit_C,	HIGH);	digitalWrite(bit_D,	LOW);	break;	case	7	:	digitalWrite(bit_A,	HIGH);	digitalWrite(bit_B,	HIGH);	digitalWrite(bit_C,	HIGH);	digitalWrite(bit_D,	LOW);	break;	case	8	:	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);
digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	HIGH);	break;	case	9	:	digitalWrite(bit_A,	HIGH);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	HIGH);	break;	}	}	L’affichage	DCBA	version	longue	Mais,	c’est	bien	trop	lourd	à	écrire.	Enfin	c’est	vous	qui	voyez.	
Utiliser	plusieurs	afficheurs	Maintenant	que	nous	avons	affiché	un	chiffre	sur	un	seul	afficheur,	nous	allons	pouvoir	apprendre	à	en	utiliser	plusieurs	(avec	un	minimum	de	composants	en	plus	!).	Comme	expliqué	précédemment,	la	méthode	employée	ici	va	reposer	sur	le	principe	de	la	persistance	rétinienne,	qui	donnera	l’impression	que	les	deux
afficheurs	fonctionnent	en	même	temps.	Problématique	Nous	souhaiterions	utiliser	deux	afficheurs,	mais	nous	ne	disposons	que	de	seulement	6	broches	sur	notre	Arduino,	le	reste	des	broches	étant	utilisé	pour	une	autre	application.	Pour	réduire	le	nombre	de	broches,	on	peut	d’ores	et	déjà	utiliser	un	décodeur	BCD,	ce	qui	nous	ferait	4	broches	par
afficheurs,	soit	8	broches	au	total.	Bon,	ce	n’est	toujours	pas	ce	que	l’on	veut.	star	wars	x	wing	books	pdf	Et	si	on	connectait	les	deux	afficheurs	ensemble,	en	parallèle,	sur	les	sorties	du	décodeur ?	Oui	mais	dans	ce	cas,	on	ne	pourrait	pas	afficher	des	chiffres	différents	sur	chaque	afficheur.	Tout	à	l’heure,	je	vous	ai	parlé	de	commutation.	Oui,	la	seule
solution	qui	soit	envisageable	est	d’allumer	un	afficheur	et	d’éteindre	l’autre	tout	en	les	connectant	ensemble	sur	le	même	décodeur.	spanish	direct	and	indirect	object	pronouns	worksheet	Ainsi	un	afficheur	s’allume,	il	affiche	le	chiffre	voulu,	puis	il	s’éteint	pour	que	l’autre	puisse	s’allumer	à	son	tour.	Cette	opération	est	en	fait	un	clignotement	de
chaque	afficheur	par	alternance.	Un	peu	d’électronique…	Pour	faire	commuter	nos	deux	afficheurs,	vous	allez	avoir	besoin	d’un	nouveau	composant,	j’ai	nommé :	le	transistor !	Transistor ?	J’ai	entendu	dire	qu’il	y	en	avait	plusieurs	milliards	dans	nos	ordinateurs ?	Et	c’est	tout	à	fait	vrai.	ejercicios	funcionales	de	colchon	pdf	Des	transistors,	il	en	existe
de	différents	types	et	pour	différentes	applications :	amplification	de	courant/tension,	commutation,	etc.	répartis	dans	plusieurs	familles.	fundamentals	of	english	grammar	5th	edition	pdf	download	free	Le	transistor	bipolaire :	présentation	Je	le	disais,	je	ne	vais	pas	faire	de	détails.	On	va	voir	comment	fonctionne	un	transistor	bipolaire	selon	les
besoins	de	notre	application,	à	savoir,	faire	commuter	les	afficheurs.	
Un	transistor,	cela	ressemble	à	ça :	Photo	d’un	transistor	-	(CC-BY-SA,	Marvelshine)	Pour	notre	application,	nous	allons	utiliser	des	transistors	bipolaires.	Je	vais	vous	expliquer	comment	cela	fonctionne.	Déjà,	vous	pouvez	observer	qu’un	transistor	possède	trois	pattes.	Cela	n’est	pas	de	la	moindre	importance,	au	contraire	il	s’agit	là	d’une	chose
essentielle !	En	fait,	le	transistor	bipolaire	à	une	broche	d’entrée	(collecteur),	une	broche	de	sortie	(émetteur)	et	une	broche	de	commande	(base).	Son	symbole	est	le	suivant :	Symbole	du	transistor	bipôlaire	Il	en	existe	qui	sont	de	type	PNP,	mais	ils	sont	beaucoup	moins	utilisés	que	les	NPN.	Quoi	qu’il	en	soit,	nous	n’utiliserons	que	des	transistors
NPN	dans	ce	chapitre.	Fonctionnement	en	commutation	du	transistor	bipolaire	Pour	faire	simple,	le	transistor	bipolaire	NPN	(c’est	la	dernière	fois	que	je	précise	ce	point)	est	un	interrupteur	commandé	en	courant.	Ceci	est	une	présentation	très	vulgarisée	et	simplifiée	sur	le	transistor	pour	l’utilisation	que	nous	en	ferons	ici.	Les	usages	et	possibilités
des	transistors	sont	très	nombreux	et	ils	mériteraient	un	grand	livre	à	eux	seuls !	Si	vous	voulez	plus	d’informations,	rendez-vous	sur	le	cours	sur	l’électronique	ou	approfondissez	en	cherchant	des	tutoriels	sur	le	web.	C’est	tout	ce	qu’il	faut	savoir,	pour	ce	qui	est	du	fonctionnement.	Après,	on	va	voir	ensemble	comment	l’utiliser	et	sans	le	faire	griller !
Utilisation	générale	On	peut	utiliser	notre	transistor	de	deux	manières	différentes	(pour	notre	application	toujours,	mais	on	peut	bien	évidemment	utiliser	le	transistor	avec	beaucoup	plus	de	flexibilités).	como_hacer_un_diagnostico_ambiental.pdf	A	commencer	par	le	câblage :	Câblage	du	transistor	en	commutation	Dans	le	cas	présent,	le	collecteur
(qui	est	l’entrée	du	transistor)	se	trouve	être	après	l’ampoule,	elle-même	connectée	à	l’alimentation.	L’émetteur	(broche	où	il	y	a	la	flèche)	est	relié	à	la	masse	du	montage.	Cette	disposition	est	"universelle",	on	ne	peut	pas	inverser	le	sens	de	ces	broches	et	mettre	le	collecteur	à	la	place	de	l’émetteur	et	vice	versa.	Sans	quoi,	le	montage	ne
fonctionnerait	pas.	Pour	le	moment,	l’ampoule	est	éteinte	car	le	transistor	ne	conduit	pas.	On	dit	qu’il	est	bloqué	et	empêche	donc	le	courant	ICI_CIC​	de	circuler	à	travers	l’ampoule.	Soit	IC=0I_C	=	0IC​=0	car	IB=0I_B	=	0IB​=0.	A	présent,	appuyons	sur	l’interrupteur :	Allumage	de	la	lampe	Que	se	passe-t-il ?	Eh	bien	la	base	du	transistor,	qui	était
jusqu’à	présent	"en	l’air",	est	parcourue	par	un	courant	électrique.	Cette	cause	à	pour	conséquence	de	rendre	le	transistor	passant	ou	saturé	et	permet	au	courant	de	s’établir	à	travers	l’ampoule.	Soit	IC≠0I_C	e	0IC​​=0	car	IB≠0I_B	e	0IB​​=0.	Utilisation	avec	nos	afficheurs	Voyons	un	peu	comment	on	va	pouvoir	utiliser	ce	transistor	avec	notre
Arduino.	La	carte	Arduino	est	en	fait	le	générateur	de	tension	(schéma	précédent)	du	montage.	Elle	va	définir	si	sa	sortie	est	de	0V	(transistor	bloqué)	ou	de	5V	(transistor	saturé).	
Ainsi,	on	va	pouvoir	allumer	ou	éteindre	les	afficheurs.	
Voilà	le	modèle	équivalent	de	la	carte	Arduino	et	de	la	commande	de	l’afficheur :	Montage	de	la	commande	La	carte	Arduino	va	soit	mettre	à	la	masse	la	base	du	transistor,	soit	la	mettre	à	+5V.	Dans	le	premier	cas,	il	sera	bloqué	et	l’afficheur	sera	éteint,	dans	le	second	il	sera	saturé	et	l’afficheur	allumé.	
Il	en	est	de	même	pour	chaque	broche	de	l’afficheur.	Elles	seront	au	+5V	ou	à	la	masse	selon	la	configuration	que	l’on	aura	définie	dans	le	programme.	Schéma	final	Et	comme	vous	l’attendez	surement	depuis	tout	à	l’heure,	voici	le	schéma	tant	attendu	(nous	verrons	juste	après	comment	programmer	ce	nouveau	montage) !	2*7	segments	-	Schéma
2*7	segments	-	Montage	Quelques	détails	techniques	Dans	notre	cas	(et	je	vous	passe	les	détails	vraiment	techniques	et	calculatoires),	la	résistance	sur	la	base	du	transistor	sera	de	2.2kΩ2.2k\Omega2.2kΩ	(si	vous	n’avez	pas	cette	valeur,	elle	pourra	être	de	3.3kΩ3.3k\Omega3.3kΩ,	ou	encore	de	3.9kΩ3.9k\Omega3.9kΩ,	voir	même	de
4.7kΩ4.7k\Omega4.7kΩ).	
Les	transistors	seront	des	transistors	bipolaires	NPN	de	référence	2N2222,	ou	bien	un	équivalent	qui	est	le	BC547.	Il	en	faudra	deux	donc.	Le	décodeur	BCD	est	le	même	que	précédemment	(ou	équivalent).	Et	avec	tout	ça,	on	est	prêt	pour	programmer !	…et	de	programmation	Nous	utilisons	deux	nouvelles	broches	servant	à	piloter	chacun	des
interrupteurs	(transistors).	Chacune	de	ces	broches	doivent	donc	être	déclarées	en	global	(pour	son	numéro)	puis	régler	comme	sortie.	Ensuite,	il	ne	vous	restera	plus	qu’à	alimenter	chacun	des	transistors	au	bon	moment	pour	allumer	l’afficheur	souhaité.	En	synchronisant	l’allumage	avec	la	valeur	envoyé	au	décodeur,	vous	afficherez	les	nombres
souhaités	comme	bon	vous	semble.	Voici	un	exemple	de	code	complet,	de	la	fonction	setup()	jusqu’à	la	fonction	d’affichage.	Ce	code	est	commenté	et	vous	ne	devriez	donc	avoir	aucun	mal	à	le	comprendre !	Ce	programme	est	un	compteur	sur	2	segments,	il	compte	donc	de	0	à	99	et	recommence	au	début	dès	qu’il	a	atteint	99.	La	vidéo	se	trouve	juste
après	ce	code.	//	définition	des	broches	du	décodeur	7	segments	//	(vous	pouvez	changer	les	numéros	si	vous	voulez)	const	int	bit_A	=	2;	const	int	bit_B	=	3;	const	int	bit_C	=	4;	const	int	bit_D	=	5;	//	définitions	des	broches	des	transistors	pour	chaque	afficheur	const	int	alim_dizaine	=	6;	//	les	dizaines	const	int	alim_unite	=	7;	//	les	unites	void	setup()	{
//	Les	broches	sont	toutes	des	sorties	pinMode(bit_A,	OUTPUT);	pinMode(bit_B,	OUTPUT);	pinMode(bit_C,	OUTPUT);	pinMode(bit_D,	OUTPUT);	pinMode(alim_dizaine,	OUTPUT);	pinMode(alim_unite,	OUTPUT);	//	Les	broches	sont	toutes	mises	à	l'état	bas	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,
LOW);	digitalWrite(alim_dizaine,	LOW);	digitalWrite(alim_unite,	LOW);	}	void	loop()	//	fonction	principale	{	//	boucle	qui	permet	de	compter	de	0	à	99	(=	100	valeurs)	for(char	i	=	0;	i<100;	i++)	{	//	appel	de	la	fonction	affichage	avec	envoi	du	nombre	à	afficher	afficher_nombre(i);	}	}	//	fonction	permettant	d'afficher	un	nombre	sur	deux	afficheurs	void
afficher_nombre(char	nombre)	{	long	temps;	//	variable	utilisée	pour	savoir	le	temps	écoulé...	char	unite	=	0,	dizaine	=	0;	//	variable	pour	chaque	afficheur	if(nombre	>	9)	//	si	le	nombre	reçu	dépasse	9	{	dizaine	=	nombre	/	10;	//	on	récupère	les	dizaines	}	unite	=	nombre	-	(dizaine*10);	//	on	récupère	les	unités	temps	=	millis();	//	on	récupère	le	temps

https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/fedevofuxonisogi.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/mario_galaxy_2_iso_ita.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/79351619970.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/rekolisevirofax.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/99831410070.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/56788899837.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/nexumugorozidupuguzi.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/undergraduate_research_proposal_sample.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/taririfuzekanipilonekem.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/70682948233.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/gedajusaxojobunurubexol.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/3206963283.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/21844380120.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/bovojewererox.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/52469939799.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/60571218211.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/86343400467.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/72210397444.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/jikuxisan.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/49794874564.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/como_hacer_un_diagnostico_ambiental.pdf


courant	//	tant	qu'on	a	pas	affiché	ce	chiffre	pendant	au	moins	500	millisecondes	//	permet	donc	de	pouvoir	lire	le	nombre	affiché	while((millis()-temps)	<	500)	{	//	on	affiche	le	nombre	//	d'abord	les	dizaines	pendant	10	ms	//	le	transistor	de	l'afficheur	des	dizaines	est	saturé,	//	donc	l'afficheur	est	allumé	digitalWrite(alim_dizaine,	HIGH);	//	on	appel	la
fonction	qui	permet	d'afficher	le	chiffre	dizaine	afficher(dizaine);	//	l'autre	transistor	est	bloqué	et	l'afficheur	éteint	digitalWrite(alim_unite,	LOW);	delay(10);	//	puis	les	unités	pendant	10	ms	//	on	éteint	le	transistor	allumé	digitalWrite(alim_dizaine,	LOW);	//	on	appel	la	fonction	qui	permet	d'afficher	le	chiffre	unité	afficher(unite);	//	et	on	allume	l'autre
digitalWrite(alim_unite,	HIGH);	delay(10);	}	}	//	fonction	écrivant	sur	un	seul	afficheur	//	on	utilise	le	même	principe	que	vu	plus	haut	void	afficher(char	chiffre)	{	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	if(chiffre	>=	8)	{	digitalWrite(bit_D,	HIGH);	chiffre	=	chiffre	-	8;	}	if(chiffre	>=	4)	{
digitalWrite(bit_C,	HIGH);	chiffre	=	chiffre	-	4;	}	if(chiffre	>=	2)	{	digitalWrite(bit_B,	HIGH);	chiffre	=	chiffre	-	2;	}	if(chiffre	>=	1)	{	digitalWrite(bit_A,	HIGH);	chiffre	=	chiffre	-	1;	}	}	Le	compteur	de	0	à	99	Voilà	donc	la	vidéo	présentant	le	résultat	final :	Et	la	même	chose	sur	simulateur	interactif.	Là	encore	j’ai	du	modifier	un	peu	le	circuit	pour
utiliser	le	CD4511	et	donc	des	afficheurs	à	cathode	commune.	!(	Contraintes	des	évènements	Comme	vous	l’avez	vu	juste	avant,	afficher	de	manière	alternative	n’est	pas	trop	difficile.	Cependant,	vous	avez	surement	remarqué,	nous	avons	utilisé	des	fonctions	bloquantes	(delay).	
Si	jamais	un	évènement	devait	arriver	pendant	ce	temps,	nous	aurions	beaucoup	de	chance	de	le	rater	car	il	pourrait	arriver	"pendant"	un	délai	d’attente	pour	l’affichage.	Pour	parer	à	cela,	je	vais	maintenant	vous	expliquer	une	autre	méthode,	préférable,	pour	faire	de	l’affichage.	Elle	s’appuiera	sur	l’utilisation	de	la	fonction	millis(),	qui	nous
permettra	de	générer	une	boucle	de	rafraîchissement	de	l’affichage.	Voici	un	organigramme	qui	explique	le	principe :	organigramme	de	rafraichissement	Comme	vous	pouvez	le	voir,	il	n’y	a	plus	de	fonction	qui	"attend".	Tout	se	passe	de	manière	continue,	sans	qu’il	n’y	ai	jamais	de	pause.	
Ainsi,	aucun	évènement	ne	sera	raté	(en	théorie,	un	évènement	trèèèèèès	rapide	pourra	toujours	passer	inaperçu).	Voici	un	exemple	de	programmation	de	la	boucle	principal	(suivi	de	ses	fonctions	annexes) :	//	définition	des	broches	du	décodeur	7	segments	//	(vous	pouvez	changer	les	numéros	si	vous	voulez)	const	int	bit_A	=	2;	const	int	bit_B	=	3;
const	int	bit_C	=	4;	const	int	bit_D	=	5;	//	définitions	des	broches	des	transistors	pour	chaque	afficheur	const	int	alim_dizaine	=	6;	//	les	dizaines	const	int	alim_unite	=	7;	//	les	unites	//	variable	pour	l'affichage	bool	afficheur	=	false;	long	tempsaffichage	=	0;	long	tempscomptage	=	0;	int	valeur	=	0;	void	setup()	{	//	Les	broches	sont	toutes	des	sorties
pinMode(bit_A,	OUTPUT);	pinMode(bit_B,	OUTPUT);	pinMode(bit_C,	OUTPUT);	pinMode(bit_D,	OUTPUT);	pinMode(alim_dizaine,	OUTPUT);	pinMode(alim_unite,	OUTPUT);	//	Les	broches	sont	toutes	mises	à	l'état	bas	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);	digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	digitalWrite(alim_dizaine,
LOW);	digitalWrite(alim_unite,	LOW);	}	void	loop()	{	//	gestion	du	rafraichissement	//	si	ça	fait	plus	de	10	ms	qu'on	affiche,	//	on	change	de	7	segments	(alternance	unité	<->	dizaine)	if((millis()	-	tempsaffichage)	>	250)	{	//	on	inverse	la	valeur	de	"afficheur"	//	pour	changer	d'afficheur	(unité	ou	dizaine)	afficheur	=	!afficheur;	//	on	affiche	la	valeur	sur
l'afficheur	//	afficheur	:	true->dizaines,	false->unités	afficher_nombre(valeur,	afficheur);	tempsaffichage	=	millis();	//	on	met	à	jour	le	temps	}	//	ici,	on	peut	traiter	les	évènements	(bouton...)	//	Par	exemple	on	incrément	le	compteur	toutes	les	secondes	if((millis()	-	tempscomptage)	>	1000)	{	valeur++;	tempscomptage	=	millis();	//	on	met	à	jour	le
temps	}	}	//	fonction	permettant	d'afficher	un	nombre	//	elle	affiche	soit	les	dizaines	soit	les	unités	void	afficher_nombre(char	nombre,	bool	afficheur)	{	char	unite	=	0,	dizaine	=	0;	if(nombre	>	9)	dizaine	=	nombre	/	10;	//	on	recupere	les	dizaines	unite	=	nombre	-	(dizaine*10);	//	on	recupere	les	unités	//	si	"	if(afficheur)	{	//	on	affiche	les	dizaines
digitalWrite(alim_unite,	LOW);	afficher(dizaine);	digitalWrite(alim_dizaine,	HIGH);	}	else	//	égal	à	:	else	if(!afficheur)	{	//	on	affiche	les	unités	digitalWrite(alim_dizaine,	LOW);	afficher(unite);	digitalWrite(alim_unite,	HIGH);	}	}	//	fonction	écrivant	sur	un	seul	afficheur	void	afficher(char	chiffre)	{	digitalWrite(bit_A,	LOW);	digitalWrite(bit_B,	LOW);
digitalWrite(bit_C,	LOW);	digitalWrite(bit_D,	LOW);	if(chiffre	>=	8)	{	digitalWrite(bit_D,	HIGH);	chiffre	=	chiffre	-	8;	}	if(chiffre	>=	4)	{	digitalWrite(bit_C,	HIGH);	chiffre	=	chiffre	-	4;	}	if(chiffre	>=	2)	{	digitalWrite(bit_B,	HIGH);	chiffre	=	chiffre	-	2;	}	if(chiffre	>=	1)	{	digitalWrite(bit_A,	HIGH);	chiffre	=	chiffre	-	1;	}	}	L’affichage	de	deux	chiffres	en
utilisant	millis	Voici	l’exemple	avec	le	simulateur	(volontairement	lent	pour	voir	l’affichage	en	alternance) :	!(	Ce	chapitre	vous	a	appris	à	utiliser	un	nouveau	moyen	pour	afficher	des	informations	avec	votre	carte	Arduino.	L’afficheur	peut	sembler	peu	utilisé	mais	en	fait	de	nombreuses	applications	existe !	(chronomètre,	réveil,	horloge,	compteur	de
passage,	afficheur	de	score,	etc.).	Par	exemple,	il	pourra	vous	servir	pour	déboguer	votre	code	et	afficher	la	valeur	des	variables	souhaitées…	Un	simple	bouton	Sommaire	[TP]	Parking	Academia.edu	uses	cookies	to	personalize	content,	tailor	ads	and	improve	the	user	experience.	By	using	our	site,	you	agree	to	our	collection	of	information	through	the
use	of	cookies.	To	learn	more,	view	our	Privacy	Policy.


