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Evans	pde	solutions	chapter	3

Homework	1	Homework	2	Homework	3	Homework	4	Embed	Size	(px)	344	x	292	429	x	357	514	x	422	599	x	487	Final	Exam	Topics	The	final	exam	for	M611	will	be	in	the	usual	classroom	ZACH	322,	Wednesday,	Dec.	17,10:30	a.m.-12:30	p.m.	The	exam	will	cover	the	course	material	that	was	not	covered	on	themidterm	exam;	in	particular,	Green’s
functions	for	Laplace’s	equation,	and	all	of	our	materialon	the	heat	equation,	the	wave	equation,	and	the	method	of	characteristics.	The	exam	willconsist	of	four	to	six	questions,	with	a	mix	of	straightforward	calculations	and	proofs.	castle	crashers	free	download	pc	full	version	I	willprovide	statements	of	the	system	of	characteristic	equations	and	of
the	d’Alembert,	Poisson,and	Kirchhoff	solutions	to	the	wave	equation.	

You	will	need	to	bring	your	own	paper.	1.	Explicit	calculations	Examples	of	problems	we’ve	solved	by	explicit	calculation	include	the	following:	•	The	derivation	of	Green’s	functions	(by	the	method	of	images),	and	the	application	ofGreen’s	functions	to	solving	Laplace’s	equation	•	Solutions	of	the	wave	equation	on	quarter	planes	•	Solutions	to	the
inhomogeneous	wave	equation	by	Duhamel’s	Principle	•	Solutions	of	first	order	linear,	quasilinear	and	nonlinear	PDE	by	the	method	of	char-acteristics	2.	Proofs	Examples	of	topics	from	which	proof-based	problems	may	be	taken	include	the	following:	•	Verify	properties	of	the	heat	kernel	and	properties	of	solutions	to	the	heat	equation	onRn	×	R+	•
Verify	properties	of	the	heat	equation	on	UT	•	Derive	properties	of	solutions	of	the	wave	equation,	especially	(though	not	only)	in	casesin	which	the	properties	can	be	obtained	from	the	d’Alembert,	Poisson,	and	Kirchhoffintegral	representations	•	Know	the	properties	of	the	straightening	transformation	~Φ	and	its	role	in	our	develop-ment	of	the
Method	of	Characteristics	1	Practice	with	the	method	of	characteristics	1.	(Evans	3.5.5.)	Solve	using	characteristics:	a.	x1ux1	+	x2ux2	=	2u;	u(x1,	1)	=	g(x1)	c.	x1ux1	+	2x2ux2	+	ux3	=	3u;	u(x1,	x2,	0)	=	g(x1,	x2)	b.	uux1	+	ux2	=	1;	u(x1,	x1)	=	12x1	Solution.	For	(a),	we	begin	by	setting	z(s)	=	u(x1(s),	x2(s)).	We	computedz	ds=	ux1(~x(s))	dx1	ds+
ux2(~x(s))	dx2	ds,	so	that	dx1	ds=x1;	x1(0)	=	x10	⇒	x1(s)	=	x10e	s	dx2	ds=x2;	x2(0)	=	1⇒	x2(s)	=	es	dz	ds=	2z;	z(0)	=	g(x10)⇒	z(s)	=	g(x10)e	2s.	Solving	for	x10	and	s	in	terms	of	x1	and	x2	we	find	x10	=x1	x2	es	=x2,	so	thatu(x1,	x2)	=	g(	x1x2	)x22.	
For	(b),	we	set	dx1	ds=x1;	x1(0)	=	x10	⇒	x1(s)	=	x10e	s	dx2	ds=	2x2;	x2(0)	=	x20	⇒	x2(s)	=	x20e	2s	dx3	ds=	1;	x3(0)	=	0⇒	x3(s)	=	s	dz	ds=	3z;	z(0)	=	g(x10,	x	20)⇒	z(s)	=	g(x10,	x	20)e	3s.	73777763898.pdf	We	see	that	s	=x3	x10	=x1e−x3	x20	=x2e−2x3	,	2	so	thatu(~x)	=	g(x1e	−x3	,	x2e−2x3)e3x3	.	For	(c),	we	set	dx1	ds=	z(s);	x1(0)	=	x10	⇒	x1(s)	=
x10	+	ˆ	s	0	z(τ)dτ	dx2	ds=	1;	x2(0)	=	x10	⇒	x2(s)	=	x10	+	s	dz	ds=	1;	z(0)	=	1	2x10	⇒	z(s)	=	1	2x10	+	s.	
We	see	that	x1(s)	=	x10	+s	2x10	+	s2	2.	Now	we	notice	x10	=	x2	−	s,	so	that	x1	=	(x2	−	s)	+s	2(x2	−	s)	+	s2	2=	x2	−	s+	s	2x2.	Solving	for	s	s	=x2	−	x11−	1	2x2.	This	in	turn	gives	x10	=x2	−	s	=x2	−	1	2x22	−	(x2	−	x1)1−	1	2x2	=x1	−	1	2x22	1−	12x2	.	We	conclude	u(x1,	x2)	=1	2x10	+	s	=12x1	−	1	4x22	+	x2	−	x1	1−	12x2	=−1	2x1	−	1	4x22	+	x2	1−
12x2	.	2.	Find	a	solution	to	the	PDE	x1ux1	+	x2ux2	+u2x1	+	u2x2	2=u	in	R×	R+	u(x1,	0)	=1−	x21	2,	x1	∈	R.	3	(Solutions	to	nonlinear	PDE	need	not	be	unique;	in	particular,	you	need	only	find	onesolution.)	Solution.	We	begin	by	observing	F	(~p,	z,	~x)	=	x1p1	+	x2p2	+1	2p21	+	1	2p22	−	z,	so	that	DpF	=	(x1	+	p1,	x2	+	p2)	Fz	=	−	1	DxF	=	(p1,	p2).
We	haveux1(x1,	0)	=	−x1	⇒	p10	=	−x10.	For	p20,	our	equation	gives	the	relation	x10p10	+	x20p	20	+	(p10)2	+	(p20)	2	2=	1	2−	1	2(x10)	2,	which	(upon	noting	x20	=	0)	gives	the	equation	1	2(p20)	2	=1	2⇒	p20	=	±1.	This	is	where	the	uniqueness	comment	comes	in,	and	we	choose	to	find	the	solution	for	whichp20	=	+1.	glidermatic	grd	instruction
manual	We	obtain	the	system	dp1	ds=	0;	p1(0)	=	−x10	dp2	ds=	0;	p2(0)	=	1	dz	ds=	z	+	1	2(p1)2	+	1	2(p2)2;	z(0)	=	1	2−	1	2(x10)	2	dx1	ds=x1	+	p1;	x1(0)	=	x10	dx2	ds=x2	+	p2;	x2(0)	=	0.	Solving	this,	we	find	p1(s)	=	−	x10p2(s)	=	1	z(s)	=	es	−	1	2	((x10)	2	+	1)	x1(s)	=x10x2(s)	=	−	1	+	es.	4	We	see	that	x10	=x1	es	=	1	+	x2,	allowing	us	to	write	u(x1,
x2)	=	z(s)	=	(1	+	x2)−1	2	(x21	+	1	)=	−1	2x21	+	x2	+	1	2.	5	(a)	Try	to	use	Jacobi	identity:	$$\frac{d}{ds}\det	A(s)=\text{tr}\left((\text{cof}A(s))\frac{dA}{ds}(s)\right)$$	Let	$A(s)=\left(X_{x_j}^{i}(s,x,t)\right)$	and	$B(s)=\left(b_{x_j}^{i}(s)\right)$.	We	yield	$$\frac{dA}{ds}(s)=B(X)A(s)$$	Plug	in	the	identity,	done.	(b)	Using	method	of
characteristics	is	fine,	$\dot{x}(t)=b$,	$x(0)=y$,	$\dot{z}(t)=-\text{div}bz^{-1}$,	$z^{-1}(0)=g^{-1}(y)$.	Note	that	by	assumption	of	(b)	and	Jacobi	identity	in	(a),	these	ODEs	have	unique	solutions.	Moreover,	$$y=X(-t,x,0),	X\left(s,X(-t,x,0),0\right)=X\left(X(s-t,x,0),0\right)$$	$$J(-t,x,0)=J(0,x,t)$$	$$z(t)=\frac{g(y)}{J(t,y,0)}$$	By	Euler	formula,
$$J(t,y,0)=\exp\left(\int_{0}^{t}\text{div}b(X(s,y,0))ds\right)=\exp\left(\text{div}\left(X(s,X(-t,x,0),0)\right)ds\right)=\exp\left(\int_{0}^{t}\text{div}b(X(s-t,x,0))ds\right)=\exp\left(-\int_{-t}^{0}\text{div}b(X(\tau,x,0))d\tau\right)=J^{-1}(-t,x,0)=J^{-1}(0,x,t)$$	This	suggests	$$u(x,t)=g(X(0,x,t))J(0,x,t)$$	Author	/	Uploaded	i'm	not	telling	Authors:	Joe
Benson,	Denis	Bashkirov,	Minsu	Kim,	Helen	Li,	Alex	Csar	Evans	PDE	Solutions,	Chapter	2	Joe:	1,	2,11;	Denis:	4,	6,	14,	18;	Minsu:	2,3,	15;	Helen:	5,8,13,17.	
Alex:10,	16	Problem	1.	Write	down	an	explicit	formula	for	a	function	u	solving	the	initial-value	problem	(	ut	+	b	·	Du	+	cu	=	0	on	Rn	×	(0,	∞)	u	=	g	on	Rn	×	{t	=	0}	Here	c	∈	R	and	b	∈	Rn	are	constants.	Sol:	Fix	x	and	t,	and	consider	z(s)	:=	u(x	+	bs,	t	+	s)	Then	z˙(s)	=	b	·	Du	+	ut	=	−cu(x	+	bs,	t	+	s)	=	−cz(s)	Therefore,	z(s)	=	De−cs	,	for	some	constant
D.	We	can	solve	for	D	by	letting	s	=	−t.	Then,	z(−t)	=	u(x	−	bt,	0)	=	g(x	−	bt)	=	Dect	i.e.	D	=	g(x	−	bt)e−ct	Thus,	u(x	+	bs,	t	+	s)	=	g(x	−	bt)e−c(t+s)	and	so	when	s	=	0,	we	get	u(x,	t)	=	g(x	−	bt)e−ct	.	​	Problem	2.	Prove	that	Laplace’s	equation	∆u	=	0	is	rotation	invariant;	that	is,	if	O	is	an	orthogonal	n	×	n	matrix	and	we	define	v(x)	:=	u(Ox)	(x	∈	R)
then	∆v	=	0.	Solution:	Let	y	:=	Ox,	and	write	O	=	(ai	j	).	Thus,	v(x)	=	u(Ox)	=	u(y)	where	y	j	=	Pn	i=1	a	ji	xi	.	This	then	gives	that	n	∂v	X	∂u	∂y	j	=	∂xi	∂y	j	∂xi	j=1	n	X	∂u	=	a	ji	∂y	j	j=1	1	2	Thus,	é	∂v	ù	é	ù	é	∂u	ù	êêê	∂x1	úúú	êêa11	.	.	.	
an1	úú	êêê	∂y	ú	ê	úúú	êê	.	1	úúúú	êêêê	..	úúúú	êêê	..	.	ê	ú	..	úú	êê	..	úúú	êêê	.	úúú	=	êêê	.	úû	êêë	úúû	ë	ë	∂v	û	∂u	a	.	.	.	a	1n	nn	∂xn	∂yn	é	∂u	ù	êêê	∂y1	úúú	ê	úú	T	ê	=	O	êêêê	...	úúúú	êë	∂u	úû	∂yn	D	x	·	v	=	O	Dy	·	u	T	Now,	∆v	=	D	x	v	·	D	x	v	=	(OT	Dy	u)	·	(OT	Dy	u)	=	(OT	Dy	u)T	OT	Dy	u	=	(Dy	u)T	(OT	)T	OT	Dy	u	=	(Dy	u)T	OOT	Dy	u	=	(Dy	u)T	Dy	u	=	(Dy	u)	·	(Dy	u)	=	∆u(y)	=0	because	O	is
orthogonal	Problem	3.	

Modify	the	proof	of	the	mean	value	formulas	to	show	for	n	≥	3	that	Z	Z	​	1	1	1	​	1	gdS	+	−	f	dx,	u(0)	=	nα(n)rn−1	∂B(0,r)	n(n	−	2)α(n)	B(0,r)	|x|n−2	rn−2	provided	ì	ï	ï	í−∆u	=	f	ï	ï	î	u=g	in	B0	(0,	r)	on	∂B(0,	r).	Solution:	Set	1	φ(t)	=	nα(n)tn−1	Z	u(y)dS	(y),	0	≤	t	<	r,	∂B(0,t)	and	1	φ(r)	=	nα(n)rn−1	Z	1	u(y)dS	(y)	=	nα(n)rn−1	∂B(0,r)	Z	gdS	.	∂B(0,r)	Then,
t​	1	φ0(t)	=	n	α(n)tn	(See	the	proof	of	Thm2)	Z	Z	​	t​	1	Z	​	−1	∆u(y)dy	=	−	f	dy	=	f	dy.	n	α(n)tn	B(0,t)	α(n)tn−1	B(0,t)	B(0,t)	3	Let	​	>	0	be	given.	φ(​)	=	φ(r)	−	(1)	r	Z	​	1	φ0(t)dt	=	nα(n)rn−1	Z	Z	gdS	−	∂B(0,r)	r	φ0(t)dt.	​	Using	integration	by	parts,	we	compute	Z	r	Z	r	Z	1	−	φ0(t)dt	=	f	dydt	n−1	​	​	nα(n)t	B(0,t)	Z	r	Z	1	1	f	dydt	=	nα(n)	​	tn−1	B(0,t)	Z	​r	Z	r	1	1	Z	​	1	​​
1	1	f	dy	−	f	dS	dt	=	n−2	nα(n)	2	−	n	tn−2	B(0,t)	​	​	2−nt	∂B(0,t)	Z	Z	Z	Z	​	r	1	​	1	1	1	=	f	dS	dt	−	f	dy	+	f	dy	n(n	−	2)α(n)	​	tn−2	∂B(0,t)	rn−2	B(0,r)	​	n−2	B(0,​)	Z	​	​	1	1	=:	I	−	n−2	f	dy	+	J	.	n(n	−	2)α(n)	r	B(0,r)	Observe	that	J:	and	Z	1	​	n−2	Z	f	dy	≤	C	·	​	2	,	for	some	constant	C	>	0	B(0,​)	B(0,​)	1	f	(x)dx	=	|x|n−2	Z	r	Z	dt	0	∂B(0,t)	1	tn−2	f	dS	.	R	As	​	→	0,	I	+	J	→
B(0,​)	|x|1n−2	f	(x)dx.	Thus,	Z	Z	r	​Z	​	1	1	1	f	dy	lim	−	φ0(t)dt	=	f	(x)dx	−	​→0	n(n	−	2)α(n)	B(0,r)	|x|n−2	rn−2	B(0,r)	​	Z	​	1	1	1	​	=	−	f	dx.	n(n	−	2)α(n)	B(0,r)	|x|n−2	rn−2	Therefore,	letting	​	→	0,	we	have	from	(1)	Z	Z	​	1	1	1	1	​	u(0)	=	φ(0)	=	gdS	+	−	f	dx.	nα(n)rn−1	∂B(0,r)	n(n	−	2)α(n)	B(0,r)	|x|n−2	rn−2	​	¯	is	subharmonic	if	Problem	4.	We	say	v	∈	C	2	(U)	−∆v
≤	0	(a)	Prove	for	subharmonic	v	that	in	U.	?	v(x)	≤	v	dy	for	all	B(x,	r)	⊂	U.	B(x,r)	(b)	Prove	that	therefore	maxU¯	v	=	max∂U	v.	(c)	Let	φ	:	R	→	R	be	smooth	and	convex.	Assume	u	is	harmonic	and	v	:=	φ(u).	Prove	v	is	subharmonic.	4	(d)	Prove	v	:=	|Du|2	is	subharmonic,	whenever	u	is	harmonic.	Solution.	>	(a)	As	in	the	proof	of	Theorem	2,	set	φ(r)	:=
∂B(x,r)	v	dS	(y)	and	obtain	?	r	0	φ	(r)	=	∆v(y)dy	≥	0.	

n	B(x,r)	For	0	<	​	<	r,	r	Z	​	φ0	(s)ds	=	φ(r)	−	φ(​)	≥	0.	Hence,	φ(r)	≥	lim	φ(​)	=	v(x).	Therefore,	​→0	!	?	
Z	Z	r	Z	1	1	v	dy	=	v	dy	=	v(z)	dS	(z)	ds	α(n)rn	B(x,r)	α(n)rn	0	B(x,r)	∂B(x,s)	Z	r	Z	1	1	r	n−1	n−1	=	nα(n)s	φ(s)	ds	≥	n	ns	v(x)	ds	=	v(x)	α(n)rn	0	r	0	(b)	We	assume	that	U	⊂	Rn	is	open	and	bounded.	For	a	moment,	we	assume	also	that	U	is	connected.	Suppose	that	x0	∈	U	is	such	a	point	that	v(x0	)	=	M	:=	maxU¯	v.	bmw_e90_owners_manual.pdf	Then	for	0
<	r	<	dist(x0	,	∂U),	?	M	=	v(x0	)	≤	v	dy	≤	M.	B(x0	,r)	Due	to	continuity	of	v,	an	equality	holds	only	if	v	≡	M	within	B(x0	,	r).	Therefore,	the	set	u−1	({M})	∩	U	=	{x	∈	U|u(x)	=	M}	is	both	open	and	relatively	closed	in	U.	By	the	connectedness	of	U,	v	is	constant	within	the	set	U.	Hence,	it	is	constant	within	U¯	and	we	conclude	that	maxU¯	v	=	max∂U	v.	

Now	let	{Ui	|i	∈	I}	be	the	connected	components	of	U.	Pick	any	x	∈	U	and	find	j	∈	I	such	that	x	∈	U	j	.	We	obtain	v(x)	≤	max	v	=	max	v	≤	max	v	U¯	j	∂U	j	∂U	and	conclude	that	maxU¯	v	=	max∂U	v.	(c)	For	x	=	(x1	,	...,	xn	)	∈	U	and	1	≤	i,	j	≤	n,	∂2	v	∂2	∂u	∂u	∂2	u	(x)	=	φ(u(x))	=	φ00	(u(x))	·	(x)	·	(x)	+	φ0	(u(x))	·	(x).	∂xi	∂x	j	∂xi	∂x	j	∂xi	∂x	j	∂xi	∂x	j	Since	φ	is
convex,	then	φ00	(x)	≥	0	for	any	x	∈	R.	Recall	that	u	is	harmonic	and	obtain	!2	!2	n	n	X	X	∂u	∂u	00	00	∆v	=	φ	(u)	·	+	∆u	=	φ	(u)	·	≥	0.	∂xi	∂xi	i=1	i=1	​	n	​	P	∂u	2	.	For	x	=	(x1	,	...,	xn	)	∈	U	and	1	≤	i,	j	≤	n,	(d)	We	set	v	:=	|Du|2	=	∂xk	k=1	#	n	"	X	∂2	v	∂2	u	∂2	u	∂u	∂3	u	(x)	=	2	(x)	·	(x)	+	(x)	·	(x)	.	∂xi	∂x	j	∂x	∂x	∂x	∂x	∂x	∂x	∂x	∂x	i	k	i	j	k	i	j	k	k=1	5	Therefore,	é	!	n
X	êêê	∂2	u	2	∂u	∂	∂2	v	êêë	=2	+	·	∂xi	2	∂xi	∂xk	∂xk	∂xk	k=1	!2	X	n	X	∂u	∂2	u	+	·	∆v	=	2	∂x	∂x	∂x	i	k	k	k=1	1≤i,k≤n	∂2	u	∂xi	2	!ù	úúú	úúû	,	!2	X	∂	​	​	∂2	u	≥	0.	∆u	=	2	∂xk	∂x	∂x	i	k	1≤i,k≤n	​	Problem	5:	Prove	that	there	exists	a	constant	C,	depending	only	on	n,	such	that	!	max	|u|	≤	C	max	|g|	+	max	|	f	|	∂B(0,1)	B(0,1)	whenever	u	is	a	smooth	solution	of	ì	ï	ï	í−	4	u	=	f
ï	ï	îu	=	g	B(0,1)	in	B0	(0,	1)	on	∂B(0,	1).	Proof:	Let	M	:=	maxB(0,1)	|	f	|,	then	we	define	v(x)	=	u(x)	+	first	consider	v(x)	.	Note	that	M	|x|2	2n	and	w(x)	=	−u(x)	+	M	|x|2	.	2n	We	−	4	v	=	−	4	u	−	M	=	f	−	M	≤	0.	So,	v(x)	is	a	subharmonic	funcion.	From	Problem	4	(b),	we	have	max	v(x)	=	max	v(x)	≤	max	|g|	+	B(0,1)	∂B(0,1)	∂B(0,1)	M	.	2n	That	is	max	u(x)
≤	max	v(x)	≤	max	|g|	+	B(0,1)	B(0,1)	∂B(0,1)	1	max	|	f	|.	

https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/castle_crashers_free_download_pc_full_version.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/73777763898.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/gilisojubejilowori.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/bmw_e90_owners_manual.pdf


2n	B(0,1)	Then,	for	w(x),	we	have	−	4	w	=	4u	−	M	=	−	f	−	M	≤	0.	
Again,	we	can	get	max	w(x)	=	max	w(x)	≤	max	|g|	+	B(0,1)	∂B(0,1)	∂B(0,1)	M	.	nutoxadukarazegit.pdf	
2n	i.e.	1	max	|	f	|.	B(0,1)	B(0,1)	∂B(0,1)	2n	B(0,1)	Combining	these	two	together,	we	finally	proved	the	problem.	max	−u(x)	≤	max	w(x)	≤	max	|g|	+	Problem	6.	Use	Poisson’s	formula	for	the	ball	to	prove	r	−	|x|	r	+	|x|	rn−2	u(0)	≤	u(x)	≤	rn−2	u(0)	n−1	(r	+	|x|)	(r	−	|x|)n−1	whenever	u	is	positive	and	harmonic	in	B0	(0,	r).	This	is	an	explicit	form	of
Harnack’s	inequality.	​	6	Solution.	Since	y	∈	∂B(0,	r),	then	|x	−	y|	≤	|x|	+	r.	Therefore,	Z	r2	−	|x|2	g(y)	u(x)	=	dS	(y)	nα(n)r	∂B(0,r)	|x	−	y|n	Z	Z	g(y)	1	r2	−	|x|2	r	−	|x|	n−2	dS	(y)	=	r	·	g(y)dS	(y)	≥	nα(n)r	∂B(0,r)	(r	+	|x|)n	(r	+	|x|)n−1	nα(n)rn−1	∂B(0,r)	?	r	−	|x|	r	−	|x|	n−2	=r	g(y)dS	(y)	=	rn−2	u(0)	n−1	(r	+	|x|)	(r	+	|x|)n−1	∂B(0,r)	r+|x|	The	inequality	u(x)
≤	rn−2	(r−|x|)	n−1	u(0)	can	be	proven	in	a	similar	way.	​	Problem	7.	Prove	Poisson’s	formula	for	a	ball:	Assume	g	∈	C(∂B(0,	r))	and	let	Z	r	2	−	x2	g(y)	u(x)	=	dS	(y)	for	x	∈	B0	(0,	r).	nα(n)r	∂B(0,r)	|x	−	y|n	Show	that	Proof.	Problem	8.	Let	u	be	the	solution	of	ì	ï	ï	í4u	=	0	ï	ï	îu	=	g	in	Rn+	on	∂Rn+	given	by	Poisson’s	formula	for	the	half-space.	Assume	g	is
bounded	and	g(x)	=	|x|	for	x	∈	∂Rn+	,	|x|	le1.	Show	Du	is	not	bounded	near	x	=	0.	(Hint:	Estimate	u(λenλ)−u(0)	.)	Proof:	From	formula	(33)	on	page	37,	we	have	2xn	u(x)	=	nα(n)	Z	∂Rn+	g(y)	dy,	|x	−	y|n	and	u(0)	=	g(0)	=	0.	Thus,	using	hint,	we	get	Z	u(λen	)	−	u(0)	2	g(y)	dy	=	n	λ	nα(n)	∂R+	|λen	−	y|n	Z	Z	2	g(y)	2	g(y)	dy	+	dy	=	n	T	T	nα(n)	|y|≤1	∂Rn+
|λen	−	y|	nα(n)	|y|>1	∂Rn+	|λen	−	y|n	Taking	absolute	value	on	both	sides,	we	have	Z	u(λen	)	−	u(0)	2	Z	g(y)	2	|g(y)|	≥	dy	−	dy	λ	nα(n)	|y|≤1	T	∂Rn+	|λen	−	y|n	nα(n)	|y|>1	T	∂Rn+	|λen	−	y|n	=I1	−	I2	.	johnson	and	johnson	swot	analysis	pdf	7	Since	g	is	bounded,	so	it	is	obvious	that	I2	is	bounded	and	independent	of	λ.	
For	I1	,	in	this	case,	g(y)	=	|y|,	so	Z	2	|y|	I1	=	dy	nα(n)	|y|≤1	T	∂Rn+	|λen	−	y|n	Z	2	|y|	≥	dy	T	nα(n)	|y|≤1	∂Rn+	(λ	+	|y|)n	Note	that	for	fixed	y,	theorem,	we	have	|y|	(λ+|y|)n	is	increasing	when	λ	is	decreasing	to	0,	so	by	Monotone	Convergence	Z	2	|y|	dy	lim	λ→0	nα(n)	|y|≤1	T	∂Rn	(λ	+	|y|)n	+	Z	|y|	=	dy	n	T	|y|≤1	∂Rn+	|y|	Z	|y|	=	dy	n	Bn−1	(0,1)	|y|	Z	1
Z	1	Z	1	n−2	1	dS	(y)	=	C	r	dr	=	∞.	=	dr	n−1	n−1	0	r	0	∂Bn−1	(0,r)	|y|	So,	Du	is	unbounded	near	x	=	0.	​	Problem	10.	Suppose	u	is	smootha	nd	solves	ut	−	∆u	=	0	in	Rn	×	(0,	∞).	(i)	Show	uλ	(x,	t)	:=	u(λx,	λ2	t)	also	solves	the	heat	equation	for	each	λ	∈	R.	(ii)	Use	(i)	to	show	v(x,	t)	:=	x	·	Du(x,	t)	+	2tut	(x,	t)	solves	the	heat	equation	as	well.	(i)	uλt	(x,	t)	=
λ2	ut	(λx,	λ2	t)	and	uλxi	(x,	t)	=	λu(λx,	λ2	t)	for	each	i.	Then	uλxi	xi	(x,	t)	=	λ2	u	xi	(λx,	λ2	t).	Consequently,	∆uλ	=	λ2	∆u	and	uλt	−	∆uλ	=	λ2	(ut	−	∆u),	so	uλ	solves	the	heat	equation	for	all	λ	∈	R.	18930332195.pdf	(ii)	We	differentiate	u(λx,	λ2	t)	=	u(λx1	,	.	.	.	,	λxn	,	λ2	t)	with	respect	to	λ	we	get	X	xk	u	xk	(λx1	,	.	.	.	,	λxk	,	λ2	t)	+	2λtut	(λx1	,	.	.	.	,	λxn	,
λ2	t)	=	x	·	D(λx,	λ2	t)	+	2tut	(λx,	λ2	t).	k	Taking	λ	=	1,	we	then	have	that	v(x,	t)	=	x	·	Du(x,	t)	+	2tut	(x,	t).	u	is	smooth,	so	the	second	derivatives	of	u(λx,	λ2	t)	are	continuous,	meaning	the	mixed	partials	are	equal.	Therefore,	∂	∂	∂	∂	∂	u(λx,	λ2	t)	−	∆	∂λ	u(λx,	λ2	t)	=	∂λ∂t	u(λx,	λ2	t)	−	∂λ	∆u(λx,	λ2	t)	=	∂λ	(uλt	−	∆uλ	)	=	0,	vt	−	∆v	=	∂t∂λ	since	uλ	satisfies
the	heat	equation	for	all	λ.	
Thus	v	does	as	well.	2	Problem	11:	Assume	n	=	1	and	u(x,	t)	=	v(	xt	).	a)	Show	ut	=	u	xx	if	and	only	if	(2)	4zv”(z)	+	(2	+	z)v0	(z)	=	0	(z	>	0)	8	b)	Show	that	the	general	solution	of	(1)	is	v(z)	=	c	z	Z	e−s/4	s−1/2	ds	+	d	0	2	c)	Differentiate	v(	xt	)	with	respect	to	x	and	select	the	constant	c	properly,	so	as	to	obtain	the	fundamental	solution	Φ	for	n	=	1.
Solution:	a)	Assume	that	ut	=	u	xx	.	
Then	x2	x2	ut	=	−	2	v0	t	t	!	and	!	!	2	x2	2	00	x	u	xx	=	2v	+	4x	v	t	t	0	So	ut	=	u	xx	implies	that	!	!	!	2	2	x2	0	x2	0	x	2	00	x	−	2v	=	2v	+	4x	v	t	t	t	t	or	!	!	!	2	x2	0	x2	4x2	00	x2	+	+	2	v	=0	v	t2	t	t	t	t	If	we	let	z	=	x2	,	t	we	get	!	2	z	0	4z	00	v	(z)	+	+	v	(z)	=	0	t	t	t	Multiplying	this	equation	by	t	gives	the	desired	equality.	For	the	other	direction,	reverse	the	steps,
and	hence	our	proof	is	done.	b)	4zv00	+	(2	+	z)v0	=	0	=⇒	=⇒	(by	integrating)	v00	11	1	=	−	−	v0	2z	4	log(v0	)	=	−	log	√	z−	z	+c	4	=⇒	v0	=	Cz−1/2	e−z/4	=⇒	v=C	z	Z	e−s/4	s−1/2	ds	+	d	0	9	as	is	desired.	c)	v(z)	=	c	Z	z	e−s/4	s−1/2	ds	+	d	0	=⇒	!	Z	xt2	x2	v	e−s/4	s−1/2	ds	+	d	=c	t	0	=⇒	!	!−1/2	x2	2x	−	x4t2	x2	v	=c	e	t	t	t	or	!	2	2c	x2	0	x	v	=	√	e−	4t	t	t
Now	we	want	to	integrate	over	R	and	set	the	integral	equal	to	1.	Thus	we	get	Z	2c	∞	−	x4t2	1=	√	e	dx	t	∞	0	Letting	y	=	we	get	dy	=	(4t)−1/2	dx	and	substituting,	we	get	Z	2c	∞	√	−y2	1=	√	4te	dy	t	∞	or	Z	∞	2	1	=	4c	e−y	dy	∞	R∞	2	√	−y	Employing	the	identity	∞	e	dy	=	π	and	solving	for	c,	we	get	√x	,	4t	c=	1	√	4	π	Thus,	!	x2	Φ(x,	t)	:	=	v	t	2c	x2	=	√	e−	4t
t	1	−x4t2	=	√	e	2	πt	0	is	easily	shown	to	solve	the	equation	Φt	=	Φ	xx	​	Problem	12.	haynes	pdf	repair	manuals	free	Write	down	an	explicit	formula	for	a	solution	of	ì	ï	ï	in	Rn	x(0,	∞)	íut	−	∆u	+	cu	=	f	ï	ï	î	u	=	g	on	Rn	x{t	=	0},	where	c∈	R.	10	Solution:	Set	v(x,	t)	=	u(x,	t)eCt	.	Then,	vt	=	ut	eCt	+	CeCt	u	and	v	xi	xi	=	u	xi	xi	eCt	.	aldi	annual	report	2020
pdf	⇒	vt	−	∆v	=	ut	eCt	+	CeCt	u	−	eCt	∆u	=	eCt	(ut	−	∆u	+	Cu)	=	eCt	f.	So,	v	is	a	solution	of	ì	ï	ï	ívt	−	∆v	=	eCt	f	ï	ï	î	v=g	in	Rn	x(0,	∞)	on	Rn	x{t	=	0},	By	(17)	(p.51),	v(x,	t)	=	Z	Φ(x	−	y,	t)g(y)dy	+	Rn	Z	tZ	Φ(x	−	y,	t	−	s)eCs	f	(y,	s)dyds	Rn	0	where	Φ	is	the	fundamental	solution	of	the	hear	equation.	Since	v(x,	t)	=	u(x,	t)eCt	,	we	have	Z	tZ	​Z	​	Ct	u(x,	t)
=	e	Φ(x	−	y,	t)g(y)dy	+	Φ(x	−	y,	t	−	s)eCs	f	(y,	s)dyds	.	Rn	0	Rn	​	Problem	13:	Given	g	:	[0,	∞]	→	R,	with	g(0)	=	0,	derive	the	formula	Z	t	−x2	1	x	4(t−s)	g(s)ds,	x	>	0	e	u(x,	t)	=	√	4π	0	(t	−	s)3/2	for	a	solution	of	the	initial/boundary-value	problem	ì	ï	ut	−	u	xx	=	0	inR+	×	(0,	∞)	ï	ï	ï	í	u	=	0	onR+	×	{t	=	0},	ï	ï	ï	ï	î	u	=	g	on{x	=	0}	×	[0,	∞).	Proof.	We
define	ì	ï	ï	íu(x,	t)	−	g(t)	v(x,	t)	=	ï	ï	î−u(−x,	t)	+	g(t)	x	>	0,	x	≤	0.	So,	we	have	ì	ï	ï	íut	(x,	t)	−	g0	(t)	vt	(x,	t)	=	ï	ï	î−ut	(−x,	t)	+	g0	(t)	x	>	0,	x	≤	0,	and	ì	ï	ï	íu	xx	(x,	t)	v	xx	(x,	t)	=	ï	ï	î−u	xx	(−x,	t)	x	>	0,	x	≤	0.	11	Hence,	ì	ï	ï	ï	ï	ï	ï	ï	ï	í	ï	ï	ï	ï	ï	ï	ï	ï	î	ì	ï	ï	í−g0	(t)	vt	(x,	t)	−	v	xx	(x,	t)	=	ï	ï	îg0	(t)	v(x,	0)	=	0,	v(0,	t)	=	0.	x	>	0,	x	≤	0.	
By	formula	(13)	on	page	49,	we	get	)	(Z	0	Z	∞	Z	t	−(y−x)2	−(y−x)2	1	0	0	e	4(t−s)	g	(s)dyds	e	4(t−s)	g	(s)dyds	−	v(x,	t)	=	√	4π(t	−	s)	−∞	0	0	Note	that(page	46	Lemma)	Z	∞	−(y−x)2	1	e	4(t−s)	dy	=	1,	√	4π(t	−	s)	−∞	so	when	x	>	0,	we	let	y	−	x	=	−z	and	obtain	u(x,	t)	=	v(x,	t)	+	g(t)	Z	t	Z	0	=	v(x,	t)	+	g	(s)ds	0	=2	Z	=	Z	t	Z	∞	−∞	0	−(y−x)2	1	e	4(t−s)	dy	√
4π(t	−	s)	−(y−x)2	1	1	e	4(t−s)	dy	g0	(s)ds	√	(t	−	s)−	2	−∞	0	4π	Z	∞	2	t	−z	1	1	e	4(t−s)	dz	dg(s)	√	(t	−	s)−	2	π	0	x	Integrating	by	parts,	we	get	Z	∞	2	−z	1	−1/2	u(x,	t)	=	√	(t	−	s)	e	4(t−s)	dz	g(s)|	s=t	s=0	π	x	Z	∞	2	Z	t	−z	1	1	−	e	4(t−s)	dz	g(s)	√	(t	−	s)−3/2	ds	π2	x	0	Z	t	Z	∞	2	−z	1	−z2	−	g(s)	√	(t	−	s)−1/2	ds	e	4(t−s)	dz	4(t	−	s)2	π	0	x	Z	t	Z	∞	2	−z	1	1
−3/2	e	4(t−s)	dz	=	I1	−	g(s)	√	(t	−	s)	ds	π2	x	0	Z	t	Z	∞	−z2	1	−z	+	g(s)	√	(t	−	s)−1/2	ds	de	4(t−s)	π	0	x	2(t	−	s)	Z	t	Z	∞	2	−z	1	1	−3/2	=	I1	−	g(s)	√	(t	−	s)	ds	e	4(t−s)	dz	π2	0	x	Z	t	−z2	1	+	g(s)	√	(t	−	s)−3/2	ds	(−z)	e	4(t−s)	|z=∞	z=x	0	4π	Z	t	Z	∞	2	−z	1	1	+	g(s)	√	(t	−	s)−3/2	ds	e	4(t−s)	dz	π2	0	x	Z	t	2	−x	1	x	=	I1	+	√	e	4(t−s)	g(s)ds.	3/2	4π	0	(t	−	s)	12
Now,	we	focus	on	I1	and	define	w2	to	be	z2	,	4​	Z	1	−1/2	∞	−z4​2	I1	=	lim+	√	​	e	dz	g(t	−	​)	​→0	π	x	Z	∞	1	2	2e−w	dw	=	0.	=	g(t)	lim+	√	​→0	π	x2	/4​	Thus,	we	proved	x	u(x,	t)	=	√	4π	t	Z	0	−x2	1	4(t−s)	g(s)ds,	x	>	0.	e	(t	−	s)3/2	Next,	we	need	to	show	that	lim	u(x,	t)	=	g(t).	x→0+	Note	that	for	any	fixed	δ	>	0.	Z	t	−x2	1	x	4(t−s)	g(s)ds	lim+	u(x,	t)	=	lim+	√	e
x→0	x→0	4π	t−δ	(t	−	s)3/2	Z	t−δ	−x2	x	1	+	lim+	√	e	4(t−s)	g(s)ds	3/2	x→0	4π	0	(t	−	s)	Z	t	−x2	1	x	4(t−s)	ds	=	g(t)	lim+	√	e	x→0	4π	t−δ	(t	−	s)3/2	Z	δ	1	−x4s2	x	=	g(t)	lim+	√	e	ds	x→0	4π	0	s3/2	For	fixed	x,	we	let	s	=	x2	/w2	and	get	lim+	u(x,	t)	=	g(t)	lim+	x→0	x	√	Z	x2	/δ	w3	−w4	2	−2x2	e	dw	x3	w3	2	π	∞	Z	∞	1	−w2	=	g(t)	lim+	√	e	4	dw	x→0	π	x2	/δ	Z	∞
1	−w2	=	g(t)	√	e	4	dw	=	g(t).	π	0	x→0	​	Hence,	we	are	done.	Problem	14.	
We	say	v	∈	C12	(UT	)	is	a	subsolution	of	the	heat	equation	if	vt	−	∆v	≤	0	in	UT	.	(a)	Prove	for	a	subsolution	v	that	1	v(x,	t)	≤	n	4r	Z	Z	v(y,	s)	E(x,t;r)	for	all	E(x,	t;	r)	⊂	UT	.	(b)	Prove	that	therefore	maxU¯	T	v	=	maxΓT	v	|x	−	y|2	dyds	(t	−	s)2	13	Solution.	(a)	We	may	well	assume	upon	translating	the	space	and	time	coordinates	that	x	=	0	and	t	=	0.	As	in
the	proof	of	Theorem	3,	set	Z	Z	1	|y|2	φ(r)	:=	n	v(y,	s)	2	dyds,	r	s	E(r)	n	|y|2	ψ(y,	s)	:=	−	log(−4πs)	+	+	n	log	r	2	4s	and	derive	Z	Z	n	1	2n	X	0	vy	yi	dyds	φ	(r)	≥	n+1	−4n∆vψ	−	r	s	i=1	i	E(r)	Z	Z	n	X	1	2n	=	4nvyi	ψyi	−	vyi	yi	dyds	=	0.	n+1	r	s	E(r)	i=1	For	0	<	​	<	r,	Zr	φ0	(z)dz	=	φ(r)	−	φ(​)	≥	0.	​	R	R	|y|2	Hence,	φ(r)	≥	lim	φ(​)	=	v(0,	0)	·	lim	​1n	dyds	=	4v(0,
0),	and	the	statement	follows.	E(​)	s2	​→0	​→0	(b)	Suppose	there	exists	a	point	(x0	,	t0	)	∈	UT	with	u(x0	,	t0	)	=	M	:=	maxU¯	T	u.	Then	for	all	sufficiently	small	r	>	0,	E(x0	,	t0	;	r)	⊂	UT	.	Using	the	result	proved	above,	we	deduce	Z	Z	1	|x	−	y|2	M	=	v(x0	,	t0	)	≤	n	v(y,	s)	dyds	≤	M,	4r	(t	−	s)2	E(x0	,t0	;r)	since	1	1=	n	4r	Z	Z	E(x0	,t0	;r)	|x0	−	y|2	dyds.	(t0	−
s)2	Conclude	that	u|E(x0	,t0	;r)	=	M.	The	argument	used	in	the	proof	of	Theorem	4	will	finish	the	proof.	​	Problem	15.	(a)	Show	the	general	solution	of	the	PDE	u	xy	=	0	is	u(x,	y)	=	F(x)	+	G(y)	for	arbitrary	functions	F,G.	(b)	Using	the	change	of	variables	ξ	=	x	+	t,	η	=	x	−	t,	show	utt	−	u	xx	=	0	if	and	only	if	uξη	=	0.	(c)	Use	(a),(b)	to	rederive
d’Alembert’s	formula.	Solution:	(a)	R	u	xy	=	0	⇒	u	x	=	f	(x)	⇒	u(x,	y)	=	R	f	(x)dx	+	G(y)	uyx	=	0	⇒	uy	=	g(y)	⇒	u(x,	y)	=	g(y)dy	+	F(x)	14	This	implies	u(x,	y)	=	F(x)	+	G(y).	(b)	x	=	ξ+η	,	y	=	ξ−η	2	2	​	Define	u˜	:=	u	ξ+η	,	ξ−η	2	2	1	1	u˜	ξ	=	u	x	+	ut	and	2	2	Hence,	u˜	ξη	=	0	⇔	utt	−	u	xx	=	0.	1	1	1	1	1	u˜	ξη	=	u	xx	−	u	xt	+	utx	−	utt	=	(u	xx	−	utt	)	4	4	4	4	4
(c)	By	(b),	utt	−	u	xx	=	0	⇒	uξη	=	0,	and	u(ξ,	η)	=	F(ξ)	+	G(η)	by	(a)	,i.e,	u(x,	y)	=	F(x	+	t)	+	G(x	−	t).	Since	u(x,	0)	=	g,	ut	(x,	0)	=	h,	(3)	u(x,	0)	=	F(x)	+	G(x)	=	g(x),	ut	(x,	0)	=	F	0	(x)	−	G0	(x)	=	h(x)	Integration	⇒	(4)	F(x)	−	G(x)	=	Z	x	h(y)dy	+	C,	C:constant.	0	(2)	+	(3);	(2)	−	(3);	Z	x	​	1	F(x)	=	g(x)	+	h(y)dy	+	C	2	Z0	x	​	1	G(x)	=	g(x)	−	h(y)dy	−	C	2	0
Thus,	Z	x+t	Z	x−t	​	1	​	1	u(x,	y)	=	F(x	+	t)	+	G(x	−	t)	=	g(x	+	t)	+	h(y)dy	+	C	+	g(x	−	t)	−	h(y)dy	−	C	2	2	0	0	Z	x+t	Z	0	​	1	=	g(x	+	t)	+	h(y)dy	+	C	+	g(x	−	t)	+	h(y)dy	−	C	2	0	x−t	Z	x+t	​	1	1​	=	g(x	+	t)	+	g(x	−	t)	+	h(y)dy	(x	∈	R,	t	≥	0).	2	2	x−t	​	Problem	16.	Assume	E	=	(E	1	,	E	2	,	E	3	)	and	B	=	(B1	,	B2	,	B3	)	solve	Maxwell’s	equations:	Et	=	curl	B	Bt	=	−
curl	E	div	B	=	div	E	=	0	Show	that	utt	−	∆u	=	0	where	u	=	Bi	or	E	i	for	i	=	1,	2,	3.	Solution.	
15	curl(curl	E)	=	curl(−Bt	)	!	∂2	B3	∂2	B2	∂2	B3	∂2	B1	∂2	B2	∂B1	+	,−	+	,−	+	=	−	∂y∂t	∂z∂t	∂x∂t	∂z∂t	∂x∂t	∂y∂t	∂	=	−	curl	B	∂t	∂	=	−	Et	∂t	∂2	E	=−	2	∂t	However,	we	also	know	that	curl(curl	E)	=	∇(div	E)	−	∇2	E	=	−∇2	E.	sevel	gelato	case	manual	version	download	Then	E	i	satisfies	utt	−	∆u	=	0	for	i	=	1,	2,	3.	
Similarly,	curl(curl	B)	=	curl	Et	=	−	∂∂tB2	,	and	curl(curl	B)	=	∇(div	B)	−	∇2	B	=	−∇2	B,	so	Bi	satisfies	utt	−	∆u	=	0	for	i	=	1,	2,	3.	2	Problem	17.(Equipartition	of	energy)	Let	u	∈	C	2	(R	×	[0,	∞))	solve	the	initial	value	problem	for	the	wave	equation	in	one	dimension:	ì	ï	ï	in	R	×	(0,	∞)	íutt	−	u	xx	=	0	ï	ï	îu	=	g;	ut	=	h	on	R	×	{t	=	0}.	R∞	Suppose	g,	h
have	compact	support.	The	kinetic	energy	is	k(t)	:=	12	−∞	u2t	(x,	t)dx	and	the	potential	R∞	energy	is	p(t)	:=	12	−∞	u2x	(x,	t)dx.	
Prove	(i)	k(t)	+	p(t)	is	constant	in	t.	(ii)	k(t)	=	p(t)	for	all	large	enough	times	t.	​	R∞	​	Proof.	(i.)	We	define	e(t)	=	k(t)	+	p(t)	=	12	−∞	u2t	+	u2x	dx.	digogu.pdf	Since	g,	h	have	compact	support,	so	we	have	Z	d	e(t)	1	∞	=	2ut	utt	+	2u	x	u	xt	dx	dt	2	−∞	Z	∞	Z	∞	ut	utt	dx	−	u	xx	ut	dx	−∞	−∞	Z	∞	=	ut	(utt	−	u	xx	)	dx	=	0.	−∞	Hence,	e(t)	≡	e(0).	(ii.)By
d’Alembert’s	formula	on	page	68,	we	have	​	1	1​	u(x,	t)	=	g(x	+	t)	+	g(x	−	t)	+	2	2	Z	x+t	h(y)dy.	x−t	So,	ut	=	​	1	1​	0	g	(x	+	t)	−	g0	(x	−	t)	+	[h(x	+	t)	+	h(x	−	t)]	,	2	2	ux	=	​	1	1​	0	g	(x	+	t)	+	g0	(x	−	t)	+	[h(x	+	t)	−	h(x	−	t)]	.	2	2	and	16	We	assume	that	there	exists	a	positive	constant	M	so	that	[−M,	M]	⊇	supp(g0	)	and	[−M,	M]	⊇	supp(h).	Note	that	for	a
fixed	t	>	M,	−M	≤	x	−	t	≤	M	⇔	0	<	t	−	M	≤	x	≤	t	+	M	and	−M	≤	x	+	t	≤	M	⇔	−t	−	M	≤	x	≤	−t	+	M	<	0.	Thus,	when	t	>	M	:	(a)	0	<	t	−	M	≤	x	≤	t	+	M.	Then	we	have	h(x	+	t)	=	g(x	+	t)	=	0.	So,	1	1	1	u2t	=	g0	(x	−	t)2	+	h(x	−	t)2	−	g0	(x	−	t)h(x	−	t)	=	u2x	.	4	4	2	(b)	−t	−	M	≤	x	≤	−t	+	M	<	0.	Then,	1	1	1	u2t	=	g0	(x	+	t)2	+	h(x	+	t)2	+	g0	(x	+	t)h(x	+	t)
=	u2x	.	4	4	2	(c)	Otherwise	g0	(x	+	t)	=	g0	(x	−	t)	=	h(x	+	t)	=	h(x	−	t)	=	0.	So,	combining	all	the	cases,	it	is	obvious	that	when	t	>	M,	k(t)	=	p(t).	​	Problem	18.	Let	u	solve	(	utt	−	∆u	=	0	in	R3	×	(0,	∞)	u	=	g,	ut	=	h	on	R3	×	{t	=	0},	where	g,	h	are	smooth	and	have	compact	support.	Show	there	exists	a	constant	C	such	that	|u(x,	t)|	≤	C/t	(x	∈	R3	,	t	>	0).
Solution.	From	the	conditions	it	follows	that	there	exist	R,	M	>	0	such	that	spt	g,	spt	h	⊂	B(0,	R)	and	g(y)	≤	M,	|Dg(y)|	≤	M,	h(y)	≤	M	for	any	y	∈	R3	.	Kirchhoff’s	formula	gives	the	solution	of	the	initial-value	problem:	?	u(x,	t)	=	th(y)	+	g(y)	+	Dg(y)	·	(y	−	x)	dS	(y).	
∂B(x,t)	Denote	by	Σ	the	intersection	∂B(x,	t)	∩	B(0,	R).	Observe	that	the	area	of	Σ	is	not	greater	than	the	area	of	the	sphere	∂B(0,	R).	Then,	for	t	>	0,	we	obtain	?	Z	1	th(y)	+	Dg(y)	·	(y	−	x)	dS	(y)	=	th(y)	+	Dg(y)	·	(y	−	x)	dS	(y)	2	4πt	∂B(x,t)∩B(0,R)	∂B(x,t)	Z	1	t	·	|h(y)|	+	|Dg(y)|	·	|y	−	x|	dS	(y)	≤	4πt2	∂B(x,t)∩B(0,R)	1	2R2	M	2	≤	·	4πR	·	(tM	+	tM)	=	.	4πt2	t
17	For	t	>	1,	using	the	same	argument,	we	get	?	Z	1	1	R2	M	R2	M	2	=	≤	g(y)	dS	(y)	g(y)	dS	(y)	·	4πR	·	M	=	≤	.	4πt2	∂B(x,t)∩B(0,R)	4πt2	t2	t	∂B(x,t)	Notice	now	that	the	area	Σ	is	not	greater	than	the	area	of	the	sphere	∂B(x,	t).	Then	for	0	<	t	≤	1,	?	Z	1	1	M	g(y)	dS	(y)	=	g(y)	dS	(y)	·	4πt2	·	M	≤	.	texaxesiganux.pdf	
≤	2	2	4πt	4πt	t	∂B(x,t)	∂B(x,t)∩B(0,R)	Without	loss	of	generality,	we	can	take	R	>	1.	Then,	combining	the	estimates	obtained	above,	we	2	conclude	|u(x,	t)|	≤	3Rt	M	.	​	Evans	PDE	Solutions,	Chapter	5	Alex:	4,	Helen:	5,	Rob	H.:	1	Problem	1.	¯	is	a	Banach	space.	Suppose	k	∈	{0,	1,	.	.	
.},	0	<	γ	<	1.	Prove	C	k,γ	(U)	Solution:	1.	First	we	show	that	||	·	||C	k,γ	(U)	¯	is	a	norm,	where	we	recall	that	||u||C	k,γ	(U)	¯	=	X	||Dα	u||C(U)	¯	+	X	[Dα	u]C	0,γ	(U)	¯	,	|α|=k	|α|≤k	and	(	[u]C	0,γ	(U)	¯	=	sup	x,y∈U	)	|u(x)	−	u(y)|	.	|x	−	y|γ	For	the	sake	of	opaqueness	we	now	omit	subscripts	on	all	norms	unless	it	is	unclear	from	context.	2.	For	any	λ	∈	R	we
have	first	[λu]	=	sup	x,y∈U	and	certainly	|λu(x)	−	λu(y)|	|u(x)	−	u(y)|	=	|λ|	sup	=	|λ|	[u]	,	γ	|x	−	y|	|x	−	y|γ	x,y∈U	α	α	||Dα	(λu)||C(U)	¯	=	||λD	u||	=	|λ|	·	||D	u||	.	So	||λu||	=	X	||Dα	(λu)||	+	|α|≤k	=	|λ|	X	X	[Dα	(λu)]	|α|=k	||Dα	u||	+	|λ|	|α|≤k	X	[Dα	u]	|α|=k	=	|λ|	·	||u||	.	3.	If	u	=	0	it	is	obvious	that	||u||	=	0.	On	the	other	hand,	||u||	=	0	implies	that	||Dα
u||C(U)	¯	=	0	18	for	every	|α|	≤	k.	
In	particular	this	is	true	for	α	=	0	so	that	the	supremum	of	D0	u	=	u	on	U	is	0,	i.e.	u	≡	0.	4.	Finally	we	must	prove	the	triangle	inequality.	We	know	the	triangle	inequality	is	true	for	the	sup	norm	||	·	||C(U)	¯	.	We	can	also	see	that	for	any	α	which	makes	sense	[Dα	(u	+	v)]	=	[Dα	u	+	Dα	v]	≤	[Dα	u]	+	[Dα	v]	.	Therefore	we	can	easily	conclude	||u	+	v||	=
X	||Dα	(u	+	v)||	+	≤	[Dα	(u	+	v)]	|α|=k	|α|≤k	X	X	(||Dα	u||	+	||Dα	v||)	+	|α|≤k	X	([Dα	u]	+	[Dα	v])	|α|=k	=	||u||	+	||v||.	5.	We	need	only	show	that	C	k,γ	(U)	is	complete.	So	let	{um	}	be	a	Cauchy	sequence.	Then	{um	(x){	is	a	Cauchy	sequence	for	every	x,	so	define	u	to	be	the	pointwise	limit	of	the	um	.	Now	if	V	is	any	bounded	subset	of	U,	then	V¯	is
compact,	so	that	um	⇒	u	uniformly	on	any	V.	Since	the	um	are	uniformly	continuous	on	V¯	by	assumption,	this	implies	that	u	is	uniformly	continuous	on	V¯	as	well	¯	(and	so,	a	fortiori	u	∈	C(U)).	Therefore	u	∈	C(U).	¯	But	similar	arguments	show	that	u	has	What	we	would	really	like	would	be	to	have	u	∈	C	k	(U).	α	derivatives	D	u	for	all	|α|	≤	k	on	U	by
restricting	first	to	bounded	subsets	of	U	to	find	the	derivatives	and	then	using	uniform	convergence	on	these	subsets	to	show	the	derivatives	must	also	be	uniformly	continuous	on	bounded	subsets	since	the	Dα	um	were.	This	leaves	us	with	only	showing	that	the	norm	of	u	is	finite,	so	that	in	fact	u	∈	C	k,γ	(U).	But	for	every	n	we	have	X	X	|Dα	un	(x)	−
Dα	un	(y)	−	Dα	u(x)	+	Dα	u(y)|	||un	−	u||	=	sup	|Dα	un	(x)	−	Dα	u(x)|	+	sup	|x	−	y|γ	|α|≤k	x∈U	|α|=k	x,y∈U	æ	ö	α	α	α	α	X	ççç	X		u	(x)	−	D	u	(y)	−	D	u	(x)	+	D	u	(y)|	|D	n	n	m	m		=	lim	çççè	sup	|Dα	un	(x)	−	Dα	um	(x)|	+	sup	ø	γ	m⇒∞	|x	−	y|	x∈U	x,y∈U	|α|≤k	|α|=k	=	lim	||un	−	um	||.	m⇒∞	In	particular,	since	{um	}	is	Cauchy	there	is	some	N	so	that	n,	m
≥	N	implies	||un	−	um	||	≤	1.	Letting	m	approach	∞,	this	implies	that	||uN	−	u||	<	1.	Now	the	triangle	inequality	applies	to	give	||u||	≤	||uN	−	u||	+	||uN	||	<	1	+	||uN	||	<	∞.	​	Problem	4.	SN	Vi	.	Show	there	exist	C	∞	functions	ζi	(i	=	1,	.	.	.	,	N)	such	that	Assume	U	is	bounded	and	U	⊂⊂	i=1	ì	ï	ï	í0	≤	ζ1	≤	1,	supp	ζi	⊂	Vi	i	=	1,	.	.	.	,	N	ï	ïP	N	ζ	=	1	î	on	U.
i=1	i	The	functions	{ζi	}1N	for	a	partition	of	unity.	19	SN	Solution.	4840613263.pdf	Assume	U	is	bounded	and	U	⊂⊂	i=1	Vi	.	Without	loss	of	generality,	we	may	assume	that	the	Vi	are	open,	for	if	they	are	not,	we	can	replace	Vi	by	its	interior.	We	note	that,	since	U	is	bounded,	U	is	compact.	Each	x	∈	U	has	a	compact	neighbourhood	N	x	contained	in	Vi
for	some	i.	Then	{N	x◦	}	is	an	open	cover	of	U,	which	then	has	a	finite	subcover	N	x◦1	,	.	
.	.	,	N	x◦n	.	
We	now	let	Fi	be	the	union	of	the	N	xk	contained	in	Vi	.	Fi	is	the	compact	since	it	is	the	finite	union	of	compact	sets.	The	C	∞	version	of	Urysohn’s	Lemma	(Folland,	p.245)	allows	us	to	find	smooth	Pn	functions	ξ1	,	.	.	.	,	ξN	such	that	ξi	=	1	on	Fi	and	supp(ξi	)	⊂	Vi	.	Since	the	Fi	cover	U,	U	⊂	{x	:	1	ξi	(x)	>	0}	and	we	can	P	use	Urysohn	again	to	find	ζ	∈	C
∞	with	ζ	=	1	on	U	and	supp(ζ)	⊂	{x	:	n1	ξi	(x)	>	0}.	Now,	we	let	PN+1	ξN1	=	1	−	ζ,	so	1	ξi	>	0	everywhere.	magic	quadrant	for	unified	threat	management	2018	pdf	We	then	take	ξi	ζi	=	PN+1	ξj	1	as	our	partition	of	unity.	Problem	5	(Helen)	Prove	that	if	n	=	1	and	u	∈	W	1,p	(0,	1)	for	some	1	≤	p	<	∞,	then	u	is	equal	a.e.	to	an	absolutely	continuous
function,	and	u0	which	exists	a.e.	belongs	to	L	p	(0,	1).	Proof.	Since	u	∈	W	1,p	(0,	1),	so	by	definition	on	page	242	and	244,	we	have	some	function	v	∈	L	p	(0,	1)	such	that	Z	Z	u	Dφdx	=	−	vφdx,	∀φ	∈	Cc∞	((0,	1))	.	(0,1)	(0,1)	Note	that	v	∈	L	p	(0,	1),	so	by	H¨older’s	inequality,	we	have	kvkL1	≤	kvkL	p	k1kLq	<	∞,	which	means	v	∈	L1	(0,	1).	Thus,	we	can
define	function	f	(x)	on	(0,	1)	by	the	following	formula	Z	x	1	f	(x)	=	u(	)	+	v(t)dt,	∀x	∈	(0,	1).	1	2	2	According	to	the	Fundamental	Theorem	of	Calcalus,	f	is	absolutely	continuous.	what	is	learner	centred	approach	to	language	teaching	Now	we	will	prove	u	=	f	a.e.	By	the	definition	of	f	,	we	have	f	0	=	v	a.e.	So	for	any	φ	∈	Cc∞	((0,	1))	we	get	Z	Z	Z	0	f	Dφdx
=	−	f	φdx	=	−	vφdx.	(0,1)	(0,1)	(0,1)	Therefore,	Z	(	f	−	u)	Dφdx	=	0	∀φ	∈	Cc∞	((0,	1))	,	(0,1)	which	means	u	=	f	+	const.	And	note	that	u(	21	)	=	f	(	12	),	hence	u	=	f	a.e.	So	u0	exists	a.e.	and	satisfy	u0	=	v	a.e.,	so	u0	∈	L	p	(0,	1).	
​	vanessa	jason	biology	roots	answer	key	pdf	download	pdf	full	version

https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/nutoxadukarazegit.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/johnson_and_johnson_swot_analysis.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/18930332195.pdf
https://img1.wsimg.com/blobby/go/3ccd9234-721c-480b-91a1-84bae34c2069/downloads/haynes_repair_manuals_free.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/53768454419.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/70682948233.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/digogu.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/texaxesiganux.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/4840613263.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/39459477329.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/rapatidavumexum.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/resukanavagakibuxiwuzopi.pdf

