Lithogeochemical, Petrographic and Stratigraphic Relations of Archean Volcanic Rocks from Southwestern Jessop Township and Adjacent Areas, Timmins Region, Ontario

for:

Noranda Exploration Company Ltd. Suite 203, 152 Murdoch Ave. Rouyn-Noranda, Quebec J9X 1E2

-- June 5, 1995 --

T.J. Barrett and W.H. MacLean
-- Ore Systems Consulting --

Table of Contents

Contents	ii
List of Figures and Tables	iii
Introduction	1
Lithogeochemistry	4
Primary Geochemistry	4
Rare-Earth Elements	8
Downhole Lithogeochemical Variations	14
Alteration Geochemistry	18
General Relations	18
Mass Changes	18
Petrography	25
Suggested Analytical Work	36
Discussion and Conclusions	36
Acknowledgements	41
References	42

List of Figures

Fig. 1.	Location map for Mountjoy Syndicate claim block, Noranda joint venture claim blocks, and Noranda's 1994 East Grid, in vicinity of the Four Corners,
	townships of Jessop, Godfrey, Jamieson and Mountjoy, Ontario
Fig. 2.	Location map for initial Bonhomme claim block, townships of Jessop, Godfrey, Jamieson and Mountjoy, showing sites of previous drilling by Mountjoy and Jessop Syndicates (open circles), and Noranda's 1994 drilling (grey circles)
Fig. 3.	 a. Al₂O₃ versus TiO₂ plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 5 b. TiO₂ versus Zr plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 5
Fig. 4.	 a. Al₂O₃ versus Zr plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 7 b. Y versus Zr plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 7
Fig. 5.	 a. Fe₂O₃ versus TiO₂ plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 9 b. P₂O₅ versus TiO₂ plot for volcanic rocks from Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity 9
Fig. 6.	 a. Chondrite-normalized REE plot for some FIIIb felsic volcanics, SW Jessop township and vicinity; comparison with Kamiskotia and Kidd Creek rhyolites11 b. Chondrite-normalized REE plot for FIIIb felsic volcanics, southwestern Jessop township and vicinity; these are high-Zr 'evolved dacites' (rhyolite B group)11
Fig. 7.	 a. Chondrite-normalized REE plot for some FIIIb felsic volcanics, southwestern Jessop township and vicinity; these are of Rhyolite A composition
Fig. 8.	a. Chondrite-normalized REE plot for FII felsic volcanics, southwestern Jessop township and vicinity; these are of low-Zr Rhyolite B composition

	Jessop township and vicinity, showing range of patterns from FIIIb to FII13
Fig. 9.	a. Chondrite-normalized REE plot for mafic volcanics, southwestern Jessop township and vicinity; these are high-Ti evolved basalts with one exception15
	b . Comparison of high-Ti evolved basalts, southwestern Jessop township and vicinity, with basalt types at the Kamiskotia deposit (Barrie et al., 1991)
Fig. 10.	Diagram showing downhole variations in the immobile-element ratios Al ₂ O ₃ /TiO ₂ (lithological type) and Zr/Y (magmatic affinity) over the first 203 metres of Noranda drillhole 94-1, Four Corners area
	1 Totalida dilimoto 7 1,1 odi Collicio dica
Fig. 11.	Diagram showing downhole variations in the immobile element ratios Al ₂ O ₃ /TiO ₂ (lithological type) and Zr/Y (magmatic affinity) over the first 203 metres of Jessop Syndicate drillhole K2-87-3, southwestern Jessop township
Fig. 12.	 a. K₂O versus TiO₂ plot for Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity. b. SiO₂ versus TiO₂ plot for Noranda Exploration's 1994 drilling in the Four Corners area, southwestern Jessop township and vicinity.
Fig. 13.	 a. Mass change plot of ΔK₂O versus ΔSiO₂ for Rhyolite A samples from Noranda Exploration's 1994 drilling, southwestern Jessop township and vicinity
Fig. 14.	 a. Mass change plot of Δ Na₂O versus ΔSiO₂ for Rhyolite A samples from Noranda Exploration's 1994 drilling, southwestern Jessop township and vicinity
Fig. 15.	 a. Downhole mass change plot showing Δ Na₂O for Rhyolite A samples from holes NOR 94-1 and 94-5, southwestern Jessop township and vicinity
Petrograp	ohic plates and descriptions25-35

List of Tables

Table 1.	Chemical composition of volcanic rocks from southwestern Jessop Township and vicinity, Ontario (Noranda 1994 drilling program)	
Table 2.	Rare-earth element composition of selected volcanic rocks from southwestern Jessop Township and vicinity, Ontario (Noranda 1994 drilling program)	49
Table 3.	Chemical composition of volcanic rocks from drillholes K2-87-2 and 87-3, southwestern Jessop Township, Ontario (Jessop Syndicate drilling program)	51
Table 4.	Calculated mass changes for rhyolite A, southwestern Jessop Township and vicinity, Ontario (Noranda 1994 drilling program)	53

INTRODUCTION

The claims optioned by Noranda lie near the shared corner of the four townships of Jessop, Mountjoy, Godfrey, and Jamieson (Figure 1). The 'Four Corners' area is about 19 km south-southwest of the Kidd Creek VMS deposit, and 20 km east of the Kamiskotia Gabbro Complex. The area is underlain by Archean mafic and felsic volcanic rocks of the southwestern Abitibi greenstone belt. Volcanic and sedimentary units generally strike ENE and dip subvertically. The results of previous drilling carried out in Jessop and Mountjoy townships over the last several years by the Jessop Syndicate are summarized in reports by Kirwan (1991, 1992) and Barrett and MacLean (1993a,b, 1994b). Of particular relevance to the present report was the 1993 drilling program in the Four Corners area by the Jessop Syndicate (holes K2-93-1 to 93-3; Fig. 2). Stratigraphic and lithogeochemical results from this program are discussed in Barrett and MacLean (1994b).

The main rock types reported in the above studies were tholeitic rhyolite (rhyolite A), mafic volcanics including evolved ferrobasalts (icelandites), graphitic argillites, felsic fragmental units some of which are of rhyodacitic composition (low-Zr rhyolite B), an evolved quartz porphyry (high-Zr rhyolite B), and gabbro. The tholeitic rhyolite appears to form an important unit which is vertically continuous between the southern end of hole K2-93-2 (where it occurred near surface) and the northern end of hole K2-93-1 (where it was intersected at depth). Graded beds intersected in this area, and in previous holes located 1-2 km to the east, suggest that the overall stratigraphic sequence youngs to the north.

Purpose and Scope of Study

The current study focuses on the stratigraphy, lithogeochemistry and petrography of volcanic rocks intersected in holes NOR94-1 to 94-6 inclusive, which were drilled in the Four Corners area by Noranda Exploration in 1994. Hole locations extend from \$\approx400m\$ southwest to \$\approx900m\$ east-northeast of the Four Corners (Fig. 2). The study includes: 1) chemical characterization of the main volcanic rock types in holes NOR 94-1 to 94-6 (i.e. identification of chemostratigraphic units); 2) petrographic description of selected rocks; 3) assessment of the original volcanic setting from variations in stratigraphic sequence and volcanic facies; 4) comparisons with volcanic rocks hosting massive sulfide deposits in the Timmins area and elsewhere in the Abitibi greenstone belt; and 5) recommendations for further work. The results, in combination with the studies cited above, are used to identify the favorable locations for mineralization within the volcanic pile, based collectively on recognition of favorable primary volcanic compositions, specific volcanic contacts, areas of increased hydrothermal alteration, and areas of proximal volcanic facies.

Fig. 2 -- Ore Systems Consulting --

- Ore Systems Consulting -

- 4 -

LITHOGEOCHEMISTRY

Primary Geochemistry

The new data set is based on 70 samples from drillholes NOR 94-1 to 94-6. Drillhole samples were generally about 20 cm in length, except where noted. Samples were analyzed by X-ray fluorescence at the XRAL lab in Toronto using glass beads for major elements, and pressed pellets for the trace elements Zr, Y, Nb, Ba, Rb and Sr to ensure accuracy and low detection limits. In addition, 20 new REE analyses are reported. These samples were analyzed by instrumental neutron activation analysis through the XRAL lab.

As shown by a plot of Al₂O₃ vs. TiO₂ (Fig. 3a), the main volcanic compositions in the Noranda 1994 drilling program include two distinctive mafic units, one basaltic, the other evolved basaltic; and three felsic units termed rhyolite A, high-Zr rhyolite B, and low-Zr rhyolite B. Least altered samples of Rhyolite A cluster at lower Al₂O₃ and TiO₂ values than rhyolite B samples and are more fractionated. Of the mafic rocks, evolved basalts have notably higher TiO₂ and less Al₂O₃ than normal basalts (Fig. 3a). All mafic rocks are fairly Fe-rich, with FeO/MgO ranging from about 2 to 5. In addition, there are several andesitic to dacitic samples that could represent either primary lava compositions, or mechanical mixtures of mafic and felsic detritus. It should be noted that significant portions of hole 94-6, and the lowest 20% of 94-5, have not been lithogeochemically sampled to date.

A plot of TiO_2 versus Zr (Fig. 3b) indicates that the evolved basalts contain more than 2.0% TiO_2 and ≈ 150 -400 ppm Zr. Both of these elements are notably enriched relative to normal MORB-like basalts, presumably as a result of advanced fractionation of matic magma under dry conditions. This plot also indicates that rhyolite B contains two subgroups, one with ≈ 150 -250 ppm Zr, the other with ≈ 450 -650 ppm Zr.

Rhyolite A appears to have had a quite uniform composition across the area of drilling, as shown by five least altered samples from three holes (italicized samples in Table 1). It is of interest that the immobile element values for rhyolite A samples in hole 94-1, the westernmost hole, are essentially identical to those in 94-3, the easternmost hole (i.e. $Al_2O_3 \approx 11.7\%$, $TiO_2 = 0.18\%$, $Zr \approx 344$ ppm, $Al_2O_3/TiO_2 \approx 66$, and $Zr/Y \approx 3.3$). This supports the correlation of these rhyolites over a lateral distance of about one kilometre. The precursor composition of rhyolite A, based on the average of the five least altered samples, is given in Table 4; this average is also used in the mass change calculations discussed in a later section.

Southwestern Jessop Township volcanics

The high-Zr rhyolite B samples are similar to, but have lower Ti-Fe-P contents than the ferrodacites and evolved dacites described in previous reports from southwestern Jessop township (e.g. hole K2-87-3). This whole group of rocks is rather unusual and difficult to classify because of having contrasting features such as high $SiO_2 = 68-72\%$ and Zr = 400-700 ppm, which are consistent with a fractionated felsic magma, but high $TiO_2 = 0.5-0.9\%$, $Fe_2O_3 = 5-9\%$ and $P_2O_5 = 0.07-0.15$. We previously interpreted these rocks as extreme fractionation products of an Fe-rich mafic magma (in a closed system) which led to high Ti-Fe-P-Si-Zr contents.

In the present study, we identify a high-Zr rhyolite B group of samples which has lower TiO₂ contents (0.4-0.6%) than the 'evolved dacites' described in previous reports (0.6-1.0%). The low-Zr rhyolite B samples have lower Ti-Fe values than the high-Zr group. Both rhyolite B groups are compositionally close to rhyodacite. The low-Zr rhyolite B group has notably higher primary Al₂O₃ contents than rhyolite A (≈13-15% versus 11-12%), a feature also noted in earlier reports (Barrett and MacLean, 1993a,b; 1994b). We suggest that the high-Al, low-Zr rhyolite B group was derived by fractionation of a fairly high-Al mafic magma.

By contrast, rhyolite A, with low-Al but high-Zr contents, may have been derived by fractionation of low-Al, high-Zr mafic magma (perhaps similar to the evolved Fe-Ti-Zr-rich mafics on the property). In this scenario, low-Al, high-Zr 'evolved dacite' (noted in previous reports) and low-Al high-Zr rhyolite B may represent linking compositions between evolved basalt and rhyolite A end-members. However, the genetic relationship between high-Zr rhyolite A and the low-Zr rhyolite B group is still not clear, as they commonly have different magmatic affinities (as discussed below). The low-Zr rhyolite B group, which corresponds mainly to volcaniclastic beds in the stratigraphically upper part of the drilled stratigraphy, may have been derived from a separate volcanic source area.

A plot of Al₂O₃ vs. Zr (Fig. 4a) shows a linear alteration trend defined by rhyolite A samples, indicating that they represent varying degrees of alteration of a uniform precursor. In this plot, the low-Zr rhyolite B group partly overlaps the evolved basalt field, due to the low Zr content of the former, but the high Zr content of the latter. This emphases the need to examine all immobile element ratios in several plots to avoid misidentifications. Despite limitations in the mafic part of the spectrum, this plot is quite useful for identifying rhyolites A and B and their altered equivalents of rhyolites A. Also, samples with net mass gain (of mobile elements) can be distinguished from those with net mass loss. However, to assess the alteration on an element-by-element basis, mass changes must be calculated.

Southwestern Jessop Township volcanics

A plot of Y vs. Zr (Fig. 4b) shows that rhyolite A and most mafic volcanic rocks are of tholeitic affinity (Zr/Y = 2.9 to 4.5), whereas low-Zr rhyolite B is of transitional to calc-alkaline affinity ($Zr/Y \approx 5$ to 9). High-Zr rhyolite B has Zr/Y ratios of ≈ 5 to 6; a few evolved basalts have ratios in the 5-7 range. Variations in magmatic affinity are considered further in the section on rare-earth element compositions.

Plots involving combinations of Fe-Ti-P are useful in distinguishing between basalt and evolved basalt, and between rhyolites A and B, although the effects of alteration must be considered in plots involving iron. In the present study, most rocks excluding rhyolite A are relatively unaltered with respect to Fe (Fig. 5a). In rhyolite A, Fe addition has moved some samples along an 'alteration line' emanating subvertically from the precursor Fe₂O₃ value of rhyolite A. Figure 5a also shows that both groups of mafic rocks contain 10-15% Fe₂O₃; samples in the upper part of this range are considered ferrobasalts.

Figure 5b shows that within the mafic suite, a 'normal' group of basalts can be readily separated from evolved high-Ti basalts (which also have much higher Zr contents). The high-Ti group commonly has $P_2O_5 > 0.3\%$; the term 'icelandite' has been applied to such rocks in some recent classifications. Within the felsic part of the spectrum, rhyolite B has higher Ti-P contents than rhyolite A, which is the most fractionated magma. The Ti-P contents of evolved ferrodacites reported in previous studies (holes K2-87-2 and 87-3) are commonly higher than those of rhyolite B.

Rare-Earth Elements

REE data for all lithological types are given in Table 2, together with on some immobile element data from Table 1. Four new samples from previously drilled holes are also reported in the first part of Table 2 (holes BM86-1, K2-87-3 and K2-93-1). For completion, four analyses previously reported for holes K2-87-2 and 87-3 (Barrett and MacLean, 1994b) are also included. As shown below, the felsic rocks of southwestern Jessop township show a wide range of REE patterns, which can be linked closely to absolute Zr contents and Zr/Y ratios. In the following plots, these parameters are shown immediately to the right of the REE patterns. Several aspects of the REE patterns of felsic rocks which have been previously reported from southwestern Jessop township are reviewed first, then the new data from the 1994 Noranda drilling program are discussed.

Southwestern Jessop Township volcanics

Rhyolite A and high-Zr rhyolite B from holes K2-87-2 and 87-3 have near-flat REE patterns, with high total REE contents (Fig. 6a). The REE patterns are almost identical to those of published Kidd Creek and Kamiskotia rhyolites, and to other FIIIb rhyolites in Archean greenstone belts (Lesher et al., 1986; Barrie et al., 1993; Barrett and MacLean, 1994b). Least altered FIIIb rhyolites from southwestern Jessop township typically have high Y contents of 90-110 ppm, and display mainly tholeitic Zr/Y ratios in the 3-5 range.

The evolved high-Zr dacite (ferrodacite) rocks previously encountered in holes K2-87-3 and BM86-1 also have FIIIb patterns (Fig. 6b). These rocks have higher contents of TiO₂ (0.7-1.0%) and Fe₂O₃ (4-8%) than the above high-Zr rhyolite B group, but otherwise are chemically similar (with quartz phenocrysts) and are considered part of this group.

The rhyolite A group (four samples) intersected in Noranda's 1994 drilling are uniformly of FIIIb type (Fig. 7a). These samples come from an apparently ENE-striking swath of rhyolite A that extends eastwards from holes 94-1 and 94-2 in the west, through the Four Corners, and on to hole 94-3. Slight silicification of sample 94-2, 329.5m, has led to lowering of its REE and Zr contents through dilution.

The high-Zr rhyolite B group (two samples) also has an FIIIb pattern (Fig. 7b). Although this group has higher Zr contents than rhyolite A, it displays a slightly transitional rather than tholeiitic Zr/Y ratio. High-Zr rhyolite B was only sampled in a few localities, usually spatially between evolved basalt and rhyolite A (at 280m in 94-2, and 170m in 94-5), or within evolved basalt (23m in 94-2, and 138m in 94-1). The two samples analyzed for REE do not have strongly negative Eu anomalies, as are commonly reported for FIII rhyolites, but this may partly reflect their relatively unaltered nature.

The low-Zr rhyolite B group has mainly FII-type REE patterns (Fig. 8a). Samples of this group are actually rhyodacitic to dacitic in composition, and are mainly volcaniclastic based on drill core observations. The Zr/Y ratios for this group are in the transitional to mildly calc-alkaline range. The REE data, Zr contents, and Zr/Y ratios indicate that these rhyolites probably have been derived from a different source area than the FIIIb rhyolites.

The general relations discussed above are summarized in Fig. 8b, which shows a range of felsic REE patterns from FIIIb through FIIIa to FII types, with a corresponding decrease in absolute Zr contents, and, for the FII felsics, an increase in Zr/Y ratio. The REE and other data suggest that high-Zr rhyolite B is derived by fractionation from the high-Zr evolved dacite, which in turn may be derived from the high-Zr evolved basalt.

S.W. Jessop Township felsic volcanics

S.W. Jessop Township and vicinity: felsic volcanics

S.W. Jessop Township felsic volcanics

Mafic volcanic rocks in southwestern Jessop township are mainly high-Ti evolved basalts, although lower-Ti basalts also occur (mainly in 94-3). REE patterns for the high-Ti evolved basalt are fairly flat, with a slight enrichment in the light REE relative to chondrite (Fig. 9a). The near-flat flat patterns for the evolved basalts probably reflect original melting of fairly unfractionated mantle source rock, but their elevated REE contents relative to typical tholeitic basalts in oceanic settings (which have chondrite-normalized ratios of ≈10-20) suggests that they have been strongly fractionated. Within the evolved basalts, absolute REE contents do in fact generally reflect the degree of Zr enrichment. The REE patterns of Jessop basalts are nearly identical to those of the mafic rocks at the Kamiskotia VMS deposit (Barrie et al., 1991) (Fig. 9b). In particular, Jessop basalts with high Zr-P contents have REE patterns identical to evolved Kamiskotia basalts, whereas those with lower Zr-P contents are similar to normal Kamiskotia basalts.

Downhole Lithogeochemical Variations

Downhole lithological and magmatic affinity can be monitored by examining Al₂O₃/TiO₂ and Zr/Y ratios (which in VMS systems are generally insensitive to alteration). Results for hole 94-1 are shown in Figure 10, for sample depths to 204m. It should be noted that not all lithological units (e.g. fragmental units and argillites) were sampled; also there are only two samples from the 204-295m interval, which was logged mainly as a mafic intrusion. Nonetheless, the plots clearly convey the chemical uniformity of rhyolite A, and its distinction from rhyolite B, which is both less fractionated and less tholeitic.

A second example of downhole variations is shown for hole 87-3 in Figure 11, using data from previous reports (Barrett and MacLean, 1993a,b) and several new analyses (Table 3). Hole 87-3 hole includes the unusual high-Zr 'evolved dacite', which has higher TiO_2 contents that rhyolite B, and therefore a notably lower Al_2O_3/TiO_2 ratio. Figure 11 also shows the more calc-alkaline nature of low-Zr rhyolite B ($Zr/Y \ge 6$) relative to high-Zr rhyolite B and high-Zr evolved dacite (Zr/Y = 4-5). Lithogeochemical data suggest that the very high-Zr rhyolite B in hole 87-3 represents a slightly more felsic version of the underlying, but less evolved 'evolved dacite' unit. In drill core, there is no obvious contact between these units; both are massive, medium-grained and locally quartz porphyritic, thus strengthening the case for a genetic connection. However, it is not clear if these high-Zr felsic units were emplaced as extrusive lavas or shallow intrusions, as their margins were not observed. The high-Zr felsic interval is sharply bounded above and below by massive mafic rocks which have chilled margins. These (slightly?) later intrusions have obscured the original contact relations surrounding the high-Zr felsic interval.

South Jessop Township mafic volcanics

Hole NOR 94-1: felsics and basalts

Hole K2-87-3: felsics and basalts

Alteration Geochemistry

General Relations. The new data show that some felsic rocks are moderately to strongly K-enriched and Na-depleted, whereas others are silicified, a few contain Fe enrichments, and some are chemically unaltered. The strongest Na depletions correspond to the most K-rich rhyolites, as for example in the altered interval of rhyolite A intersected near the end of hole 94-2 (drilling was terminated within this interval). The same rhyolite A unit was also intersected near the surface in hole 94-1, where three of six samples were strongly Na depleted.

Lithology-alteration relationships can be roughly assessed by plotting a mobile element against TiO₂. In such plots, TiO₂ is used as a 'reverse' fractionation monitor; as it decreases in abundance from peak values in basaltic andesites, down through andesites, to dacite, and finally rhyolite. For example, in a plot of K₂O-TiO₂ (Fig. 12a), rhyolite A lies more or less along a single 'alteration line'. A similar effect for rhyolite A is seen in plots of SiO₂-TiO₂ (Fig. 12b), and FeO-TiO₂ (Fig. 5a). However, actual mass changes for K, Si and Fe are not proportional to their displacement along the lines, as their abundances are affected by variations in other mobile elements. Note that the rhyolite A trends in Figures 5a and 12a emanate from the composition of least altered rhyolite, rather than from the origin, as is the case for true alteration lines defined using immobile-element pairs.

The SiO₂-TiO₂ plot shows that silica 'perturbations' are strongest in rhyolite A (Fig. 12b). Other lithologies have SiO₂ values which fall within normal ranges for these lithologies, suggesting that silica alteration is not significant. Plots such as those in Figures 12a, 12b and 5a are useful in identifying, on a first-pass basis, the main volcanic groups, and whether or not these groups show a significant <u>range</u> in net alteration. However, the only general inference that can be made from these plots is that the largest vertical increases of K, Si and Fe must reflect notable addition of these elements. To assess actual changes of individual elements during alteration, mass changes must be calculated.

Mass Changes

Mass changes have been calculated for rhyolite A samples from holes 94-1, 94-2, 94-3 and 94-5 (*). The procedure was straightforward because of the near-homogeneous nature of least altered rhyolite A in these holes. Samples of the low-Zr rhyolite B group

^(*) No lithogeochemical samples were analyzed by Noranda from the first half of 94-4, which contains common felsic fragmental and volcaniclastic wackes, together with thinner intervening argillitic and mafic units; several deeper samples in this hole range from dacite to basalt. In hole 94-6, which was logged as containing a similar range in lithologies, only four samples were analyzed (three dacites, one mafic).

Southwestern Jessop Township volcanics

have not been treated as they appear to represent volcaniclastic sediments derived from an external source area of more calc-alkaline affinity. In addition, this low-Zr group appears to comprise two subgroups with differing Zr contents (Fig. 3b). The high-Zr rhyolite B group was not treated as it contains only four samples, again in two subgroups (Fig. 3b).

Mass changes were calculated based on a single precursor composition, and the use of Al₂O₃ as the immobile anchor. A total of five least altered samples of rhyolite A were identified from three holes (these are shown in italics in Table 1). The average of these five samples, which is fairly tightly constrained, is taken as the rhyolite A precursor. Mass changes were calculated only for rocks that lay on the rhyolite A alteration line. Details of the method are given in MacLean and Kranidiotis (1987) and Barrett and MacLean (1991).

Table 4 gives the composition of all rhyolite A samples, the least altered precursor, the reconstituted values calculated from the Al mass change factor, and the calculated mass changes (representing the difference between reconstituted and precursor values). Results based on the use of Zr as the anchor, instead of Al_2O_3 , are very similar for most samples. In the plots, the intersection of the dashed lines at the point (0,0) indicates the precursor composition (i.e. no mass change in either element). Samples that plot well away from the precursor in any direction have experienced significant mass changes (represented by the Δ symbol). In the rhyolites, the main mass changes involve silica and the alkalis. Mass changes in Fe, Ca and Mg are relatively small.

A plot of Δ K₂O versus Δ SiO₂ (Fig. 13a) shows a group of samples with gains in both elements. Four of these samples are from hole NOR94-5, which is situated about 300m east of the Four Corners, and two are from NOR94-2, one of the westernmost holes (Fig. 2). The other westernmost hole, NOR94-1, also displays some large K gains, but these are not accompanied by Si gains. This hole also contains intervals of nearly unaltered rhyolite A. The easternmost of the six holes drilled, NOR94-3, shows very little K or Si gain (or any other alteration) in three of four samples (and only silicification in the fourth).

Using the model outlined for silica mass changes in Barrett and MacLean (1994a), we interpret the mass change data to indicate generally increasing alteration from east to west within rhyolite A. According to this model, most rhyolites in hole 94-5 and some in 94-2 would have been located on the cooler margin of a hydrothermal system, where silica and K were added during alteration (at the level of stratigraphy represented by rhyolite A). To the east, hole NOR 94-3, with little alteration of rhyolite A, is interpreted as having been distal to any hydrothermal system.

Southwestern Jessop Township volcanics

Hole NOR94-1, which intersected the same rhyolite A unit as 94-2 but vertically above it, does not show any major silica changes, although K alkali exchange is strong in half of the samples. As not all of the rhyolite A unit was penetrated in these holes, it is difficult to assess vertical variations in alteration. In any case, these holes did not intersect the type of alteration typically found in the hottest part of mineralizing hydrothermal systems, where more consistent silica losses would be expected, together with major additions of Fe, Mg and locally K. Nonetheless, the occurrence in two holes (NOR94-5 and 94-2) of strong positive changes in silica coupled with strong K gains (and Na losses) indicate that notable hydrothermal alteration has occurred.

One sample in NOR94-5 (131m) displays significant mass loss in silica, moderate gain in K, and small gains in Fe and Mg. This indicates that chloritization and sericitization have occurred. Such a combination of effects is typical of higher-temperature alteration. However, it appears to be a local effect, within an area of general Si and K mass gain.

A plot of ΔK_2O versus ΔNa_2O (Fig. 13b) illustrates well the inverse correlation between mass changes in these two elements. Of particular interest are the two subtrends in the data. These correspond to the alteration changes that would be expected depending on whether sericite or K-feldspar were the dominant alteration product of plagioclase (and of the sodic component of any glass).

A plot of ΔNa_2O versus ΔSiO_2 (Fig. 14a) shows the Na loss that may occur in rhyolite A samples with Si gain and K gain. In some samples, there is Si gain without Na loss (e.g. quartz veinlets, amygdule fillings). A smaller group of samples shows near-total Na loss, with changes in silica ranging from near-zero to slightly negative. A single sample (NOR94-5, 131m) displays significant losses in silica and Na (this sample was mentioned above). A plot of ΔBa versus ΔK_2O (Fig. 14b) indicates that addition of Ba to rhyolite A is generally proportional to the addition of K (in sericite or K-feldspar). Ba is substituting for K in these minerals. A similar relation exists between Rb and K for the same reason.

Variations in elemental mass changes can also be examined in downhole plots. For example, in hole NOR94-5, significant K addition (≥2 wt %) occurs in the lower-middle part of the rhyolite A interval (Fig. 15a). Within this hole, silica mass changes are generally positive, with one exception (Fig. 15b). By contrast, in NOR94-1, silica changes are generally within 5% of zero). The net alteration can also be assessed from the total mass change for each sample, which is given in Table 1. This parameter ranges from near-zero in NOR94-1, where alteration involved mainly alkali exchange, to strongly positive in NOR94-5, where silica precipitation dominated.

Southwestern Jessop Township volcanics

Four Corners area volcanics: NOR 94-1 and 94-5

PETROGRAPHY

General Comments

There are seven petrographic samples from the study area, six rhyolites and one coarse basalt or dolerite. The rhyolites are quartz-feldspar porphyry (QFP) or quartz-porphyry. Two are massive flows, one is a breccia, and four are phenocryst-bearing tuffs. Both of the massive rhyolites are QFP, with numerous phenocrysts, and have a moderately altered fine-grained groundmass. Some of the phenocrysts in the massive QFP have a bluish tinge (petrography samples 30220 and 30223), although the source of the blue is not apparent. Rhyolites range from fairly fresh to moderately altered.

The presence of biotite in the groundmass of most rhyolite tuff samples is a product of lower amphibolite metamorphism. Fe-rich chlorite has reacted with sericite to form the biotite. Where there was an excess of chlorite for the reaction, chlorite is present with the biotite; and vice versa for an excess of sericite.

Photographs were taken at magnifications such that the negatives are 10X and 40X the true size. The corresponding magnifications of the prints are 45X and 175X true size. Names of rocks in bold are assigned based on petrographic and lithogeochemical results.

Figure 16a: Coarse-grained evolved basalt (icelandite)

Drillhole BM-86-1

417'

(petrography sample number 30221)

- Ab-Ep-Qz-Hb-Carb-Biot; non-porphyritic.
- Spilitized, but only weakly altered chemically.

Crossed nicols, 40X.

Whole-rock analysis:

(LOI-free basis)

No. Report Lithology	SiO2	A 12 0 3	TiO2	FeO	MnO	CaO	MgO	K 2 O	Na 20
18218 Jessop 2 Evolved basalt	57.1	13.8	2.15	13.08	0.26	4.10	2.66	1.23	3.04

P205 (L0	I) Sum	Ва	Sir	Y	Zn	Rb	Nb	Zr/Y	A1203/Ti02
0.48 (3.1)	5) 100.00	483	165	45	256	39	13	5.7	6.4

Figure 16b: Four Corners evolved basalt (icelandite)

Drillhole K2-93-1

823'

(petrography sample number 19963)

- Pl + Bio + Chl.
- Patches of secondary biotite, with chlorite in matrix.
- Plag is fairly fresh. Rock is little altered chemically.

Crossed nicols, 40X.

Whole-rock analysis:

(LOI-free basis)

No. Report	Lithology	Si02Al203	TiO2	TeO	MnO CaO	MgO	K20	Na20

P205	(IL0II)	Sum	Ba	Sr	Ÿ	Zπ		**************************************	Zr/Y	A12/03/THO2
0.43	6 9 5	100.00	203	148	24	225	4	17	9.4	12.9

- 27 -

-- Ore Systems Consulting --

Contact between quartz porphyritic high-Zr rhyolite B & evolved basalt

Drillhole BM-86-1

631.5 - 632'

(petrography sample number 30220)

There are two rock types in the thin section.

- (a) Light rock: Massive quartz porphyry with large Qz phenocrysts (blue in hand specimen).
- (b) <u>Dark rock:</u> Chl + Ser + Qz + Carb + Lcx. Mafic rock, with common opaques and Qz microphenocrysts?.

Figure 17a: Quartz Porphyry (high-Zr rhyolite B): Qz phenocrysts in a sheared matrix of Chl + Qz + Carb + traces of Ser. *Crossed nicols*, 40X.

Figure 17b: Contact of Quartz Porphyry and evolved basalt (chilled). Plane light, 40X.

Whole-rock analysis of Quartz Porphyry 4' from contact: (LOI-free basis)

('evolved dacite' in Jessop 2 report)

No. Report	Lithology	SiO2	A1203	Ti 0 2	FeO	MnO	Ch(0)	M(g(0)	K20 Na20
18219 Jessop 2	High-Zr rhy B	72.9	11.3	0.75	6.37	0.17	2.58	1.03	1.74/ 2.92

P205	(IL(0)II)	Smm	Ba	Sir	Y	Zır	Rb	NB	Zr/Y	A1203/Ti02
0.17	(3.85)	100.00	490	47	78	609	42	23	7.9	15.1

-- Ore Systems Consulting --

Massive quartz porphyritic high-Zr rhyolite B (blue quartz eyes)

Drillhole K2-87-2

183'

(petrography sample number 30223)

- This sample exhibits bluish Qz grains in hand specimen.
- Qz phenos are large, some are granophyric; groundmass is fine-grained and moderately altered to Qz + Ser + Biot.
- A few Qz amygdules, and one Qz veinlet. The Ab is pseudomorphed by fine-grained Ser.

Figure 18a: Qz and altered Ab phenos, Biotite, and Qz amygdules. Crossed nicols, 40X.

Figure 18b: Granophyre remnant with Ab altered to Ser. Crossed nicols, 40X.

Whole-rock analysis of Quartz Porphyry: (LOI-free basis)

No. Report	Lithology	Si02	A 12 0 3	TiO2	FeO	MnO	CaO	Mg0	K20	Na20
30208 Table 3	High-Zr rhy B	71.68	12.45	0.50	5.60	0.11	1.31	0.38	3.72	4.19

P205	((L(0)1))	Shum	Вa	Sr	Y	Zπ	Rb	N b	Z_T/Y	A1203/T102
0.05	(2.20)	100.00	683	85	168	713	90	46	4.4	24.7

-- Ore Systems Consulting --

Figure 19a: Quartz porphyritic high-Zr Rhyolite B

Drillhole K2-87-3

174'

(petrography sample number 30224)

- 'Banded' fine-grained felsic matrix with large Qz phenocrysts (embayed pheno in photo).
- Moderate alteration: Chl + Biot + minor Carb; minor Ser where Chl is absent.
- The dark brownish bands are Biot-rich. Crossed nicols, 40X.

Whole-rock analysis of Quartz Porphyry: (LOI-free basis)

('evolved dacite' in Jessop 2 report)_

No. Report	Lithology S	Si O 2 /	11203	TiO2	Pe0	Min 0	CaO	MgO	K20	Na20
9817 Jessop 2	High-Zr rhy B 7	1.45	11.72	0.86	6.70	0.12	2.31	0.63	1.86	4.11

P205	(I.O.I.)	Shirin	Ba	Sin	Y	26	Rb	Nib	Zr/Y	A12(8)3//IFIO2
0.17	(1.95)	100.00	532	99	129	501	56	28	4.1	13.7

Figure 19b: Quartz porphyritic high-Zr Rhyolite B

Drillhole Jessop 87-3

224'

(petrography sample number 30225)

- Laminated felsic matrix with prominent Qz phenocrysts; Qz + Ab + Biot \pm Ser \pm Chl.
- Overall, almost altered chemically. Some plagioclase (Ab) phenocrysts replaced by Ser.
- A few quartz veinlets. Crossed nicols, 40X.

Whole-rock analysis of Quartz Porphyry (LOI-free basis)

('evolved dacite' in Jessop 2 report)

No. Report	Lithology	S102	A1203	Ti02	FeO	MnO	(Ca()	MgO	K20	Na20
9720 Jessop 2	High-Zr rhy B	76.32	10.48	0.77	3.40	0.07	2.37	0.42	0.97	5.00

		Sum	Вa	9.0	Y	Z .r	Rb	Nb	Zr/Y	A1203/Th02
0.16	(1.70)	100.00	396	107	102	444	28	23	4.4	13.6

-- Ore Systems Consulting --

Quartz porphyritic high-Zr Rhyolite B

Drillhole K2-87-3

265'

(petrography sample number 30222)

- Massive felsic volcanic rock, with fine-grained groundmass of Qz + Biot + Ep + carb.
- 25% of rock is composed of large phenocrysts; Ab phenos slightly altered.
- Also have 'phenocrysts' of Ab Qz as granophyric intergrowths.

Figure 20a: Qz and Pl phenocrysts in altered matrix. Crossed nicols, 40X.

Figure 20b: Pl + Qz 'phenocryst' granophyre texture. Crossed nicols, 40X.

Whole-rock analysis of Quartz Porphyry: (LOI-free basis)

No. Repo	rt Lithology	SiO2	A1203	Ti 0 2	If e O	MnO	CaO	MgO	K 2.0	Na20
30209 Table	3 High-Zr rhy I	3 75.93	11.15	0.43	4.41	0.08	1.01	0.71	1.68	4.53

P205	(LOI)	Sum	Вa	Sir	Y	Zr	Rb	Nb	Zr/Y	A1203/T102
0.05	(0.85)	100.00	518	9 5	150	645	54	36	4.4	25.8

-- Ore Systems Consulting --

- 36 -

Suggested Analytical Work

- (1) With regard to the 1994 drilling in the Four Corners area, lithogeochemical analyses of lithological units is required in NOR94-4 in particular, and also in the lowest 50 metres of NOR94-5. The objective is to determine which rhyolite type the common felsic fragmental rocks in these intervals belong to, and thereby to improve correlations in the complex area around the Four Corners, where units are difficult to trace due to either fault offsets or folding. Further analyses from NOR94-6 would also be useful to determine if any high-Zr rhyolite B fragmentals are present With regard to the gabbro in NOR-94-1, a few analyses may reveal if this is a differentiated intrusion with cumulate-rich zones (as suggested by the 10 m-thick, magnetite-rich interval near the end of the hole). It might be interesting to obtain PGE data for this latter unit.
- (2) From examination of age-dating results in the central Abitibi greenstone belt (as summarized in Corfu, 1993), it is apparent that the felsic stratigraphy striking WSW through the southern portion of Jessop Township remains one of the major undated felsic sequences in the area. A high-precision U-Pb zircon age would gave regional implications for the rhyolite stratigraphy. Rhyolites that could be sampled include: (1) high-Zr quartz porhyritic rhyolite B, thick intervals of which occur in holes K2-87-3 and BM-86-1; and (2) rhyolite A at the end of hole K2-93-1 and the beginning of K2-93-2 (this rhyolite outcrops some 50-100 m east of the Four Corners). Thick sequences of Rhyolite A were also intersected in the upper 150 metres of hole NOR-94-5 and the upper 100 metres of hole NOR-94-1. With such data, it would be possible to determine if the felsic stratigraphy in the Four Corners area correlates with the Kamiskotia rhyolite (2705 ma), or with the Kidd Creek rhyolite sequence (2417 Ma: Barrie and Davis, 1990; 2710-2714 Ma: Bleeker and Parrish, 1995). It may be possible to obtain an age for the southern Jessop felsic stratigraphy through the Ontario Geological Survey (possibly at reduced cost).

Discussion and Conclusions

Noranda's 1994 programme has complimented and extended our understanding of the stratigraphy and lithogeochemistry in the area of the Four Corners and immediately contiguous townships. The area is underlain by a mainly bimodal sequence of mafic and felsic volcanic rocks, with an increase in the proportion of interbedded volcaniclastic sediments and graphitic argillites towards to north that is interpreted as reflecting waning of volcanic activity and deepening of the depositional basin.

The mafic rocks comprise basalts and evolved basalts that can be respectively divided into low-Ti and high-Ti groups, with the low-Ti basalts occurring mainly in hole NOR94-3, the easternmost of Noranda's new holes, and a few also in NOR94-4 at the Four Corners. Evolved basalts are notably high in TiO₂ (>2.0%), FeO (>12.0%), P₂O₅ (>0.3%) and Zr (>180 ppm). Although these have been previously been termed icelandites, their silica content is in the range of basalts to basaltic andesites. The low-Ti basalts in NOR94-3 represent a distinctive mafic unit that accumulated mainly in this area, probably as volcaniclastics. These basalts have much lower Zr contents than the evolved basalts, and somewhat lower Zr/Y ratios of 3.5-4.0, but like the evolved basalts are Fe-rich.

The felsic rocks on the property include four main types: (1) Rhyolite A, which forms one main stratigraphic unit that strikes west-southwest, as well as several thinner, laterally discontinuous units within dominantly mafic stratigraphy. (2) Quartz porphyritic Rhyolite B, with high Zr contents of 400-650 ppm; this is an important unit in the upper part of hole K2-87-03, and also in the lowest part of BM-86-01. (3) Rhyolite B fragmental rocks, with high Zr contents of 400-650 ppm; this unit is well developed in K2-87-03, but thin intervals occur in most holes between NOR94-1 and NOR94-3; pyrite-pyrrhotite lenses and disseminations are particularly abundant in K2-87-03. (4) Rhyolite B fragmental rocks, with low contents of 150-250 ppm; these constitute the majority of the felsic wackes and turbidites that are intercalated with graphitic argillites along the northern flank of the stratigraphy extending from NOR94-1 to NOR94-3.

In Noranda's 1994 program, a thick unit of rhyolite A was intersected in NOR94-5, about 300 metres east of the Four Corners. This appears to be the same rhyolite as was encountered in drillhole K2-93-2, where it outcrops on surface near the drillhole collar; rhyolite A also occurs at the end of K2-93-1, at depth. About 300 metres southwest of the Four Corners, in NOR94-1 and 94-2, a thick sequence of rhyolite A was again intersected. Hole NOR94-4, in the intervening area, encountered abundant felsic fragmentals in the first 150 metres, but it is not certain what type of rhyolite they represent, as there are no lithogeochemical data from this interval. East of the Four Corners area, in holes K2-87-2 and Jess 12-02, rhyolite A again forms notable intervals; finally, it forms a few thin units further to the northeast in K2-92-2. In the area of the Four Corners, rhyolite A can be characterized as a fractionated, near uniform rhyolite, which had precursor contents (on an LOI-free basis) of $SiO_2 \approx 77\%$, $Al_2O_3 \approx 11.7\%$, $TiO_2 \approx 0.18\%$ and $Zr \approx 350-360$ ppm. The rhyolite is of mainly tholeitic affinity, with Zr/Y = 3 to 4 (some transitional rhyolite A with Zr/Y = 6.0-7.5 occurs near the end of drillhole K2-93-1). REE patterns indicate that rhyolite A is an FIIIb-type rhyolite in the classification of Lesher et al. (1986).

High-Zr rhyolite B forms a massive-looking quartz porhyritic unit in K2-87-3 and BM-86-1. It contains common quartz eyes, some of which are blue in hand specimen. Petrographic examination indicates that the eyes include phenocrysts and granophyric intergrowths of quartz-albite. The lack of internal bedding or textural variations in this rhyolite, and its near-uniform composition, suggests that it is either a massive eruptive unit, or a subvolcanic intrusion. This rhyolite has FIIIb-type REE patterns, and tholeiltic to transitional Zr/Y ratios. Because of its very high Zr content, this rhyolite also has the highest REE concentration of those examined. Although it contains 0.75-0.95% TiO₂ and 4-6% FeO, which is unusual for rhyolite, its SiO₂, Al₂O₃, MgO and Zr contents indicate that it is, in fact, a fractionated felsic rock. The high Ti-Fe contents of this rhyolite probably reflect retention of titanomagnetite in the magma.

High-Zr rhyolite B also forms felsic fragmental lithologies ranging from breccias through lapilli tuffs to ash tuffs (according to logs). In some holes, pyrite-pyrrhotite occurs in association with this type of rhyolite fragmental (e.g. K2-87-3, Jess 12-02, Jess 12-01, and locally in K2-92-2). Thin intervals of high-Zr rhyolite B fragmental also occur in NOR94-5 (where bluish quartz eyes were recorded) and in NOR94-2 (no details given in drill log). This lithology could occur in NOR94-4 (no lithogeochemistry available), and in the main breccia-wacke interval in K2-93-1 (610-694'). An interesting feature of this type of rhyolite breccia, in addition to its high Zr content, is its low Al₂O₃ content, consistent with derivation from a source such as the quartz porphyritic rhyolite B discussed above.

Low-Zr rhyolite B forms felsic volcaniclastic beds mainly ranging from pebbly coarse sandstones to siltstones, which are commonly intercalated with dark graphitic argillites and silty argillites. The felsic beds have silica contents in the rhyodacite-dacite range. Although the Zr content of the felsic beds is low relative to preceding rhyolite types, Y is even lower, and thus the Zr/Y ratio is distinctly higher, usually in the mildly calcalkaline range. These felsic volcaniclastic beds also have distinctly higher Al₂O₃ contents, which could well reflect their more calc-alkaline affinity (although it might be argued that hydraulic concentration of feldspars during sediment redeposition was responsible). In any case, felsic volcaniclastic beds of this composition consistently occur (interbedded with argillites) along the northern margin of the stratigraphic belt that extends from NOR94-1 in the west, to K2-92-1 in the east. Interestingly, a mafic volcanic interval usually occurs stratigraphically below (south of) the interbedded felsic volcaniclastic-argillite sequence. Below this, low-Zr rhyolite B volcaniclastic beds have not been found except locally in NOR94-3. Instead, felsic fragmental rocks belong to one of the high-Zr groups.

Rhyolite A is thickest in the Four Corners area, having downhole thicknesses of at least 70m in NOR94-1, 90m in K2-93-2 and 150m in NOR94-5. Assuming a vertical dip, these correspond to true thicknesses of about 50 to 100 metres (although some intervals could be thicker as they were not drilled through). According to the drill logs, rhyolite A varies from lapilli tuff, to aphanitic and massive-looking, to crackle-brecciated (densely packed fragments with little matrix). Still other rhyolite A fragmental intervals are separated by thin graphitic interbeds. Thus, rhyolite A probably formed a range of original facies variations. Regardless, its near-uniform composition in terms of immobile element ratios suggests that rhyolite A fragments generally have not mixed to any significant degree with clasts of other lithologies. This, together with rhyolite A's sheer thickness and cross-strike continuity in the Four Corners area, suggests that it represents mainly source-proximal fragmental material (possibly with some massive intervals as well). Thin graphitic interbeds occur towards the top of the main rhyolite A intervals (i.e. towards the north in NOR 94-1, 94-3 and 94-5), which is consistent with upward waning of rhyolite A volcanic activity.

Correlation of rhyolite A to the east of NOR94-5 is difficult because of the locations and spacings of older holes, although it is still present in NOR94-3. However, in this latter hole, the stratigraphic sequence is rather anomalous due to the presence of low-Ti basaltic volcaniclastics. The evolved (high-T-P-Zr) basalts that usually occur above rhyolite A were not encountered. Thus, the units in NOR94-3 may not necessarily lie along strike between those in NOR94-5 (to the west) and K2-87-1 (to the east). There are also occurrences of rhyolite A in K2-87-2 and Jess 12-02, located 300-400 metres due east of K2-87-3, where a major interval of quartz porhyritic high-Zr rhyolite B is present. In an earlier report (Barrett and MacLean, 1993b), it was suggested that quartz porhyritic rhyolite B in fact occupied part of the section that otherwise would have been represented by rhyolite A tuff. This remains possible, although if the stratigraphy in this area still strikes east-northeast, then hole K2-87-3 would not be expected to 'line up' with the other two holes.

With regard to the thin interval of 'southern' rhyolite A near the beginning of holes K2-93-1 and 93-2 at the Four Corners, it is possible that this correlates eastwards with the 'southern' rhyolite A in K2-87-2 and Jess 12-02 (and BM-85-1 in between). However, there are large drilling gaps, so this correlation is tentative. If the 'southern' rhyolite A near the beginning of holes K2-93-1 and 93-2 extends directly west, it could be continuous with the rhyolite A unit near the end of NOR94-1 and beginning of 94-2. However, if the main occurrence of rhyolite A immediately east of the Four Corners (where it also ouctrops) were to swing to a more southwesterly strike, it too could be continuous with the NOR94-1/2 rhyolite. If the two rhyolite intervals intersected in K2-93-1 in fact merge to the west to

become the NOR94-1/2 rhyolite, then a large amount of mafic stratigraphy in K2-93-1 would have to wedge out rapidly to the west. Alternatively, complex faulting or folding has occurred immediately west of the Four Corners such that the stratigraphy in holes K2-93-1/2 cannot readily be matched with that in holes NOR94-1/2.

The main alteration types affecting the felsic rocks in the area are sericitization, silicification and carbonatization; some K-feldspar is also inferred to be present based on K-Al relations. With a few exceptions, chlorite is minor in the felsic rocks. However, fine-grained biotite is a common accessory, probably marking the former existence of hydrothermal sericite and chlorite that combined during regional metamorphism (lowest amphibolite facies). The mafic rocks in the area commonly display a spilitic mineralogical assemblage of Ab-Ep-Chl-Hb-Biot-Carb-Qtz, but are relatively unaltered chemically, apart from the addition of the volatiles H₂O and CO₂.

Mass change calculations allow areas that have experienced hotter alteration and higher overall fluid/rock ratios to be quantitatively distinguished from zones of cooler, more marginal alteration. Mass changes have been calculated for rhyolite A intervals intersected in the Four Corners area by Noranda (this report) and by the Jessop Syndicate (Barrett and MacLean, 1994b). It was previously noted that rhyolite A near the end of hole K2-93-1 showed more extensive, hotter alteration than the silicified rhyolite A that occured immediately uphole (although there was no significant chloritic alteration). In the current study, rhyolite A in the easternmost hole, NOR95-3, clearly shows the least alteration, whereas in hole NOR95-5, just east of the Four Corners, it is generally moderately altered. In the westernmost holes, NOR94-1/2, most of rhyolite A is altered, but not always in the same sense, that is, intervals of silica gain are present, as well as intervals of little silica change but strong alkali exchange. In NOR94-1/2, it is difficult to assess whether alteration varies with depth, as neither hole drilled completely through rhyolite A.

Although mass changes were not calculated for high-Zr rhyolite B due to the limited number of samples, the fragmentals (especially those with associated po-py mineralization) show strong alkali exhange and in some cases silica loss. Net mass loss versus net mass gain can be assessed by examining the positions of samples along the rhyolite B alteration line in an Al₂O₃-TiO₂ plot (Barrett and MacLean, 1993a,b). Further sampling since these reports has shown there are two rhyolite B types, one with a high-Zr but low-Al precursor, the other with converse features. To assess net mass changes, it is first necessary to relate altered samples to their proper precursor on a rhyolite B alteration line. This is done by first separating the two rhyolites on the basis of their different Zr/Y ratios and REE patterns.

The massive quartz porphyritic high-Zr rhyolite B that occurs mainly in holes K2-87-3 and BM-86-1 is relatively unaltered. This unit is interpreted as a shallow intrusive rhyolite. Its original relation with fragmental high-Zr rhyolite B, which lies immediately to the north, is uncertaint. However, based on chemical similarity, we suggest that fragmental high-Zr rhyolite B represents the extrusive equivalent of some of the massive quartz porphyritic high-Zr rhyolite B (the uppermost portion in particular, as this has closely comparable TiO₂ contents). Some fragmentals occur as far west as NOR94-2 and as far east as Jess 12-02, suggesting that clastic debris was shed from an area centered around K2-87-3. By contrast, the extrusive centre for rhyolite A appears to have been located west of the Four Corners, based on thickening of Rhyolite A in this area, and a general (but erratic) increase in alteration towards the west.

In summary, the main sequence of events in the Four Corners area is: (1) Eruption of evolved basalts (icelandites), alternating with minor accumulation of rhyolite A tuffs. (2) Emplacement and extrusion of high-Zr rhyolite B quartz porphyry in the area of K2-87-3; coarse breccias of this lithology, containing commmon po-py, also accumulated in this area. (3) At almost the same time, rhyolite A was erupted from an area near the Four Corners. Rhyolite A turbidites and tuffs extended eastwards into a depositional basin where they were interbedded with high-Zr rhyolite B fragmentals, and locally graphitic argillite. (4) Further eruption of evolved basalt eruption occurred, which covered most of the high-Zr felsic rocks (which are all of tholeiitic FIIIb affinity). (5) A major phase of volcaniclastic sedimentation ensued, derived from a separate, extra-basinal, more calc-alkaline terrane (of mildly calc-alkaline FII affinity). These formed felsic turbidites intercalated with argillites.

Areas with particular exploration potential include: (1) The area north and northwest of the Four Corners, as the northern extent of rhyolite A has not been determined. Where two holes in this area ended in rhyolite A (K2-93-1 and NOR 94-2), alteration was notable. (2) Areas immediately flanking K2-87-3, where high-Zr rhyolite B was intruded/extruded, and where sulfide-bearing breccias accumulated. (3) The extension of rhyolite A to the west of the Four Corners, as this area is a candidate for a major tholeitiic felsic centre.

Acknowledgements

We would especially like to thank Roger Dahn and Wayne Corstophine of Noranda Exploration Co. Ltd. (Timmins) for access to company data during the course of the study, and for providing lithogeochemical analyses, access to drill core, and excellent drill hole logs. Lionel Bonhomme (Timmins) provided additional information on the property.

Combined References, Southwestern Jessop Township Reports

- Barrett, T.J., and MacLean, W.H. 1994a. Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area. *Exploration and Mining Geology*, 3: 131-160.
- Barrett, T.J., and MacLean, W.H., 1994b. Geochemistry and petrography of Archean volcanic Rocks from the Four Corners area, southwestern Jessop Township, Timmins Region, Ontario. Unpubl. report for Noranda Exploration Co. Ltd.
- Barrett, T.J., MacLean, W.H., Cattalani, S., and Hoy, L., 1993. Massive sulfide deposits of the Noranda area, Quebec. V. The Corbet mine. *Canadian Journal of Earth Sciences*, **30**: 1934-1954.
- Barrett, T.J., and MacLean, W.H., 1993a. Geochemistry and stratigraphy of Archean volcanic rocks in Jessop Township, Timmins region, Ontario. Part I. Unpubl. report for the Mountjoy-Jessop Syndicate.
- Barrett, T.J., and MacLean, W.H., 1993b. Geochemistry and stratigraphy of Archean volcanic rocks in Jessop Township, Timmins region, Ontario. Part II. Unpubl. report for the Mountjoy-Jessop Syndicate.
- Barrett, T.J., Cattalani, S., and MacLean, W.H., 1993. Volcanic lithogeochemistry and alteration at the Delbridge massive sulfide deposit, Noranda, Quebec. *Journal of Exploration Geochemistry*, **48**: 135-173.
- Barrett, T.J., Cattalani, S., Hoy, L., Riopel, J. and Lafleur, P.-J., 1992. Massive sulfide deposits of the Noranda area, Quebec. IV. The Mobrun mine. *Canadian Journal of Earth Sciences*, **29**: 1349-1374.
- Barrett, T.J., MacLean, W.H., Cattalani, S., Hoy, L. and Riverin, G., 1991c. Massive sulfide deposits of the Noranda area, Quebec. III. The Ansil mine. *Canadian Journal of Earth Sciences*, **28**: 1699-1730.
- Barrett, T.J., MacLean, W.H., Cattalani, S., Hoy, L. and Riverin, G., 1991b. Massive sulfide deposits of the Noranda area, Quebec. II. The Aldermac mine. *Canadian Journal of Earth Sciences*, 28: 1301-1327.
- Barrett, T.J., Cattalani, S. and MacLean, W.H., 1991a. Massive sulfide deposits of the Noranda area, Quebec. I. The Horne mine. *Canadian Journal of Earth Sciences*, 28: 465-488.
- Barrett, T.J. and MacLean, W.H., 1991a. Chemical, mass, and oxygen-isotopic changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda. *Economic Geology*, **86**: 406-414.
- Barrett, T.J. and MacLean, W.H., 1991b. Geochemistry and petrography of volcanic and intrusive rocks from the Lemoine property, Chibougamau, Quebec. Unpubl. report for Westminer Canada Ltée.
- Barrie, C.T., 1990. Petrogenesis and tectonic evolution of the Kamiskotia and Montcalm gabbroic complexes and adjacent granitoid-greenstone terrane, western Abitibi Subprovince, Ontario, Canada. Ph.D. thesis, University of Toronto, Toronto, Ontario.

- Barrie, C.T. and Davis, D.W., 1990. Timing of magmatism and deformation in the Kamiskotia Kidd creek area, western Abitibi Subprovince, Canada. *Precambrian Research*, 46: 217-240.
- Barrie, C.T. Gorton, M.P., Naldrett, A.J. and Hart, T.R., 1991. Geochemical constraints on the petrogenesis of the Kamiskotia gabbroic complex and related basalts, western Abitibi Subprovince, Ontario, Canada. *Precambrian Research*, **50**: 173-199.
- Barrie, C.T., Ludden, J. and Green, T.H., 1993. Geochemistry of volcanic rocks associated with Cu-Zn and Ni-Cu deposits in the Abitibi Subprovince. *Economic Geology*, 88: 1341-1358.
- Bleeker, W. and Parrish, R., 1995. New U-Pb zircon ages for Kidd Creek: implications for formation of giant VMS and the tectonic history of the Abitibi belt. In: Summary Report 1994-1995; Joint Funding Agreement: Ontario Ministry of Northern Development and Mines, and the National Research Council (NODA), p. 67.
- Coad, P.R., 1985. Rhyolite geology at Kidd Creek a progress report. Canadian Institute of Mining & Metallurgy Bulletin, 78: 70-83.
- Corfu, F., 1993. The evolution of the Southern Abitibi Greenstone Belt in light of precise U-Pb geochronology. *Economic Geology*, **88**: 1323-1340.
- Fisher, D.F., 1970. The origin of the Number Five Zone, Horne mine, Noranda, Quebec. M.Sc. thesis, University of Western Ontario, London, Ontario.
- Gibson, H.L. and Watkinson, D.H. 1990. Volcanogenic massive sulfide deposits of the Noranda cauldron and shield volcano, Quebec. In: The Northwestern Quebec Polymetallic Belt. Edited by: M. Rive, P. Verpaelst, Y. Gagnon, J.M. Lulin, G. Riverin, and A. Simard. Canadian Institute of Mining Metallurgy, Special Volume 43, pp. 119-132.
- Hart, T.R., 1984. The geochemistry and petrogenesis of a metavolcanic and intrusive sequence in the Kamiskotia area, Timmins, Ontario. M.Sc. thesis, University of Toronto, Toronto, Ontario.
- Hogg, N., 1954. Ontario Department of Mines Report, Part 7.
- Hunter, R.H. and Sparks, R.S.J., 1987. The differentiation of the Skaergaard Intrusion. Contributions to Mineralogy & Petrology, 95: 451-461.
- Kirwan, J.L., 1991. Report on: "20 Claim Block, Mountjoy, Jamieson, Godfrey and Jessop Townships". Earth Resource Associates (dated Dec. 27, 1991, submitted to J.L. Bonhomme, K-3 Mining & Development Limited).
- Kirwan, J.L., 1992. Report on: "Godfrey-Mountjoy-Jessop-Jamieson Claims, Drill Holes 92-01, 92-02". Earth Resource Associates (April 27, 1992, for J.L. Bonhomme, K-3 Mining & Development Limited).
- Lesher, C.M., Goodwin, A.M., Campbell, I.H., and Gorton, M.P. 1986. Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences, 23: 222-237.

- Ludden, J., Francis, D., and Allard, G.O., 1984. The geochemistry and evolution of the volcanic rocks of the Chibougamau region of the Abitibi metavolcanic belt. In: Chibougamau -- Stratigraphy and Mineralization. Canadian Institute of Mining and Metallurgy, 34: 20-34.
- MacGeehan, P.J. and MacLean, W.H., 1980. Tholeitic basalt rhyolite magmatism and massive sulphide deposits at Matagami, Quebec. *Nature*, **283**: 153-157.
- MacLean, W.H., 1990. Mass change calculations in altered rock series. *Mineralium Deposita*, **25**: 44-49.
- MacLean, W.H. and Barrett, T.J., 1993. Lithogeochemical methods using immobile elements. *Journal of Exploration Geochemistry*, **48**: 109-133.
- MacLean, W.H. and Hoy, L.H., 1991. Geochemistry of hydrothermally altered rocks at the Horne mine, Noranda, Quebec. *Economic Geology*, **86**: 506-528.
- MacLean, W. H. and Kranidiotis, P., 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. *Economic Geology*, **82**: 951-962.
- McPhee, J. and Allen, R., 1992. Facies architecture of mineralized submarine volcanic sequences: Cambrian Mount Read volcanics, western Tasmania. *Economic Geology*, **87**: 587-596.
- Roobol, M.J. and Hackett, D., 1987. Paleovolcanic facies and exhalite geochemistry: Guides for selecting exploration areas in volcani-sedimentary complexes. *Economic Geology*, **82**: 691-705.
- Ujike, O., and Goodwin, A.M., 1987. Geochemistry and origin of Archean felsic metavolcanic rocks, central Noranda area, Quebec, Canada. *Canadian Journal of Earth Sciences*, **24**: 2551-2567.
- van Hees, E.H., 1987. Report on the Mountjoy property of K-3 Development and Mining Limited.

100.15 99.70 100.33 100.04 100.33 99.68 100.28 100.28 100.37 99.97 99.97 99.71 100.16 100.3¢ 99.14 99.14 100.12 100.45 100.35 100.23 100.23 100.53 100.53 100.00 100.33 100.26 100.31 100.31 100.24 5.05 1.35 1.00 2.00 2.60 3.45 5.15 6.00 2.35 4.45 3.00 2.60 1.95 4.70 1.65 2.05 8.50 8.46 8.46 8.45 3.15 2.35 2.05 1.45 2.25 2.05 2.25 2.05 3.25 7.90 6.35 3.35 4.55 2.00 3.80 2.30 2.30 roi 0.22 0.02 0.02 0.01 0.01 0.20 0.20 0.16 0.11 0.07 0.44 0.18 0.09 0.02 0.02 0.02 0.02 P205 0.43 3.67 1.49 0.85 2.12 2.54 1.71 1.73 2.21 3.86 2.39 0.89 8.45 4.10 1.50 1.66 1.91 0.87 0.87 0.98 1.67 0.35 3.22 2.00 0.76 0.10 1.81 1.04 1.17 1.17 2.63 2.82 2.82 2.82 4.38 5.16 2.34 3.31 4.79 4.50 4.41 2.13 2.81 5.85 4.54 2.66 3.04 3.52 2.14 1.47 1.38 0.14 3.52 Na20 CaO6.87 1.04 0.50 1.55 2.26 2.68 2.68 2.66 4.56 1.91 5.15 6.18 5.58 5.42 1.99 0.50 0.76 1.78 2.41 0.92 0.70 1.56 2.43 2.91 7.14 6.38 6.38 2.09 2.09 1.92 2.09 1.92 2.09 8.64 0.52 0.41 0.29 0.08 0.057 0.45 0.36 0.40 8.62 4.18 3.48 0.32 0.32 1.38 1.38 1.37 4.46 6.54 2.64 4.18 4.18 1.22 0.41 0.15 0.28 0.28 3.73 0.29 0.29 7.23 0.33 1.35 4.35 4.00 1.21 0.05 0.05 0.08 0.09 0.04 0.11 0.15 0.04 MnO 0.10 0.06 0.05 0.04 0.04 0.05 0.05 0.05 0.09 0.20 0.09 0.09 0.09 0.03 0.03 0.17 0.31 0.21 0.12 0.03 0.03 0.06 8.65 15.10 11.10 5.10 6.57 1.93 3.27 2.85 2.27 3.30 3.48 3.09 4.09 13.00 12.10 3.34 3.08 Al203 Fe203 12.4 11.8 11.8 11.1 10.2 14.9 16.8 16.8 16.8 16.8 11.5 12.4 13.7 12.7 10.6 10.2 10.5 10.5 9.6 11.3 11.2 11.0 12.0 10.9 10.9 10.3 13.4 11.2 11.2 11.1 11.1 11.1 11.1 11.8 15.8 15.8 2.570 0.190 0.192 0.164 0.149 0.509 1.330 1.280 0.523 0.468 2.210 2.090 0.556 0.157 0.160 0.150 0.150 0.174 0.184 0.186 0.169 0.198 0.198 0.154 0.500 0.387 0.372 0.372 0.372 0.372 54.4 75.4 76.5 75.5 75.9 66.7 52.0 52.6 68.3 68.0 49.0 52.1 69.3 69.7 81.0 73.3 76.3 Si02 Magnet.-rich mafic Rhyolite B (lo-Zr) Rhyolite B (lo-Zr) Rhyolite B (hi-Zr) Rhyolite B (lo-Zr) Rhyolite B (lo-Zr) Rhyolite B (lo-Zr) Rhyolite B (hi-Zr) Rhyolite B (hi-Zr) Evolved basalt* Evolved basalt* Evolved basalt* Evolved basalt* Basalt (gabbro) **Evolved** basalt Basalt (low-Ti) Evolved basalt Rhyolite A Basalt Basalt 280.4-280.6 293.8-294.0 309.0-309.2 322.4-322.6 25.4-125.6 52.3-252.5 296.8-297.4 Depth (m) 104.0-104.3 110.0-110.2 131.4-131.4 60.8-161.4 86.9-187.2 90.9-191.2 03.5-203.7 129.5-329.7 37.7-138.1 79.7-79.9 90.4-90.6 97.1-97.3 50.1-50.4 8.69-9.69 75.3-75.5 76.5-76.7 14.3-44.5 56.7-56.9 36.8-37.2 10.3-40.7 59.6-60.1 82.8-83.0 Nor 94-2 Nor 94-3 Lab No. Drillhole Nor 94-3 Nor 94-3 Vor 94-3 Nor 94-3 Nor 94-3 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-3 Nor 94-1 27812 27813 27814 27815 27816 27817 27809 27808 27807 27806 27805 27804 27803 27803 27802 27829 27830 27831 27833 27833 27835 27835 27836 27839 27840 27841 27841 27842 27811

Table 1. Chemical composition of volcanic rocks in southwestern Jessop Township (Noranda 1994 drill program).

X/Nb	3.6	3.3	3.8	3.1	3.5	3.7	3.4	3.5	4. c	ν. χ. τ	4.6	3.2	5.4	7.7	3.4	16.0	13.0	6.5	3.7	3.5	4.8	3.8	3.2	3.2	4.1	3.2	4.5	3.8	3.6	3.7	3.6	4.2	3.3	۲. ب 4. ب	1.7	0.0 0.4	C.7
Zr/Nb	11.7	10.9	12.3	12.6	11.6	11.7	11.5	11.3	7.67	21.6	24.3	19.1	19.4	17.9	12.4	81.0	35.0	20.0	20.6	17.6	17.4	19.2	11.7	13.1	13.9	12.8	12.5	13.7	13.3	11.8	11.4	12.3	19.4	22.2	30.0	21.0	7.1.7
A12O3/ Zr	0.033	0.032	0.033	0.035	0.034	0.033	0.035	0.034	0.116	0.035	0.032	0.018	0.070	0.088	0.063	0.207	0.242	0.390	0.025	0.047	0.087	0.028	0.033	0.034	0.033	0.033	0.035	0.065	0.033	0.033	0.033	0.040	0.085	0.151	0.166	0.088	0.090
Zr/Y	3.2	3.3	3.2	4.0	3.3	3.2	3.3	3.2	8.9	2.8	7.2	5.9	4.5	7.8	3.7	5.1	2.7	3.1	5.5	5.0	3.7	5.0	3.6	4.1	3.3	3.9	2.8	3.6	3.7	3.2	3.2	2.9	5.8	4.1	3.9	0.0	
Al203/ Ti02	64.9	6.09	66.3	71.0	55.1	1.99	6.99	6.99	26.8	4.6	4.7	28.7	6.2	30.0	37.9	14.9	2.9	19.5	24.6	5.6	9.9	22.8	67.5	63.8	60.2	68.2	63.7	4.8	0.09	61.5	67.7	68.5	29.3	12.6	11.6	29.1	9.06
Zr	338	348	331	341	325	363	344	306	116	346	365	630	194	179	224	81	35	40	453	264	157	460	317	302	374	319	275	192	346	353	332	258	175	111	06	173	166
Y	105	107	102	85	66	114	103	95	17	8	51	107	43	23	61	16	13	13	82	53	43	92	87	73	112	81	86	53	93	011	104	88	30	27	73	53	2
SP	53	32	27	27	28	3I	30	27	4	16	15	33	10	10	18	_	,	7	22	15	6	24	27	23	27	25	22	14	56	30	29	21	6	S	cc	∞ '	9
Sr	104	114	163	90	109	7.5	96	72	380	194	159	94	168	184	173	237	110	182	54	104	134	9/	87	50	72	52	80	226	74	62	82	104	149	106	157	176	154
Rb	115	82	34	143	123	48	46	20	31	19	13	47	∞	78	20	18		7	43	31	44	107	86	74	117	68	44	14	58	44	40	18	57	62	33	32	55
Ba	487	467	137	1050	435	316	319	373	232	319	293	321	167	746	200	186	8	69	584	263	377	674	857	641	639	791	232	167	939	274	324	113	476	657	205	586	741
Lithology	Rhvolite A	Rhyolite A	Basalt (low-Ti)	Evolved basalt*	Evolved basalt*	Rhyolite B (hi-Zr)	Evolved basalt*	Rhyolite B (lo-Zr)	Rhyolite B (lo-Zr)	Basalt (gabbro)	Magnet,-rich mafic	Basalt	Rhvolite B (hi-Zr)	Evolved hasalt*	Evolved basalt	Rhyolite B (hi-Zr)	Rhyolite A	Evolved basalt	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite B (lo-Zr)	Basalt	Basalt	Rhyolite B (10-Zr)	Rhyolite B (10-Zr)										
Depth (m)	28 1-28 3	37.3-37.5	44.3-44.5	50.7-52.5	56.7-56.9	79.7-79.9	90.4-90.6	97.1-97.3	104.0-104.3	110.0-110.2	131.4-131.4	137.7-138.1	160.8-161.4	186.9-187.2	190.9-191.2	203.5-203.7	288.1-288.3	294.4-294.6	23.5-23.7	125 4-125 6	252.3-252.5	280.4-280.6	293.8-294.0	296.8-297.4	309.0-309.2	322.4-322.6	329.5-329.7	36.8-37.2	40.3-40.7	50.1-50.4	59.6-60.1	8.69-9.69	75.3-75.5	76.5-76.7	82.8-83.0	87.5-87.7	93.4-93.6
Drillhole	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-2	Nor 94-7	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3								
Lab No.	77827	27828	27829	27830	27831	27832	27833	27834	27835	27836	27837	27838	27839	27840	27841	27842	27843	27844	27809	27808	27807	27806	27805	27804	27803	27802	27801	27810	27811	27812	27813	27814	27815	27816	27817	27818	27819

Table 1. Chemical composition of volcanic rocks in southwestern Jessop Township (Noranda 1994 drill program).

Lab No.	Drillhole	Depth (m)	Lithology	SiO2	Ti02	A1203	Fe2O3	MnO	MgO	CaO]	Na20	K20	P205	TOI	Sum
i d	3	000	٠ 1	23.0	1 100	15.1	13.80	0.17	3 65	6.03	2.62	0.92	0.19	2.50	100.15
7.1871	Nor 94-5	99.4-99.0	Dasail 	V.C.C.	1.170	1.7.1	11.00	170	2,47	90.0	306	1.16	0.18	1 85	99.85
27820	Nor 94-3	107.1-107.3	Basait	9.00	1.110	14.7	11.00	t.0	1:0		2 1.0	107	21.0	1 00	00 10
27822	Nor 94-3	116.4-116.6	Basalt	51.8	1.230	14./	14.20	0.21	2.80	07.7	2.71	00.1	7.0	7.7	100.10
27823	Nor 94-3	117.8-118.0	Rhyolite B (lo-Zr)	67.3	0.571	15.7	4.32	0.03	1.32	3.19	4.81	77.	0.12	0.1	100.18
27824	Nor 94-3	123.9-124.1	Basalt	52.2	1.240	14.9	13.80	0.22	3.91	7.22	3.20	0.91	0.16	2.15	99.98
27825	Nor 94-3	130.2-130.4	Basalt	54.0	1.090	14.4	12.70	0.18	3.35	69.9	2.22	0.40	0.18	3.35	98.61
27876	Nor 94-3	132.6-132.8	Rhvolite B (lo-Zr)	66.2	0.560	16.7	3.67	0.04	1.57	2.06	3.23	2.80	0.13	2.95	100.00
27845	Nor 94-3	190.9-191.2	Rhyolite B (lo-Zr)	6.69	0.406	14.4	3.38	0.05	1.26	2.34	3.70	2.25	0.11	2.30	100.19
27846	Nor 94-3	198 1-198 5	Rhvolite B (10-Zr)	69.2	0.431	14.0	3.49	90.0	1.33	2.75	4.22	1.56	0.11	2.35	99.58
27847	Nor 94-3	203.5-203.8	Andesite	61.3	0.877	14.1	7.50	0.16	2.92	4.74	0.22	3.23	0.15	4.95	100.24
27848	Nor 94-3	234.7-234.8	Rhyolite B (med-Zr)	70.9	0.420	13.4	3.95	90.0	1.16	3.07	2.26	2.39	0.09	2.50	100.31
27849	Nor 94-3	243,3-243.5	Rhyolite B (med-Zr)	9.69	0.448	12.9	4.44	0.07	1.08	3.28	4.01	0.98	0.02	1.60	98.57
27850	Nor 94-4	1664-1666	Basalt	51.5	1.160	14.1	14.10	0.22	5.08	8.54	1.16	1.62	0.13	2.15	99.83
77851	Nor 94-4	171 7-171 9	Rhvolite B (Io-Zr)	6.69	0.534	14.4	3.47	90.0	1.50	2.22	5.22	1.23	0.11	1.20	99.91
77857	Nor 94-4	192 3-192 5	Andesite	63.9	0.829	14.4	6.14	0.10	2.75	3.67	3.77	1.93	0.15	1.50	99.23
27853	Nor 94-4	202 2-202 4	Basalt	50.2	1.290	15.0	14.30	0.19	5.45	5.85	1.80	1.15	0.16	4.85	100.31
27854	Nor 94-4	211.6-211.8	Andesite	64.4	0.833	14.4	6.42	0.11	2.68	4.25	4.21	0.47	0.14	2.25	100.23
27859	Nor 94-5	21.1-21.3	Rhyolite A	79.2	0.144	10.1	2.13	0.05	0.20	1.15	1.68	3.42	0.02	1.75	96.66
27860	Nor 94-5	71.0-71.4	Rhyolite A	79.3	0.140	10.0	2.47	0.05	0.29	1.15	3.85	1.22	0.05	1.60	100.15
27861	Nor 94-5	101.5-103.1	Rhyolite A	79.2	0.149	10.6	2.35	0.03	0.34	0.98	1.64	2.99	0.05	1.75	100.16
27862	Nor 94-5	119.4-119.7	Rhyolite A	80.7	0.137	9.6	1.33	90.0	0.16	1.66	1.91	2.34	0.05	2.15	100.12
27863	Nor 94-5	130.7-131.0	Rhyolite A	66.2	0.209	14.6	7.68	0.08	0.88	1.90	0.25	4.34	0.02	4.00	100.31
27864	Nor 94-5	139.5-139.8	Rhyolite A	78.6	0.149	10.5	1.79	90.0	0.22	1.71	1.85	2.73	0.05	2.35	100.08
27865	Nor 94-5	149.5-149.7	Rhyolite A	74.8	0.145	10.9	3.93	90.0	0.20	2.17	4.65	0.96	0.01	2.35	100.24
27866	Nor 94-5	153.7-153.9	Rhyolite A	82.6	0.119	8.7	1.50	0.04	0.10	1.35	2.83	1,46	0.02	1.30	c0.001
27867	Nor 94-5	164.8-165.0	Rhyolite A	75.0	0.166	11.9	4.42	0.07	0.37	0.95	5.61	0.55	0.01	01.10	100.21
27868	Nor 94-5	170.6-170.8	Rhyolite B (hi-Zr)	77.7	0.410	10.8	3.45	90.0	0.26	0.99	4.79	0.87	0.05	0.00	100.09
27869	Nor 94-5	178.7-178.9	Evolved basalt*	47.1	2.570	15.3	14.00	0.24	5.64	6.50	3.38	0.62	0.38	4.70	100.49
27870	Nor 94-5	201.0-201.2	Evolved basalt*	52.2	2.250	13.3	11.90	0.22	5.50	7.39	3.88	0.45	0.36	7.85	100.35
27855	Nor 94-6	63.1-63.3	Dacite	64.9	0.664	13.3	5.86	0.10	1.69	3.98	3.40	1.97	0.10	2.75	98.82
27856	Nor 94-6	188.0-188.2	Dacite	64.9	0.762	13.7	6.57	0.11	1.94	4.68	4.01	0.84	0.14	2.30	100.04
27857	Nor 94-6	243.7-244.1	Bas. andesite	57.4	1.090	14.0	8.72	0.15	2.96	7.47	3.00	0.50	0.18	4.65	100.19
27858	Nor 94-6	251.4-251.7	Rhyolite B (lo-Zr)	6.99	0.505	15.3	3.75	0.07	1.60	3.29	4.54	1.40	0.10	1.80	99.34
Italics ii	ndicate least	Italics indicate least altered rhyolite A samples.	A samples.	60											

Evolved basalt* has P2O5 > 0.3% and TiO2 > 2.0% ('icelandite').

Cr2O3≤0.01% in all samples except 27835 (0.06%) and 27844 (0.04%).

Table 1. Chemical composition of volcanic rocks in southwestern Jessop Township (Noranda 1994 drill program).

Lab No.	. Drillhole	Depth (m)	Lithology	Ba	Rb	Sr	Q Z	X	Zr	A1203/ Ti02	Zr/Y	A1203/	Zr/Nb	Y/Nb
27821	Nor 94-3	99.4-99.6	Basalt	220	24	386	4	27	86	12.7	3.6	0.154	24.5	8.9
27820	Nor 94-3	107.1-107.3	Basalt	291	28	291	5	53	108	13.4	3.7	0.138	21.6	5.8
27822	Nor 94-3	116.4-116.6	Basalt	267	18	314	т	25	94	12.0	3.8	0.156	31.3	8.3
27823	Nor 94-3	117.8-118.0	Rhyolite B (10-Zr)	207	31	222	6	27	175	27.5	6.5	0.090	19.4	3.0
27824	Nor 94-3	123.9-124.1	Basalt	296	25	272	4	22	91	12.0	4.1	0.164	22.8	5.5
27825	Nor 94-3	130.2-130.4	Basalt	112	<u>~</u>	278	3	26	26	13.2	3.7	0.148	32.3	8.7
27826	Nor 94-3	132.6-132.8	Rhyolite B (lo-Zr)	547	84	118	6	17	155	29.8	9.1	0.108	17.2	1.9
27845	Nor 94-3	190.9-191.2	Rhyolite B (lo-Zr)	535	62	202	∞	19	157	35.5	8.3	0.092	19.6	2.4
27846	Nor 94-3	198.1-198.5	Rhyolite B (10-Zr)	382	39	200	9	25	167	32.5	6.7	0.084	27.8	4.2
27847	Nor 94-3	203,5-203.8	Andesite	484	80	96	10	37	205	16.1	5.5	0.069	20.5	3.7
27848	Nor 94-3	234.7-234.8	Rhyolite B (med-Zr)	504	9/	179	16	53	222	31.9	4.2	0.060	13.9	3.3
27849	Nor 94-3	243.3-243.5	Rhyolite B (med-Zr)	272	21	253	19	69	262	28.8	3.8	0.049	13.8	3.6
27850	Nor 94-4	1664-1666	Basalt	295	38	299	4	22	79	12.2	3.6	0.178	19.8	5.5
27851	Nor 94-4	171 7-171 9	Rhyolite B (10-Zr)	250	27	148	0	32	175	27.0	5.5	0.082	19.4	3.6
77850	Nor 94-4	192 3-192 5	Andesite	362	41	230	6	36	190	17.4	5.3	0.076	21.1	4.0
27853	Nor 94-4	202 2-202 4	Basalt	186	25	394	4	23	87	11.6	3.8	0.172	21.8	5.8
77054	Nor 04 4	211 6 211 8	Andesite	130	7	203	12	38	225	17.3	5.9	0.064	18.8	3.2
4C0/7	1701 74-4	211.0-211.0	Allaconto	2	,		1	}						
27859	Nor 94-5	21.1-21.3	Rhvolite A	644	79	65	24	70	293	70.1	4.2	0.034	12.2	2.9
27860	Nor 94-5	71.0-71.4	Rhyolite A	198	31	54	22	06	296	71.4	3.3	0.034	13.5	4.1
27861	Nor 94-5	101.5-103.1	Rhyolite A	527	75	49	25	81	309	71.1	3.8	0.034	12.4	3.2
27862	Nor 94-5	119.4-119.7	Rhyolite A	371	59	9	22	9/	285	669	3.8	0.034	13.0	3.5
27863	Nor 94-5	130.7-131.0	Rhyolite A	787	120	11	31	96	439	6.69	4.6	0.033	14.2	3.1
27864	Nor 94-5	139.5-139.8	Rhyolite A	408	11	83	25	93	319	70.5	3.4	0.033	12.8	3.7
27865	Nor 94-5	149.5-149.7	Rhyolite A	157	15	90	56	102	315	75.2	3.1	0.035	12.1	3.9
27866	Nor 94-5	153.7-153.9	Rhyolite A	308	41	88	21	73	268	72.7	3.7	0.032	12.8	3.5
27867	Nor 94-5	164.8-165.0	Rhyolite A	1.7	10	125	28	107	353	71.7	3.3	0.034	12.6	3.8
27868	Nor 94-5	170.6-170.8	Rhyolite B (hi-Zr)	186	20	85	39	131	699	26.3	5.1	0.016	17.2	3.4
27869	Nor 94-5	178.7-178.9	Evolved basalt*	164	4	153	10	45	217	0.9	4.8	0.071	21.7	4.5
27870	Nor 94-5	201.0-201.2	Evolved basalt*	95	- -	122	6	41	185	5.9	4.5	0.072	20.6	4.6
27855	Nor 94-6	63.1-63.3	Dacite	464	44	233	17	62	260	20.0	4.2	0.051	15.3	3.6
27856	Nor 94-6	188.0-188.2	Dacite	351	53	246	13	43	214	18.0	5.0	0.064	16.5	3.3
27857	Nor 94-6	243.7-244.1	Bas. andesite	226	10	238	6	32	175	12.8	5.5	0.080	19.4	3.6
27858	Nor 94-6	251.4-251.7	Rhyolite B (lo-Zr)	371	35	243	9	21	146	30.3	7.0	0.105	24.3	3.5
Italics in	ndicate least al	Italics indicate least altered rhyolite A samples.	Italics indicate least altered rhyolite A samples.	_										

Evolved basalt* has P2O5 > 0.3% and TiO2 > 2.0% ('icclandite'). Cr2O3 $\le 0.01\%$ in all samples except 27835 (0.06%) and 27844 (0.04%).

Table 1. Chemical composition of volcanic rocks from S.W. Jessop Township and vicinity (Noranda's 1994 drill program).

Sum	100.15 99.70	100.33	100.14	100.00	100.33	100.13	89.66	100.42	100.28	100.03	100.37	99.97	99.71	100.16	100.26	99.33	100.13	100.00	100.33	100.26	71.66	100.31	100.31	99.91	100.24	100.31	100.30	99.14	100.12	100.10	99.81	100.45	100.37	100.35	100.23	100.53
T01	4.45 3.00	2.60	1.95	4.70	1.65	2.05	3.15	8.50	4.65	8.45	3.15	2.35	2.05	1.45	2.25	2.05	2.45	3.25	7.90	6.35	3.35	4.55	2.00	3.80	2.30	2.58	5.05	1.35	7.00	2.00	2.60	3.45	5.15	6.00	2.35	2.30
P205	0.02	0.01	0.02	0.01	0.01	0.01	0.05	0.20	0. 4	0.41	0.05	0.36	0.14	0.08	0.15	0.03	0.05	0.07	0.44	0.18	0.09	0.02	0.02	0.02	0.05	0.02	0.22	0.05	0.02	0.01	0.01	0.11	0.20	0.16	0.11	0.11
K20	3.86	0.89	8.45	4.10	1.50	1.66	1.91	0.94	0.87	0.98	1.67	0.35	3.22	2.00	0.76	0.10	0.19	1.81	1.04	1.17	2.63	4.51	2.82	4.38	5.16	1.63	0.43	3.67	1.49	1.40	0.85	2.12	2.54	1.71	1.33	2.21
Na20	0.11	5.07	0.20	0.11	4.24	4.16	2.50	3.48	3.10	3.36	3.02	3.74	2.79	3.95	4.70	0.89	3.29	2.66	3.04	3.52	2.14	1.47	1.38	0.14	1.82	3.52	2.34	3.31	4.79	4.50	4.28	4.41	2.13	2.81	5.85	4.54
Ca0	2.41	0.70	1.56	2.43	16.0	1.57	2.63	7.14	6.38	7.49	2.83	9.07	5.09	1.92	5.62	7.75	8.64	2.15	6.18	5.58	2.42	1.99	0.50	1.91	0.76	1.78	6.87	1.04	0.50	1.55	2.26	2.68	2.66	4.56	1.91	2.21
MgO	0.52	0.29	0.08	0.57	0.45	0.36	0.40	8.62	4.18	3.48	0.32	4.46	1.38	1.37	4.47	6.54	6.80	1.15	2.64	4.18	1.22	0.41	0.15	0.28	0.18	0.21	3.73	0.29	0.39	0.23	0.33	1.35	4.35	4.00	1.21	1.12
MnO	0.10	0.05	0.04	0.09	0.04	0.05	90.0	0.11	0.20	0.26	0.09	0.28	0.04	0.03	0.13	0.25	0.18	0.17	0.31	0.21	0.12	0.19	0.03	0.07	90.0	90.0	0.42	0.05	0.05	0.08	0.09	0.04	0.11	0.15	0.04	0.03
Fe2O3	3.63	3.38	0.90	3.49	3.56	3.20	3.56	7.05	11.90	11.10	4.63	13.30	3.85	3.59	12.10	37.60	13.50	8.65	15.10	11.10	5.10	6.57	1.93	3.27	2.85	2.22	11.80	2.27	3.30	3.48	3.09	4.09	13.00	12.10	3.34	3.08
A1203	11.3	II.0	12.0	10.9	12.1	II.9	10.3	13.4	12.2	11.7	11.1	13.6	15.8	14.1	16.8	8.5	15.6	11.5	12.4	13.7	12.7	10.6	10.2	12.4	10.5	9.6	12.4	11.4	11.8	II.I	10.2	14.9	16.8	14.9	15.2	15.0
Ti02	0.174	0.166	0.169	0.198	0.183	0.178	0.154	0.500	2.660	2.510	0.387	2.200	0.527	0.372	1.130	2.920	0.800	0.468	2.210	2.090	0.556	0.157	0.160	0.206	0.154	0.150	2.570	0.190	0.192	0.164	0.149	0.509	1.330	1.280	0.523	0.418
SiO2	73.4	76.1	74.6	73.3	75.6	74.9	74.9	50.4	53.6	50.2	73.0	50.2	67.7	71.2	52.1	32.7	48.6	68.0	49.0	52.1	69.3	69.7	81.0	73.3	76.3	78.5	54.4	75.4	76.5	75.5	75.9	66.7	52.0	52.6	68.3	69.4
Lithology	Rhyolite A Rhyolite A	Rhyolite A	Basalt (low-Ti)	Evolved basalt*	Evolved basalt*	Rhyolite B (hi-Zr)	Evolved basalt*	Rhyolite B (lo-Zr)	Rhyolite B (lo-Zr)	Basalt (gabbro)	Magnetrich mafic	Basalt	Rhyolite B (hi-Zr)	Evolved basalt*	Evolved basalt	Rhyolite B (hi-Zr)	Rhyolite A	Evolved basalt	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite B (lo-Zr)	Basalt	Basalt	Rhyolite B (lo-Zr)	Rhyolite B (lo-Zr)									
Depth (m)	28.1-28.3	44.3-44.5	50.7-52.5	56.7-56.9	79.7-79.9	90.4-90.6	97.1-97.3	104.0-104.3	110.0-110.2	131.4-131.4	137.7-138.1	160.8-161.4	186.9-187.2	190.9-191.2	203.5-203.7	288.1-288.3	294.4-294.6	23.5-23.7	125.4-125.6	252.3-252.5	280.4-280.6	293.8-294.0	296.8-297.4	309.0-309.2	322.4-322.6	329.5-329.7	36.8-37.2	40.3-40.7	50.1-50.4	59.6-60.1	8.69-9.69	75.3-75.5	76.5-76.7	82.8-83.0	87.5-87.7	93.4-93.6
Drillhole	Nor 94-1 Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3
Lab No.	27827	27829	27830	27831	27832	27833	27834	27835	27836	27837	27838	27839	27840	27841	27842	27843	27844	27809	27808	27807	27806	27805	27804	27803	27802	27801	27810	27811	27812	27813	27814	27815	27816	27817	27818	27819

X/Nb	3.6	3.3	3.8	3.1	3.5	3.7	3.4	3.5	4.3	3.8	3.4	3.2	4.3	2.3	3.4	16.0	13.0	6.5	3.7	3.5	4.8	3.8	3.2	3.2	4.1	3.2	4.5	3.8	3.6	3.7	3.6	4.2	3.3	5.4	7.7	3.6	2.5
Zr/Nb	11.7	10.9	12.3	12.6	11.6	11.7	11.5	11.3	29.0	21.6	24.3	19.1	19.4	17.9	12.4	81.0	35.0	20.0	20.6	17.6	17.4	19.2	11.7	13.1	13.9	12.8	12.5	13.7	13.3	11.8	11.4	12.3	19.4	22.2	30.0	21.6	27.7
A12O3/ Zr	0.033	0.032	0.033	0.035	0.034	0.033	0.035	0.034	0.116	0.035	0.032	0.018	0.070	0.088	0.063	0.207	0.242	0.390	0.025	0.047	0.087	0.028	0.033	0.034	0.033	0.033	0.035	0.065	0.033	0.033	0.033	0.040	0.085	0.151	0.166	0.088	0.090
Z_{Γ}/Y	3.2	3.3	3.2	4.0	3.3	3.2	3.3	3.2	8.9	5.8	7.2	5.9	4.5	7.8	3.7	5.1	2.7	3.1	5.5	5.0	3.7	5.0	3.6	4.1	3.3	3.9	2.8	3.6	3.7	3.2	3.2	2.9	5.8	4.1	3.9	0.9	11.1
AI203/ Ti02	64.9	6.09	66.3	71.0	55.1	1.99	6.99	6.99	26.8	4.6	4.7	28.7	6.2	30.0	37.9	14.9	2.9	19.5	24.6	5.6	9.9	22.8	67.5	63.8	60.2	68.2	63.7	4.8	0.09	61.5	2.79	68.5	29.3	12.6	11.6	29.1	35.9
Zr	338	348	331	341	325	363	344	306	116	346	365	630	194	179	224	81	35	40	453	264	157	460	317	302	374	319	275	192	346	353	332	258	175	1111	90	173	166
¥	105	107	102	85	66	114	103	95	17	99	51	107	43	23	61	16	13	13	82	53	43	92	87	73	112	8	86	53	93	011	104	88	30	27	23	29	15
Ž	56	32	27	27	28	31	30	27	4	16	15	33	10	10	18	-		7	22	15	6	24	27	23	27	25	22	14	56	30	53	21	6	S	33	∞	9
Sr	104	114	163	90	109	75	90	72	380	194	159	94	168	184	173	237	110	182	54	104	134	9/	87	20	72	52	80	226	74	62	82	104	149	106	157	176	154
₽ P	115	85	34	143	123	48	46	20	31	19	13	47	∞	78	20	18		7	43	31	4	107	86	74	117	68	44	14	58	44	40	18	57	62	33	32	55
Ва	487	467	137	1050	435	316	319	373	232	319	293	321	167	746	200	186	90	69	584	263	377	674	857	641	639	791	232	167	939	274	324	113	476	657	205	289	741
Lithology	Rhvolite A	Rhyolite A	Basalt (low-Ti)	Evolved basalt*	Evolved basalt*	Rhyolite B (hi-Zr)	Evolved basalt*	Rhyolite B (lo-Zr)	Rhyolite B (lo-Zr)	Basalt (gabbro)	Magnetrich mafic	Basalt	Rhyolite B (hi-Zr)	Evolved basalt*	Evolved basalt	Rhyolite B (hi-Zr)	Rhyolite A	Evolved basalt	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite A	Rhyolite B (Io-Zr)	Basalt	Basalt	Rhyolite B (lo-Zr)	Rhyolite B (lo-Zr)										
Depth (m)	28.1-28.3	37.3-37.5	44.3-44.5	50.7-52.5	56.7-56.9	79.7-79.9	90.4-90.6	97.1-97.3	104.0-104.3	110.0-110.2	131.4-131.4	137.7-138.1	160.8-161.4	186.9-187.2	190.9-191.2	203.5-203.7	288.1-288.3	294.4-294.6	23.5-23.7	125.4-125.6	252.3-252.5	280.4-280.6	293.8-294.0	296.8-297.4	309.0-309.2	322.4-322.6	329.5-329.7	36.8-37.2	40.3-40.7	50.1-50.4	59.6-60.1	8.69-9.69	75.3-75.5	76.5-76.7	82.8-83.0	87.5-87.7	93.4-93.6
Drillhole	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-1	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-2	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3								
Lab No.	77827	27828	27829	27830	27831	27832	27833	27834	27835	27836	27837	27838	27839	27840	27841	27842	27843	27844	27809	27808	27807	27806	27805	27804	27803	27802	27801	27810	27811	27812	27813	27814	27815	27816	27817	27818	27819

9.9.9 Bassalt 55.9 1.11 1.14 1.42 1.42 2.42 2.42 1.16 0.17 1.89 9.93 1.11 1.12 1.14 1.42 1.42 2.42 2.43 1.16 0.17 1.99 9.93 12.4.1 Bassalt 55.3 1.12 1.47 1.42 0.22 3.91 7.22 2.17 1.09 0.91 1.44 1.27 0.22 3.92 0.91 0.16 0.17 1.99 9.93 12.3.4 Bassalt 52.2 1.20 1.44 3.83 0.02 2.22 0.40 0.18 3.93 0.93	S5.9 1110 149 1180 0.14 3.0 6.00 3.26 116 0.18 188 55.9 1110 1420 14.1 14.20 0.14 3.0 6.00 3.26 116 0.18 188 55.9 1110 14.9 11.80 0.14 3.2 6.00 3.26 116 0.18 188 55.9 11.90 14.4 14.9 11.80 0.14 3.8 7.2 3.0 0.19 0.10 1.5 0.12 15.0 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	_ # 3		Lithology	Si02	Ti02	A1203	Fe2O3	Mn0	Mg0	CaO	Na20	K20	P205	LOI	Sum (100.15)
51.8 (1-27) 51.8 (1-230) 14.7 (14.20) 0.21 1.380 7.28 7.28 7.10 1.00 0.17 1.20 0.22 1.240 (14.9) 13.80 0.22 3.91 7.22 3.20 0.91 0.16 2.15 0.88 0.22 1.240 14.9 13.80 0.22 3.91 7.22 3.20 0.91 0.16 2.15 0.88 0.20 0.441 12.70 0.18 3.35 6.69 2.22 0.40 0.18 3.35 0.88 0.22 0.431 14.0 3.49 0.06 11.37 2.75 2.75 2.24 0.40 0.18 2.35 0.18 0.25 0.431 14.0 3.49 0.06 11.33 2.75 4.22 1.56 0.11 2.30 0.88 0.431 14.0 3.49 0.06 11.33 2.75 4.22 1.56 0.11 2.30 0.88 0.44 0.42 1.39 0.06 1.16 3.40 0.01 1.38 3.28 0.00 0.01 1.23 0.18 0.25 0.18 0.25 0.18 0.25 0.18 0.25 0.18 0.25 0.19 0.420 0.13 0.44 0.07 1.08 3.28 4.01 0.09 0.25 0.19 0.44 0.00 0.18 3.28 4.01 0.09 0.25 0.19 0.44 0.00 0.19 0.00 0.10 0.24 0.00 0.19 0.00 0.10 0.24 0.00 0.19 0.00 0.10 0.24 0.00 0.19 0.10 0.24 0.10 0.24 0.10 0.10 0.24 0.10 0.10 0.24 0.10 0.24 0.10 0.25 0.10 0.10 0.24 0.10 0.25 0.10 0.10 0.24 0.00 0.10 0.10 0.24 0.00 0.10 0.24 0.00 0.24 0.00 0.24 0.00 0.10 0.24 0.00 0.24 0.24	51.8 (1-24) 14.7 14.20 0.21 3.80 7.28 2.71 1.00 0.11 1.20 0.11 1.20 0.12 1.50 0.22 0.20 0.20 0.21 1.50 0.21 0.20 0.22 0.20 0.20 0.21 0.10 0.12 0.22 0.2	.	9.6 107.3	Basalt Basalt	53.9 55.9	1.190	14.9	11.80	0.17	3.65	6.00	3.26	1.16	0.18	1.85	99.85
SEQ. 1.240 14.9 13.80 0.22 3.91 7.22 3.20 0.91 0.16 2.15 B (lo-Zr) 54.0 1.090 14.4 12.0 0.18 3.35 669 2.22 0.40 0.18 3.35 B (lo-Zr) 69.2 0.560 16.7 3.69 1.20 1.20 0.13 2.22 0.40 0.13 2.35 0.90 0.13 2.35 0.90 0.13 2.95 0.40 0.11 2.34 3.70 2.25 0.11 2.35 0.11 2.35 0.11 2.35 0.13 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.12	SEZ 1.240 149 13.80 0.22 3.91 7.22 3.20 0.91 0.16 2.15 B (lo-Zr) 640 1.090 144 12.70 0.18 3.35 669 2.22 0.40 0.18 3.35 B (lo-Zr) 69.2 0.431 14.0 3.67 0.04 1.57 2.06 2.22 0.40 0.13 2.95 B (lo-Zr) 69.2 0.431 14.0 3.49 0.06 1.33 2.75 4.22 1.56 0.11 2.39 2.95 0.40 0.11 2.34 3.70 2.25 0.01 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35 0.11 2.35	Nor 94-3 116.4- Nor 94-3 117.8-	.116.6	Basalt Rhvolite B (lo-Zr)	51.8 67.3	1.230 0.571	15.7	14.20 4.32	0.21	3.86 1.32	3.19	2.71 4.81	1.22	0.17	1.50	99.19 100.18
S4.0 1.090 144 1270 0.18 3.35 6.69 2.22 0.40 0.18 3.35 B (lo-Zr) 66.2 0.560 16.7 3.67 0.04 1.57 2.06 3.23 2.80 0.13 2.95 B (lo-Zr) 66.2 0.430 14.4 3.38 0.06 1.25 2.06 3.22 2.80 0.13 2.95 B (lo-Zr) 69.2 0.430 14.1 750 0.06 1.35 2.75 4.22 1.56 0.11 2.35 B (lo-Zr) 69.6 0.430 13.4 3.95 0.06 1.16 3.07 2.25 2.39 0.01 2.95 B (med-Zr) 69.6 0.430 1.44 0.07 1.08 3.22 4.01 0.01 2.95 4.01 0.01 2.92 4.74 0.02 2.15 1.00 1.00 2.02 2.39 0.01 2.92 2.75 1.20 0.11 2.93 0.01 2.02 </td <td>94.0 1.090 144 12.70 0.18 3.35 6.69 2.22 0.40 0.18 3.35 B (10-Zr) 66.2 0.566 16.7 3.67 0.04 1.57 2.06 2.22 2.95 0.11 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.33 2.75 4.22 1.56 0.11 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.34 3.70 2.23 3.01 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.16 3.47 0.22 3.23 0.15 4.45 B (10-Zr) 69.2 0.438 1.29 4.44 0.77 1.08 3.28 4.01 0.25 0.25 B (10-Zr) 69.5 0.448 1.29 4.44 0.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.2 0.448 1.29 1.44 0.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.2 0.329 1.44 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.5 0.149 1.01 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 B (10-Zr) 69.5 0.149 1.01 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 B A 79.2 0.144 10.1 2.13 0.05 0.20 1.15 3.85 1.22 0.02 1.75 B A 79.2 0.149 1.00 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 79.2 0.149 1.05 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 79.2 0.149 1.05 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 8.2.6 0.119 8.7 1.30 0.04 0.10 1.35 2.83 1.46 0.02 1.35 B B (10-Zr) 6.49 0.064 1.33 3.45 0.15 0.45 0.45 0.45 B B (10-Zr) 6.49 0.064 1.33 3.40 1.97 0.10 0.25 4.34 0.05 0.45 B B (10-Zr) 6.49 0.064 1.33 3.40 1.40 0.10 0.24 0.25</td> <td></td> <td>.124.1</td> <td>Basalt</td> <td>52.2</td> <td>1.240</td> <td>14.9</td> <td>13.80</td> <td>0.22</td> <td>3.91</td> <td>7.22</td> <td>3.20</td> <td>0.91</td> <td>0.16</td> <td>2.15</td> <td>99.98</td>	94.0 1.090 144 12.70 0.18 3.35 6.69 2.22 0.40 0.18 3.35 B (10-Zr) 66.2 0.566 16.7 3.67 0.04 1.57 2.06 2.22 2.95 0.11 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.33 2.75 4.22 1.56 0.11 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.34 3.70 2.23 3.01 2.35 B (10-Zr) 69.2 0.431 14.0 3.49 0.06 1.16 3.47 0.22 3.23 0.15 4.45 B (10-Zr) 69.2 0.438 1.29 4.44 0.77 1.08 3.28 4.01 0.25 0.25 B (10-Zr) 69.5 0.448 1.29 4.44 0.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.2 0.448 1.29 1.44 0.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.2 0.329 1.44 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 B (10-Zr) 69.5 0.149 1.01 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 B (10-Zr) 69.5 0.149 1.01 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 B A 79.2 0.144 10.1 2.13 0.05 0.20 1.15 3.85 1.22 0.02 1.75 B A 79.2 0.149 1.00 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 79.2 0.149 1.05 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 79.2 0.149 1.05 2.47 0.05 0.29 1.15 3.85 1.24 0.02 1.75 B A 8.2.6 0.119 8.7 1.30 0.04 0.10 1.35 2.83 1.46 0.02 1.35 B B (10-Zr) 6.49 0.064 1.33 3.45 0.15 0.45 0.45 0.45 B B (10-Zr) 6.49 0.064 1.33 3.40 1.97 0.10 0.25 4.34 0.05 0.45 B B (10-Zr) 6.49 0.064 1.33 3.40 1.40 0.10 0.24 0.25		.124.1	Basalt	52.2	1.240	14.9	13.80	0.22	3.91	7.22	3.20	0.91	0.16	2.15	99.98
B (lo-Zr)	B (lo-Zr) 662 0.560 16.7 3.67 0.04 1.57 2.06 3.23 2.80 0.13 2.95 B (lo-Zr) 66.9 0.406 144 3.49 0.05 1.26 2.34 3.25 2.80 0.11 2.30 B (lo-Zr) 69.9 0.406 144 3.49 0.05 1.36 2.34 4.02 2.32 0.11 2.30 B (lo-Zr) 69.9 0.400 134 3.95 0.06 1.16 2.92 4.74 0.22 3.23 0.15 4.95 B (lo-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 E C C C C C C C C C C C C C C C C C C		-130.4	Basalt	54.0	1.090	14.4	12.70	0.18	3.35	6.69	2.22	0.40	0.18	3.35	98.61
B (med-Zr) (e9,9 0,406 14,4 3.38 0,00 1.20 2.34 3.70 2.25 0.11 2.35 (11 2.35 0) 1.20 0.87 14.1 3.49 0,06 1.16 2.92 4.74 0.22 1.56 0.11 2.35 (11 2.35 0) 1.20 0.420 1.34 3.95 0,06 1.16 3.07 2.26 2.39 0,09 2.50 B (med-Zr) (e9,6 0.448 12.9 4.44 0,07 1.08 3.28 4.01 0.98 0,07 1.60 2.50 B (med-Zr) (e9,9 0.534 14,4 3.47 0,06 1.50 2.22 5.22 1.23 0.11 1.20 E (e.9.9 0.534 14,4 3.47 0,06 1.50 2.22 5.22 1.23 0.11 1.20 E (e.9.9 0.534 14,4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 E (e.9.9 0.24) 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	B (lo-Zr) 69.9 0.406 14.4 5.38 0.00 1.26 2.34 5.70 2.25 0.11 2.35 0.88 (loc-Zr) 69.2 0.440 14.4 5.38 0.00 1.26 2.24 5.70 4.22 1.56 0.11 2.35 0.88 (loc-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 1.88 (loc-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 1.88 (loc-Zr) 69.9 0.834 14.4 14.10 0.22 5.08 8.54 1.16 1.62 0.13 2.15 0.15 0.839 0.44 0.07 1.08 2.22 5.22 1.23 0.11 1.20 0.89 0.07 1.60 1.50 0.89 0.44 0.14 0.10 0.27 3.67 3.77 1.93 0.15 1.50 0.14 0.10 0.27 3.67 3.77 1.93 0.15 1.50 0.14 0.10 0.247 0.19 5.45 5.85 1.80 1.15 0.16 4.85 0.44 0.10 0.14 0.10 0.247 0.19 0.15 0.18 0.15 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.15 0.15 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.15 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.15 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.247 0.05 0.20 1.15 0.45 0.00 0.25 0.14 0.10 0.10 0.13 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.10		-132.8	Rhyolite B (lo-Zr)	66.2	0.560	16.7	3.67	0.04	1.57	2.06	3.23	2.80	0.13	2.95	100.00
B (lo-Zr)	B (lo-Zr) 69.2 0.431 14.0 3.49 0.06 1.33 2.75 4.22 1.30 0.11 2.35 B (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 1.8 (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 1.8 (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 1.8 (med-Zr) 69.9 0.534 14.4 3.47 0.06 1.50 2.22 2.22 1.23 0.11 1.20 1.50 1.50 1.50 2.22 1.23 0.11 1.20 1.50 1.44 0.10 2.75 3.67 3.77 1.93 0.15 1.50 1.50 1.20 1.20 1.50 1.50 1.50 1.50 1.50 1.20 1.20 1.20 1.50 1.50 1.20 1.20 1.50 1.50 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.50 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	•	191.2	Rhyolite B (lo-Zr)	669	0.406	14.4	3.38	0.05	1.26	2.34	3.70	C7.7	U.II	00.2	100.19
61.3 0.877 14.1 750 0.16 2.92 4.74 0.22 3.23 0.15 2.95 B (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.09 2.50 B (med-Zr) 69.9 0.428 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.09 2.50 B (deccorr) 69.9 0.834 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 E (deccorr) 69.9 0.832 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.11 1.20 E (deccorr) 69.9 0.833 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.11 1.20 E (deccorr) 69.9 0.833 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.11 1.20 E (deccorr) 69.9 0.833 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.11 1.20 1.20 1.20 1.20 1.20 1.20 1.20	61.3 0.877 14.1 7.50 0.16 2.92 4.74 0.22 3.23 0.15 4.95 EB (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.09 2.50 EB (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.09 2.50 EB (med-Zr) 69.9 0.829 14.4 3.47 0.02 5.08 8.54 1.16 1.62 0.13 2.15 EB (o-Zr) 69.9 0.829 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 EB (o-Zr) 69.9 0.829 14.4 6.14 0.10 2.25 5.82 1.23 0.11 1.20 EB (o-Zr) 69.9 0.829 14.4 6.14 0.10 2.25 5.82 1.23 0.11 1.20 EB (o-Zr) 69.9 0.829 14.4 6.14 0.10 2.25 5.82 1.23 0.11 1.20 EB (o-Zr) 69.9 0.829 14.4 6.14 0.10 2.25 5.82 1.23 0.11 1.20 EB (o-Zr) 69.9 0.829 14.4 6.14 0.10 2.24 3.77 1.93 0.15 1.50 EB (o-Zr) 69.9 0.829 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 EB (o-Zr) 69.9 0.829 14.4 6.42 0.11 2.68 1.15 3.82 1.22 0.02 1.16 EB (o-Zr) 69.9 0.829 14.4 6.42 0.11 2.68 0.29 1.15 3.82 1.22 0.02 1.16 EB (o-Zr) 69.9 0.829 14.4 6.42 0.07 0.37 0.37 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.35		-198.5	Rhyolite B (lo-Zr)	69.2	0.431	14.0	3.49	90.0	1.33	2.75	4.22	1.56	0.11	2.35	80.66
B (med-Zr) 70,9 0,420 13,4 3.95 0.06 1.16 3.07 2.26 2.39 0.09 2.50 cs med-Zr) 69,6 0,448 12,9 4,44 0,07 1.08 3.28 4.01 0,98 0,07 1.60 cs med-Zr) 69,9 0,534 14,4 3.47 0,06 1.50 2.22 5.22 1.23 0.11 1.20 cs med-Zr) 69,9 0,834 14,4 3.47 0,06 1.50 2.22 5.22 1.23 0.11 1.20 cs med-Zr) 69,9 0,839 14,4 6,14 0,10 2.75 3.67 3.77 1.93 0.15 1.50 cs med-Zr 64,4 0,833 14,4 6,42 0.11 2.68 4.25 4.21 0,47 0.14 2.25 cs med-Zr 65,09 1.15 1.20 0.14 1.01 2.13 0,05 0.29 1.15 1.68 3.42 0.02 1.75 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.20 1.15 1.66 1.91 2.34 0.02 2.15 cs med-Zr 65,00 0.140 1.00 2.47 0.05 0.20 1.15 1.65 1.91 2.34 0.02 2.15 cs med-Zr 66,00 0.10 1.35 2.83 1.46 0.02 1.75 cs med-Zr 67,00 0.140 1.10 1.35 2.83 1.46 0.02 1.30 2.35 cs med-Zr 67,00 0.10 1.35 2.83 1.46 0.02 1.30 2.35 cs med-Zr 64,00 0.20 1.33 1.190 0.22 2.85 1.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	B (med-Zr) 70.9 0.420 13.4 3.95 0.06 1.16 3.07 2.26 2.39 0.09 2.50 5.8 (med-Zr) 69.6 0.448 12.9 4.44 0.07 1.08 3.28 4.01 0.98 0.07 1.60 5.9 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 5.02 1.29 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 5.02 1.200 1.50 1.41 0.10 2.75 3.67 3.77 1.93 0.15 1.50 5.02 1.200 1.50 1.44 0.10 2.47 0.05 1.50 2.25 2.85 1.80 1.15 0.16 4.85 5.4 A 792 0.144 10.1 2.13 0.05 0.29 1.15 1.68 3.42 0.02 1.75 5.4 A 792 0.149 10.0 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 5.4 A 792 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 5.4 A 792 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.20 0.02 1.75 5.4 A 792 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.20 0.02 1.75 5.4 A 792 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.20 0.02 1.75 5.4 A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 5.4 A 786 0.149 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.15 5.4 A 786 0.149 10.9 3.93 0.06 0.20 2.17 1.85 2.90 0.02 1.75 5.4 A 750 0.166 1.19 4.42 0.07 0.37 0.35 5.61 0.55 0.01 1.30 2.35 0.04 0.10 1.35 2.83 1.46 0.02 2.35 0.04 0.10 1.35 2.83 1.46 0.02 2.35 0.04 0.10 1.35 2.83 1.46 0.02 2.35 0.04 0.10 1.35 2.83 1.46 0.02 1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00	•	203.8	Andesite	61.3	0.877	14.1	7.50	0.16	2.92	4.74	0.22	3.23	0.15	55.4	100.24
S15 1.160 14.1 14.10 0.22 5.08 8.54 1.16 1.62 0.13 2.15 (6.99 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 (6.99 0.534 14.4 5.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 (6.99 0.534 14.4 5.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 (6.44 0.833 14.4 6.42 0.11 2.68 4.25 1.80 1.15 0.16 4.85 (6.44 0.833 14.4 6.42 0.11 2.68 4.25 1.80 1.15 0.16 4.85 (6.44 0.833 14.4 6.42 0.11 2.68 4.25 1.15 1.68 3.42 0.12 1.75 (6.44 0.833 14.4 6.42 0.11 2.68 4.25 1.15 1.68 3.42 0.02 1.75 (6.44 0.83) 1.44 0.10 2.47 0.05 0.29 1.15 1.68 3.42 0.02 1.75 (6.45 0.149 1.00 2.47 0.05 0.29 1.15 1.80 1.64 2.99 0.02 1.75 (6.45 0.149 1.05 2.47 0.05 0.20 1.15 1.80 1.64 2.99 0.02 1.75 (6.45 0.149 1.05 2.47 0.05 0.22 1.17 1.85 1.80 1.64 1.90 1.45 1.18 0.18 1.18 1.18 1.18 1.18 1.18 1.18	SEGO-Zr) 69.9 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 e 63.9 0.839 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 e 64.4 0.833 14.4 6.42 0.11 2.68 4.25 1.80 1.15 0.16 4.85 e 4.45 0.149 10.0 2.47 0.05 0.29 1.15 1.68 3.42 0.15 1.50 e 64.4 0.833 14.4 6.42 0.11 2.68 4.25 1.80 1.15 0.16 4.85 e A 79.2 0.144 10.1 2.13 0.05 0.29 1.15 1.68 3.42 0.02 1.75 e A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 e A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 e A 78.6 0.149 10.5 1.78 0.06 0.20 1.71 1.85 2.73 0.02 1.75 e A 78.6 0.149 10.5 1.78 0.06 0.20 2.17 1.85 2.73 0.02 1.30 e A 14.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e A 14.1 2.570 1.150 0.04 0.10 1.35 2.83 1.46 0.02 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	Nor 94-3 234.7	-234.8	Rhyolite B (med-Zr)	70.9	0.420	13.4	3.95	0.06	1.16	3.07	2.26	2.39	0.09	2.50	100.31
51.5 1.160 14.1 14.10 0.22 5.08 8.54 1.16 1.62 0.13 2.15 (6.9.) 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 (6.3.) 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 (6.3.) 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.20 (6.4.4 0.83) 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 (6.4.4 0.83) 14.4 6.42 0.11 2.13 0.05 0.20 1.15 1.68 3.42 0.05 1.75 0.14 0.10 0.247 0.05 0.29 1.15 3.85 1.22 0.02 1.75 0.44 0.137 0.14 0.10 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 0.44 0.137 0.14 0.15 0.16 0.19 0.25 4.34 0.02 1.75 0.44 0.19 0.10 0.247 0.05 0.29 1.15 3.85 1.22 0.02 1.75 0.44 0.15 0.14 0.15 0.14 0.05 0.20 1.15 1.88 2.73 0.02 1.75 0.44 0.05 0.20 0.14 0.15 0.14 0.05 0.20 0.14 0.15 0.14 0.05 0.20 0.14 0.15 0.14 0.05 0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1	S15 1.160 14.1 14.10 0.22 5.08 8.54 1.16 1.62 0.13 2.15 (6.9.9 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 e. 6.9.9 0.829 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 (6.9.9 0.829 14.4 0.14.30 0.19 2.45 5.87 1.87 1.93 0.15 1.50 (6.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 (6.4 0.11 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 (6.4 0.833 0.140 0.10 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 (6.4 0.14) 1.0.1 2.13 0.05 0.29 1.15 3.85 1.22 0.02 1.75 (6.4 0.14) 1.0.1 2.13 0.05 0.29 1.15 3.85 1.22 0.02 1.75 (6.4 0.14) 1.0.1 2.13 0.06 0.10 1.15 1.68 3.42 0.02 2.15 (6.4 0.14) 1.0.1 2.13 0.06 0.10 1.15 1.85 2.73 0.02 1.75 (6.4 0.14) 1.0.1 2.13 0.06 0.10 1.15 1.85 2.73 0.02 2.15 (6.4 0.14) 1.0.1 1.19 0.06 0.20 1.71 1.85 2.73 0.02 2.15 (6.4 0.14) 1.0.1 1.10 1.10 1.10 1.10 1.10 1.10 1.		-243.3	Kuyonte B (med-za)	0.60	5	()	ļ.	200	00:1						
B (10-Zr)	B (0-Zr) 69.9 0.534 14.4 3.47 0.06 1.50 2.22 5.22 1.23 0.11 1.20 63.9 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 64.4 0.833 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 6.4 79.2 0.144 10.1 2.13 0.05 0.29 1.15 1.68 3.42 0.02 1.75 6.4 79.2 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 6.4 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 1.75 6.4 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 6.4 80.7 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 1.75 6.4 80.7 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 1.75 6.4 80.7 0.149 10.5 1.79 0.06 0.20 1.71 1.85 2.73 0.02 1.75 6.4 80.7 0.149 10.5 1.79 0.06 0.20 1.71 1.85 2.73 0.02 1.75 6.4 80.7 0.149 10.5 1.79 0.06 0.20 1.71 1.85 2.83 1.46 0.02 2.15 6.4 80.7 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.83 1.46 0.02 2.15 6.4 80.7 0.149 10.8 1.70 0.04 0.04 0.10 1.35 2.83 1.46 0.02 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	Nor 94-4 166.4	-166.6	Basalt	51.5	1.160	14.1	14.10	0.22	5.08	8.54	1.16	1.62	0.13	7.ID	79.83
e 63.9 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 e 50.2 1.290 15.0 14.30 0.19 5.45 5.85 1.80 1.15 0.16 4.85 e 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 e A 79.2 0.144 10.1 2.13 0.05 0.29 1.15 3.85 1.22 0.02 1.75 e A 79.2 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 e A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 1.75 e A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 1.75 e A 82.6 0.149 10.5 1.76 0.06 0.22 1.71 1.85 2.73 0.02 2.15 e A 82.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 e B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e A 77.1 0.410 10.8 3.45 0.06 0.26 0.39 4.79 0.87 0.05 0.60 1.80 lbasalt* 52.2 2.250 13.3 11.90 0.22 5.61 0.35 3.88 0.45 0.36 0.36 6.49 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.19 1.80 0.25 6.49 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.19 1.80 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	e 63.9 0.829 14.4 6.14 0.10 2.75 3.67 3.77 1.93 0.15 1.50 50.2 1.290 15.0 14.30 0.19 5.45 5.85 1.80 1.15 0.16 4.85 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 A 79.2 0.144 10.1 2.13 0.05 0.29 1.15 3.85 1.20 0.02 1.75 A 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.20 0.02 1.75 A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 1.75 A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.01 0.55 0.01 1.30 B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.20 2.17 4.65 0.96 0.01 2.35 B (hi-Zr) 77.7 0.410 10.8 3.45 0.05 0.05 0.05 0.00 Basalt* 52.2 2.250 13.3 11.90 0.22 5.64 6.50 3.38 0.62 0.38 4.70 B (4.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 B (4.0 0.667 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.14 2.30 B (4.0 0.672 1.37 0.37 0.35 0.31 1.90 0.22 5.01 1.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	Nor 94-4 171.7	-171.9	Rhyolite B (lo-Zr)	6.69	0.534	14.4	3.47	90.0	1.50	2.22	5.22	1.23	0.11	1.20	99.91
50.2 1.290 15.0 14.30 0.19 5.45 5.85 1.80 1.15 0.16 4.85 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.17 0.14 2.25 A 79.2 0.144 10.1 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 A 79.2 0.144 10.1 2.13 0.05 0.29 1.15 1.68 3.42 0.02 1.75 A 70.2 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.20 0.02 1.75 A 80.7 0.137 9.6 1.33 0.06 0.20 1.17 1.85 2.34 0.02 1.75 A 80.7 0.145 10.9 3.79 0.06 0.20 1.71 1.85 2.34 0.02 1.75 A 8.6 0.149 10.5 3.79	\$0.2 1.290 15.0 14.30 0.19 5.45 5.85 1.80 1.15 0.16 4.85 6.44 0.833 14.4 6.42 0.11 2.68 4.25 1.80 1.15 0.16 4.85 6.44 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 6.45 0.14 10.1 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 6.4 80.7 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 6.2	Nor 94-4 192.3-	.192.5	Andesite	63.9	0.829	14.4	6.14	0.10	2.75	3.67	3.77	1.93	0.15	1.50	99.23
e 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 e A 79.2 0.144 10.1 2.13 0.05 0.29 1.15 1.68 3.42 0.02 1.75 e A 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.05 e A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 e A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 e A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.15 e A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 e A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.35 e A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.35 e A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.36 e B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.20 2.17 4.65 0.88 0.08 0.00 0.20 0.00 0.00 0.00 0.00	e 64.4 0.833 14.4 6.42 0.11 2.68 4.25 4.21 0.47 0.14 2.25 e A 79.2 0.144 10.1 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 e A 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 e A 79.2 0.149 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 e A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 1.75 e A 80.7 0.137 9.6 1.33 0.06 0.16 1.71 1.85 2.73 0.02 2.15 e A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 e A 75.0 0.146 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e A 75.0 0.146 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e A 75.0 0.146 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 1.30 1.30 1.30 1.30 1.30 1.30 1.30	Nor 94-4 202.2	-202.4	Basalt	50.2	1.290	15.0	14.30	0.19	5.45	5.85	1.80	1.15	0.16	4.85	100.31
AA 79.2 0.144 10.1 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 AA 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.75 AA 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 AA 78.6 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 1.75 AA 78.6 0.137 9.6 0.18 0.08 0.25 1.71 1.85 2.73 0.02 2.15 AA 7.48 0.145 10.9 3.93 0.06 0.22 1.71 1.85 2.73 0.02 2.35 AA 7.48 0.145 10.9 3.93 0.06 0.22 1.71 4.65 0.96 0.01 1.35 2.83 1.46 0.02 1.35	A 79.2 0.144 10.1 2.13 0.05 0.20 1.15 1.68 3.42 0.02 1.75 1.75 0.144 10.1 2.13 0.05 0.29 1.15 3.85 1.22 0.02 1.60 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.60 2.45 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 0.149 10.6 2.35 0.06 0.16 1.66 1.91 2.34 0.02 1.75 0.20 1.46 0.137 0.06 0.20 0.25 1.71 1.85 2.73 0.02 2.35 0.48 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 0.48 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 0.44 0.109 1.9 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 0.44 0.10 1.35 0.04 0.10 1.35 0.89 0.61 0.25 0.01 1.30 0.88 0.140 0.24 0.05 0.24 0.05 0.00 0.20 0.20 0.20 0.20 0.20 0.20	Nor 94-4 211.6	-211.8	Andesite	64.4	0.833	14.4	6.42	0.11	2.68	4.25	4.21	0.47	0.14	2.25	100.23
2.A 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.60 2.6A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 2.4 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 2.4 80.7 0.137 9.6 1.33 0.06 0.08 1.90 0.25 4.34 0.02 2.15 2.4 80.148 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 2.4 4.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.4 4.71 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.35 2.8 1.00 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.80 1.32 1.30 0.24 4.70 0.37 0.95 5.61 0.55 0.01 1.10 1.80 1.30 0.24 0.38 0.62 0.38 4.70 0.38 0.64 0.39 0.664 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 0.38 4.70 0.45 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 0.50 0.50 1.40 0.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 1.50 0.15 0.15	2.A 79.3 0.140 10.0 2.47 0.05 0.29 1.15 3.85 1.22 0.02 1.60 2.9 2.4 7 0.05 0.29 1.15 3.85 1.22 0.02 1.60 2.4 7 0.05 0.34 0.98 1.64 2.99 0.02 1.75 2.4 0.03 0.34 0.98 1.64 2.99 0.02 1.75 2.4 0.02 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 2.4 0.02 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 2.4 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 2.4 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 2.4 0.145 10.9 3.93 0.06 0.20 1.71 1.85 2.73 0.02 2.35 2.4 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.4 0.150 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.96 0.01 2.35 2.4 0.150 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.90 1.30 1.30 1.80 1.80 1.80 0.20 1.33 11.90 0.22 5.50 1.39 3.88 0.45 0.38 4.70 0.60 0.64 0.762 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 0.41 0.90 1.40 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 0.90 0.50 5.50 1.80 0.50 0.18 4.65 0.90 0.50 5.50 1.53 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80 1.80 0.50 0.18 1.80 0.50 0.50 0.18 1.80 0.50 0.50 0.18 1.80 0.50 0.50 0.18 1.80 0.50 0.50 0.50 0.18 1.80 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	Nor 94-5 21.1-	21.3	Rhyolite A	79.2	0.144	10.1	2.13	0.05	0.20	1.15	1.68	3.42	0.05	1.75	96.66
2.A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 2.A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 2.A 66.2 0.209 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 2.15 2.A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 2.A 78.6 0.149 10.5 1.79 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 75.0 0.166 11.9 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 2.A 75.0 0.166 11.9 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 0.60 0.60 0.26 0.99 4.79 0.87 0.05 0.60 0.60 0.60 0.20 0.20 0.38 4.70 0.20 0.20 0.32 0.60 0.20 0.33 0.60 0.20 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.50 0.40 0.40 0.40 0.20 0.50 0.40 0.40 0.40 0.40 0.40 0.40 0.4	2.A 79.2 0.149 10.6 2.35 0.03 0.34 0.98 1.64 2.99 0.02 1.75 2.A 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 2.A 66.2 0.209 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 2.15 2.A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 2.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.35 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.36 2.A 5.A 7.1 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 2.A 5.A 1.000 1.53 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 2.A 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 2.00x 0.50s 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-5 71.0-	71.4	Rhyolite A	79.3	0.140	10.0	2.47	0.05	0.29	1.15	3.85	1.22	0.02	1.60	100.15
80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 80.7 0.139 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 2.15 8.A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 8.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 8.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 8.B (hi-Zr) 77.7 0.410 10.8 3.45 0.10 1.69 3.98 3.40 1.97 0.10 2.75 8.B (hi-Zr) 77.7 0.410 1.50 0.15 2.96 7.47 3.00 0.50 0.18 4.65 8.B (hi-Zr) 6.59 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	e.A. 80.7 0.137 9.6 1.33 0.06 0.16 1.66 1.91 2.34 0.02 2.15 e.A. 66.2 0.209 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 4.00 e.A. 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 e.A. 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e.A. 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 2.35 e.A. 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 e.B. (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 e.B. (a) 0.664 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 e.B. (a) 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 e.B. (a) 0.669 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80		-103.1	Rhyolite A	79.2	0.149	10.6	2.35	0.03	0.34	0.98	1.64	2.99	0.02	1.75	100.16
a A 66.2 0.209 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 4.00 a. A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 a. A 78.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 a. A 78.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 a. B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 1.80 1.80 1.80 1.30 1.40 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1.80 1.80 1.30 0.24 5.64 6.50 3.38 0.62 0.38 4.70 0.80 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 0.40 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 0.80 0.50 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80 1.80 1.80	a A 66.2 0.209 14.6 7.68 0.08 0.88 1.90 0.25 4.34 0.02 4.00 a A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 a A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 a A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 b B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 b b asalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 c B (lo-Zr) 66.9 0.505 15.3 3.75 0.01 1.69 3.98 3.40 1.97 0.10 2.75 c B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-5 119.4	F119.7	Rhyolite A	80.7	0.137	9.6	1.33	0.06	0.16	1.66	1.91	2.34	0.05	2.15	100.12
2.A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 2.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 2.B salt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 2.4 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 2.5 0.15 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 2.5 0.60 0.50 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80 2.15 0.18 4.65	2.A 78.6 0.149 10.5 1.79 0.06 0.22 1.71 1.85 2.73 0.02 2.35 2.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 2.B salt* 52.2 2.250 13.3 11.90 0.24 5.64 6.50 3.38 0.62 0.38 4.70 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.24 5.64 6.50 3.38 0.62 0.38 4.70 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.05 0.10 1.69 3.98 3.40 1.97 0.10 2.75 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.10 2.75 2.85 0.10 1.69 3.98 3.40 1.97 0.10 2.75 2.85 0.03 0.14 0.872 0.15 2.96 7.47 3.00 0.50 0.18 4.65 2.05 0.03 0.05 0.05 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80		7-131.0	Rhyolite A	66.2	0.209	14.6	7.68	0.08	0.88	1.90	0.25	4.34	0.02	4.00	100.31
e.A. 74.8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e.A. 82.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 e.A. 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.30 e.B. (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 e.B. salt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 e.B. (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 e.B. (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.24 5.64 6.50 3.38 0.62 0.38 4.70 e.B. (hi-Zr) 77.7 0.410 10.8 3.45 0.10 1.69 3.98 3.40 1.97 0.10 2.75 e.B. (hi-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	e.A. 74,8 0.145 10.9 3.93 0.06 0.20 2.17 4.65 0.96 0.01 2.35 e.A. 82.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 2.4 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.30 1.30 1.30 1.30 1.30 1.30	•	5-139.8	Rhyolite A	78.6	0.149	10.5	1.79	90.0	0.22	1.71	1.85	2.73	0.05	2.35	100.08
e A 82.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 2.4 2.4 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1.10 1.25 2.5 (1.6 0.25 0.01 1.10 1.10 1.10 1.10 1.10 1.10 1.1	e.A. 82.6 0.119 8.7 1.50 0.04 0.10 1.35 2.83 1.46 0.02 1.30 2.4 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1 1.28	Nor 94-5 149.	5-149.7	Rhyolite A	74.8	0.145	10.9	3.93	0.06	0.20	2.17	4.65	96.0	0.01	2.35	100.24
2.4 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1 2.8 thi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 0.60 1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 eB (10-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	2.A 75.0 0.166 11.9 4.42 0.07 0.37 0.95 5.61 0.55 0.01 1.10 1 2.B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-5 153.	7-153.9	Rhyolite A	82.6	0.119	8.7	1.50	0.04	0.10	1.35	2.83	1.46	0.02	1.30	100.05
e B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	B (hi-Zr) 77.7 0.410 10.8 3.45 0.06 0.26 0.99 4.79 0.87 0.05 0.60 1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 1 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80 1.80	Nor 94-5 164.	8-165.0	Rhyolite A	75.0	0.166	6.11	4.42	0.07	0.37	0.95	5.61	0.55	0.01	1.10	100.21
1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	1 basalt* 47.1 2.570 15.3 14.00 0.24 5.64 6.50 3.38 0.62 0.38 4.70 1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80		5-170.8	Rhyolite B (hi-Zr)	11.7	0.410	10.8	3.45	90.0	0.26	0.99	4.79	0.87	0.05	09.0	100.09
1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e.B (10-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	1 basalt* 52.2 2.250 13.3 11.90 0.22 5.50 7.39 3.88 0.45 0.36 2.85 64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-5 178.	7-178.9	Evolved basalt*	47.1	2.570	15.3	14.00	0.24	5.64	6.50	3.38	0.62	0.38	4.70	100.49
64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 1 651 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 6.5 1 6.0 3.29 4.54 1.40 0.10 1.80	64.9 0.664 13.3 5.86 0.10 1.69 3.98 3.40 1.97 0.10 2.75 64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 1 65.0 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 6.5 1 6.0 3.29 4.54 1.40 0.10 1.80	Nor 94-5 201.()-201.2	Evolved basait*	52.2	2.250	13.3	11.90	0.22	5.50	7.39	3.88	0.45	0.36	2.85	100.35
64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 1 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	64.9 0.762 13.7 6.57 0.11 1.94 4.68 4.01 0.84 0.14 2.30 1 desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-6 63.1	-63.3	Dacite	64.9	0.664	13.3	5.86	0.10	1.69	3.98	3.40	1.97	0.10	2.75	98.82
desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 e.B (1o-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	desite 57.4 1.090 14.0 8.72 0.15 2.96 7.47 3.00 0.50 0.18 4.65 1 e.B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80 1.00 ("celandite")	Nor 94-6 188,	0-188.2	Dacite	64.9	0.762	13.7	6.57	0.11	1.94	4.68	4.01	0.84	0.14	2.30	100.04
e B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	e B (lo-Zr) 66.9 0.505 15.3 3.75 0.07 1.60 3.29 4.54 1.40 0.10 1.80	Nor 94-6 243.	7-244.1	Bas. andesite	57.4	1.090	14.0	8.72	0.15	2.96	7.47	3.00	0.50	0.18	4.65	100.19
	rhyolite A samples.	Nor 94-6 251.	4-251.7	Rhyolite B (lo-Zr)	6.99	0.505	15.3	3.75	0.07	1.60	3.29	4.54	1.40	0.10	1.80	99.34

Evolved basalt* has P2O5 > 0.3% and TiO2 > 2.0% ('icelandite'). Cr2O3 $\le 0.01\%$ in all samples except 27835 (0.06%) and 27844 (0.04%).

Table 1. Chemical composition of volcanic rocks from S.W. Jessop Township and vicinity (Noranda's 1994 drill program).

Al2O3/ Zr/Nb Y/Nb	0.154 24.5	0.138 21.6	0.156 31.3	0.090 19.4	0.164 22.8	0.148 32.3	(t ·	0.108	0.108 0.092 19.6	0.108 17.2 0.092 19.6 0.084 27.8	0.108 17.2 0.092 19.6 0.084 27.8 0.069 20.5	0.108 17.2 0.092 19.6 0.084 27.8 0.069 20.5 0.060 13.9	0.108 0.092 0.084 0.084 27.8 0.069 0.060 13.9 0.049 13.8	0.108 0.092 0.084 0.069 0.069 0.060 13.9 0.049 13.8	0.108 0.092 0.084 0.084 27.8 0.069 0.060 13.9 0.049 13.8 0.178 19.8 0.082 19.4	0.108 0.092 0.084 0.084 27.8 0.069 0.060 13.9 0.049 13.8 0.178 19.8 0.082 19.4 0.076 21.1	0.108 0.092 0.084 0.084 27.8 0.069 0.060 13.9 0.049 13.8 0.178 19.8 0.082 19.4 0.076 21.1 0.172 21.8	0.108 0.092 0.084 0.089 0.069 0.069 0.060 13.9 0.049 13.8 0.178 19.8 0.076 19.4 0.076 21.1 0.172 21.8	0.108 0.092 0.084 27.8 0.069 20.5 0.069 13.9 0.049 13.8 0.049 19.8 0.082 19.4 0.076 21.1 0.172 21.1 0.172 21.1 0.064 18.8	0.108 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.078 19.8 0.082 19.4 0.076 21.1 0.172 21.8 0.064 18.8	0.108 0.092 0.092 19.6 0.084 27.8 0.069 20.5 0.049 13.8 0.078 19.8 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.049 13.9 0.049 13.8 0.082 19.4 0.076 21.1 0.172 21.1 0.172 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 0.076 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 18.8 0.064 0.064 18.8 0.064 0.064 18.8 0.064 0.064 18.8 0.064 0.064 18.8 0.064 0.064 18.8 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.0	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.049 13.9 0.049 13.8 0.076 21.1 0.172 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.076 19.8 0.076 21.1 0.076 19.8 0.076 19.8 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.8 0.064 19.8 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.4 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 19.8 0.076 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 19.8 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.0	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.076 19.8 0.076 21.1 0.172 21.8 0.076 21.1 0.172 21.8 0.074 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.5 0.034 0.034 13.5 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.	0.108 0.092 0.084 0.084 27.8 0.069 0.069 0.049 13.9 0.049 13.8 0.082 19.4 0.076 21.1 0.172 21.8 0.064 18.8 0.064 18.8 0.064 12.2 0.034 12.4 0.034 0.034 12.4 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	0.108 0.092 0.084 0.084 27.8 0.069 0.069 0.049 13.9 0.049 13.8 0.082 19.4 0.076 21.1 0.172 21.1 0.076 21.1 0.076 21.1 0.076 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 13.5 0.034 13.5 0.034 13.5 0.034 13.6 0.034 13.7 0.034 13.8 0.034 13.8 0.034 13.8 0.034 13.8 0.034 13.8 0.034 0.034 13.8 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.034 0.035 0.034 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.03	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.069 0.049 13.8 0.082 0.082 19.4 0.076 21.1 0.172 0.082 19.4 0.076 21.1 0.172 21.8 0.064 18.8 0.064 18.8 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.03	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.069 13.9 0.049 13.8 0.076 19.4 0.076 21.1 0.172 21.8 0.064 18.8 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.4 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.033 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 12.8 0.035 0.035 12.8 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.082 19.4 0.076 19.8 0.076 21.1 0.172 21.8 0.064 18.8 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.6 0.034 12.7 0.034 12.8 0.034 12.8 0.034 12.6 0.034 12.7 0.034 12.7 0.034 12.8 0.034 12.6 0.034 12.7 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.035 0.035 12.8 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.082 19.4 0.076 21.1 0.172 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.033 12.8 0.033 12.8 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.034 12.0 0.035 12.0 0.035 12.0 0.035 12.0 0.035 12.0 0.035 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.017 12.0 0.077 12.0	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.082 19.4 0.076 21.1 0.172 0.034 12.2 0.034 12.2 0.034 12.4 0.034 12.4 0.034 12.4 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.8 0.034 12.0 0.034 12.0 0.034 12.0 0.037 12.0 0.037 0.037 12.0 0.037 0.037 12.0 0.037 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.076 21.1 0.172 0.076 21.1 0.076 21.1 0.076 21.1 0.076 21.1 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.6 0.035 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12.8 0.007 12	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.069 20.5 0.060 13.9 0.049 13.8 0.076 21.1 0.172 0.034 12.2 0.034 12.2 0.034 12.4 0.034 12.4 0.034 12.4 0.034 12.4 0.034 12.8 0.034 12.8 0.034 12.0 0.034 12.0 0.034 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.037 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.077 12.0 0.064 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	0.108 0.092 0.092 0.084 27.8 0.069 20.5 0.060 13.9 0.049 13.8 0.076 13.9 0.076 13.9 0.076 13.9 0.076 13.1 0.076 12.1 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.2 0.034 12.0 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.8 0.037 12.6 0.016 12.7 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087
J203/ Zr/Y Ti02													32.5 6.7 16.1 5.5 31.9 4.2 28.8 3.8																					
Zr A	86	108	94	175	91	76	155	157	167		205	205 222	205 222 262	205 222 262 79	205 222 262 262 79 79	205 222 262 262 79 175 190	205 222 262 262 79 175 190	205 222 262 262 79 175 190 87	205 222 262 262 79 175 190 87	205 222 262 262 79 175 190 87 225	205 222 262 262 175 190 87 225 293	205 222 262 262 175 190 87 225 293 296 309	205 222 262 262 175 190 87 225 293 296 309	205 222 262 262 175 190 87 225 296 309 285 439	205 222 262 262 175 190 87 225 296 309 285 439	205 222 262 262 175 175 190 87 225 293 296 309 285 439 315	205 222 262 262 175 190 87 225 296 309 285 439 315 268	205 222 262 262 175 190 87 225 296 309 285 439 315 315 333	205 222 262 262 79 175 190 87 225 296 309 319 315 268 353	205 222 262 262 179 175 190 87 225 296 309 285 439 319 315 268 353 669	205 222 262 262 175 190 87 225 296 309 319 315 268 333 669 217	205 222 262 262 175 190 87 225 296 309 319 315 268 333 669 669 217 185	205 222 262 262 175 190 87 225 296 309 319 315 285 439 319 315 268 353 669 217 185 210	205 222 262 262 179 175 190 87 225 296 309 285 439 319 315 268 369 217 185 175
Nb Y													16 53 19 69															`	· · · · · · · · · · · · · · · · · · ·	,		11 10	100	,
Sr	386	291	314	222	272	278	118	202	200	06	179		253	253	253 299 148	253 299 148 230	253 299 148 230 394	253 299 148 230 394	253 299 148 230 394 203	253 299 148 230 394 203	253 299 148 230 394 203 65	253 299 148 230 394 203 65 65	253 299 148 230 394 203 65 65 69	253 299 148 230 394 203 65 65 67 77	253 299 148 230 394 203 65 65 77	253 299 148 230 394 203 54 65 60 83	253 299 148 230 394 203 60 60 60 83	253 299 148 230 394 203 65 65 77 77 88 88	253 299 148 230 394 203 65 65 67 77 83 88 88	253 299 148 230 394 203 66 64 49 60 60 77 83 88 88 125	253 259 148 230 394 203 60 60 77 83 90 88 125 85 153	,	·	,
Ba Rb			267 18																													1		
Lithology	Basalt		Basalt	Rhyolite B (lo-Zr)			te B (lo-Zr)				B (med-Zr)					te B (lo-Zr)	te B (lo-Zr)	te B (lo-Zr)	te B (lo-Zr) te	te B (lo-Zr)	te B (lo-Zr) te te te A te A	te B (lo-Zr) te te A te A te A	te B (lo-Zr) te A te A te A te A te A	te B (lo-Zr) te A te A te A te A te A te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A	te B (lo-Zr) te A
Depth (m)	99.4-99.6	107.1-107.3	116.4-116.6	117.8-118.0	123,9-124.1	130.2-130.4	132.6-132.8	190 9-191 2	198.1-198.5	203.5-203.8	234.7-234.8	243.3-243.5		166.4-166.6	166.4-166.6	166.4-166.6 171.7-171.9	166.4-166.6 171.7-171.9 192.3-192.5	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-149.7 153.7-153.9	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0 170.6-170.8	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0 170.6-170.8	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0 170.6-170.8 178.7-178.9 201.0-201.2	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0 170.6-170.8 178.7-178.9 201.0-201.2	166.4-166.6 171.7-171.9 192.3-192.5 202.2-202.4 211.6-211.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0 170.6-170.8 178.7-178.9 201.0-201.2 243.7-244.1
. Drillhole	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3	Nor 94-3		Nor 94-4	Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-5 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5	Nor 94-4 Nor 94-4 Nor 94-4 Nor 94-5 Nor 94-6 Nor 94-6 Nor 94-6 Nor 94-6
Lab No.	27821	27820	27822	27823	27824	27825	27876	27845	27846	27847	27848	27849		27850	27850	27850 27851	27850 27851 27852	27850 27851 27852 27852	27850 27851 27852 27853 27853	27850 27851 27852 27853 27854	27850 27851 27852 27853 27854 27859 27859	27850 27851 27852 27852 27853 27854 27860 27860	27850 27851 27852 27853 27854 27859 27860 27860	27850 27851 27852 27853 27854 27859 27860 27862 27862	27850 27851 27852 27853 27854 27860 27860 27862 27863	27850 27851 27852 27852 27853 27859 27860 27861 27862 27863	27850 27851 27852 27853 27854 27860 27860 27862 27862 27862 27865	27850 27851 27852 27853 27854 27860 27862 27862 27862 27863 27864 27865	27850 27851 27852 27853 27854 27860 27862 27862 27862 27863 27864 27865 27865	27850 27851 27852 27853 27853 27860 27860 27861 27862 27863 27863 27865 27865 27865	27850 27851 27852 27853 27854 27860 27861 27864 27865 27865 27865 27865 27865 27865 27867 27866	27850 27851 27852 27853 27854 27860 27862 27862 27864 27863 27864 27865 27865 27865 27865 27865	27850 27851 27852 27853 27854 27860 27862 27862 27862 27863 27865 27865 27867 27865 27865 27865 27865 27865 27865	27850 27851 27852 27853 27853 27860 27860 27864 27865 27865 27865 27865 27865 27865 27865 27865 27865 27865 27867 27868

Evolved basalt* has P2O5 > 0.3% and TiO2 > 2.0% ('icelandite').

Cr2O3≤0.01% in all samples except 27835 (0.06%) and 27844 (0.04%).

Table 2. Rare-earth-element composition of selected volcanic rocks from S.W. Jessop Township and vicinity.

Comple Hole		Denth	Lithology	Ě	Ö	PZ	Sm	Eu	TP	Yb	Ľ	Th	Ti02	Zr	N _o	Y	Zr/Y
Dampie Mos			â	mdd	mdd	mdd	mdd					mdd	%	mdd	mdd	undd	
Previous dri	illing pu	Previous drilling programs (depth in ft)	oth in ft)														
9711 87-03*	03*	297-299	Evolved basalt*	13.8	35	22	6.14	2.03		4.94	0.75	1.6	3.15	241	16	34	7.1
9714 87-02*		239-241'	Rhyolite A	48.6	111	61	14.60	2.42		0.00	1.52	9.9	0.36	430	42	95	4.5
9715 87-02*		269-271'	Basaltic andesite	10.3	25		4.64	1.48		3.73	0.56	1:0	2.52	149	10	78	5.3
		249'	Rhyolite B (hi-Zr)	56.9	134		22.20	3.51		5.50	2.35	8.2	0.46	734	31	156	4.7
_	عد	1250'	Evolved dacite	41.6	92		12.60	2.60	2.3	9.29	1.40	5.3	0.525	422	20	82	5.1
		739'	Evolved dacite	40.6	95	58	15.60	4.00		1.50	1.67	4.7	0.95	421	24	109	3.9
		154'	Evolved dacite	56.9	125	70	16.50	3.97	2.8	11.80	1.78	5.5	0.85	482	26	119	4.1
		224'	Evolved dacite	37.3	90	99	15.00	2.86	2.9	10.10	1.48	5.5	0.77	501	78	129	3,9
Noranda 19	94 drill	ling program	Noranda 1994 drilling program (depth in m)	Ç	5	5	12.00	2.0	,	00	1 67	0 9	0.183	363	<u>بر</u>	114	3.2
		79.7-79.9	Rhyolite A	21.2	110	20 00	7.40	3.21	1.6	6.00	0.97	2.2	2.660	346	16	99	5.8
		110.0-110.2	Evolved pasalt	17.4) }	3 2	12.60	3.45	74	11 20	1 77	6 9	0.387	630	33	107	5.9
2/838 Nor	Nor 94-1	15/./-138.1	Knyonte B (m-Zr) Phyolite B (lo.7r)	42.2	87	<u> 4</u>	8.63	2.13		6.11	0.93	5.5	0.372	224	18	61	3.7
	Nor 94-1	250.3-121.2	Fvolved basalt	11.2	78	17	4.91	1.87		4.36	99.0	1.0	2.090	157	6	43	3.7
	Nor 94-2	280.4-280.6	Evolved dacite	42.2	92	48	11.20	3.21	2.0	8.82	1.33	5.3	0.556	460	24	92	5.0
	Nor 94-2	329.5-329.7	Rhyolite A	51.0	109	26	12.90	2.20		8.75	1.41	4.8	0.150	275	22	86	2.8
	Nor 94-3	50.1-50.4	Rhyolite A	46.0	100	55	13.10	2.15		10.30	1.56	6.7	0.192	353	30	110	3.2
	Nor 94-3	99.4-99.6	Basalt	21.0	46	23	4.81	1.24		3.04	0.49	2.1	1.190	86	4	27	3.6
	Nor 94-3	117.8-118.0	Rhyolite B (lo-Zr)	30.9	57	56	5.07	0.83		2.47	0.38	4.0	0.571	175	6	27	6.5
	Nor 94-3	198.1-198.5	Rhyolite B (lo-Zr)	17.4	36	19	3.39	1.39		1.77	0.26	1.7	0.431	167	9	25	6.7
	Nor 94-3	234.7-234.8	Rhyolite B (med-Zr)	34.4	70	34	7.19	1.90		5.26	0.79	5.3	0.420	222	16	53	4.2
	Nor 94-4	171.7-171.9	Rhyolite B (lo-Zr)	32.5	64	27	5.44	1.50		3.33	0.52	4.4	0.534	175	6	32	5.5
27865 No	Nor 94-5	149.5-149.7	Rhyolite A	59.7	131	89	16.00	3.43		10.50	1.51	6.3	0.145	315	26	102	3.1
27870 Noi	Nor 94-5	201.0-201.2	Evolved basalt	14.0	33	70	5.28	2.21		4.50	0.70	1.4	2.250	185	6	41	4.5
27858 No	Nor 94-6	251.4-251.7	Rhyolite B (10-Zr)	28.6	56	23	4.13	1.50	0.5	1.98	0.30	3.1	0.505	146	9	21	7.0
Kamiskotia	primitiv	ve basalt (Bar	Kamiskotia primitive basalt (Barrie et al., 1991)	7.3	18.4	11.2	3.7	1:1	0.8	3.4	0.5	9.0	1.36	102	na	30	3.4
Kamiskotia	evolved	1 basalt (Barr	Kamiskotia evolved basalt (Barrie et al., 1991)	14.5	37.2	25.1	7.1	2.3	1.5	5.9	6.0	1.6	2.47	302	па	99	5.0
* from Jesso	op Tow	nship report t	* from Jessop Township report by Barrett and MacLean (1994).	n (1994).		ıpled in	** sampled in 1994 by TJB and LB.	TJB and	ıLB.								

Table 2. Rare-earth-element composition of selected volcanic rocks from S.W. Jessop Township and vicinity.

Hole	Sample	Depth	Lithology	(La)n	(Ce)n	n(bN)	(La)n (Ce)n (Nd)n (Sm)n (Eu)n (Tb)n (Yb)n (Lu)n	(Eu)n	(Tb)n	(Xb)n	(Lu)n	Lan/	Zr/Y
Previou	us drilling J	Previous drilling programs (depth in ft)	pth in ft)										
9711	87-03*	297-299	Evolved basalt*	56.3	54.9	46.4	39.87	35.00	34.7	29.94	29.53	1.9	7.1
9714	87-02*	239-241'	Rhyolite A	198.4	174.0	128.7	94.81	41.72	299	60.61	59.84	3.3	4.5
9715	87-02*	269-271'	Basaltic andesite	42.0	39.2	33.8	30.13	25.52	26.7	22.61	22.05	1.9	5.3
9721	87-03*	249'	Rhyolite B (hi-Zr)	232.2	210.0	173.0	144.16	60.52	104.0	93.94	92.52	2.5	4.7
19967	93-01**	1250'	Evolved dacite	169.8	144.2	109.7	81.82	44.83	61.3	56.30	55.12	3.0	5.1
18223	86-01**	739'	Evolved dacite	165.7	148.9	122.4	101.30	68.97	80.0	69.70	65.75	2.4	3.9
9717	87-03**	154'	Evolved dacite	232.2	195.9	147.7	107.14	68.45	74.7	71.52	70.08	3.2	4.1
9720	87-03**	224'	Evolved dacite	152.2	141.1	118.1	97.40	49.31	77.3	61.21	58.27	2.5	3.9
;	; ;	į	•										
Noranc	da 1994 dri	ling progran	Noranda 1994 druiing program (deptn in m)			,	•	,	,	,		(ć
27832	Nor 94-1	79.7-79.9	Rhyolite A	209.0	172.4	126.6	90.26	55.34	69.3	90.99	65.75	3.2	3.2
27836	Nor 94-1	110.0-110.2	Evolved basalt*	79.2	72.1	61.2	48.05	55.34	42.7	36.36	35.83	2.2	5.8
27838	Nor 94-1	137.7-138.1	Rhyolite B (hi-Zr)	192.2	166.1	113.9	81.82	59.48	64.0	67.88	69.69	2.8	5.9
27841	Nor 94-1	190.9-191.2	Rhyolite B (lo-Zr)	172.2	136.4	86.5	56.04	36.72	34.7	37.03	36.61	4.7	3.7
27807	Nor 94-2	252.3-252.5	Evolved basalt	45.7	43.9	35.9	31.88	32.24	26.7	26.42	25.98	1.7	3.7
27806	Nor 94-2	280.4-280.6	Evolved dacite	172.2	144.2	101.3	72.73	55.34	53.3	53.45	52.36	3.2	5.0
27801	Nor 94-2	329.5-329.7	Rhyolite A	208.2	170.8	118.1	83.77	37.93	61.3	53.03	55.51	3.9	2.8
27812	Nor 94-3	50.1-50.4	Rhyolite A	187.8	156.7	116.0	85.06	37.07	64.0	62.42	61.42	3.0	3.2
27821	Nor 94-3	99.4-99.6	Basalt	85.7	72.1	48.5	31.23	21.38	16.0	18.42	19.29	4.7	3.6
27823	Nor 94-3	117.8-118.0	Rhyolite B (lo-Zr)	126.1	89.3	54.9	32.92	14.31	18.7	14.97	14.96	8.4	6.5
27846	Nor 94-3	198.1-198.5	Rhyolite B (lo-Zr)	71.0	56.4	40.1	22.01	23.97	16.0	10.73	10.24	9.9	2.9
27848	Nor 94-3	234.7-234.8	Rhyolite B (med-Zr)	140.4	109.7	71.7	46.69	32.76	32.0	31.88	31.10	4.4	4.2
27851	Nor 94-4	171.7-171.9	Rhyolite B (lo-Zr)	132.7	100.3	57.0	35.32	25.86	21.3	20.18	20.47	9.9	5.5
27865	Nor 94-5	149.5-149.7	Rhyolite A	243.7	205.3	143.5	103.90	59.14	82.7	63.64	59.45	3.8	3.1
27870	Nor 94-5	201.0-201.2	Evolved basalt	57.1	51.7	42.2	34.29	38.10	26.7	27.27	27.56	2.1	4.5
27858	Nor 94-6	251.4-251.7	Rhyolite B (lo-Zr)	116.7	87.8	48.5	26.82	25.86	13.3	12.00	11.81	9.7	7.0
						,	0	i c			, ,	1,	
Kamisk	cotia primiti	Kamiskotia primitive basalt (Barriet et al.,	riet et al., 1991)	8.67	2.8.8	25.0	25.83	18.79	21.3	20.30	71.20	CJ	5.4
Kamisk	cotia evolve	Kamiskotia evolved basalt (Barriet et al., 1	iet et al., 1991)	59.2	58.3	53.0	46.30	39.66	40.0	35.58	35.43	1.7	5.0
		chondrite		0.245	0.638	0.474	0.154	0.058	0.038	0.165	0.025		

chondrite abundances from Evensen et al. (1978).

Table 3. Chemical composition of volcanic rocks from drillholes K2-87-2 and 87-3, southwestern Jessop township. (on LOI-free basis)

$\boldsymbol{\beth}$	Depth	Sampler	Sampler Number Report	Report	Lithology	Si02	A1203	Ti02	FeO	MnO	CaO	MgO	K20		P205
[11] [44-145]		TIB-LB	30210 30207	Present Present	Rhyolite A Rhyolite A	73.54	12.73 10.95	0.22 0.19	5.04 7.19	0.13 0.32	1.47	0.57	2.30	3.98 3.85	0.02
183'		TJB-LB	30208	Present	Rhyolite B (hi-Zr)	71.68	12.45	0.50	5.60	0.11	1.31	0.38	3.72	4.19	0.05
09-211'		Nor.	9713	Jessop 2	Rhyolite A	71.51	12.66	0.25	4.24	0.24	3.34	0.57	2.39	4.50	0.03
39-241'		Nor.	9714	Jessop 2	Rhyolite A	74.51	12.38	0.36	4.42	0.10	0.92	0.73	2.49	4.05	0.04
69-271'		Nor.	9715	Jessop 2	Basaltic andesite	54.30	14.28	2.52	8.94	0.33	2.66	5.29	3.22	2.20	0.19
79-281		Nor.	16710	Jessop 1	Rhyolite A	75.48	12.70	0.28	1.88	0.07	1.62	0.40	2.09	5.42	0.04
16.2-318.2	_	Nor.	16711	Jessop 1	Rhyolite A	75.09	12.08	0.23	3.35	0.11	1.61	0.41	1.36	5.72	0.03
58-359'		LB	18227	Jessop 2	Rhyolite A	78.67	10.48	0.25	1.74	0.07	1.09	0.15	5.53	1.91	0.03
374.8-376.8'		Nor.	16712	Jessop 1	Rhyolite A	65.36	17.28	0.34	5.83	0.17	1.59	0.48	3.04	5.88	0.03
									,						
25'			9716	Jessop 2	Evolved dacite	72.94	10.43	0.75	6.02	0.20	4.49	0.77	1.59	2.60	0.16
154'		LB	9717	Jessop 2	Evolved dacite	72.77	11.49	0.85	6.20	0.11	2.01	0.55	1.57	4.22	0.17
74'			9718	Jessop 2	Evolved dacite	71.45	11.72	98.0	6.70	0.12	2.31	0.63	1.86	4.11	0.17
89'			9719	Jessop 2	Evolved dacite	73.05	11.77	0.88	3.92	0.00	2.84	0.50	1.72	4.99	0.17
24'			9720	Jessop 2	Evolved dacite	76.32	10.48	0.77	3.40	0.07	2.37	0.42	0.97	5.00	0.16
49'			9721	Jessop 2	Rhyolite B (hi-Zr)	69.23	12.08	0.46	6.80	0.11	4.23	1.18	2.85	2.93	0.00
.59			30209	Present	Rhyolite B (hi-Zr)	75.93	11.15	0.43	4.41	0.08	1.01	0.71	1.68	4.53	0.05
97-299			9711	Jessop 2	Evolved basalt*	52.42	14.22	3.15	16.57	0.27	5.27	4.68	0.97	0.45	0.47
17-319'			9712	Jessop 2	Evolved basalt*	51.36	13.46	3.31	15.02	0.31	6.44	5.94	1.35	0.72	0.50
.89			30210	Present	Rhyolite B (lo-Zr)	70.95	15.46	0.55	3.27	90.0	1.15	1.55	4.56	2.35	0.11
,00			9722	Jessop 2	Dacite	67.11	13.79	0.70	5.72	0.12	5.10	1.53	4.39	1.30	0.13
19-422'			16714	Jessop 1	Rhyolite B (hi-Zr)	68.18	15.13	0.57	3.83	90.0	1.14	1.79	5.63	3.54	0.12
24'			9723	Jessop 2	Evolved basalt clast	51.07	13.01	2.00	15.73	0.14	7.42	3.72	3.95	2.54	0.32
63.5			K2-87-3	Jessop 1	Rhyolite B (lo-Zr)	67.01	15.10	0.54	4.21	0.08	1.95	1.90	86.9	2.06	0.16
.88.5'			K2-87-3	Jessop 1	Rhyolite B (lo-Zr)	66.26	16.89	0.58	4.30	0.08	3.30	1.70	2.32	4.40	0.17

Sampled by: Nor. = Noranda, TJB-LBL = T. Barrett - L. Bonhomme.

^{*} Thin section description in petrography section of this report.

Table 3. Chemical composition of volcanic rocks from drillholes K2-87-2 and 87-3, southwestern Jessop township. (on LOI-free basis)

KC-877-2 111 TBB-LB 90210 Rhyolite A 1.55 100-40 600 61 121 370 80 36 31 887 10.2 KC-877-2 1441-45 TBB-LB 30200 Rhyolite B (Hz-C) 1.55 100-40 100.00 83 85 102 325 66 31 37 89 10 10 393 88 102 329 89 10 394 46 42 44 44 44 48 98 10 394 66 45 43 15 18 18 18 10 10 10 10 28 88 10 394 66 48 10 39 18 18 48 10 10 10 10 10 10 10 10 10 10 10 10 44 44 44 44 44 44 48 48 10 44 44 44 <td< th=""><th>Hole</th><th>Depth</th><th>Sampler</th><th>Sampler Number</th><th>Lithology</th><th>Orig.</th><th>Orig.</th><th>Anh</th><th>Ba</th><th>\mathbf{Sr}</th><th>×</th><th>Zr</th><th>Rb</th><th>NP PP</th><th>Zr/Y</th><th>A1203</th><th>Zr/Nb</th></td<>	Hole	Depth	Sampler	Sampler Number	Lithology	Orig.	Orig.	Anh	Ba	\mathbf{Sr}	×	Zr	Rb	NP PP	Zr/Y	A1203	Zr/Nb
Harman TJB-LB 30210 Rhyolite A 1.55 100.40 100.00 600 61 121 370 80 36 31 38.7 184-145 TJB-LB 30207 Rhyolite A 1.80 100.40 100.00 336 43 102 325 76 38 3.2 38.2 183 TJB-LB 30207 Rhyolite A 1.80 100.40 100.00 336 85 162 374 76 25 3.9 31.3 299-241 Nor. 9714 Rhyolite A 1.80 99.40 100.00 393 88 102 374 76 25 3.9 31.3 299-241 Nor. 9714 Rhyolite A 1.80 99.81 100.00 393 88 102 38 102 34 45 34.2 299-241 Nor. 9714 Rhyolite A 1.80 99.81 100.00 390 492 170 512 69 40 57 54 239-241 Nor. 9714 Rhyolite A 1.80 99.81 100.00 390 492 170 512 69 40 57 54 316-2381 Nor. 16711 Rhyolite A 1.35 99.81 100.00 638 492 170 512 69 40 52 54 318-336.8 Nor. 16712 Rhyolite A 1.35 99.81 100.00 638 208 310 52 54 41 318-336.8 Nor. 16712 Rhyolite A 1.35 99.81 100.00 638 208 201 500 50 50 318-336.8 Nor. 9718 Rhyolite B (hi-Zr) 209 200 200 200 200 200 200 200 200 317-316 Nor. 9711 Rhyolite B (hi-Zr) 200 99.31 100.00 392 30 201	7-2																
144-145 TJB-LB 30207 Rhyolite A 1.80 104.0 100.0 356 43 102 325 76 38 3.2 38 3.2	7	111'	TJB-LB	30210	Rhyolite A	1.55	100.40	100.00	009	19	121	370	80	36	3.1	58.7	10.4
187 TiB-LB 30208 Rhyolite B (hi-Zr) 2.20 9940 100.00 683 85 168 713 90 44 24.7 299-241 Nor. 9713 Rhyolite A 3.30 100.1 100.00 744 6 94 76 24 4.6 25 3.9 51.3 299-241 Nor. 9714 Rhyolite A 1.80 98.30 100.00 74 6 94 96 49 30 46 49 97 46 95 40 9.0 100.00 78 100 99.0 100.00 79 4	6	144-145'	TJB-LB	30207	Rhyolite A	1.80	100.40	100.00	336	43	102	325	9/	38	3.2	58.2	8.6
299-211 Nor. 9713 Rhyolite A 3.30 100.1 100.00 393 88 102 394 76 24 3.5 31.2 239-241 Nor. 9714 Rhyolite A 1.80 98.30 100.00 510 112 28 430 76 24 45 34.2 269-271 Nor. 9715 Basalite andesite 10.00 99.0 112 28 430 76 45 45 34.2 279-281 Nor. 16710 Rhyolite A 1.25 98.6 100.00 590 112 28 45 45.4	-5	183'	TJB-LB	30208	Rhyolite B (hi-Zr)	2.20	99.40	100.00	683	85	168	713	90	46	4.4	24.7	15.6
239-241' Nor. 9714 Rhyolite A 1.80 98.30 100.00 744 66 95 430 76 24 45 34.2 269-271' Nor. 9715 Basalite andesite 10.0 99.10 100.00 510 112 28 149 68 10 5.2 57 279-281' Nor. 16710 Rhyolite A 1.93 99.8 100.00 580 49.2 170 512 69 40 3.0 45.4 316-2318.Z Nor. 16711 Rhyolite A 1.23 98.8 100.00 580 79 14, 423 68 25 50 50.8 338-359 LB 18227 Rhyolite A 2.93 99.6 100.00 638 208 201 520 121 53 2.6 50.8 348-376.R Nor. 16712 Rhyolite A 2.93 99.6 100.00 638 208 201 520 121 53 2.6 50.8 348-376.R Nor. 16712 Rhyolite A 2.93 99.6 100.00 638 208 201 120 50.8 348-376.R Nor. 16712 Rhyolite A 2.93 99.2 100.00 536 97 119 482 40 26 411 51.6 349- 128 9717 Evolved dacite 1.70 99.2 100.00 536 97 119 482 40 26 411 13.6 349- 138 9718 Evolved dacite 1.70 100.2 100.00 536 97 120 501 56 28 39 13.7 349- 138 9720 Evolved dacite 1.70 100.2 100.00 542 120 501 56 28 39 13.7 349- 138 9720 Evolved dacite 1.70 100.2 100.00 542 120 501 56 28 39 13.7 349- 138 9721 Rhyolite B (hi-Zr) 2.60 99.3 100.00 542 120 50 50 50 50 50 50 50 50 50 50 50 50 50	-5	209-211'	Nor.	9713	Rhyolite A	3.30	100.1	100.00	393	88	102	394	9/	25	3.9	51.3	15.8
269-271' Nor. 9715 Basaltic andesite 10.0 99.10 100.00 510 112 28 149 68 10 55.2 57. 279-281 Nor. 16710 Rhyolite A 1.33 98.8 100.00 899 492 170 512 69 40 30 45.4 51. 51. 51. 51. 51. 51. 51. 51. 51. 51.	7	239-241'	Nor.	9714	Rhyolite A	1.80	98.30	100.00	744	46	95	430	9/	24	4.5	34.2	18.0
279-281¹ Nor. 16710 Rhyolite A 1.93 99.8 100.00 809 492 170 512 69 40 3.0 45.4 316-2-318.2 Nor. 16711 Rhyolite A 2.23 98.6 100.00 590 79 141 423 68 25 3.0 52.5 318-359² LB 18227 Rhyolite A 1.35 98.8 100.00 580 201 52 3.0 40.5 40 3.0 45.4 388-359² LB 18227 Rhyolite A 1.35 98.8 100.00 532 20 120 52 3.0 40 40 40 40 40 40 41.5 40	-2	269-271'	Nor.	9715	Basaltic andesite	10.0	99.10	100.00	510	112	28	149	89	10	5.2	5.7	14.6
318-335° LB 18227 Rhyolite A 1.25 98.6 100.00 576 64 65 317 84 21 4.9 41.5 53.6 52.5 3.8 33.8 34.8 374.8-376.8 'Nor. 16712 Rhyolite A 1.35 98.83 100.00 775 64 65 317 84 21 4.9 41.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	7	279-281	Nor.	16710	Rhyolite A	1.93	8.66	100.00	809	492	170	512	69	40	3.0	45.4	12.8
358-359' LB 18227 Rhyolite A 1.35 98.83 100.00 775 64 65 317 84 21 49 41.5 374.8-376.8 Nor. 16712 Rhyolite A 2.93 99.6 100.00 638 208 201 52 31 48.2 40.5 50.8 41.5 50.8 41.5 50.8 41.5 80.8 41.5 80.0 80.2 100.00 638 20.8 10.0 42.2 31.7 48.2 26.5 30.8 30.8 30.8 30.0 30.2 100.00 536 91.1 48.2 40.2 41.1 48.2 40.2 50.8 13.4 13.6 <td>-2</td> <td>316.2-318.2</td> <td>2' Nor.</td> <td>16711</td> <td>Rhyolite A</td> <td>2.23</td> <td>98.6</td> <td>100.00</td> <td>590</td> <td>79</td> <td>141</td> <td>423</td> <td>89</td> <td>25</td> <td>3.0</td> <td>52.5</td> <td>16.9</td>	-2	316.2-318.2	2' Nor.	16711	Rhyolite A	2.23	98.6	100.00	590	79	141	423	89	25	3.0	52.5	16.9
34.8-376.8 Nor. 16712 Rhyolite A 2.93 99.6 100.00 638 208 201 520 121 53 2.6 50.8 1.39 1.25 LB 9716 Evolved dacite 1.95 99.82 100.00 556 97 119 482 40 26 4.1 13.6 13.6 13.9 1.24 LB 9717 Evolved dacite 1.95 99.88 100.00 532 99 129 501 56 28 3.9 13.7 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.4 13.6 13.6 13.4 13.6 13.6 13.4 13.6 13.6 13.4 13.6 13.6 13.4 13.6 13.6 13.6 13.4 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	7-2	358-359'	LB	18227	Rhyolite A	1.35	98.83	100.00	775	49	65	317	84	21	4.9	41.5	15.5
3 125 LB 9716 Evolved dacite 3.90 99.22 100.00 442 91 127 452 33 25 3.6 13.9 154 LB 9717 Evolved dacite 1.70 98.92 100.00 556 97 119 482 40 26 4.1 13.6 174 LB 9718 Evolved dacite 1.70 98.92 100.00 532 99 129 501 56 28 3.9 13.7 189* LB 9719 Evolved dacite 1.70 100.0 513 107 102 444 28 3.9 4.1 13.6 244* LB 9720 Evolved dacite 1.70 100.0 713 189 </td <td>-2</td> <td>374.8-376.</td> <td>8' Nor.</td> <td>16712</td> <td>Rhyolite A</td> <td>2.93</td> <td>9.66</td> <td>100.00</td> <td>638</td> <td>208</td> <td>201</td> <td>520</td> <td>121</td> <td>53</td> <td>2.6</td> <td>50.8</td> <td>8.6</td>	-2	374.8-376.	8' Nor.	16712	Rhyolite A	2.93	9.66	100.00	638	208	201	520	121	53	2.6	50.8	8.6
125 LB 9716 Evolved dacite 3.90 99.22 100.00 442 91 177 452 3.9 3.9 13.0 154* LB 9717 Evolved dacite 1.70 98.92 100.00 556 97 119 482 40 26 4.1 13.6 174* LB 9718 Evolved dacite 1.70 100.0 513 103 121 510 48 29 4.2 13.6 13.6 224* LB 9720 Evolved dacite 1.70 100.2 100.00 513 101 102 44 28 23 4.4 13.6 13.4 249* LB 9720 Evolved dacite 1.70 100.0 713 189 156 44 28 3.9 13.4 13.6 249* LB 9721 Rhyolite B (hi-Zr) 0.85 100.00 518 34 24 13.6 13.6 14.1 25 2	87-3																
154* LB 9717 Evolved dacite 1.70 98.92 100.00 556 97 119 482 40 26 4.1 13.6 174* LB 9718 Evolved dacite 1.95 99.88 100.00 513 103 501 56 28 3.9 13.7 189* LB 9719 Evolved dacite 1.0 100.00 513 103 104 82 24 48 29 13.4 249* LB 9720 Evolved dacite 1.70 100.20 713 189 156 444 28 23 4.4 13.6 249* LB 9721 Rhyolite B (hi-Zr) 2.60 99.31 100.00 518 95 150 444 28 36 4.4 25.2 255* YIB-LB 30209 Rhyolite B (hi-Zr) 1.60 99.5 106 94 44 26 36 44 25 36 4.1 4.2 </td <td>7-3</td> <td>125'</td> <td></td> <td>9716</td> <td>Evolved dacite</td> <td>3.90</td> <td>99.22</td> <td>100.00</td> <td>442</td> <td>16</td> <td>127</td> <td>452</td> <td>33</td> <td>25</td> <td>3.6</td> <td>13.9</td> <td>17.8</td>	7-3	125'		9716	Evolved dacite	3.90	99.22	100.00	442	16	127	452	33	25	3.6	13.9	17.8
174' LB 9718 Evolved dacite 1.95 99.88 100.00 532 99 129 501 56 28 3.9 13.7 189' LB 9719 Evolved dacite 2.10 100.2 100.00 513 102 444 28 29 4.2 13.4 224' LB 9720 Evolved dacite 1.70 100.0 713 189 156 734 85 31 4.7 26.2 249' LB 9721 Rhyolite B (hi-Zr) 0.85 100.00 518 95 156 645 54 36 4.7 26.2 255- TJB-LB 30209 Rhyolite B (hi-Zr) 0.85 100.00 543 218 34 21 26.2 36'' JJB-LB 30210 Rhyolite B (hi-Zr) 1.95 100.00 549 26 26 44 26 27 4.4 25 36'' JJB-LB 30210 Rhyolite B	<u></u> 3	154'		9717	Evolved dacite	1.70	98.92	100.00	556	26	119	482	40	26	4.1	13.6	18.6
189' LB 9719 Evolved dacite 2.10 100.2 100.0 513 121 510 44 29 4.2 13.4 224' LB 9720 Evolved dacite 1.70 100.3 100.00 713 189 156 734 85 31 4.7 13.6 249' LB 9721 Rhyolite B (hi-Zr) 2.60 99.31 100.00 713 189 156 73 85 31 4.7 26.2 265' TJB-LB 30209 Rhyolite B (hi-Zr) 0.85 100.00 518 95 150 645 54 36 4.4 55 317-319' Nor. 9712 Evolved basalt* 4.90 99.50 100.00 429 205 39 262 34 11 4.4 5 368' TJB-LB 30210 Rhyolite B (hi-Zr) 1.95 100.10 1044 44 26 205 11 19.8 400' </td <td><u>ب</u></td> <td>174'</td> <td></td> <td>9718</td> <td>Evolved dacite</td> <td>1.95</td> <td>88.66</td> <td>100.00</td> <td>532</td> <td>66</td> <td>129</td> <td>501</td> <td>99</td> <td>28</td> <td>3.9</td> <td>13.7</td> <td>18.0</td>	<u>ب</u>	174'		9718	Evolved dacite	1.95	88.66	100.00	532	66	129	501	99	28	3.9	13.7	18.0
24' LB 9720 Evolved dacite 1.70 100.3 100.00 396 107 102 444 28 23 4.4 13.6 249' LB 9721 Rhyolite B (hi-Zr) 2.60 99.31 100.00 713 189 156 734 85 31 4.7 26.2 265' TJB-LB 30209 Rhyolite B (hi-Zr) 0.85 100.20 100.00 543 218 34 241 25 26.2 297-299' Nor. 9712 Evolved basalt* 4.30 100.0 429 205 39 262 34 1.7 4.5 368' TJB-LB 30210 Rhyolite B (lo-Zr) 1.95 100.10 1044 44 26 205 110 9 8 4.1 19 400' LB 972 Dacite 2.15 99.8 100.00 214 40 5 145 8 14.1 19.8 419-422'	ξ	189'		9719	Evolved dacite	2.10	100.2	100.00	513	103	121	510	48	53	4.2	13.4	17.8
249' LB 9721 Rhyolite B (hi-Zr) 2.60 99.31 100.00 713 189 156 734 85 31 4.7 26.2 265' TJB-LB 30209 Rhyolite B (hi-Zr) 0.85 100.20 100.00 518 95 150 645 54 36 4.4 25.8 297-299' Nor. 9712 Evolved basalt* 4.90 99.50 100.00 429 205 39 262 39 262 34 12 6.8 4.1 368' TJB-LB 30210 Rhyolite B (lo-Zr) 1.95 100.10 100.00 444 44 26 205 110 9 8 4.1 400' LB 9722 Dacite 2.15 99.7 100.00 2116 400 5 1390 97 272 264 424' LB 8723 Rhyolite B (hi-Zr) 1.57 99.7 100.00 2024 134 27 13<	έ	224'		9720	Evolved dacite	1.70	100.3	100.00	396	107	102	444	28	23	4.4	13.6	19.0
265' TJB-LB 30209 Rhyolite B (hi-Zr) 0.85 100.20 100.00 518 95 150 645 54 36 4.4 25.8 297-299' Nor. 9711 Evolved basalt* 4.30 100.4 100.00 543 218 34 241 22 16 7.1 4.5 317-319' Nor. 9712 Evolved basalt* 4.90 99.50 100.00 429 205 39 262 34 12 6.8 4.1<	ကု	249'		9721	Rhyolite B (hi-Zr)	2.60	99.31	100.00	713	189	156	734	85	31	4.7	26.2	23.5
297-299' Nor. 9711 Evolved basalt* 4.30 100.4 100.00 543 218 34 241 22 16 7.1 4.5 317-319' Nor. 9712 Evolved basalt* 4.90 99.50 100.00 429 205 39 262 34 12 6.8 4.1 368' TJB-LB 30210 Rhyolite B (lo-Zr) 1.95 100.10 100.00 1044 44 26 205 110 9 8 28.2 400' LB 9722 Dacite 2.15 99.82 100.00 2116 400 5 1390 97 20.4 400 5 1390 97 20.4 400 5 1390 97 20.4 100.00 2024 134 27 15.7 20.4 40.4 100.00 2024 134 27 157 9.7 15.7 99.7 100.00 2024 134 27 15.7 99.7 20.0<	ن	265'		30209	Rhyolite B (hi-Zr)	0.85	100.20	100.00	518	95	150	645	54	36	4.4	25.8	17.7
317-319' Nor. 9712 Evolved basalt* 4.90 99.50 100.00 429 205 39 262 34 12 6.8 4.1 368' TJB-LB 30210 Rhyolite B (lo-Zr) 1.95 100.10 100.00 1044 44 26 205 110 9 8 28.2 400' LB 9722 Dacite 2.15 99.82 100.00 904 174 10 145 85 8 14.1 19.8 419-422' Nor. 16714 Rhyolite B (hi-Zr) 1.47 99.7 100.00 2116 400 5 1390 97 272 26.4 424' LB 97.23 Evolved basalt clast 3.90 99.24 100.00 2024 134 27 157 5.9 27.8 463.5' LB K2-87-3 Rhyolite B (lo-Zr) 1.57 99.7 100.00 310 25 175 6.9 29.1	ς'n	297-299'		9711	Evolved basalt*	4.30	100.4	100.00	543	218	34	241	22	16	7.1	4.5	15.1
368' TJB-LB 30210 Rhyolite B (1o-Zr) 1.95 100.10 100.00 1044 44 26 205 110 9 8 28.2 400' LB 9722 Dacite 2.15 99.82 100.00 904 174 10 145 85 8 14.1 19.8 419-422' Nor. 16714 Rhyolite B (hi-Zr) 1.47 99.7 100.00 2116 400 5 1390 97 26.4 424' LB 9723 Evolved basalt clast 3.90 99.24 100.00 2024 134 27 157 5.9 27.8 463.5' LB K2-87-3 Rhyolite B (lo-Zr) 1.57 99.7 100.00 310 250 25 175 6.9 29.1	. -3	317-319'		9712	Evolved basalt*	4.90	99.50	100.00	429	205	39	262	34	12	8.9	4.1	22.1
400' LB 9722 Dacite 2.15 99.82 100.00 904 174 10 145 85 8 14.1 19.8 419-422' Nor. 16714 Rhyolite B (hi-Zr) 1.47 99.7 100.00 2116 400 5 1390 97 26.4 424' LB 9723 Evolved basalt clast 3.90 99.24 100.00 850 244 30 194 84 13 6.5 6.5 463.5' LB K2-87-3 Rhyolite B (lo-Zr) 1.57 99.7 100.00 310 250 27 175 6.9 27.8 488.5' LB K2-87-3 Rhyolite B (lo-Zr) 2.65 97.7 100.00 310 250 25 175 6.9 29.1	ć,	368'		30210	Rhyolite B (lo-Zr)	1.95	100.10	100.00	1044	44	26	205	110	6	∞	28.2	22.2
419-422' Nor. 16714 Rhyolite B (hi-Zr) 1.47 99.7 100.00 2116 400 5 1390 97 272 26.4 424' LB 9723 Evolved basalt clast 3.90 99.24 100.00 850 244 30 194 84 13 6.5 6.5 463.5' LB K2-87-3 Rhyolite B (lo-Zr) 1.57 99.7 100.00 2024 134 27 157 5.9 27.8 488.5' LB K2-87-3 Rhyolite B (lo-Zr) 2.65 97.7 100.00 310 250 25 175 6.9 29.1	43	400,		9722	Dacite		99.82	100.00	904	174	10	145	85	∞	14.1	19.8	17.6
424' LB 9723 Evolved basalt clast 3.90 99.24 100.00 850 244 30 194 84 13 6.5 6.5 463.5' LB K2-87-3 Rhyolite B (lo-Zr) 1.57 99.7 100.00 2024 134 27 157 5.9 27.8 488.5' LB K2-87-3 Rhyolite B (lo-Zr) 2.65 97.7 100.00 310 250 25 175 6.9 29.1	ς'n	419-422		16714	Rhyolite B (hi-Zr)		7.66	100.00	2116	400	5	1390	26		272	26.4	
463.5' LB K2-87-3 Rhyolite B (10-Zr) 1.57 99.7 100.00 2024 134 27 157 5.9 27.8 488.5' LB K2-87-3 Rhyolite B (10-Zr) 2.65 97.7 100.00 310 250 25 175 6.9 29.1	ç	424'	ГB	9723	Evolved basalt clast		99.24	100.00	850	244	30	194	84	13	6.5	6.5	15.2
488.5' LB K2-87-3 Rhyolite B (Io-Zr) 2.65 97.7 100.00 310 250 25 175 6.9	က	463.5'	LB	K2-87-3	Rhyolite B (lo-Zr)		7.66	100.00	2024	134	27	157			5.9	27.8	
	ç	488.5'	LB	K2-87-3	Rhyolite B (lo-Zr)		<i>L.</i> 76	100.00	310	250	25	175			6.9	29.1	

Sampled by: Nor. = Noranda, TJB-LBL = T. Barrett - L. Bonhomme.

* Thin section description in petrography section of this report.

TABLE 4. Calculated mass changes for Rhyolite A, S.W. Jessop Township and vicinity (Noranda's 1994 drilling program).

*Anh. Sum 95.33 96.34 97.39 98.10 94.96 98.33 97.76	98.11 95.78 97.65 97.50 97.57 98.79 97.75	98.00 98.30 98.17 97.84 95.54 97.55 97.50 98.60	97.39 98.33 97.76 98.79 97.75
Sum 100.15 99.70 100.33 100.14 100.00 100.33 100.13 99.68	99.91 100.24 100.31 99.14 100.12 100.10	99.96 100.15 100.16 100.12 100.31 100.24 100.05	100.33 100.33 100.13 100.12 100.10 100.20
4.45 3.00 2.60 1.95 4.70 1.65 2.05 3.15	2.00 3.80 2.30 2.58 1.35 1.00 2.00 2.60	1.75 1.60 1.75 2.15 4.00 2.35 2.35 1.30	2.60 1.65 2.05 1.00 2.00 1.86 0.59
P205 0.02 0.01 0.02 0.01 0.01 0.02	0.02 0.02 0.02 0.02 0.02 0.02 0.01	0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01	0.01 0.01 0.01 0.02 0.01 0.01
3.86 2.39 0.89 8.45 4.10 1.50 1.66 1.91	2.82 4.38 5.16 1.63 3.67 1.49 1.40 0.85	3.42 1.22 2.99 2.34 4.34 2.73 0.96 1.46	0.89 1.50 1.66 1.49 1.39 0.29
Na20 0.11 2.69 5.07 0.20 0.11 4.24 4.16 2.50	1.38 0.14 1.82 3.52 3.31 4.79 4.50	1.68 3.85 1.64 1.91 0.25 1.85 4.65 2.83 5.61	5.07 4.24 4.16 4.79 4.50 4.55 0.38
CaO 2.41 0.92 0.70 1.56 2.43 0.91 1.57 2.63	0.50 1.91 0.76 1.78 1.04 0.50 1.55 2.26	1.15 1.15 0.98 1.66 1.90 1.71 2.17 1.35	0.70 0.91 1.57 0.50 1.05 0.49
MgO 0.52 0.41 0.29 0.08 0.57 0.45 0.36	0.15 0.28 0.18 0.21 0.29 0.39 0.33	0.20 0.29 0.34 0.16 0.22 0.20 0.10	0.29 0.45 0.36 0.23 0.34 0.09
MnO 0.10 0.05 0.04 0.09 0.09 0.09 0.05	0.03 0.07 0.06 0.06 0.05 0.05 0.08	0.05 0.03 0.06 0.08 0.06 0.06 0.04	0.05 0.05 0.05 0.08 0.05
3.32 3.27 3.04 0.81 3.20 2.88 3.20	1.74 2.94 2.56 2.00 2.04 2.97 3.13 2.78	2.22 2.22 2.11 1.20 6.91 1.61 3.54 1.35 3.98	3.04 3.20 2.88 2.97 3.04 0.13
3.69 3.69 3.63 3.38 0.90 3.49 3.56	1.93 3.27 2.85 2.22 2.22 3.30 3.48 3.09	2.13 2.47 2.35 1.33 7.68 1.79 3.93 1.50	3.38 3.56 3.20 3.30 3.48 0.14
AI2O3 11.30 11.20 12.00 10.90 12.10 11.90 11.90	10.20 12.40 10.50 9.56 11.40 11.80 11.10	10.10 9.99 10.60 9.57 14.60 10.50 10.90 8.65	11.00 12.10 11.90 11.80 11.10 11.58
TiO2 0.174 0.184 0.166 0.169 0.198 0.183 0.178 0.178	0.160 0.206 0.154 0.150 0.190 0.192 0.164 0.149	0.144 0.140 0.149 0.137 0.209 0.145 0.145 0.116	0.166 0.183 0.178 0.192 0.164 0.177
73.40 75.10 76.10 74.60 73.30 75.60 74.90	81.00 73.30 76.30 78.50 75.40 76.50 75.50	79.20 79.30 79.20 80.70 66.20 78.60 74.80 82.60 75.00	76.10 75.60 74.90 76.50 75.50 75.72
Sample 27827 27828 27829 27830 27831 27833 27833	27804 27803 27802 27801 27811 27812 27813 27813	27859 27860 27861 27862 27863 27864 27865 27866 27866	27829 27832 27833 27812 27813
Depth (m) 28.1-28.3 37.3-37.5 44.3-44.5 50.7-52.5 56.7-56.9 79.7-79.9 90.4-90.6	296.8-297.4 309.0-309.2 322.4-322.6 329.5-329.7 40.3-40.7 50.1-50.4 59.6-60.1 69.6-69.8	Nor 94-5 21.1-21.3 27859 79.20 Nor 94-5 71.0-71.4 27860 79.30 Nor 94-5 101.5-103.1 27861 79.20 Nor 94-5 119.4-119.7 27862 80.70 Nor 94-5 130.7-131.0 27863 66.20 Nor 94-5 139.5-139.8 27864 78.60 Nor 94-5 149.7 27865 74.80 Nor 94-5 153.7-153.9 27866 82.60 Nor 94-5 164.8-165.0 27867 75.00	Least altered rhyolite A Nor 94-1 44.3-44.5 Nor 94-1 79.7-79.9 Nor 94-1 90.4-90.6 Nor 94-3 50.1-50.4 Nor 94-3 59.6-60.1 Average (5) St. Dev. (5)
Baw data Nor 94-1	Nor 94-2 Nor 94-2 Nor 94-2 Nor 94-3 Nor 94-3 Nor 94-3	Nor 94-5	Least altered Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-3 Nor 94-3

TABLE 4. Calculated mass changes for Rhyolite A, S.W. Jessop Township and vicinity (Noranda's 1994 drilling program).

p. 54

Sample SiO2 TiO2 Al203 FeO MnO MgO CaO Na2O CAO LOI 27827 76.99 0.183 11.85 3.48 0.10 0.55 2.53 0.12 4.05 0.02 27828 778.28 77.95 0.170 11.29 3.22 0.05 0.36 0.25 5.27 2.99 0.01 27830 76.44 0.170 11.29 3.25 0.05 0.36 0.25 0.19 0.01 1 27831 76.44 0.170 11.23 3.26 0.04 0.08 1.59 0.01 1 1 1 2.09 0.06 2.66 0.01 1							ſ	l						()			•
28.1-28.3 27827 76.99 0.183 11.85 3.48 0.10 0.55 2.53 0.12 4.05 0.02 100.00 37.3-75 27828 7755 0.191 11.63 3.48 0.10 0.55 2.79 2.48 0.01 100.00 37.3-25 27829 78.14 0.170 11.29 3.12 0.05 0.49 0.08 1.59 0.29 8.10 0.00 100.00 56.7-56 27839 76.69 0.183 11.48 3.24 0.04 0.08 1.59 0.29 8.14 0.02 11.48 1.22 0.04 0.08 1.59 0.29 8.14 0.02 11.00 0.05 56.7-56 2.28 0.12 4.32 0.01 100.00 56.7-56 27833 76.69 0.185 1.143 3.26 0.04 0.06 2.56 0.12 4.32 0.01 100.00 56.7-56 27833 76.69 0.185 1.143 3.26 0.04 0.06 0.25 0.12 4.32 0.01 100.00 56.7-56 27833 76.69 0.185 1.17 0.03 0.14 0.04 0.04 0.05 0.14 0.04 0.04 0.04 0.04 0.04 0.04 0.04	ole	Depth (m)	Sample	Si02	Ti02	A1203	Ĕ	_				(a20	K20	P205	roi	Sum	Al pre/ Al alt
28.1-28.3 27827 7699 0.183 11.85 3.48 0.10 0.55 2.53 0.12 4.05 0.00 10.00 43.3-45.5 27828 7735 11.85 11.85 3.43 0.06 0.43 0.52 2.48 0.01 10.00 43.3-45.5 27820 77.35 11.29 3.12 0.05 0.32 2.19 0.97 100.00 56.7-56.9 27831 7.10 11.23 0.12 1.23 0.05 0.03 0.07 2.48 0.01 100.00 95.7-56.9 27831 7.10 1.148 3.31 0.06 0.25 0.13 1.00 0.07 0.07 0.00 1.00 0.00 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.02 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00	<u>nalize</u>	d to 100%															
90.5-35. 27830	94-1	28.1-28.3	27827	76.99	0.183	11.85	ന്					0.12	4.05	0.02		100.00	0.997
44.3-44.2 2.7829 78.44 0.170 11.29 3.12 0.09 0.72 2.1 0.91 0.00 100.00 56.7-56.5 2.7830 7.604 0.148 0.123 0.04 0.46 0.26 0.12 4.32 0.01 100.00 56.7-56.9 2.7831 7.602 11.48 0.123 0.04 0.46 0.26 0.12 4.32 0.01 100.00 90.4-50.6 2.7833 7.622 11.24 3.26 0.04 0.46 0.26 0.12 4.31 1.33 0.01 100.00 90.14.50 1.00 100.00 100.00 90.14.50 1.00 100.00 90.14.50 1.00 100.00 90.14.50 1.00 100.00 90.14.50 1.00 100.00 90.14.50 1.00 100.00 100.00 100.00 90.14.50 1.00 90.14.50 1.00 90.14.50 1.00 90.14.50 1.00 90.14.50 1.00 90.14.50 1.00 90.14.50 1.00 9	74-1	31.3-31.5	27878	56.77	0.191	11.63						2.79	2.48	0.01	,	100.00	1.017
507-525 27830 76.44 0.172 12.23 0.08 1.59 0.20 1.66 0.02 1.00 507-525 27831 77.19 0.148 1.23 0.04 0.08 1.56 0.12 4.32 0.01 100.00 79.77-79 27832 77.19 0.186 1.217 2.95 0.05 0.37 1.61 4.26 1.70 0.01 100.00 90.4-906 27833 76.26 0.182 1.217 2.95 0.05 0.37 1.61 4.21 1.30 0.01 100.00 90.4-906 27833 76.52 0.182 10.17 3.33 0.06 0.42 2.73 1.00 0.01 100.00 206-300-2002 27834 77.88 0.163 10.40 1.77 0.02 0.15 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1	74-1	44.3-44.5	27829	78.14	0.170	11.29	3.1	_	_	_	•	5.21	0.91	0.01	7	00.00	1.047
567-569 27831 7719 0.209 11.48 3.31 0.09 0.65 2.56 0.12 4.32 0.01 100.00 967-769 27832 76.89 0.186 12.31 3.26 0.04 0.46 0.45 0.17 0.01 100.00 90.4-706 27834 77.88 0.160 10.71 2.32 0.05 0.37 161 4.26 1.79 0.01 100.00 90.4-906 271-97.3 27834 77.88 0.160 10.71 0.37 161 4.26 1.79 0.00 296.8-297.4 27804 82.56 0.163 10.40 1.77 0.03 0.15 4.26 1.79 0.00 390.3-30.2 27804 82.56 0.163 10.40 1.77 0.03 0.15 1.50 0.00 390.3-30.2 27804 82.56 0.163 10.75 2.63 0.05 0.18 1.87 1.00 0.00 302.4-32.6 27804] 4-1	50.7-52.5	27830	76.04	0.172	12.23	Ö.					0.20	8.61	0.02		100.00	0.966
79,7799 27832 76,89 0.186 1231 326 0.04 0.46 0.93 431 1.53 0.01 100.00 94,906 27833 7662 0.182 12.17 2.95 0.05 437 1.61 426 1.79 0.01 100.00 97,1-973 27834 77.88 0.160 10.71 3.33 0.06 1.29 0.02 1.99 0.02 100 0.00 296.8-297, 2 27802 2.06 0.18 0.78 1.86 2.79 0.00 0.15 0.71 1.00 0.01 1.00 0.00 0.15 0.73 1.00 0.00 0.15 0.00 0.00 0.15 0.00 0.00 0.15 0.00 0.00 0.15 1.00 0.00 0.00 0.15 1.00 0.00 0.00 0.15 1.00 0.00 0.15 0.00 0.00 0.15 1.00 0.00 0.15 1.00 0.00 0.15 1.00 0.0)4-1	56.7-56.9	27831	77.19	0.20	11.48	.3					0.12	4.32	0.01		100.00	1.030
90.4-906 27833 76.62 0.182 1217 2.95 0.05 0.37 1.61 4.26 1.70 0.01 100.00 4 97.1-97.3 27834 77.88 0.160 10.71 3.33 0.06 0.42 2.73 2.60 1.99 0.02 100.00 296.8-297.4 27804 82.56 0.163 10.40 1.77 0.03 0.15 1.79 0.02 100.00 320.4-32.6 27803 0.215 12.95 3.07 0.07 0.29 1.99 0.15 4.00 320.4-32.6 27802 1.040 1.77 0.07 0.29 1.99 0.15 100.00 320.4-32.9 27802 1.015 0.15 1.040 1.77 0.07 0.08 0.18 0.78 1.87 0.02 100.00 320.4-32.9 27801 0.15 0.15 0.15 0.15 0.05 0.18 0.78 1.87 0.02 100.00 320.4-32.0	1-7	79.7-79.9	27832	76.89	0.186	12.31	3.2	_	_	_	•	1.31	1.53	0.01	7	00.00	196.0
97.1-97.3 27834 77.88 0.160 1071 3.33 0.06 0.42 2.73 2.60 1.99 0.02 100.00 296.8-297.4 27804 82.56 0.163 10.40 1.77 0.03 0.15 0.51 1.41 2.87 0.02 100.00 309.0-309.2 27803 76.53 0.215 1.295 3.07 0.07 0.29 1.99 0.15 4.57 0.02 100.00 329.5-329.7 27802 7.24 0.154 9.80 2.05 0.06 0.18 0.78 4.57 0.02 100.00 322.4-32.6 27812 77.24 0.195 1.168 2.05 0.06 0.18 1.67 3.07 100.00 322.4-50.4 27811 77.24 0.194 1.194 3.01 0.05 0.34 1.85 1.67 0.02 100.00 30.5-6.0.1 2781 77.24 0.194 1.134 3.01 0.03 1.17 1.17 3.0	I-46	90.4-90.6	27833	76.62	0.182	12.17	2.9	_	_	,	•	1.26	J.70	0.01	I	00.00	0.971
296.8-2974 27804 82.56 0.163 1040 1.77 0.03 0.15 0.51 1.41 2.87 0.02 309.0-309.2 27803 76.53 0.215 12.95 3.07 0.07 0.29 1.99 0.15 4.57 0.02 322.4-322.6 27802 78.13 0.158 10.75 2.63 0.06 0.18 4.57 0.02 100.00 322.4-322.6 27802 7.813 0.154 9.80 2.05 0.06 0.18 1.86 5.28 0.02 100.00 40.3-40.7 27811 77.28 0.195 11.68 2.09 0.05 0.39 1.07 3.39 3.76 0.02 100.00 501-50.4 27812 77.24 0.194 11.94 3.01 0.05 0.39 1.07 3.39 3.76 0.02 100.00 501-50.4 27812 77.24 0.158 11.36 3.01 0.05 0.39 1.57 1.85 1.50	94-1	97.1-97.3	27834	77.88	0.160	10.71	3.					2.60	1.99	0.02		100.00	1.104
3090-309.2 27803 76.53 0.215 1.295 3.07 0.07 0.29 1.99 0.15 4.57 0.00 322.4-322.6 27802 78.13 0.158 10.75 2.63 0.06 0.18 0.78 1.86 5.28 0.02 100.00 322.4-322.6 27802 77.24 9.80 0.154 9.80 2.05 0.06 0.18 0.78 1.86 5.28 0.02 100.00 40.3-40.7 27811 77.24 0.194 11.94 3.01 0.05 0.30 0.17 3.39 3.76 0.02 100.00 50.1-50.4 27812 77.24 0.168 11.36 3.01 0.05 0.39 0.51 4.85 1.51 0.02 100.00 50.6-60.1 27813 77.24 0.168 11.36 3.00 0.03 4.42 0.88 0.01 100.00 50.6-60.1 27813 7784 10.53 1.25 0.09 0.34 4.23 <td>94-2</td> <td>296.8-297.4</td> <td>27804</td> <td>82.56</td> <td>0.163</td> <td>10.40</td> <td>-</td> <td></td> <td></td> <td></td> <td>).51</td> <td>1,41</td> <td>2.87</td> <td>0.02</td> <td></td> <td>100.00</td> <td>1.137</td>	94-2	296.8-297.4	27804	82.56	0.163	10.40	-).51	1,41	2.87	0.02		100.00	1.137
3224-3226 27802 78.13 0.158 10.75 2.63 0.06 0.18 0.78 1.86 5.28 0.02 100.00 329.5-329.7 27801 80.51 0.154 9.80 2.05 0.06 0.22 1.83 3.61 1.67 0.02 100.00 50.1-50.4 27812 77.44 0.194 11.94 3.01 0.05 0.39 0.51 4.85 1.51 0.02 100.00 50.5-60.8 27813 77.24 0.168 11.36 3.20 0.08 0.24 1.59 4.60 1.43 0.01 100.00 59.6-60.8 27814 78.32 0.154 10.53 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 100.5-10.14 27860 80.67 0.142 10.15 2.26 0.05 0.30 1.17 3.25 1.24 0.02 100.00 101.5-103.1 27861 80.68 0.152 10.80 2.15 0.03 0.35 1.00 1.67 3.05 0.02 100.00 101.5-103.1 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 139.5-139. 27864 80.57 0.153 10.76 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 139.5-139. 27864 80.57 0.153 10.76 1.25 0.06 0.10 1.77 1.79 1.95 2.39 0.02 100.00 139.5-139. 27864 80.57 0.153 10.76 1.25 0.06 0.10 1.77 1.79 0.95 0.02 100.00 139.5-139. 27864 80.57 0.153 10.76 1.78 0.06 0.12 1.77 1.99 0.26 4.54 0.02 100.00 149.5-149.7 27862 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 149.5-149.7 27865 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 164.8-165.0 27867 7.6.01 0.168 12.06 12.00 0.35 1.07 0.37 0.96 5.69 0.56 0.01 100.00 164.8-165.0 27867 7.6.01 0.168 12.06 0.18 0.35 1.07 4.64 1.42 0.01 100.00	94-2	309.0-309.2	27803	76.53	0.215	12.95	.3				66:1	0.15	4.57	0.02		100.00	0.913
329.5-329.7 27801 80.51 0.154 9.80 2.05 0.05 0.22 1.83 3.61 1.67 0.02 10000 40.3-40.7 27811 77.28 0.195 11.68 2.09 0.05 0.39 0.51 4.85 1.57 0.00 10000 50.1-50.4 27812 77.24 0.194 11.94 3.01 0.05 0.39 0.51 4.85 1.51 0.02 10000 50.6-60.1 27813 77.24 0.194 11.94 3.01 0.05 0.24 1.59 4.42 0.88 0.01 100.00 69.6-69.8 27814 77.24 0.154 10.33 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 211-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 3.42 0.88 0.01 100.00 110-7.14 27860 80.67 0.146 1.05 1.25	94-2	322.4-322.6	27802	78.13	0.158	10.75	2.				3.78	1.86	5.28	0.02		100.00	1.099
40.3-40.7 27811 77.28 0.195 11.68 2.09 0.05 0.30 1.07 3.39 3.76 0.02 100.00 50.1-50.4 27812 77.24 0.194 11.94 3.01 0.05 0.39 0.51 4.85 1.51 0.02 100.00 59.6-60.1 27813 77.24 0.168 11.36 3.20 0.08 0.24 1.59 4.60 1.43 0.01 100.00 69.6-69.8 27814 78.32 0.154 10.53 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 21.1-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 1.71 3.42 0.88 0.01 100.00 110.5-103.1 27850 80.82 0.147 10.16 2.26 0.05 0.30 1.17 3.42 0.88 0.01 100.00 110.5-103.1 27861 80.88 0.146 10.16	94-2	329.5-329.7	27801	80.51	0.154	9.80	2.				1.83	3.61	1.67	0.02		100.00	1.206
50.1-50.4 27812 77.44 0.194 11.94 3.01 0.05 0.39 0.51 4.85 1.51 0.02 100.00 59.6-60.1 27813 77.24 0.168 11.36 3.20 0.08 0.24 1.59 4.60 1.43 0.01 100.00 69.6-69.8 27814 78.32 0.154 10.53 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 21.1-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 1.71 3.49 0.02 100.00 110-71.4 27860 80.67 0.142 10.16 2.26 0.05 0.30 1.17 3.49 0.02 100.00 110-7.14 27860 80.67 0.140 9.78 1.22 0.05 0.30 1.17 3.49 0.02 100.00 110-7.13.10 27862 80.29 0.216 1.70 1.95 2.39 0.02	94-3	40.3-40.7	27811	77.28	0.195	11.68	2.	_			1.07	3.39	3.76	0.02		100.00	1.012
596-60.1 27813 77.24 0.168 11.36 3.20 0.08 0.24 1.59 4.60 1.43 0.01 100.00 696-69.8 27814 78.32 0.154 10.53 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 21.1-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 3.49 0.02 100.00 71.0-71.4 27860 80.67 0.142 10.16 2.26 0.05 0.30 1.17 3.92 1.24 0.02 100.00 119.4-119.7 27861 80.68 0.152 10.80 2.15 0.03 1.17 3.92 1.24 0.02 100.00 130.7-131.0 27862 82.48 0.140 9.78 1.22 0.06 0.15 1.99 0.26 1.00 1.00 1.03 1.00 1.03 1.00 1.03 1.03 1.00 1.03 1.00 1.00	94-3	50.1-50.4	27812	77.44	0.194	11.94	3.	_		_).51	4.85	1.51	0.02		100.00	0.600
69.6-69.8 27814 78.32 0.154 10.53 2.87 0.09 0.34 2.33 4.42 0.88 0.01 100.00 21.1-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 1.71 3.49 0.02 100.00 71.0-71.4 27860 80.67 0.142 10.16 2.26 0.05 0.30 1.17 3.92 1.24 0.02 100.00 101.5-103.1 27861 80.68 0.152 10.80 2.15 0.03 0.35 1.00 1.67 3.05 0.02 100.00 1194.119.7 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 130.5-139.8 27864 80.57 0.153 10.76 1.65 0.06 0.23 1.75 1.90 2.80 0.01 100.00 140.5-149.7 27865 76.71 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 153.7-153.9 27866 83.77 0.121 8.77 0.04 0.10 1.37 2.87 1.48 0.02 100.00 164.8-165.0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 4.03 0.35 1.07 4.64 1.42 0.01 100.00	34-3	59.6-60.1	27813	77.24	0.168	11.36	3.		-		1.59	4.60	1.43	0.01		100.00	1.041
21.1-21.3 27859 80.82 0.147 10.31 1.96 0.05 0.20 1.17 1.71 3.49 0.02 100.00 71.0-71.4 27860 80.67 0.142 10.16 2.26 0.05 0.30 1.17 3.92 1.24 0.02 100.00 101.5-103.1 27861 80.68 0.152 10.80 2.15 0.03 0.35 1.00 1.67 3.05 0.02 100.00 119.4-119.7 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 139.5-139.8 27864 80.57 0.153 10.76 1.65 0.06 0.21 2.23 4.77 0.98 0.01 100.00 153.7-153.9 27866 83.77 0.158 12.06 <td< td=""><td>94-3</td><td>8.69-9.69</td><td>27814</td><td>78.32</td><td>0.154</td><td>10.53</td><td>2.</td><td>_</td><td>-</td><td>• •</td><td>2.33</td><td>4.42</td><td>0.88</td><td>0.01</td><td></td><td>100.00</td><td>1.123</td></td<>	94-3	8.69-9.69	27814	78.32	0.154	10.53	2.	_	-	• •	2.33	4.42	0.88	0.01		100.00	1.123
71.0-71.4 27860 80.67 0.142 10.16 2.26 0.05 0.30 1.17 3.92 1.24 0.02 100.00 101.5-103.1 27861 80.68 0.152 10.80 2.15 0.03 0.35 1.00 1.67 3.05 0.02 100.00 119.4-119.7 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 130.7-131.0 27864 80.57 0.153 10.76 1.65 0.06 0.21 1.99 0.26 4.77 0.98 0.01 100.00 149.5-149.7 27865 83.77 0.121 8.77 1.37 0.96 5.69 0.56 0.01 100.00 164.8-165.0 27867 76.01 0.168 1.80 1.80 <td< td=""><td>94-5</td><td>21.1-21.3</td><td>27859</td><td>80.82</td><td>0.147</td><td>10.31</td><td>=======================================</td><td></td><td></td><td></td><td>1.17</td><td>1.71</td><td>3.49</td><td>0.02</td><td></td><td>100.00</td><td>1.147</td></td<>	94-5	21.1-21.3	27859	80.82	0.147	10.31	=======================================				1.17	1.71	3.49	0.02		100.00	1.147
101.5-103.1 27861 80.68 0.152 10.80 2.15 0.03 0.35 1.00 1.67 3.05 0.02 100.00 119.4-119.7 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 139.5-139.8 27864 80.57 0.153 10.76 1.65 0.06 0.23 1.75 1.90 2.80 0.02 100.00 149.5-149.7 27865 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 164.8-165.0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 164.8-165.0 27867 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	71.0-71.4	27860	80.67	0.142	10.16	2.	_			1.17	3.92	1.24	0.02		100.00	1.163
119.4-119.7 27862 82.48 0.140 9.78 1.22 0.06 0.16 1.70 1.95 2.39 0.02 100.00 130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 139.5-139.8 27864 80.57 0.153 10.76 1.65 0.06 0.23 1.75 1.90 2.80 0.02 100.00 149.5-149.7 27865 76.72 0.149 11.18 3.63 0.06 0.21 2.23 4.77 0.98 0.01 100.00 153.7-153.9 27866 83.77 0.158 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 164.8-165.0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 red-rhyolite A Average (5) 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1	34-5	101.5-103.1	27861	80.68	0.152	10.80	2.	Ī			00:1	1.67	3.05	0.02		100.00	1.095
130.7-131.0 27863 69.29 0.219 15.28 7.23 0.08 0.92 1.99 0.26 4.54 0.02 100.00 139.5-139.8 27864 80.57 0.153 10.76 1.65 0.06 0.23 1.75 1.90 2.80 0.02 100.00 149.5-149.7 27865 76.72 0.149 11.18 3.63 0.06 0.21 2.23 4.77 0.98 0.01 100.00 153.7-153.9 27866 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 164.8-165.0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 redrhyolite A Average (5) 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	119.4-119.7	27862	82.48	0.140	9.78	1.	Ī			1.70	1.95	2.39	0.02		100.00	1.208
8 27864 80.57 0.153 10.76 1.65 0.06 0.23 1.75 1.90 2.80 0.02 100.00 .7 27865 76.72 0.149 11.18 3.63 0.06 0.21 2.23 4.77 0.98 0.01 100.00 .9 27866 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 .0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 5 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	130.7-131.0	27863	69.29	0.219	15.28	7.	Ī			66.1	0.26	4.54	0.02		100.00	0.774
7 27865 76.72 0.149 11.18 3.63 0.06 0.21 2.23 4.77 0.98 0.01 100.00 9 27866 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 5 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	139.5-139.8	27864	80.57	0.153	10.76	1.				1.75	1.90	2.80	0.02		100.00	1.098
9 27866 83.77 0.121 8.77 1.37 0.04 0.10 1.37 2.87 1.48 0.02 100.00 10 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 10 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	149.5-149.7	27865	76.72	0.149	11.18	e,	_			2.23	4.77	0.98	0.01		100.00	1.057
.0 27867 76.01 0.168 12.06 4.03 0.07 0.37 0.96 5.69 0.56 0.01 100.00 5) 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01 100.00	34-5	153.7-153.9	27866	83.77	0.121	8.77	1.	_	_		1.37	2.87	1.48	0.02		100.00	1.347
5) 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01	94-5	164.8-165.0	27867	76.01	0.168	12.06	4.			_	96.0	5.69	0.56	0.01		100.00	0.980
5) 77.26 0.180 11.82 3.11 0.06 0.35 1.07 4.64 1.42 0.01	altere	d rhvolite A															
		Average (5)		77.26	0.180	11.82	n		-		1.07	4.64	1.42	0.01		100.00	

TABLE 4. Calculated mass changes for Rhyolite A, S.W. Jessop Township and vicinity (Noranda's 1994 drilling program).

Sum	99.72 101.67 104.65 96.63 102.97 96.05 97.10 110.36 113.70 91.30 109.93 120.55 114.69 114.69 114.69 114.69 116.31 109.47 120.84 77.35	134.73
P205	0.02 0.01 0.001 0.00 0.00 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.00	0.03
K20	4.04 2.52 0.96 8.32 4.45 1.65 2.19 3.27 4.18 5.81 2.02 2.02 1.49 0.99 4.00 1.44 3.33 2.89 3.51 3.61	2.00
Na20	0.12 2.84 5.45 0.20 0.12 4.14 4.13 2.87 2.87 2.87 2.87 4.35 4.35 4.35 4.36 0.20 0.20 2.08 5.04	3.87
CaO	2.52 0.97 0.75 1.54 2.64 0.89 1.56 3.02 0.58 1.82 0.86 2.20 1.08 0.50 1.05 1.05 1.05 1.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2	1.84
MgO	0.54 0.31 0.08 0.62 0.44 0.36 0.46 0.27 0.20 0.20 0.39 0.39 0.24 0.38 0.23 0.23 0.23	0.14
MnO	0.10 0.05 0.04 0.04 0.00 0.07 0.07 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00	0.05
FeO	3.47 3.45 3.27 0.80 3.41 3.13 2.86 3.68 3.68 3.68 2.97 2.12 2.97 3.33 3.22 2.63 2.63 2.63 2.63 2.63 3.63 3	3.95
Fe203		
AI203	11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82	11.82
Ti02	0.182 0.194 0.178 0.166 0.215 0.177 0.185 0.196 0.197 0.197 0.197 0.197 0.197 0.197 0.196 0.166 0.166	0.163
SiO2 Al anchor)	76.78 79.26 81.77 73.48 79.49 73.85 74.40 85.95 93.86 69.87 85.89 97.06 97.06 97.63 80.40 87.95 92.69 93.83 88.32 99.67 88.32 88.32 88.32 88.32 88.32 88.32 88.33 88.33 88.32 88.33 88.33 88.33 88.33 88.33 88.34 88.35 88.36 88.36 88.36 88.37 88.38 88	112.87
Sample on (based on	27827 27828 27829 27829 27830 27831 27833 27833 27833 27833 27802 27802 27802 27813 27812 27813 27814 27860 27860 27860 27860	27866 27867
Drillhole Depth (m) Sample SiO: Reconstituted composition (based on Al anchor	28.1-28.3 37.3-37.5 44.3-44.5 50.7-52.5 56.7-56.9 79.7-79.9 90.4-90.6 97.1-97.3 296.8-297.4 309.0-309.2 322.4-322.6 329.5-329.7 40.3-40.7 50.1-50.4 59.6-60.1 69.6-69.8 21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0	153.7-153.9 164.8-165.0
Drillhole Reconstitu	Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-2 Nor 94-2 Nor 94-2 Nor 94-2 Nor 94-3 Nor 94-3 Nor 94-3 Nor 94-3 Nor 94-5	Nor 94-5 Nor 94-5

TABLE 4. Calculated mass changes for Rhyolite A, S.W. Jessop Township and vicinity (Noranda's 1994 drilling program).

∆Sum (includes traces)	-0.28 1.67 4.65 -3.37 2.97 -3.95 -2.90 10.36	13.70 -8.70 9.93 20.55 1.16 -1.04 4.09 12.30	14.69 16.31 9.47 20.84 -22.65 9.81 5.73 34.73
ΔP2O5	0.01 0.00 0.00 0.01 0.00 0.00 0.00	0.02 0.01 0.02 0.02 0.01 0.00 0.00	0.02 0.02 0.01 0.02 0.01 0.00 0.00
Δ Κ 20 ⁷	2.62 1.11 -0.46 6.91 3.03 0.05 0.23	1.85 2.76 4.39 0.60 2.39 0.08 0.07	2.59 0.03 1.92 1.47 2.10 1.66 -0.38 0.58
Ma20	-4.53 -1.81 0.80 -4.45 -4.53 -0.50 -0.51	-3.05 -4.51 -2.60 -0.29 -1.21 0.15 0.15	-2.68 -0.09 -2.82 -2.29 -2.29 -2.56 0.40 -0.78
ΔCaO ΔNa20	1.45 -0.10 -0.32 0.47 1.57 -0.18 0.49	-0.49 0.75 -0.21 1.13 0.01 0.57 0.58 1.55	0.28 0.29 0.03 0.98 0.47 0.86 1.29 0.78
ΔMgO	0.19 0.08 -0.04 -0.27 0.27 0.09 0.01	-0.18 -0.08 -0.05 -0.05 0.04 -0.11 0.03	-0.12 -0.01 0.03 -0.15 0.36 -0.10 -0.13
ΔMnO	0.05 0.01 0.00 -0.02 0.04 -0.02 -0.01 0.01	-0.02 0.01 0.02 0.02 -0.01 0.03 0.05	0.00 -0.02 0.02 0.01 0.01 0.01 0.00
ΔFeO	0.37 0.34 0.16 -2.31 0.30 0.02 -0.25 0.57	-1.09 -0.30 -0.22 -0.64 -0.99 -0.13 0.23	-0.86 -0.48 -0.75 -1.63 -1.29 -1.29 -1.26 -1.26
Δ ΑΙ2Ο3	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00
Δ Ti02	0.002 0.014 -0.002 -0.014 0.035 -0.001 -0.003	0.005 0.016 -0.007 0.005 0.017 0.012 -0.006 -0.008	-0.012 -0.015 -0.014 -0.011 -0.012 -0.023 -0.018
∆ SiO2	-0.49 1.99 4.51 -3.78 2.22 -3.41 -2.87 8.69	16.60 -7.39 8.63 19.79 0.91 -0.63 3.13	15.42 16.56 11.05 22.41 -23.67 11.22 3.85 35.61
Sample %	27827 27828 27829 27830 27831 27833 27833	27804 27803 27802 27801 27811 27812 27812 27813	27859 27860 27861 27862 27863 27864 27865 27865
Drillhole Depth (m) Mass changes (in weight %)	28.1-28.3 37.3-37.5 44.3-44.5 50.7-52.5 56.7-56.9 90.4-90.6 97.1-97.3	296.8-297.4 309.0-309.2 322.4-322.6 329.5-329.7 40.3-40.7 50.1-50.4 59.6-60.1 69.6-69.8	21.1-21.3 71.0-71.4 101.5-103.1 119.4-119.7 130.7-131.0 139.5-139.8 149.5-149.7 153.7-153.9 164.8-165.0
Drillhole <u>Mass chang</u>	Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1 Nor 94-1	Nor 94-2 Nor 94-2 Nor 94-2 Nor 94-3 Nor 94-3 Nor 94-3	Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5 Nor 94-5