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Evans pde solutions chapter 3

Homework 1 Homework 2 Homework 3 Homework 4 Embed Size (px) 344 x 292 429 x 357 514 x 422 599 x 487 Final Exam Topics The final exam for M611 will be in the usual classroom ZACH 322, Wednesday, Dec. 17,10:30 a.m.-12:30 p.m. The exam will cover the course material that was not covered on themidterm exam; in particular, Green’s

functions for Laplace’s equation, and all of our materialon the heat equation, the wave equation, and the method of characteristics. The exam willconsist of four to six questions, with a mix of straightforward calculations and proofs. castle crashers free download pc full version I willprovide statements of the system of characteristic equations and of
the d’Alembert, Poisson,and Kirchhoff solutions to the wave equation.

You will need to bring your own paper. 1. Explicit calculations Examples of problems we’ve solved by explicit calculation include the following: ¢ The derivation of Green’s functions (by the method of images), and the application ofGreen’s functions to solving Laplace’s equation * Solutions of the wave equation on quarter planes ¢ Solutions to the
inhomogeneous wave equation by Duhamel’s Principle ¢ Solutions of first order linear, quasilinear and nonlinear PDE by the method of char-acteristics 2. Proofs Examples of topics from which proof-based problems may be taken include the following: ¢ Verify properties of the heat kernel and properties of solutions to the heat equation onRn x R+
Verify properties of the heat equation on UT ¢ Derive properties of solutions of the wave equation, especially (though not only) in casesin which the properties can be obtained from the d’Alembert, Poisson, and Kirchhoffintegral representations * Know the properties of the straightening transformation ~® and its role in our develop-ment of the
Method of Characteristics 1 Practice with the method of characteristics 1. (Evans 3.5.5.) Solve using characteristics: a. x1uxl + x2ux2 = 2u; u(x1, 1) = g(x1) c. x1luxl + 2x2ux2 + ux3 = 3u; u(x1, x2, 0) = g(x1, x2) b. uuxl + ux2 = 1; u(x1, x1) = 12x1 Solution. For (a), we begin by setting z(s) = u(x1(s), x2(s)). We computedz ds= ux1(~x(s)) dx1 ds+
ux2(~x(s)) dx2 ds, so that dx1 ds=x1; x1(0) = x10 = x1(s) = x10e s dx2 ds=x2; x2(0) = 1= x2(s) = es dz ds= 2z; z(0) = g(x10)= z(s) = g(x10)e 2s. Solving for x10 and s in terms of x1 and x2 we find x10 =x1 x2 es =x2, so thatu(x1, x2) = g( x1x2 )x22.

For (b), we set dx1 ds=x1; x1(0) = x10 = x1(s) = x10e s dx2 ds= 2x2; x2(0) = x20 = x2(s) = x20e 2s dx3 ds= 1; x3(0) = 0= x3(s) = s dz ds= 3z; z(0) = g(x10, x 20)= z(s) = g(x10, x 20)e 3s. 73777763898.pdf We see that s =x3 x10 =x1e—x3 x20 =x2e—2x3, 2 so thatu(~x) = g(xle —x3, x2e—2x3)e3x3 . For (c), we set dx1 ds= z(s); x1(0) = x10 = x1(s) =
x10 + " s 0 z(t)dt dx2 ds= 1; x2(0) = x10 = x2(s) = x10 + sdz ds=1; z(0) = 1 2x10 = z(s) = 1 2x10 + s.

We see that x1(s) = x10 +s 2x10 + s2 2. Now we notice x10 = x2 — s, so that x1 = (x2 — s) +s 2(x2 — s) + s2 2= x2 — s+ s 2x2. Solving for s s =x2 — x11— 1 2x2. This in turn gives x10 =x2 — s =x2 — 1 2x22 — (x2 — x1)1— 1 2x2 =x1 — 1 2x22 1— 12x2 . We conclude u(x1, x2) =1 2x10 + s =12x1 — 1 4x22 + x2 — x1 1— 12x2 =—1 2x1 — 1 4x22 + x2 1—
12x2 . 2. Find a solution to the PDE x1uxl + x2ux2 +u2x1 + u2x2 2=uin Rx R+ u(x1, 0) =1- x21 2, x1 € R. 3 (Solutions to nonlinear PDE need not be unique; in particular, you need only find onesolution.) Solution. We begin by observing F (~p, z, ~x) = x1pl + x2p2 +1 2p21 + 1 2p22 — z, so that DpF = (x1 + pl, x2 + p2) Fz = — 1 DxF = (pl, p2).
We haveux1(x1, 0) = —x1 = p10 = —x10. For p20, our equation gives the relation x10p10 + x20p 20 + (p10)2 + (p20) 2 2= 1 2— 1 2(x10) 2, which (upon noting x20 = 0) gives the equation 1 2(p20) 2 =1 2= p20 = *1. This is where the uniqueness comment comes in, and we choose to find the solution for whichp20 = +1. glidermatic grd instruction
manual We obtain the system dpl ds= 0; p1(0) = —x10 dp2 ds=0; p2(0) =1dzds=z+ 1 2(p1)2 + 1 2(p2)2; z(0) =1 2— 1 2(x10) 2 dx1 ds=x1 + p1; x1(0) = x10 dx2 ds=x2 + p2; x2(0) = 0. Solving this, we find p1(s) = — x10p2(s) =1 z(s) =es — 1 2 ((x10) 2 + 1) x1(s) =x10x2(s) = — 1 + es. 4 We see that x10 =x1 es = 1 + x2, allowing us to write u(xl1,
x2) =2z(s) = (1 +x2)—12 (x21 + 1 )= -1 2x21 + x2 + 1 2. 5 (a) Try to use Jacobi identity: $$\frac{d} {ds}\det A(s)=\text{tr}\left((\text{cof}A(s))\frac{dA} {ds}(s)\right)$$ Let $A(s)=\left(X {x j}~{i}(s,x,t)\right)$ and $B(s)=\left(b {x j}~{i}(s)\right)$. We yield $$\frac{dA} {ds}(s)=B(X)A(s)$$ Plug in the identity, done. (b) Using method of
characteristics is fine, $\dot{x}(t)=b$, $x(0)=y$, $\dot{z} (t)=-\text{div}bz~ {-1}$, $z~{-1}(0)=g"~{-1}(y)$. Note that by assumption of (b) and Jacobi identity in (a), these ODEs have unique solutions. Moreover, $$y=X(-t,x,0), X\left(s,X(-t,x,0),0\right)=X\left(X(s-t,x,0),0\right)$$ $$]J(-t,x,0)=](0,x,t)$$ $$z(t)=\frac{g(y)}{J(t,y,0)}$$ By Euler formula,
$$J(t,y,0)=\exp\left(\int {0} ~{t}\text{div}b(X(s,y,0))ds\right)=\exp\left(\text{div}\left(X(s,X(-t,x,0),0)\right)ds\right)=\exp\left(\int {0} ~ {t}\text{div}b(X(s-t,x,0))ds\right)=\exp\left(-\int {-t} ~ {0 \text{div}b(X(\tau,x,0))d\tau\right)=] " {-1}(-t,x,0)=]"~{-1}(0,x,t)$$ This suggests $$u(x,t)=g(X(0,x,t))J(0,x,t)$$ Author / Uploaded i'm not telling Authors: Joe
Benson, Denis Bashkirov, Minsu Kim, Helen Li, Alex Csar Evans PDE Solutions, Chapter 2 Joe: 1, 2,11; Denis: 4, 6, 14, 18; Minsu: 2,3, 15; Helen: 5,8,13,17.

Alex:10, 16 Problem 1. Write down an explicit formula for a function u solving the initial-value problem (ut + b-Du + cu=0o0on Rn x (0, ®) u =g on Rn x {t = 0} Here c € R and b € Rn are constants. Sol: Fix x and t, and consider z(s) := u(x + bs, t + s) Thenz'(s) =b - Du + ut = —cu(x + bs, t + s) = —cz(s) Therefore, z(s) = De—cs, for some constant
D. We can solve for D by letting s = —t. Then, z(—t) = u(x — bt, 0) = g(x — bt) = Dect i.e. D = g(x — bt)e—ct Thus, u(x + bs, t + s) = g(x — bt)e—c(t+s) and so when s = 0, we get u(x, t) = g(x — bt)e—ct . Problem 2. Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if O is an orthogonal n X n matrix and we define v(x) := u(Ox) (x € R)
then Av = 0. Solution: Let y := Ox, and write O = (aiJ|'|)|. Thus, v(x) = u(Ox) = u(y) where yj = Pni=1 a ji xi . This then gives that n ovX gu gy j = axi dy joxij=1 nX gu = ajiayjj=11 2 Thus, [ av I[ 1 au 1l ox1 |llllal1l ...

(Ox)
ant [ ay [T T2 T o BP0 Fe T T T =11 UL Ll ev]eua...a1nnnaxnaynl au 11l ayl [[II [ITI =0Ollll ... [[[llLéu Jayn Dx-v=0Dy-uT Now, Av=Dxv-Dxv=(OT Dyu) - (OT Dy u) = (OT Dy u)T OT Dy u = (Dy u)T (OT )T OT Dy u = (Dy u)T OOT Dy u = (Dy u)T Dy u = (Dy u) - (Dy u) = Au(y) =0 because O is
orthogonal Problem 3.
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Modify the proof of the mean value formulas to show forn = 3thatZZ 111 1gdS + — fdx, u(0) = na(n)rn—1 4B(0,r) n(n — 2)a(n) B(0,r) |x|n—2 rn—2 provided [ | | {—=Au =f | | [ u=g in BO (0, r) on 9B(0, r). Solution: Set 1 ¢(t) = na(n)tn—1 Z u(y)dS (y), 0 = t <r, 4B(0,t) and 1 @(r) = na(n)rn—1 Z 1 u(y)dS (y) = na(n)rn—1 4B(0,r) Z gdS . 9B(0,r) Then,
t 1 @0(t) = n a(n)tn (See the proof of Thm2) ZZ t1Z -1 Au(y)dy = — fdy = f dy. n a(n)tn B(0,t) a(n)tn—1 B(0,t) B(0,t) 3 Let > 0 be given. () = ¢(r) — (1) r Z 1 @0(t)dt = na(n)rn—1 Z Z gdS — aB(0,r) r 9O(t)dt. Using integration by parts, we compute ZrZrZ 1 — @0(t)dt = fdydt n—1 na(n)t B(0,t) ZrZ 11 fdydt = na(n) tn—1BO,t) ZrZr11Z 1
11fdy —fdSdt=n-2na(n)2 —ntn—-2B(0,t) 2-ntoB(O0,t)Z2ZZZ r1 111 =£fdSdt—-fdy + fdynn — 2)a(n) tn—-2 4B(0,t) rn—2B(0,r) n-2B(0,)Z 11 =:1-n-2fdy+]J.n(n — 2)x(n) r B(0,r) Observe that]J:and Z1 n-2Zfdy < C - 2, for some constant C > 0 B(0,) B(0,) 1 f (x)dx = |[xln—-2ZrZdt00B(0,t) 1 tn—-2fdS.RAs -0, I+]~
B(0,) |x|1n—2 f (x)dx. Thus,ZZrZ 111 fdylim — @0(t)dt = f (x)dx — -0 n(n — 2)a(n) B(O,r) |[xln-2rm-2B0,r) Z 111 = - fdx. n(n — 2)a(n) B(0,r) [x|]n—2 rn—2 Therefore, letting — 0, we have from (1) ZZ 1111 u(0) = ¢(0) = gdS + — f dx. na(n)rn—1 9B(0,r) n(n — 2)x(n) B(0,r) |[x|n—2 rn—2 ~ is subharmonic if Problem 4. We say v € C 2 (U) —Av
= 0 (a) Prove for subharmonic v that in U. ? v(x) = v dy for all B(x, r) C U. B(x,r) (b) Prove that therefore maxU~ v = maxdU v. (c) Let ¢ : R = R be smooth and convex. Assume u is harmonic and v := @(u). Prove v is subharmonic. 4 (d) Prove v := |Du|2 is subharmonic, whenever u is harmonic. Solution. > (a) As in the proof of Theorem 2, set @(r) :=
dB(x,r) vdS (y) and obtain ? r 0 ¢ (r) = Av(y)dy = 0.
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nBx,r) For0 < <r,rZ @0 (s)ds = @(r) — ¢() = 0. Hence, @(r) = lim ¢() = v(x). Therefore, -0 ! ?
Z7ZrZ11vdy =vdy=v(z)dS (z) ds a(n)rn B(x,r) a(n)rn 0 B(x,r) 0B(x,s) ZrZ 1 1 rn—1 n—1 = na(n)s ¢(s) ds = n ns v(x) ds = v(x) a(n)rn 0 r 0 (b) We assume that U C Rn is open and bounded. For a moment, we assume also that U is connected. Suppose that x0 € U is such a point that v(x0 ) = M := maxU~ v. bmw_e90 owners manual.pdf Then for 0
<r < dist(x0, 9U), ? M = v(x0 ) = vdy = M. B(x0,r) Due to continuity of v, an equality holds only if v = M within B(x0 , r). Therefore, the set u—1 ({M}) N U = {x € UJu(x) = M} is both open and relatively closed in U. By the connectedness of U, v is constant within the set U. Hence, it is constant within U™ and we conclude that maxU~ v = maxdU v.
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Now let {Ui |i € I} be the connected components of U. Pick any x € U and find j € I such that x € U j . We obtain v(x) = max v =max v < max v U j dU j dU and conclude that maxU~ v = maxdU v. (c) Forx = (x1, ..., xn)€Uand 1 =1i,j=mn,92va29udud2u (x) = @ux)) =00 (ux)) - x) - x) + @0 (u(x)) - (x). oxi 9x j oxi 0x j 9xi 9x j 9xi 0x j Since ¢ is
convex, then @00 (x) = 0 for any x € R. Recall that u is harmonic and obtain 12 12nn XX gudu 0000 Av=¢p (u) -+ Au=¢@ (u) - = 0. 9xi9xii=1i=1 n Pou2 .Forx=(x1,..,xn)€Uand 1 <i,j<n, (d) Wesetv:=|Du|2 =0dxkk=1#n"X92vi2ud2uduaodu(x) =2 (x) (x) + (x) - (x).09xi 9xjox 9x x 9x 9x dx 9x 0x i kij kij k k=1 5 Therefore, [In
X[l 92u2aduaa2vllL =2+ - oxi2 oxi oxk oxk oxk k=1 12XnXouad2u+-Av=20x0oxoxikkk=11=ik=sno2uaxi2 !l [l/,!12Xa 62u=0.Au =2 oxk ox 9x ik 1<ik=n Problem 5: Prove that there exists a constant C, depending only on n, such that ! max |u| = C max |g| + max | f| 9B(0,1) B(0,1) whenever u is a smooth solutionof [ | | {—4u=f
| | lu=gB(0,1)in BO (0, 1) on aB(0, 1). Proof: Let M := maxB(0,1) | f |, then we define v(x) = u(x) + first consider v(x) . Note that M [x|2 2n and w(x) = —u(x) + M [x|2.2nWe —4v=—4u—- M =f— M =< 0. So, v(x) is a subharmonic funcion. From Problem 4 (b), we have max v(x) = max v(x) < max |g| + B(0,1) aB(0,1) 4B(0,1) M . 2n That is max u(x)
=< max v(x) = max |g| + B(0,1) B(0,1) 4B(0,1) 1 max | f|.
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2n B(0,1) Then, for w(x), we have —4w=4u—-M=—-f—-M =< 0.

Again, we can get max w(x) = max w(x) = max |g| + B(0,1) 4B(0,1) 6B(0,1) M . nutoxadukarazegit.pdf

2ni.e. 1 max | f|. B(0,1) B(0,1) 6B(0,1) 2n B(0,1) Combining these two together, we finally proved the problem. max —u(x) = max w(x) < max |g| + Problem 6. Use Poisson’s formula for the ball to prove r — |x| r + |x| rn—2 u(0) < u(x) < rn—2 u(0) n—1 (r + |x|) (r — |x|)n—1 whenever u is positive and harmonic in BO (0, r). This is an explicit form of
Harnack’s inequality. 6 Solution. Since y € aB(0, r), then |x — y| = |x| + r. Therefore, Z r2 — |x|2 g(y) u(x) = dS (y) na(n)r oB(O,r) |x —yjn ZZ g(y) 1 r2 — [x|2 v — |x| n—2 dS (y) = r - g(y)dS (y) = na(n)r 0B(0,r) (r + |x|)n (r + |[x|)n—1 na(n)rn—1 aB(0,r) ?r — |x| r — |x| n—2 =r g(y)dS (y) = rn—2 u(0) n—1 (r + |x|) (r + |x|)n—1 4B(0,r) r+|x| The inequality u(x)
< rn—2 (r—|x|) n—1 u(0) can be proven in a similar way. Problem 7. Prove Poisson’s formula for a ball: Assume g € C(6B(0, r)) and let Z r 2 — x2 g(y) u(x) = dS (y) for x € B0 (0, r). na(n)r 9B(0,r) |x — y|n Show that Proof. Problem 8. Let u be the solution of [ | | {4u =0 | | lu = g in Rn+ on dRn+ given by Poisson’s formula for the half-space. Assume g is
bounded and g(x) = |x| for x € 9Rn+ , |x| lel. Show Du is not bounded near x = 0. (Hint: Estimate u(AenA)—u(0) .) Proof: From formula (33) on page 37, we have 2xn u(x) = na(n) Z dRn+ g(y) dy, |x — y|n and u(0) = g(0) = 0. Thus, using hint, we get Z u(Aen ) — u(0) 2 g(y) dy = n A na(n) dR+ |Aen —y|n ZZ 2 g(y) 2 g(y) dy + dy = n T T na(n) |y|<1 sRn+
|Aen — y| na(n) |[y|>1 dRn+ |Aen — y|n Taking absolute value on both sides, we have Z u(Aen ) — u(0) 2 Z g(y) 2 |g(y)| = dy — dy A na(n) |y|<1 T oRn+ |Aen — y|n na(n) |[y|>1 T dRn+ |Aen — y|n =I1 — I2 . johnson and johnson swot analysis pdf 7 Since g is bounded, so it is obvious that I2 is bounded and independent of A.

For I1, in this case, g(y) = |y|, so Z 2 |y| I1 = dy na(n) |y|<1 T oRn+ |Aen —y|n Z 2 |y| = dy T na(n) |y|<1 dRn+ (A + |y|)n Note that for fixed y, theorem, we have |y| (A+|y|)n is increasing when A is decreasing to 0, so by Monotone Convergence Z 2 |y| dy lim A-0 na(n) |y|<1 ToRn (A + |y|)n+ Z |y| =dy n T |y|<1 0Rn+ |y| Z |y| = dy n Bn—-1 (0,1) |y| Z 1
Z1Z1n-21dS(y)=Crdr=ow. =drn—-1n-10r00Bn-1 (0,r) |y| So, Du is unbounded near x = 0. Problem 10. Suppose u is smootha nd solves ut — Au = 0 in Rn X (0, «). (i) Show uA (x, t) := u(2x, A2 t) also solves the heat equation for each A € R. (ii) Use (i) to show v(x, t) := x - Du(x, t) + 2tut (x, t) solves the heat equation as well. (i) uit (x, t) =
A2 ut (Ax, A2 t) and uAxi (x, t) = Au(Ax, A2 t) for each i. Then ulxi xi (x, t) = A2 u xi (Ax, A2 t). Consequently, Aud = A2 Au and uAt — AuA = A2 (ut — Au), so ul solves the heat equation for all A € R. 18930332195.pdf (ii) We differentiate u(Ax, A2 t) = u(dAx1, ..., Axn, A2 t) with respect to A we get X xk u xk (Ax1, ..., Axk, A2 t) + 2Atut (Ax1, ..., Axn,
A2 t) = x - D(AxX, A2 t) + 2tut (Ax, A2 t). k Taking A = 1, we then have that v(x, t) = x - Du(x, t) + 2tut (%, t). u is smooth, so the second derivatives of u(Ax, A2 t) are continuous, meaning the mixed partials are equal. Therefore, 9 9 9 9 9 u(Ax, A2 t) — A 9A u(Ax, A2 t) = 9Aat u(Ax, A2 t) — 9 Au(Ax, A2 t) = 9A (uAt — Aud ) = 0, vt — Av = 9tdA since uA satisfies
the heat equation for all A.

Thus v does as well. 2 Problem 11: Assume n = 1 and u(x, t) = v( xt ). a) Show ut = u xx if and only if (2) 4zv”(z) + (2 + z)v0 (z) = 0 (z > 0) 8 b) Show that the general solution of (1) is v(z) = czZ e—s/4 s—1/2 ds + d 0 2 c) Differentiate v( xt ) with respect to x and select the constant c properly, so as to obtain the fundamental solution ® forn = 1.
Solution: a) Assume that ut = u xx .

Thenx2x2ut=—-2v0ttland!!2x2200xuxx=2v+4xvtt0OSout=uxximpliesthat!!!22x20x20x200x—-2v=2v+4xvittttor!!!2x20x24x200x2++2v=0vt2ttttifweletz=x2,tweget!2z204z00v(z)+ + v (z) =0ttt Multiplying this equation by t gives the desired equality. For the other direction, reverse the steps,
and hence our proof is done. b) 4zv00 + (2 + z)v0 = 0 == == (by integrating) v00 11 1 = — —v0 2z 4 log(v0 ) = —logV z—z+c4 ==v0 =Cz—-1/2 e—z/4 ==v=CzZe—s/4s—-1/2ds+d09asisdesired.c)v(z) =cZze—-s/4s—1/2ds+d0==!Zxt2x2ve—-s/4ds—1/2ds+d=ct0=="!1-1/2x22x —x4t2x2v=cetttor!22cx20xv=ve—4ttt
Now we want to integrate over R and set the integral equal to 1. Thus we get Z 2c » — x4t2 1= v e dx t » 0 Letting y = we get dy = (4t)—1/2 dx and substituting, we get Z2c « v —y2 1=V 4tedyt w or Z «» 2 1 = 4c e—y dy » R» 2 Vv —y Employing the identity «» e dy = m and solving for ¢, we get vx , 4t c=1+vV 4 n Thus, ! X2 ®(x,t) : =vt2cx2 =V e— 4t
t 1 —x4t2 = V e 2 1t 0 is easily shown to solve the equation ®t = ® xx Problem 12. haynes pdf repair manuals free Write down an explicit formula for a solution of [ | | in Rn x(0, »){ut —Au+ cu=f | | [ u = g on Rn x{t = 0}, where c€ R. 10 Solution: Set v(x, t) = u(x, t)eCt . Then, vt = ut eCt + CeCt u and v xi xi = u xi xi eCt . aldi annual report 2020
pdf = vt — Av = ut eCt + CeCt u — eCt Au = eCt (ut — Au + Cu) = eCt f. So, v is a solution of (| [4vt—Av=eCtf]| | | v=¢g in Rn x(0, ») on Rn x{t = 0}, By (17) (p.51), v(x,t) = Z ®(x — y, t)g(y)dy + Rn Z tZ ®(x — y, t — s)eCs f (y, s)dyds Rn 0 where ® is the fundamental solution of the hear equation. Since v(x, t) = u(x, t)eCt , we have ZtZ Z Ct u(x, t)
=edx -y, t)g(y)dy + ®(x —y, t — s)eCs f (y, s)dyds . Rn 0 Rn Problem 13: Given g : [0, »] — R, with g(0) = 0, derive the formula Z t —x2 1 x 4(t—s) g(s)ds, x > 0 e u(x, t) = v 41 0 (t — s)3/2 for a solution of the initial/boundary-value problem [lut—uxx=0inR+ x (0, @) | [ [{u=00onR+ x {t=0}, 1] lu= gon{x = 0} x [0, «). Proof. We
define [ | [{ux, t) —gt) v(x, t) = | | l=u(=x,t) + g(t) x> 0,x < 0.So, wehave [ | [{ut(x, t) —gO ) vt (x, t) = | | [mut(-x, t) + g0 (t) x>0, x<0,and [ | [Juxx x, t) vxx(x, t) = | | l[muxx(-x,t)x>0,x=<0.11Hence, [ | [ [ [T TI{1ITTTITTL(]]3=g0@)vt(x, t)—vxx(xt)=]]lg0(t)v(x,0)=0,v(0,t)=0.x>0,x=0.

By formula (13) on page 49, weget ) (Z0Z « Zt —(y—x)2 —(y—x)2 1 0 0 e 4(t—s) g (s)dyds e 4(t—s) g (s)dyds — v(x, t) = vV 4m(t — s) —» 0 0 Note that(page 46 Lemma) Z o —(y—x)2 1 e 4(t—s)dy = 1, v 4m(t — s) —» so whenx > 0, we lety — x = —z and obtain u(x, t) = v(x, t) + gt) Zt Z0 =v(x,t) + g(s)ds 0 =2 Z =ZtZ o — 0 —(y—x)2 1 e 4(t—s) dy v
4n(t —s) —(y—x)211e4(t—-s)dyg0(s)dsv(t—s)—2 -0 04nZ » 2t —-z11 e 4(t—s) dz dg(s) v (t — s)— 2 m O x Integrating by parts, we getZ « 2 —z1 —-1/2 u(x,t) =V (t —s) e 4(t—s) dz g(s)| s=ts=0nmxZ 0 2Zt—-2z11 —-e4(t—s)dzg(s) V(t —s)—-3/2dsm2x0ZtZ w2 —-z1-22—-g(s)V(t—s)—1/2dsed(t—-s)dz4(t—s)2m0xZtZx2—-z11
—3/2e4(t-s)dz=11-g(s)V(t—s)dsm2x0ZtZ» —-2z21-z+g(s)Vv(t—s)-1/2dsded(t—s)n0x2(t—s)ZtZw2—-2z11-32=11-g(s)V(t—s)dsed(t—s)dzn20xZt—-2z21+g(s) Vv (t—s)—-3/2ds(—z)e4d(t—s) |z=0z=x04nZtZ 02 -211+g(s)V(t—s)-3/2dsed(t—-s)dzm20xZt2-x1x=1I1++ve4(t—s)g(s)ds.3/24m0 (t—s) 12
Now, we focus on I1 and define w2tobez2,471 —1/2 © —z42 11 =lim+ vV edzg(t—)—-0nxZ » 1 2 2e—w dw = 0. = g(t) lim+ v -0 m x2 /4 Thus, we proved x u(x, t) = v 4mt Z 0 —x2 1 4(t—s) g(s)ds, x > 0. e (t — s)3/2 Next, we need to show that lim u(x, t) = g(t). x-0+ Note that for any fixed 6 > 0. Z t —x2 1 x 4(t—s) g(s)ds lim+ u(x, t) = lim+ v e
x—-0x-04mt—6 (t —s)3/2Zt—6 —x2x 1 + lim+ vV e 4(t—s) g(s)ds 3/2x-04m 0 (t —s) Zt —x2 1 x 4(t—s) ds = g(t) lim+ v e x>0 4n t—6 (t — s)3/2 Z 6 1 —x4s2 x = g(t) lim+ v e ds x—0 41 0 s3/2 For fixed x, we let s = x2 /w2 and get lim+ u(x, t) = g(t) lim+ x-0xV Zx2 /6 w3 —w4 2 —2x2 edwx3w32m®» Z o 1 —w2 =¢g(t) lim+ ved dwx—-0mnx2 /6 Z «
1 —w2 =g(t) v eddw = g(t). 1 0 x-»0 Hence, we are done. Problem 14.

We say v € C12 (UT ) is a subsolution of the heat equation if vt — Av < 0 in UT . (a) Prove for a subsolution v that 1 v(x, t) = n 4r Z Z v(y, s) E(x,t;r) for all E(x, t; r) C UT . (b) Prove that therefore maxU™ T v = maxI'T v |x — y|2 dyds (t — s)2 13 Solution. (a) We may well assume upon translating the space and time coordinates that x = 0 and t = 0. As in
the proof of Theorem 3, set ZZ 1 |y|2 @(r) :=n v(y, s) 2 dyds, rs E(r) n |y|2 w(y, s) := —log(—4ns) + + nlogr24sand derive ZZn 12nX 0vyyidyds @ (r) = n+1 —4nAvy —rsi=1iE(r)ZZnX 1 2n = 4nvyi yyi — vyiyidyds = 0. n+1 rs E(r) i=1 For 0 < <, Zr 90 (z)dz = @(r) — () = 0. R R |y|2 Hence, @(r) = lim ¢() = v(0, 0) - lim 1n dyds = 4v(0,
0), and the statement follows. E() s2 =0 —0 (b) Suppose there exists a point (x0, t0 ) € UT with u(x0, t0 ) = M := maxU"™ T u. Then for all sufficiently small r > 0, E(x0, t0 ; r) C UT . Using the result proved above, we deduce ZZ 1 |x —y|2 M =v(x0, t0 ) = n v(y, s) dyds = M, 4r (t — s)2 E(x0,t0 ;r) since 1 1=n 4r Z Z E(x0 ,t0 ;r) |x0 — y|2 dyds. (t0 —
s)2 Conclude that u|E(x0 ,t0 ;r) = M. The argument used in the proof of Theorem 4 will finish the proof. Problem 15. (a) Show the general solution of the PDE u xy = 0 is u(x, y) = F(x) + G(y) for arbitrary functions F,G. (b) Using the change of variables € = x + t, n = x — t, show utt — u xx = 0 if and only if u¢n = 0. (c) Use (a),(b) to rederive
d’Alembert’s formula. Solution: (a) Ruxy=0=ux=f(x) = u(x,y) = Rf (x)dx + G(y) uyx = 0 = uy = g(y) = u(x, y) = g(y)dy + F(x) 14 This implies u(x, y) = F(x) + G(y). b)x=€4n,y=&mn22 Defineu” :=ué+n,fm2211u =ux+utand22Hence,u" En=0=utt —uxx=0.11111u &n=uxx—uxt+utx—utt=(uxx—utt)444414
(c) By (b), utt —uxx =0=u&n =0, and u(€, n) = F(¢) + G(n) by (a) ,i.e, u(x, y) = F(x + t) + G(x — t). Since u(x, 0) = g, ut (x, 0) = h, (3) u(x, 0) = F(x) + G(x) = g(x), ut (x, 0) = F 0 (x) — GO (x) = h(x) Integration = (4) F(x) — G(x) = Zx h(y)dy + C, C:constant. 0 (2) + (3); (2) = (3); Zx 1 F(x) =gx) + h(y)dy + C2720x 1 G(x) =gx) —h(y)dy—C20
Thus, Zx+tZx—-t 1 1ux,y)=Fx+t)+Gx—-t)=gx+t)+h(y)dy+C+gx—t) —h(y)dy—-C2200Zx+tZ0 1 =gx+t)+h(y)dy+C+gx—t)+h(y)dy—-C20x-tZx+t 11 =gx+t)+gx—t)+h(y)dy xe€R,t=0).22x—t Problem 16. AssumeE=(E1,E2,E3)and B=(B1, B2, B3) solve Maxwell’s equations: Et = curl B Bt = —
curl E div B = div E = 0 Show that utt — Au = 0 whereu =Bior Eifori =1, 2, 3. Solution.

15 curl(curl E) = curl(—Bt ) ! 62 B3 92 B2 92 B3 92 B1 92 B2 9B1 + ,— + ,— + = — 9yat 9zat 9xat 9zat 9xat ayot 9 = — curl B ot 9 = — Et 9t 2 E =— 2 9t However, we also know that curl(curl E) = V(div E) — V2 E = —V2 E. sevel gelato case manual version download Then E i satisfies utt — Au =0 fori=1, 2, 3.

Similarly, curl(curl B) = curl Et = — 9dtB2 , and curl(curl B) = V(div B) — V2 B = —V2 B, so Bi satisfies utt — Au = 0 fori =1, 2, 3. 2 Problem 17.(Equipartition of energy) Let u € C 2 (R x [0, «)) solve the initial value problem for the wave equation in one dimension: (| inRx (0, ®){utt —uxx=0]1| lu= g;ut=honR X {t=0}. Ro Suppose g, h
have compact support. The kinetic energy is k(t) := 12 —« u2t (%, t)dx and the potential R» energy is p(t) := 12 —o u2x (x, t)dx.

Prove (i) k(t) + p(t) is constant in t. (ii) k(t) = p(t) for all large enough times t. Ro Proof. (i.) We define e(t) = k(t) + p(t) = 12 —« u2t + u2x dx. digogu.pdf Since g, h have compact support, so we have Zd e(t) 1 « = 2ututt + 2Zuxuxtdxdt2 —ewo Z © Z o ut utt dx —uxx ut dx —ew — Z o = ut (utt — u xx ) dx = 0. —« Hence, e(t) = e(0). (ii.)By
d’Alembert’s formula on page 68, we have 1 1 u(x,t)=gx+t)+gx—t)+22Zx+th(y)dy.x—tSo,ut=110g(x+t)—gO(x—-t)+[hx+t)+hx—-1t)],22ux=110gx+1t)+g0x—-1t)+[h(x+1t)—h(x—-1t)].22and 16 We assume that there exists a positive constant M so that [-M, M] 2 supp(g0 ) and [-M, M] 2 supp(h). Note that for a
fixedt>M, -Msx—-t=Me0<t-M=sx=st+Mand-M=sx+t=Me-t-M=x=s-t+M<O0.Thus, whent>M:(a)0<t—-M=x=t+ M. Thenwehave h(x+t) =¢g(x+1t)=0.S0,111u2t=g0(x—t)2 +h(x—1t)2 -g0O(x—thx—-t)=u2x.442b)-t—M=x=-t+M<0.Then,111u2t=g0 x+t)2 + hx +t)2 + g0 (x + t)h(x + t)
=u2x .4 4 2 (c) Otherwise g0 (x + t) = g0 (x —t) = h(x + t) = h(x — t) = 0. So, combining all the cases, it is obvious that when t > M, k(t) = p(t). Problem 18. Let u solve (utt — Au=01in R3 x (0, ) u = g, ut = hon R3 x {t = 0}, where g, h are smooth and have compact support. Show there exists a constant C such that |u(x, t)| = C/t (x € R3, t > 0).
Solution. From the conditions it follows that there exist R, M > 0 such that spt g, spt h C B(0, R) and g(y) = M, |Dg(y)| = M, h(y) = M for any y € R3 . Kirchhoff’s formula gives the solution of the initial-value problem: ? u(x, t) = th(y) + g(y) + Dg(y) - (y — x) dS (y).

dB(x,t) Denote by X the intersection dB(x, t) N B(0, R). Observe that the area of X is not greater than the area of the sphere 4B(0, R). Then, for t > 0, we obtain ? Z 1 th(y) + Dg(y) - (y — x) dS (y) = th(y) + Dg(y) - (y — x) dS (y) 2 4nt aB(x,t)NnB(0,R) dB(x,t) Z 1 t - |h(y)| + |Dg(y)| - |y — x| dS (y) = 4mnt2 B(x,t)NnB(0,R) 1 2R2M 2 = - 4uR - (tM + tM) = . 4mt2 t
17 For t > 1, using the same argument, weget?Z 11 R2M R2M 2 = = g(y) dS (y) g(y) dS (y) - 4uR - M = = . 4nt2 B(x,t)NB(0,R) 4mt2 t2 t dB(x,t) Notice now that the area X is not greater than the area of the sphere dB(x, t). Thenfor0 <t=1,?Z1 1 M g(y) dS (y) = g(y) dS (y) - 4ut2 - M = . texaxesiganux.pdf

=< 2 2 4nt 4ut t 0B(x,t) B(x,t)NB(0,R) Without loss of generality, we can take R > 1. Then, combining the estimates obtained above, we 2 conclude |u(x, t)] = 3Rt M . Evans PDE Solutions, Chapter 5 Alex: 4, Helen: 5, Rob H.: 1 Problem 1. ~ is a Banach space. Suppose k € {0, 1, ..

.}, 0 <y < 1. Prove C k,y (U) Solution: 1. First we show that || - ||C k,y (U) " is a norm, where we recall that ||u||C k,y (U) ~ = X ||Da u||C(U) = + X [Da u]C 0,y (U) ~, |a|=k ||k and ( [u]lC 0,y (U) ~ = sup x,yeU ) |u(x) — u(y)| . |x — y|y For the sake of opaqueness we now omit subscripts on all norms unless it is unclear from context. 2. For any A € R we

have first [Au] = sup x,y€U and certainly |Au(x) — Au(y)| |[u(x) —uy)| = |A| sup = |A| [u] , y |x = ¥| |x = ¥|Vy X,y€U a a ||Da (Au)||C(U) ~ = ||AD u|| = |A] - [|ID u]| . So ||Au|| = X ||Da (Au)|| + |a|]<k = |A] X X [Da (Au)] |a|=k ||Da u|| + |A| |Ja|=k X [Da u] |a|=k = |A| - ||u]| . 3. If u = 0 it is obvious that ||u|| = 0. On the other hand, ||u|| = 0 implies that ||Da
u||C(U) " = 0 18 for every || = k.
In particular this is true for a = 0 so that the supremum of DO u =uon Uis 0, i.e. u = 0. 4. Finally we must prove the triangle inequality. We know the triangle inequality is true for the sup norm || - [|C(U) ~ . We can also see that for any a which makes sense [Da (u + v)] = [Da u + Da v] = [Da u] + [Da v] . Therefore we can easily conclude |[u + V|| =

X|IDa (u + v)|| + = [Da (u + v)] |a|=k |a|<sk X X (|]|Da u|| + ||Da Vv|]) + |a|<k X ([Da u] + [Da v]) |a|=k = ||u|| + ||V||]. 5. We need only show that C k,y (U) is complete. So let {um } be a Cauchy sequence. Then {um (x){ is a Cauchy sequence for every x, so define u to be the pointwise limit of the um . Now if V is any bounded subset of U, then V™ is
compact, so that um = u uniformly on any V. Since the um are uniformly continuous on V™ by assumption, this implies that u is uniformly continuous on V™ as well ~ (and so, a fortiori u € C(U)). Therefore u € C(U). ~ But similar arguments show that u has What we would really like would be to have u € C k (U). a derivatives D u for all |a| < k on U by
restricting first to bounded subsets of U to find the derivatives and then using uniform convergence on these subsets to show the derivatives must also be uniformly continuous on bounded subsets since the Da um were. This leaves us with only showing that the norm of u is finite, so that in fact u € C k,y (U). But for every n we have X X |Da un (x) —
Da un (y) — Da u(x) + Da u(y)| ||un — u|| = sup |Da un (x) — Da u(x)| + sup |x — y|y |a|<k x€U |a|=k x,y€U [ Jaa a a X[/ X [[lu(x) = Du(y) =Du(x)+Du(y)| [Dnnmm |/[=1lim ||/ sup [Da un (x) — Da um (x)| + sup )y m=w |x — y| x€U x,y€U |a|=k |a|=k = lim |Jun — um ||. m=« In particular, since {um } is Cauchy there is some N so that n, m
= N implies |[un — um || < 1. Letting m approach «, this implies that [[uN — u|| < 1. Now the triangle inequality applies to give |[u|| = [[uN — u|| + |[[uN || < 1 + |[uN || < . Problem 4. SN Vi . Show there exist C « functions Ti (i = 1, . .., N) such that Assume U is boundedand U cCci=1 (| |[{0=Tl <1,suppCicVii=1,...,N||PNT=1lonU.
i=1 i The functions {Ci }1N for a partition of unity. 19 SN Solution. 4840613263.pdf Assume U is bounded and U CC i=1 Vi . Without loss of generality, we may assume that the Vi are open, for if they are not, we can replace Vi by its interior. We note that, since U is bounded, U is compact. Each x € U has a compact neighbourhood N x contained in Vi
for some i. Then {N x° } is an open cover of U, which then has a finite subcover N x°1, .

.., Nxen .

We now let Fi be the union of the N xk contained in Vi . Fi is the compact since it is the finite union of compact sets. The C « version of Urysohn’s Lemma (Folland, p.245) allows us to find smooth Pn functions €1, ..., EN such that & = 1 on Fi and supp(€i ) C Vi. Since the Fi cover U, U C {x: 1 &i (x) > 0} and we can P use Urysohn again to find C € C
o with T =1 on U and supp(Q) C {x:nl €i (x) > 0}. Now, we let PN+1 &EN1 =1 —C, so 1 & > 0 everywhere. magic quadrant for unified threat management 2018 pdf We then take €i (i = PN+1 &j 1 as our partition of unity. Problem 5 (Helen) Prove thatifn=1andu € W 1,p (0, 1) for some 1 = p < », then u is equal a.e. to an absolutely continuous
function, and u0 which exists a.e. belongs to L p (0, 1). Proof. Since u € W 1,p (0, 1), so by definition on page 242 and 244, we have some function v € L p (0, 1) such that Z Z u Dedx = — vepdx, V¢ € Ccx ((0, 1)) . (0,1) (0,1) Note that v e L p (0, 1), so by H"older’s inequality, we have kvkL.1 = kvkL p k1kLg < «, which means v € L1 (0, 1). Thus, we can
define function f (x) on (0, 1) by the following formula Z x 1 f (x) = u( ) + v(t)dt, Vx € (0, 1). 1 2 2 According to the Fundamental Theorem of Calcalus, f is absolutely continuous. what is learner centred approach to language teaching Now we will prove u = f a.e. By the definition of f, we have f 0 = v a.e. So for any ¢ € Ccx ((0, 1)) we get Z Z Z 0 f Depdx
= — f@dx = — vodx. (0,1) (0,1) (0,1) Therefore, Z (f — u) Dpdx = 0 V¢ € Ccx ((0, 1)), (0,1) which means u = f + const. And note that u( 21 ) =f (12 ), hence u = f a.e. So u0 exists a.e. and satisfy u0 = va.e., sou0 € Lp (0, 1).
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