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A B S T R A C T   

Inherent soil properties often define the soil’s basic functions, but human management can have superimposing 
impacts on the quality of soil. It is therefore challenging to interpret Soil Health (SH) measurements in the 
context of a region’s soils and cropping systems. We examined the effects of soil texture, a dominant inherent soil 
property, and cropping system on SH indicators for New York, USA soils. A dataset of 1,750 soil samples was 
analyzed for SH indicators including Soil Organic Matter (SOM), Permanganate-Oxidizable Carbon (POXC), Soil 
Respiration (Resp), soil protein (Protein), Available Water Capacity (AWC), Wet Aggregate Stability (WAS), 
surface and subsurface penetration resistance, and seven soil chemical properties. Measured physical and bio
logical indicators were affected by both soil texture and cropping system. AWC measured on disturbed samples 
was mostly affected by texture (37.4% variance explained), while Resp, Protein, and WAS were mostly impacted 
by cropping system (11.7%, 14.7%, and 22.1% variance explained, respectively). POXC was equally affected by 
texture and cropping system. Pasture and Mixed Vegetable systems tended to have the highest biological and 
physical soil health, followed by Dairy Crop systems. Annual Grain and Processing Vegetable cropping systems 
tended to have the lowest soil health. The effects of cropping systems are presumably linked to differences in the 
carbon and nutrient balances and the amount of soil disturbance through tillage. New scoring functions based on 
soil texture classes and cropping systems were developed for New York State to facilitate interpretation of SH test 
results in the context of the production-specific environments.    

Abbreviations 
AWC available water capacity 
WAS wet aggregate stability 
SOM soil organic matter 
LOI loss on ignition 
Protein soil protein 
Resp soil respiration during a 4-day incubation 
POXC permanganate-oxidizable carbon 
PR15 penetration resistance from 0–15 cm 
PR 45 penetration resistance from 15–45 cm 
SH soil health 
CASH Comprehensive Assessment of Soil Health 
SMAF Soil Management Assessment Framework 
CND cumulative normal distribution 
NYS New York State 

1. Introduction 

Around the world, farmers, agriculture professionals, and re
searchers are embracing the concept of soil health which has been 
defined as “the capacity of the soil to function as a vital living ecosystem 
that sustains plants, animals, and humans” (USDA-NRCS, 2020). This 
interest is rooted in the growing recognition that soil biology, soil 
physics, and soil chemistry need to be considered in an integral manner 
to sustainably manage soil resources (Bünemann et al., 2018). 

Soils are affected by a combination of inherent and anthropogenic 
factors. Inherent properties such as soil texture and mineralogy exert 
strong controls on the amount of storable carbon and nutrients, native 
pH, aggregation, water holding capacity, and more (Libohova et al., 
2018; von Lützow et al., 2006). But the characteristics of naturally 
occurring soils have been increasingly superimposed by human man
agement. Tillage, cropping practices, as well as carbon and nutrient 
flows through erosion, organic amendments, and residue harvesting 
choices have altered the “natural” carbon and nutrient balances and the 
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physical and biological health of the soil (Bünemann et al., 2018; Nunes 
et al., 2018; Wills et al., 2017). Therefore, soil health can be assessed 
based on inherent and dynamic soil properties (Karlen et al., 1997), 
associated with soil genoforms and phenoforms, respectively (Rossiter & 
Bouma, 2018). A soil genoform provides a reference state that encom
passes inherent soil capability under specific long-term circumstances as 
a product of the complex interplay among climate, parent material, 
biology, topography, and time. Whereas, phenoforms are defined within 
the context of their parent genoforms, and reflect significant divergences 
in their dynamic soil properties due to the influence of human land use, 
which has dramatically intensified in recent decades. 

While it is well understood that nutrient availability and soil pH can 
constrain crop productivity, biological and physical limitations can be 
harder to measure. In this context, scientists have recently deepened 
their understanding of the role of soil biology and physics in many 
ecosystem processes (Lehman et al., 2015; Magdoff & van Es, 2009). Soil 
health testing has emerged as a way to assess biological and physical 
processes in the soil in conjunction with traditional nutrient testing, and 
can be a useful part of land managers’ strategies to address production 
constraints. Indicators generally need to be agronomically meaningful, 
low-cost, and sensitive to management (Idowu et al., 2008). Soil health 
frameworks were developed to provide routine interpretation of bio
logical and physical tests that were previously used exclusively by re
searchers and were not available to the public. Even SOM, which is 
routinely included in standard nutrient analysis tests has never been 
formally interpreted in standard nutrient analysis reports. Early soil 
health frameworks were the Soil Management Assessment Framework 
(SMAF; Karlen et al., 2019) and the Comprehensive Assessment of Soil 
Health (CASH; Idowu et al., 2008; Schindelbeck et al., 2008). The latter 
quantifies soil health indicators, identifies specific soil health constraints 
(e.g., compaction, low labile C and N), and suggests management ap
proaches, and thereby focuses more on the needs of farmers, consultants 
and applied researchers. 

Both frameworks use cumulative normal distribution functions 
(CND) to standardize soil data and derive interpretive scores (between 
0 and 100). The CASH scoring approach is basically a fuzzy peer 
population-based interpretation where CND parameters can be derived 
from similar production environments (McBratney and Odeh, 1997). To 
facilitate appropriate interpretations of SH test results, CASH uses 
separate scoring functions for different soil texture groupings to account 
for their strong influence on some measured values, i.e., a genoform 
effect. The CASH approach has focused on texture-based scoring func
tions because it is arguably the single most influential inherent soil 
property shaping soil biological and physical properties. The focus on 
soil texture as the chief inherent soil property is particularly well justi
fied in the Northeast, USA, where an exploratory random forest analysis 
revealed that texture group was a more important predictor of SOM 
content than taxonomic suborder and drainage class (Amsili, unpub
lished results). More recently, large U.S. soil health databases allowed 
for the development of robust continental-scale SH interpretation 
functions based on multiple site-based inherent properties (soil texture, 
taxonomic suborder, and climate variables; Nunes et al., 2021) 

Soil indicators are mainly divided into three scoring curves, “More is 
better”, “Less is better” and “Optimum”, and the trace elements uses a 
special assignment method, with the critical value as the standard. Bil
gili, et al. (2017) found that non-linear scoring functions for CASH were 
more sensitive to management impacts than linear scoring. 

CASH has been applied to document soil health impacts from soil 
management in New York (Idowu et al., 2009; Nunes et al., 2018), 
residue removal in corn (Moebius-Clune et al., 2008) and tillage and 
organic management practices in North Carolina (van Es & Karlen, 
2019). These studies generally show that the indicators associated with 
labile forms of carbon and nitrogen (POXC, Protein, Resp) and aggre
gation (WAS) were most sensitive to management effects and good in
dicators of biological and physical soil health. Also, van Es and Karlen 
(2019) determined that tillage-induced corn and soybean yield 

differences were more strongly related to labile carbon and nitrogen 
indicators than total organic matter. 

Regional adaptations of the CASH approach were done by Bhadha 
et al. (2018) in Florida, Sintim et al. (2019) in Washington State, Pieper 
et al. (2015) in Rhode Island, and Van Eerd et al. (2014) in Ontario, 
Canada. CASH has also been applied to document soil health and (in 
some cases) crop yield impacts of land degradation in Kenya (Moebiu
s-Clune et al., 2011), cropping systems in Pakistan (Iqbal et al., 2014), 
cropping and landscape factors in India (Frost et al., 2019), coffee sys
tems in Colombia (Rekik et al., 2018), and oil seed trees in China (Liu 
et al., 2017). 

1.1. Carbon and Nutrient Cycles and Flows 

Traditional farming styles with integrated crops and animals gener
ally have tight cycling of carbon and nutrients on the farm (Magdoff & 
van Es, 2021). But the recent trend toward farm specialization, mostly 
driven by economic forces, has resulted in a break in carbon and nutrient 
cycles by separating animals from the land that grows their feed 
(Magdoff et al., 1997). This was accompanied by crop breeding efforts to 
increase biomass and nutrient harvest indexes for specialized grain 
production, particularly corn and soybeans (Sinclair, 1998). Although 
varying by crop type, annual grain production systems now remove 
approximately 50% of C, 65% of N, and 80% of P as grain that is sub
sequently sold off the farm (Ciampitti et al., 2013; Pedersen & Lauer, 
2004). Specialized corn and soybean operations generally supply nu
trients through synthetic fertilizer inputs instead of relying on crop 
rotation (legume sods, cover crops) and animal manures. Conversely, 
specialized large-scale animal facilities, like dairy farms, generally cycle 
carbon and nutrients through manure, and can even accumulate them 
through additional feed purchases from off-farm sources (Rasmussen 
et al., 2006). Many organic horticultural operations have also been 
shown to concentrate carbon and nutrients due to imports of compost 
and manure (Morris, 2004). 

In all, farm specialization has resulted in a wide range of patterns of 
carbon and nutrient flows that potentially impact soil health (Magdoff 
and van Es, 2021). Indeed, Fine et al. (2017) documented regional soil 
health differences and hypothesized that they were associated with 
different cropping systems and associated carbon flows. Notably the row 
crop-based annual grain production that is dominant in the Midwest 
region showed significantly lower soil health outcomes than the more 
diversified agriculture in the Northeast and Mid-Atlantic regions. Nunes 
et al. (2020) similarly documented US continental scale effects of 
cropping systems, soil types, and climate on soil organic matter. This 
suggests that soil health is shaped by a complex interplay of agronomic 
management with regional soil types and climate, and that more 
context-specific interpretation frameworks (scoring functions, manage
ment recommendations, etc.) are needed. 

The objectives of this study were to (i) determine the relative impacts 
of an inherent soil property - soil texture - and anthropogenic effects - 
cropping systems - on the SH indicators (ii) quantify how SH indicators 
are affected by these factors in New York State (NYS), and (iii) develop 
regional scoring parameters that account for field-specific production 
environments. 

2. Materials and Methods 

2.1. Dataset 

A SH dataset was compiled from 1,750 soil samples from New York 
State that were analyzed by the Cornell Soil Health Laboratory for a suite 
of soil health indicators and soil texture (Moebius-Clune et al., 2017). 
The soil specimens were not derived from a deliberate sampling scheme 
but from the lab submissions during the period 2014 to 2021 that 
included relevant information on location and cropping. Nevertheless, 
the geographical distribution represented the major agricultural regions 
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of the state (Fig. 1). Urban, manufactured, and landscaped soils were 
removed from the database to make interpretations more useful for 
agricultural soils. Repeated submissions from the same fields or research 
experiments were also removed from the database. Soil health results 
were summarized by four textural groups. The Coarse category was 
comprised of sand, loamy sand, and sandy loam texture classes (n =
407), the Loam group was comprised of loam and sandy clay loam 
textures (n = 714; only 11 for the latter), the Silt Loam group was 
comprised of just the silt loam texture class (n = 583), and the Fine 
group was composed of clay loam, silty clay loam, sandy clay, silty clay 
and clay texture classes (n = 46). These groupings reflect the fact that 
agricultural lands in NYS are primarily associated with 
medium-textured (loam and silt loam) soils (Fig. 2). Samples with SOM 
contents above 7.4%, 7.6%, 7.6%, 8.1% for Coarse, Loam, Silt Loam, and 
Fine groups, respectively were excluded to further ensure that all 
heavily amended soils were removed. These criteria represent the 98th 

percentile of organic matter from these four texture groups in NYS. 
Approximately one half of the soil samples (n = 857) included crop 

code information that denotes the current and past crops in the rotation 
(Dairy One, 2020). These were grouped into five cropping system types: 
Annual Grain, Dairy Crop, Pasture, Processing Vegetable, and Mixed 
Vegetable (Table 1; Fig. S1). The Processing Vegetable and Mixed 
Vegetable distinction was made to capture differences between 
single-crop vegetable production and diversified vegetable production 
(often organic). The geographic distribution represents the regional 
specialization within the state, with higher prevalence of vegetable 
crops and pastures in the southeastern part, dairy crops in the northern, 
central and western part, and annual grains, and processing vegetables 
in the central and western part. One important consideration of this 
dataset was that number and proportion of samples from each cropping 
system were not perfectly balanced for the four soil texture groups. 
There were 178, 392, 255, and 32 samples in coarse, loam, silt loam, and 
fine texture groups, respectively (Table 2). For example, coarse-textured 
soils had a relatively larger quantity of Pasture, Processing Vegetables, 
and Mixed Vegetables compared to other systems. Whereas, Annual 
Grain and Dairy Crop systems were most likely to be located on loam 

textures (Table 2, Table S1). Therefore, the database structure must be 
considered when interpreting the influence of cropping system irre
spective of soil texture group. 

2.2. Sampling Procedures and Soil Health Analysis 

Soil samples were assumed to have been collected following guide
lines which specify the compositing of more than five soil slices (0-to-15 
cm depth) collected using a spade from different locations in a field or 
plot. More than half of the soil samples (n = 1,072) included surface 
hardness (0–15 cm; PR15) and subsurface hardness (15–45 cm; PR45) 
measurements which were collected in the field at the time of sampling. 
According to CASH guidelines, PR measurements are made under field- 
moist conditions using a field penetrometer, twice at five or more lo
cations in a field or plot (Cornell University Soil Health laboratory, 
2020). All soil samples were analyzed according to the standard CASH 
package at the Cornell University Soil Health Laboratory (Ithaca, NY), 
which includes four biological indicators, four physical indicators, seven 
chemical indicators, and soil texture. Soil texture was measured ac
cording to a rapid and quantitative texture method that uses 3% sodium 
hexa-metaphosphate to disperse soil samples (Kettler et al., 2001; 
Schindelbeck et al., 2016). Then samples are run through sieving and 
sedimentation steps to determine the percentage of sand, silt, and clay. 
Analytical protocols for each indicator are summarized below, while 
detailed information is available from Schindelbeck et al. (2016). 

Biological soil health indicators 
SOM was analyzed by mass loss on ignition (LOI) in a muffle furnace 

at 500◦C for two hours. The % LOI was converted to % SOM using an Eq. 
1 from Storer (1984), which is the standard method for calculating % 
SOM in New York State. 

% SOM = (% LOI× 0.7) − 0.23 (1) 

POXC was measured as permanganate oxidizable carbon, measured 
in duplicate, by reacting a 2.5 g soil sample with 20 mL 0.02 M potas
sium permanganate (KMnO4) solution (pH 7.2). Extracts were shaken 

Fig. 1. Distribution of soil health samples by county across New York State (n = 1,750). Most counties without samples are forested.  
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for 2 min at 120 rpm and then allowed to settle for exactly 8 min. An 
aliquot of solution was diluted 100-fold before absorbance readings 
were taken at 550 nm using a handheld spectrophotometer (Hach, 
Loveland, CO) and converted to mg POXC per kg soil using the equation 
of Weil et al. (2003). In addition, the ratio of POXC over SOM was used 
to assess soil organic matter quality (Eq. 2). 

% POXC
/

SOM =

(
POXC
SOM

)

× (100) (2) 

Protein was measured by extracting a 3.0 g soil sample with a 0.02 M 
sodium citrate at pH 7. The extract was then quantified by bicinchoninic 
acid assay against a bovine serum albumin standard curve for soil pro
tein concentration after a sequence of centrifugation and autoclaving 
steps (Hurisso et al., 2018; Wright & Upadhyaya, 1998). Similar to 
POXC, the ratio of Protein over SOM was used as another index of soil 
organic matter quality (Eq. 3). 

% Protein
/

SOM =

(
Protein
SOM

)

× (100) (3) 

Resp was measured after a four-day incubation using an alkali trap to 
measure CO2 production. Soil samples weighing 20 g were placed in a 
perforated aluminum weighing boat and put inside a glass jar sitting 
atop two staggered Whatman qualitative filter papers. A pre-assembled 
alkali trap placed onto the weigh boat and the beaker was filled with 9 
mL of 0.5 M KOH. Distilled water (7.5 mL) was pipetted alongside the jar 
to facilitate rewetting of the sample via capillary rise. The amount of 
CO2 respired and absorbed by the KOH trap over the course of incuba
tion was determined by measuring the change in electrical conductivity 
of the solution with an OrionTM DuraProbeTM 4-Electrode Conductivity 
Cell (ThermoFisher Scientific, Inc., Waltham, MA). The necessary 
background correction for atmospheric CO2 was quantified using blank 
incubations without soil (Nunes et al., 2018; Schindelbeck, et al., 2016). 

Physical soil health indicators 
In addition to measurement of PR15 and PR45 in the field, WAS is 

measured based on the ability of soil aggregates to resist failure when 
wetted and struck by deionized water drops. Soil samples were prepped 
by shaking soil for 10 s on a mechanical shaker with stacked sieves of 2 
and 0.25 mm to collect aggregates between 0.25-to-2 mm. A single layer 
of aggregates was spread on a 0.25 mm mesh sieve, which was placed 
0.5 m below the rainfall simulator fitted with Teflon capillaries gener
ating 0.6 mm water drops (Ogden et al., 1997) to apply 2.5 J of energy 
over a 5 min period. WAS was determined as the fraction of soil 
remaining on the sieve, correcting for solid particles > 0.25 mm. AWC 
was determined from disturbed soil specimens that were equilibrated 
after initial saturation to pressures of -10 kPa and -1500 kPa on porous 
ceramic pressure plates in pressure chambers (Soil Moisture Equipment 
Corp., Goleta, CA). (Reynolds and Topp, 2008; Schindelbeck, et al., 
2016). 

Chemical soil health indicators 
Soil pH was measured in a 1:2 soil:water slurry. Nutrients were 

Fig. 2. Distribution of soil samples for CASH analysis based on texture grouping by county across New York State (n = 1,750). Counties with fewer than five samples 
were excluded from this map. 

Table 1 
Five cropping system groups were formed by combining related crop codes (n =
857). Each code is followed by the associated number of soil samples in 
parentheses.  

Cropping 
System 

Crop Codes†

Annual Grain COG (166), SOY (90), WHT (18), BND (14), WHS (8) 
Processing Veg SWC (18), SQW (17), BNS (13), CBP (10), POT (8), PUM (8), TOM 

(8), …‡

Mixed Veg MIX (189) 
Dairy Crop COS (106), ALE (13), AGT (11), AGE (9), ALT (7) 
Pasture PIT (34), GRT (22), PIE (21), PNT (20), GRE (12), PLE (6), PLT (5) 

† COG=corn grain, SOY=soybean, WHT=wheat, BND=dry beans (Phaseolus 
vulgaris), WHS=wheat with legume, SWC=sweet corn (Zea mays convar. sac
charata var. rugosa), SQW=winter squash (Cucurbita spp.), BNS=snap beans 
(Phaseolus vulgaris), CBP=cabbage transplanted (Brassica oleracea), POT=potato 
(Solanum tuberosum), TOM=tomato (Solanum lycopersicum), MIX=mixed 
vegetable, COS=corn silage, ALE/ALT=alfalfa, AGE/AGT=alfalfa grass, PIT/ 
PIE=pasture rotational grazing, GRT/GRE=grasses, PNT=pasture with native 
grasses, PLT/PLE=pasture with legumes. 

‡ 25 samples were from crop codes with 5 or fewer samples. 

Table 2 
The number of samples from different cropping system groups and the propor
tion of samples within each cropping system that come from the four texture 
groups.  

Cropping System n % Coarse % Loam % Silt Loam % Fine 

Annual Grain 299 12 60 26 2 
Processing Veg 107 29 41 29 1 
Mixed Veg 191 30 35 36 0 
Dairy Crop 146 16 46 25 3 
Pasture 114 27 32 37 4 
All 857 21 46 30 4  
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extracted with a Modified Morgan solution (ammonium acetate plus 
acetic acid, pH 4.8) and then analyzed using inductively coupled plasma 
optical emission spectrometry (SPECTRO Analytical Instruments Inc., 
Mahwah, NJ; Wolf and Beegle, 1995; Schindelbeck, et al., 2016). All 
nutrient contents are reported in units of mg kg− 1 soil (ppm). 

2.3. Statistical Analyses 

ANOVA models with soil texture or cropping system as fixed effects 
were used to assess differences in the biological, physical, and chemical 
soil parameters. Multiple comparisons were made using a Tukey 
adjustment at α = 0.05 with the R package Agricolae (De Mendiburu, 
2017). Variance component analysis was used to evaluate how well soil 
texture and cropping system factor levels could explain variance in 
different indicators. Pearson correlation coefficients were used to assess 
relationships among indicators. All statistical analyses were run using 
the R statistical software (R Core Team, 2019). 

3. Results and Discussion 

3.1. Indicator sensitivity to inherent vs. dynamic factors 

Effects of soil texture (an inherent and invariable soil property) and 
cropping system (an anthropogenic effect) on various soil health pa
rameters are inadequately known. A variance component analysis of this 
SH dataset quantified their relative influence (Table 3; Table S2). Soil 
texture explained a larger quantity of variance in SOM than cropping 
system, but cropping system remained an important predictor as well 
(21.8% and 8.2%, respectively). Whereas both texture and cropping 
system explained a similar amount of variance in POXC (7.9% and 9.2%, 
respectively; Table 3). POXC showed higher unexplained random vari
ance than SOM (81.6% and 66.3%, respectively). This implies that SOM 
and POXC can reveal human management consequences, but inherent 
textural effects need to be accounted for. 

Cropping system explained higher fractions of variation in Protein, 
Resp, and WAS (11.7%, 14.7%, and 22.1%, respectively) than texture 
(Table 3; Table S2). This shows that human management significantly 
impacts the labile carbon and nitrogen pools and structural stability, and 
that the effects of texture were less than those of cropping system. Soil 
texture effects on WAS, Protein, and Resp were 4.2%, 5.3%, and 7.2%, 
respectively (Table 3; Table S2). 

Conversely, soil texture effects were dominant on AWC (37.4% 
variance explained), while cropping system effects were small (4.2%; 
Table 3). This corroborates earlier results (Nunes et al., 2018; van Es & 
Karlen, 2019) that showed AWC measured on disturbed samples is less 
sensitive to management than biological and physical CASH indicators. 
If AWC, measured gravimetrically on disturbed samples according to 
standard methods in this study, mostly represents textural effects, it is 
less useful as an indicator for soil change, yet changes in management 
practices and cropping patterns are generally known to affect crop 
drought sensitivity. Alternatively, AWC from undisturbed cores has been 
shown to be more sensitive to management practices, although this 
method is less amenable with routine soil analysis (Bean, 2020; Norris, 
et al., 2020). It is postulated that the standard AWC measurement may 

be inadequate because (i) Disturbed samples equilibrated to fixed soil 
water pressures do not well represent in-situ field conditions, and (ii) 
Crop benefits from management changes may be more related to 
improved porosity and rooting volume than changes in gravimetric 
water retention capacity as measured from a disturbed soil (Tormena 
et al., 2017). 

The two indices of soil organic matter quality that we explored, 
POXC/SOM and Protein/SOM, were also explained to a greater extent by 
soil texture (7.8% and 37.5%, respectively) than cropping system (3.1% 
and 4.2%, respectively; Table 3). This is notable considering a signifi
cant amount of the variance in individual indicators, SOM, POXC, Pro
tein, and Resp, was explained by cropping system levels. This was 
especially true for the Protein/SOM ratio, which was explained by 
texture to a similar extent as AWC. Therefore, these SOM quality indices 
may be less useful for assessing management compared to the individual 
biological indicators (SOM, POXC, Protein, Resp). If these ratios are used 
to characterize SOM quality, they have a strong texture dependence. 

The variance component analysis indicates that the soil hardness 
indicators (PR15 and PR45) are not explained by either texture or 
cropping system and more than 95% of the variation is random (Table 
S2). This implies that this measurement is very specific to individual 
fields and production environments, and possibly field conditions at the 
time of measurement. Soil texture x cropping system interaction terms 
were generally low (<4.0%) for all soil health indicators, suggesting that 
the main effects are generally meaningful as described above (Table 3; 
Table S2). The only exception was Resp, which had an interaction term 
of 11.6%, resulting from more pronounced effects of cropping system in 
loam and silt loam soils than coarse textured soils. The results of this 
variance components analysis may be regionally specific to New York 
State and the Northeast USA, but the larger trends in the relative in
fluence of soil texture or cropping system is likely true across regions in 
the U.S. and globally. 

A large amount of variance, greater than 57% remained unexplained 
by either texture group and cropping system factor levels and their in
teractions. Although factor levels are useful to analyze the data, 
considerable variation exists within them that may help to explain more 
variance. For soil texture, more quantitative soil texture information, i. 
e., percent sand, silt, and clay, explains additional variation in indicators 
compared to discrete texture group levels (Table S3). Similarly, there is a 
large amount of variation that exists within each cropping system 
category due to differences in management practices. For example, one 
Annual Grain operation may use intensive tillage and no cover crops 
while another might be planting no-till with cover cropping. 

3.2. Soil texture effects 

Soil texture effects on biological indicators 
Although biological soil health properties are variably impacted by 

soil (Table 3), mean separations in all cases showed some significant 
effects of the soil texture groupings (Table 4). Fine-textured soils had 
higher SOM, Resp, and POXC than Coarse-textured soils by 64%, 40%, 
and 34%, respectively. The average SOM value of the dataset is 3.1%, 
but it ranged from 2.5% for the coarse texture class to 4.1% for the fine 
texture group, reflecting the general higher carbon retention through 

Table 3 
Variance explained from variance component analysis with Texture (T), Cropping System (CR), and their interaction for individual biological and physical SH 
indicators.  

Components DF SOM POXC POXC/SOM Protein Protein/SOM Resp AWC WAS   
% Total Variance Explained 

Texture 3 21.8 7.9 7.8 5.3 37.5 7.2 37.4 4.2 
Cropping System 4 8.2 9.2 3.1 11.7 4.2 14.7 4.3 22.1 
T x CR 11 3.7 1.4 0.3 4.0 0.0 11.6 1.2 2.1 
Error 838† 66.3 81.6 88.8 78.9 58.3 66.5 57.2 71.6 

† Protein and Protein/SOM had three fewer samples than the other variables presented here, therefore DF should be 835 for Protein and Protein/SOM. 
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clay mineral-organic bonds (von Lützow et al., 2006). Although POXC 
and Resp measure labile carbon and microbial activity, they followed a 
similar pattern as SOM with decreasing mean values with increasing 
coarseness of the texture group. Therefore, POXC and Resp may be 
effective indicators for measuring management impacts in field trials 
conducted on the same soil type (Nunes et al., 2018; van Es & Karlen, 
2019; Weil et al., 2003), but textural effects still need to be considered 
when comparing measurements across broader soil regions. 

Protein does not follow the pattern of increasing concentrations in 
finer texture groups, and only Loam and Fine texture groups were 
significantly lower than Coarse and Silt Loam (Table 4). This likely re
flects a lower extraction efficiency in soils with a higher clay content 
despite possibly overall higher concentrations, as suggested by Giag
noni et al. (2013). 

Two indicators of organic matter quality, Protein/SOM and POXC/ 
SOM, were 86% and 24% higher in coarse-textured than fine-textured 
soils, respectively (Table 4), indicating a higher proportion of extract
able, available, and “fresh” organic matter relative to more “stable” 
mineral-protected organic matter in coarse-textured soils compared to 
fine-textured soils. These indicators thereby followed a negative corre
lation with clay content (r = -0.49 and r = -0.21, respectively; Table S3). 
This is likely partly associated with the above-mentioned differential 
extraction efficiency effect due to the quantity and type of clay minerals 
in a soil (Giagnoni et al., 2013). Also, coarse textured soils retain less 
stable organic carbon (Six et al., 2002) and therefore, with equivalent 
labile C cycling within a cropping system, tend to contain a higher 
relative fraction of labile C and mineralizable N compared to 
fine-textured soils (Hassink, 1994; Scott Bechtold & Naiman, 2006), and 
similarly higher C and N mineralization per unit of microbial biomass 
(Franzluebbers et al., 1996). 

Although soil texture has a dominant effect on AWC (Table 5; Table 
S4), the relationship does not follow the same coarse-to-fine trend as in 
SOM. Following accepted knowledge in soil physics (Brady & Weil, 
2008; Libohova et al., 2018), the highest mean AWC is associated with 
silt loam soils, followed by fine, loam and coarse texture classes. Spe
cifically, soils with intermediate textures, like silt loams and to a 
somewhat lesser extent loams, generally store the most plant available 
water (Pearson correlation between silt content and AWC: r = 0.72; 
Table S3). When considering individual texture classes, silt loam soils 
had 273%, 139%, 47%, and 28%, higher AWC than sand, loamy sand, 
sandy loam, and loam soil textures (Table S4). Fine-textured soils in our 
database had similar AWC to silt loam soils despite the different texture 
grouping because they were only marginally different in clay content 
(mean of 31.7 %, modestly above the 27% upper limit for the silt loam 
texture class). 

Contrary to previous findings that higher concentrations of clay 

content are associated with greater aggregate stability (Skidmore and 
Layton, 1992), there was little interpretable effect of soil texture on 
WAS. In fact, coarse-textured soils had marginally higher WAS than 
loam and fine-textured soils (Table 5), similar to Fine et al. (2017). This 
may be an artifact of the analysis methodology, which differs from the 
more widely used Kemper and Rosenau (1986) method that uses wet 
sieving apparatus (Eijkelkamp), in that sand particles offer a small de
gree of protection to aggregates from the impact of rainfall droplets in 
the methodology. Also, a smaller portion of a coarse-textured soil sam
ple can pass through the 0.25 mm sieve than soil samples with less sand 
content and a smaller proportion of the weight is available to test for 
aggregate stability. Additionally, the generally high silt contents, low 
clay contents, and absence of expansive clays in NYS agricultural soils 
make it difficult to observe an effect of clay content on aggregate sta
bility (Bradford et al., 1987; Lado et al., 2004; Skidmore and Layton, 
1992). At this time, it is difficult to know if these results across texture 
groups are an artifact of the method used or if they would remain true 
with the more common wet sieving method (Kemper and Rosenau 
1986). 

Minimal soil texture effect was observed for PR15 and PR45, 
although silt loams had slightly higher subsurface hardness values than 
coarse, loam and fine-textured soils (Table 5). Fine-textured soils are 
more cohesive and tend to have a higher penetration resistance than 
coarse-textured soils (Daddow & Warrington, 1983), but they also tend 
to maintain higher field moisture levels when penetrometer measure
ments are made. Therefore, standard penetrometer readings during 
field-moist conditions may inadequately reflect possible high hardness 
levels when finer-textured soils become dry during the peak growing 
season. 

Soil texture affects the availability of some macronutrients and 
micronutrients in the soil. Extractable P, K, Mg, and Zn levels all varied 
across texture groups (Table 6), while soil pH, extractable Fe and Mn did 
not consistently differ among them. The mean extractable P and Zn in 
coarse-textured soils was 4.4 and 2.5 times higher than in fine-textured 
soils, respectively (Table 6). This has been confirmed in past studies 
looking at the effect of soil texture on extractable nutrient fractions 
(Fine et al., 2017; Kamprath & Watson, 1980; Wuenscher et al., 2015; 
Zheng et al., 2003). Lower extractable P in finer textured soils is related 
to the ability of soils with a higher clay content or exchangeable Al and 
Fe to fix more phosphorus (Cox, 1994; Zheng et al., 2003). These soils 
have a larger buffering capacity, meaning that per unit of applied P, 
extractable P rises more slowly. Wyoming is the only state in the US that 
uses soil texture data to modify the soil’s ability to fix phosphorus 
(Sharpley et al., 2003). Vermont uses extractable Al to modify a soils 
ability to fix phosphorus (Magdoff et al., 1999; University of Vermont 
Extension, 2018). 

In contrast, extractable K and especially Mg levels were higher in 
fine-textured soils compared to coarse-textured soils (Table 6). The 

Table 4 
Mean values (SD) of biological soil health indicators and indices across four soil 
texture groups. Mean values followed by different letters are significantly 
different at the 0.05 error level.  

Texture n SOM POXC POXC/ 
SOM 

Protein Protein/ 
SOM 

Resp   

% mg 
kg− 1 

% mg g− 1 % mg CO2 

g− 1 4 
days− 1 

Coarse 407 2.5c 
(1.4) 

498d 
(251) 

2.1a 
(0.7) 

7.2a 
(4.3) 

29.4a 
(8.3) 

0.48c 
(0.27) 

Loam 714 3.0b 
(1.1) 

548c 
(201) 

1.9b 
(0.5) 

6.5b 
(3.2) 

21.4b 
(5.8) 

0.59b 
(0.25) 

Silt 
loam 

583 3.7a 
(1.3) 

578b 
(201) 

1.6c 
(0.4) 

7.7a 
(3.1) 

21.4b 
(4.6) 

0.69a 
(0.33) 

Fine 46 4.1a 
(1.3) 

666a 
(183) 

1.7bc 
(0.3) 

6.4b 
(2.9) 

15.8c 
(4.6) 

0.67ab 
(0.29) 

All 1750 3.1 
(1.3) 

549 
(216) 

1.9 
(0.6) 

7.1 
(3.5) 

23.1 
(7.1) 

0.60 
(0.29) 

Soil texture effects on physical indicators 

Table 5 
Mean values (SD) of physical soil health indicators across four soil texture 
groups. Mean values followed by different letters are significantly different at 
the 0.05 error level.  

Texture n WAS AWC n PR15 PR45 
% g H2O g− 1 

soil 
kPa kPa 

Coarse 407 38.7a 
(21.2) 

0.17c 
(0.05) 

234 1229 
(507) 

2042b 
(588) 

Loam 714 32.5b 
(20.9) 

0.21b 
(0.04) 

453 1205 
(612) 

2053b 
(593) 

Silt 
loam 

583 39.9a 
(25.4) 

0.26a 
(0.05) 

351 1280 
(537) 

2226a 
(740) 

Fine 46 33.6ab 
(22.7) 

0.22b 
(0.04) 

34 1055 
(647) 

1951b 
(696) 

All 1750 36.4 (22.9) 0.22 (0.06) 1072 1230 
(568) 

2104 
(652) 

Soil texture effects on chemical indicators 

J.P. Amsili et al.                                                                                                                                                                                                                                



Soil Security 4 (2021) 100012

7

former has higher cation exchange capacities (Ersahin et al., 2006) that 
retain extractable base cations and have lower potential for K leaching 
losses (Bertsch & Thomas, 1985). Furthermore, the weathering of clay 
minerals and release of fixed potassium in the relatively young glaciated 
soils of New York State provides a steady supply of K and Mg. 

3.3. Cropping system effects 

Cropping system effects on soil health 
The cropping system categories highlighted in this analysis integrate 

some key differences of various practices, which have a significant effect 
on soil health indicators at all soil texture levels. Pasture systems are 
expected to maintain high overall soil health because these fields are 
seldom disturbed by tillage and receive year-round root and shoot inputs 
(directly or through a grazing animal). Mixed Vegetable systems typi
cally involve certified organic operations with diverse rotations, cover 
cropping, and significant quantities of organic nutrient amendments 
such as compost (Morris, 2004). Dairy Crop systems can maintain soil 
health due to cycling of carbon and nutrients through manure inputs and 
rotations that include perennial legume or grass sod crops. Conversely, 

Annual Grain and Processing Vegetable systems are intensively 
managed, and typically don’t apply enough organic amendments to 
replace the organic matter that is annually removed (Bender et al., 
2015). Our analysis focuses on the average effect of cropping systems 
and does not further address unknown additional management varia
tions like intensive vs. reduced tillage, erosion, cover cropping, or un
known organic amendments, which are expressed as variable soil health 
outcomes within each cropping system. 

Cropping system effects on biological soil health indicators 
Cropping system is a strong determinant of the quantity and quality of 

SOM, which were assessed using four biological soil health indicators. 
Pasture had the highest SOM followed by Mixed Vegetable, Dairy Crop, 
and Annual Grain and Processing Vegetable (Table 7). This finding was 
most evident on silt loam and loam texture groups (Table 7). Pasture 
soils are able to maintain higher levels of SOM likely due to year-round 
root and shoot biomass inputs, an absence of tillage, and potential 
manure droppings. The percentage of SOM in pasture soils likely rep
resents a good upper limit for what may be stored for each texture group 
(Dexter et al., 2008). Small-scale diversified Mixed Vegetable farms 

Table 6 
Mean values (SD) of soil chemical properties across four soil texture groups. Different letters after mean values are significantly different at the 0.05 error level.  

Texture n pH P K Mg Fe Mn Zn 
1:2 H2O ppm ppm ppm ppm ppm ppm 

Coarse 407 6.4b (0.7) 24.3a (51.8) 98b (91) 128d (101) 5.7a (9.8) 7.6b (7.4) 1.6a (2.0) 
Loam 714 6.7a (0.7) 16.3b (24.7) 116ab (77) 191b (105) 3.5b (5.7) 10.5b (7.7) 1.1b (2.0) 
Silt loam 583 6.2b (0.6) 14.1b (15.5) 122a (78) 173c (87) 6.2a (11.3) 12.2a (9.9) 1.3b (1.6) 
Fine 46 6.8a (0.7) 5.7b (4.1) 121ab (57) 346a (158) 3.4b (3.8) 10.8ab (6.8) 0.6b (0.4) 
All 1750 6.4 (0.7) 17.2 (31.2) 114 (81) 175 (107) 4.9 (9.0) 10.4 (8.6) 1.3 (1.9)  

Table 7 
Mean values (SD) of soil biological properties by cropping system and soil texture. Mean values followed by different letters are significantly different at the 0.05 error 
level.  

Cropping System n SOM POXC POXC/SOM Protein Protein/SOM Resp 
% mg kg− 1 % mg g− 1 % mg CO2 g− 1 4 days− 1 

Coarse-Textured 
Annual Grain 35 2.2b (0.6) 425b (153) 2.0 (0.7) 5.7b (1.8) 25.8b (4.7) 0.47 (0.16) 
Processing Veg 31 2.0b (0.9) 385b (190) 1.9 (0.7) 5.1b (2.5) 26.1b (5.0) 0.38 (0.28) 
Mixed Veg 57 2.9a (1.4) 583a (271) 2.2 (0.8) 8.9a (4.9) 30.3a (7.4) 0.50 (0.24) 
Dairy Crop 24 2.7ab (1.4) 534ab (291) 2.0 (0.6) 6.4b (2.9) 25.9b (8.7) 0.53 (0.31) 
Pasture 31 2.5ab (1.0) 467ab (170) 1.9 (0.5) 6.8ab (3.1) 27.5ab (6.3) 0.48 (0.22) 
All 178 2.5 (1.2) 491 (236) 2.0 (0.7) 6.9 (3.8) 27.6 (6.8) 0.47 (0.24) 

Loam 
Annual Grain 179 2.8b (0.7) 530b (160) 2.0a (0.5) 5.4c (1.9) 20.0b (4.8) 0.53c (0.16) 
Processing Veg 44 2.7b (0.9) 418c (123) 1.6b (0.5) 5.4c (2.3) 20.1b (4.3) 0.45c (0.18) 
Mixed Veg 66 3.6a (1.4) 641a (238) 1.8ab (0.4) 8.4a (4.2) 22.8a (5.2) 0.55c (0.21) 
Dairy Crop 67 3.3a (1.0) 623a (187) 1.9a (0.5) 6.4bc (2.2) 19.6b (3.9) 0.67b (0.20) 
Pasture 36 3.7a (1.2) 610ab (225) 1.7b (0.3) 7.7ab (3.0) 20.7ab (4.0) 0.81a (0.36) 
All 392 3.1 (1.1) 559 (195) 1.9 (0.5) 6.3 (2.8) 20.5 (4.3) 0.57 (0.22) 

Silt Loam 
Annual Grain 78 3.7b (1.1) 617a (206) 1.7 (0.5) 7.7bc (3.1) 20.9ab (4.5) 0.65b (0.24) 
Processing Veg 31 3.2b (1.1) 496b (180) 1.6 (0.5) 6.4c (2.4) 20.6ab (4.0) 0.51b (0.24) 
Mixed Veg 68 3.7b (1.2) 624a (204) 1.7 (0.4) 8.1b (3.0) 21.9a (4.3) 0.57b (0.22) 
Dairy Crop 36 3.8b (1.0) 629a (179) 1.7 (0.4) 7.5bc (2.1) 19.6b (2.5) 0.67b (0.16) 
Pasture 42 4.9a (1.3) 694a (174) 1.5 (0.4) 9.7a (2.7) 20.4ab (3.7) 1.07a (0.42) 
All 255 3.8 (1.2) 618 (199) 1.7 (0.5) 8.0 (2.9) 20.9 (4.1) 0.68 (0.32) 

Fine-Textured†
Annual Grain 7 4.1 (0.9) 615 (160) 1.5 (0.2) 6.2 (1) 15.3 (1.7) 0.57b (0.14) 
Process Vegetables 1 - - - - - - 
Dairy 19 4.2 (0.7) 732 (121) 1.8 (0.3) 6.2 (2.1) 14.6 (3.6) 0.57b (0.13) 
Pasture 5 4.8 (1.5) 737 (185) 1.7 (0.7) 7.9 (2.5) 17.4 (6.6) 1.22a (0.16) 
All 32 4.3 (0.9) 707 (142) 1.7 (0.4) 6.5 (2) 15.4 (4.0) 0.67 (0.27) 

All Textures 
Annual Grain 299 3.0c (1.0) 542b (181) 1.9a (0.6) 6.1b (2.4) 20.8bc (4.7) 0.55c (0.19) 
Processing Veg 107 2.7c (1.1) 434c (168) 1.7bc (0.6) 5.7b (2.4) 22.0b (5.1) 0.45d (0.23) 
Mixed Veg 191 3.5b (1.4) 617a (237) 1.9a (0.6) 8.5a (4.1) 24.8a (6.7) 0.54c (0.22) 
Dairy Crop 146 3.4b (1.1) 624a (205) 1.9ab (0.5) 6.6b (2.3) 20.0c (5.5) 0.63b (0.21) 
Pasture 114 3.9a (1.5) 608a (211) 1.7c (0.4) 8.2a (3.1) 22.3b (5.7) 0.84a (0.42) 
All 857 3.2 (1.2) 568 (210) 1.8 (0.5) 6.9 (3.1) 21.9 (5.8) 0.59 (0.27) 

† Cropping systems within the fine-textured group had very small sample sizes. 
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were also able to build high SOM levels, presumably through repeated 
additions of organic amendments such as compost or manure, diverse 
rotations, and intensive cover cropping. Specifically, Mixed Vegetable 
systems had higher SOM than Annual Grain and Process Vegetables on 
coarse and loam textured soils. Intensive tillage and limited additions of 
organic amendments keep Annual Grain and Processing Vegetable sys
tems with lower SOM (Table 7). 

Labile organic matter indicators similarly reflected carbon and 
nutrient dynamics. POXC tended to be highest in Mixed Vegetable, Dairy 
Crop, and Pasture systems compared to Annual Grain and Process 
Vegetables. Interestingly, despite Process Vegetable and Annual Grain 
systems having similar SOM levels in coarse and loam textured soils, 
Processing Vegetable had low POXC, which may reflect less crop resi
dues and potentially more tillage passes. Protein was consistently higher 
in Pasture and Mixed Vegetable farms across soil textures indicating that 
organic nitrogen reserves were higher in these soils. It is noteworthy that 
trends in POXC and Protein were not always the same across cropping 
systems, following other studies on the effects of tillage intensity and 
organic matter input on biological soil health indicators (Bongiorno 
et al., 2019; Nunes et al., 2018). 

Unlike POXC and Protein, Resp was consistently much higher in 
Pasture systems than other systems on loam and silt loam soils. While 
greater availability of organic substrates is likely an important expla
nation, Pasture soils had proportionally higher Resp rates than would be 
predicted from differences in SOM. For example, Pasture systems had 
57% and 111% higher Resp rates than Mixed Vegetable systems on loam 
and silt loam soils respectively, but only 5% and 35% higher SOM 
(Table 7). Two explanations are possible. First, sampling and processing 
of undisturbed pasture soils in the lab (where they are sieved and 
crushed, i.e., altered from their undisturbed field status) allows mi
crobes to access labile organic matter that was previously protected. 
Second, the sealed chamber alkali trap method may lead to higher 
respiration rates in soils with a larger fungal/bacterial ratio, which was 
likely higher in untilled Pasture soils compared to Annual Grain and 
Processing Vegetable systems (Bailey et al., 2002; Finney et al., 2017). 

The organic matter quality indices, POXC/SOM and Protein/SOM 
were not able to detect differences in SOM quality across different 
cropping systems within soil texture groups (Table 7). The only instance 
of a trend was a slightly higher Protein/SOM in Mixed Vegetable soils 
compared to Annual Grain, Processing Vegetable, and Dairy Crop soils. 
One difficulty in interpreting POXC/SOM results is that it is negatively 
correlated with SOM, meaning that soils with higher SOM tend to have a 
lower POXC/SOM (r = 0.26; Table S3). It is believed that this is partly a 
texture effect as discussed above: fine-textured soils generally contain 
more SOM, but a larger fraction is stable, mineral-bound, and less bio
logically active. 

As we noted in the Methods section, there are potential confounding 
influences of soil texture when we look at the effect of cropping system 
across the all textures category (Table 7). For example, the Annual Grain 
system likely has lower biological indicator means over all texture 
classes because a larger proportion of Annual Grain samples came from 
loam textured soils. 

Cropping system effects on physical soil health indicators 
The different cropping systems exerted a stronger control on WAS 

than the other three physical soil health indicators: AWC, PR15 and 
PR45. Pasture soils had a higher mean WAS than soils from other 
cropping systems across all texture groups. Specifically, WAS averaged 
2.6, 2.3, 2.0, and 1.6 times higher than Processing Vegetable, Annual 
Grain, Dairy Crop, and Mixed Vegetable cropping systems, respectively 
(Table 8). High SOM in undisturbed pasture systems combined with 
intact root systems and their associated arbuscular mycorrhizal fungi 
(AMF) help build and maintain stable soil aggregates (Beare et al., 1997; 
Six et al., 2006). Meanwhile, conventional tillage has been shown to 
decrease aggregate stability compared to no-till and perennial systems 
(Beare et al., 1997; Nunes et al., 2018). Despite the use of intensive 

tillage in Mixed Vegetable systems to manage weeds and nutrients, these 
systems were able to maintain 59%, 46%, and 22% higher WAS than 
Processing Vegetable, Annual Grain, and Dairy Crop systems (Table 8). 
This is presumably due to the common use of composts and other 

Table 8 
Mean (SD) physical soil health indicator values by cropping system and soil 
texture. Mean values followed by different letters are significantly different at 
the 0.05 error level. Note that PR15 and PR45 measurements had smaller 
samples sizes than WAS and AWC.  

System n WAS AWC n PR15 PR45 
% g H2O g− 1 

soil 
kPa kPa 

Coarse-Textured 
Annual 

Grain 
35 37.4b 

(17.0) 
0.16 
(0.04) 

32 1117 
(637) 

1423 
(640) 

Processing 
Veg 

31 26.0b 
(18.5) 

0.17 
(0.05) 

27 1119 
(536) 

1399 
(623) 

Mixed Veg 57 37.5b 
(19.5) 

0.18 
(0.05) 

30 1270 
(291) 

1177 
(341) 

Dairy Crop 24 40.8ab 
(23.1) 

0.16 
(0.07) 

16 1470 
(580) 

1280 
(621) 

Pasture 31 50.6a 
(24.8) 

0.18 
(0.05) 

24 1390 
(488) 

1153 
(553) 

All 178 38.2 
(21.5) 

0.17 
(0.05) 

129 1247 
(525) 

1293 
(564) 

Loam 
Annual 

Grain 
179 28.7cd 

(16.6) 
0.20b 
(0.03) 

150 1195b 
(605) 

1339 
(624) 

Processing 
Veg 

44 20.9d 
(16.6) 

0.19b 
(0.04) 

36 1103b 
(601) 

1380 
(723) 

Mixed Veg 66 35.2bc 
(18.4) 

0.22a 
(0.03) 

30 1155b 
(569) 

1165 
(420) 

Dairy Crop 67 38.3b 
(19.0) 

0.20b 
(0.04) 

50 1266ab 
(586) 

1387 
(536) 

Pasture 36 56.5a 
(24.4) 

0.22a 
(0.03) 

20 1705a 
(935) 

1430 
(478) 

All 392 33.1 
(20.2) 

0.20 
(0.04) 

286 1228 
(636) 

1341 
(596) 

Silt Loam 
Annual 

Grain 
78 38.7b 

(22.0) 
0.23c 
(0.05) 

65 1163ab 
(636) 

1128 
(663) 

Processing 
Veg 

31 33.0b 
(23.8) 

0.23bc 
(0.05) 

24 1132ab 
(522) 

1336 
(642) 

Mixed Veg 68 40.3b 
(22.8) 

0.26a 
(0.05) 

34 993b 
(411) 

1204 
(343) 

Dairy Crop 36 39.0b 
(20.3) 

0.26ab 
(0.05) 

23 1310ab 
(448) 

1225 
(483) 

Pasture 42 72.0a 
(20.0) 

0.28a 
(0.05) 

26 1445a 
(672) 

1264 
(531) 

All 255 44 (25.1) 0.25 
(0.05) 

172 1187 
(577) 

1205 
(565) 

Fine-Textured 
Annual 

Grain 
7 26.6b 

(10.1) 
0.23 
(0.02) 

6 1282 
(590) 

1263 
(481) 

Process Veg 1 21.4b 0.22 1 772 627 
Dairy 19 30.3b 

(16.4) 
0.22 
(0.05) 

15 886 (782) 865 
(534) 

Pasture 5 69.8a 
(22.3) 

0.22 
(0.05) 

4 1316 
(606) 

1003 
(642) 

All 32 35.4 
(21.7) 

0.22 
(0.04) 

26 1039 
(706) 

969 
(536) 

All Textures 
Annual 

Grain 
299 32.3c 

(18.6) 
0.20c 
(0.04) 

253 1179b 
(614) 

1294 
(639) 

Processing 
Veg 

107 25.9d 
(19.9) 

0.20c 
(0.05) 

88 1112b 
(552) 

1365 
(665) 

Mixed Veg 191 37.7d 
(20.4) 

0.22ab 
(0.05) 

94 1133b 
(448) 

1183 
(365) 

Dairy Crop 146 37.9d 
(19.8) 

0.21bc 
(0.06) 

104 1253ab 
(605) 

1259 
(559) 

Pasture 114 61.2a 
(24.4) 

0.23a 
(0.06) 

74 1490a 
(701) 

1259 
(533) 

All 857 37.5 
(22.5) 

0.21 
(0.05) 

613 1212 
(601) 

1277 
(583)  
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organic amendments in Mixed Vegetable systems that help build and 
maintain SOM and Protein. Both SOM and Protein have positive re
lations to WAS (Pearson correlation: r = 0.61 and r = 0.56, respectively; 
Table S3). 

Cropping systems that maintain higher SOM levels can positively 
affect AWC (Libohova et al., 2018). This study and other research show 
that SOM was more strongly related to AWC in coarse-textured soils (r =
0.48) compared to loam and silt loam soils (r = 0.14 and r = 0.12, 
respectively; Table S5-S7; Libohova et al., 2018). Additionally, we found 
that coarse-textured Pasture soils had 40%, 31%, and 62% higher AWC 
than coarse-textured Annual Grain, Processing Vegetable, and Dairy 
Crop soils. Whereas silt loam textured Pasture soils only had 27%, 17%, 
and 8% higher AWC than Annual Grain, Processing Vegetable, and Dairy 
Crop soils. These greater increases in AWC in coarse-textured soils than 
loam, silt loam, and fine-textured soils is meaningful in that the former 
soils tend to be more prone to drought. 

While the effects of cropping system on soil compaction were 
inconsistent across soil textures, two logical insights were derived from 
the results. In coarse-textured soils, Dairy Crop fields averaged 60% 
higher PR15 than Annual Grain fields (Table 8), which is likely due to 
heavy manure equipment passes that often occur under marginally wet 
soil moisture conditions. Second, when all samples were considered, 
Processing Vegetable farms experienced 24% greater subsurface 
compaction issues compared to Mixed Vegetable farms (Table 8). This 
may be explained by the benefits of higher SOM for reducing soil 
compaction (Hamza and Anderson, 2005) and possibly the use of 
heavier field equipment in larger-scale processing vegetable operations. 

Cropping system effects on chemical soil health indicators 
Unlike biological and physical properties, routine testing and rec

ommendations for different crops are well established for soil chemical 
properties. Soil chemical constraints are also much easier to rectify with 
lime or inorganic fertilizer application. Therefore, soil chemical prop
erties tended to be in line with recommendations for highly managed 
systems such as Annual Grain systems (Table S8). Pasture systems, 
which are less intensively managed and have lower nutrient re
quirements, tended to have a lower pH than Annual Grain and Dairy 
Crop systems. This is likely a geographical issue related to the higher 
prevalence of pastures on soils with inherently lower pH in the southern 
region of NYS (Cline, 1953). 

Cropping systems affected the quantity of extractable P and Zn across 
soil textures. Phosphorus, an essential macronutrient, can pose an 
environmental threat to water bodies if it has built up in soils and is 
subject to runoff or erosion, which in NYS is especially of concern with 
dairy farms (Rasmussen et al., 2006). Still, when all samples were 
considered, phosphorus was highest in Mixed Vegetable systems, fol
lowed by Processing Vegetable, Dairy Crop, Annual Grain, and Pasture 
systems (Table S8). This suggests that high-value crops tend to receive 
more P, which is probably related to the lower input cost relative to the 
crop value. Moreover, the repeated application of organic amendments 
(compost, manure) on organic Mixed Vegetable farms to maintain soil 
fertility often results in excessive P buildup (especially on 
coarse-textured soils in our data set), as also determined by Morris 
(2004). But these operations also tend to have small fields with buffers 
and may pose only a modest risk for water quality. Interestingly, zinc 
was also consistently higher in Mixed Vegetable systems compared to 
other cropping systems, which is likely also due to repeated use of 
organic amendments. 

3.4. Scoring functions 

This research provides the data necessary to define scoring functions 
for NYS soil texture groups and cropping systems. The CASH framework 
uses scoring functions based on the cumulative normal distribution 
functions that use mean and standard deviation values for various bio
logical and physical indicators at different texture group levels. To date, 

the CASH has scored biological and physical soil health indicators based 
on coarse, medium (loam and silt loam are combined in the current 
framework), and fine texture groups for certain indicators (Moebiu
s-Clune et al., 2017). These scoring functions were updated in 2017 
based on the analysis of a large dataset (n = 5,767) containing Midwest, 
Northeast, and Mid-Atlantic soils (Fine et al., 2017; Moebius-Clune 
et al., 2017) and insights from long-term research sites in NYS. Our 
analysis in NYS indicates that separate scoring functions by texture 
groups are warranted for WAS, AWC, SOM, POXC, Resp, and Protein. 
This is a slight deviation from Fine et al. (2017) that found that Resp did 
not differ between soil texture groups. This study thus provides updated 
parameters for New York State-specific soil health scoring functions to 
assess management effects within the context of the state’s soil texture 
groupings. Furthermore, this study shows that cropping system infor
mation is relevant in scoring soil health test results if the objective is to 
evaluate soil health relative to other fields under the same management 
system. The mean and standard deviation values in Tables 7 and 8 for 
each combination of the four soil texture groups and five cropping sys
tem groups can be used to parameterize 20 sets of unique cumulative 
normal distribution scoring functions for NYS farms that are specific to 
soil texture and cropping system. Since our dataset is limited for 
fine-textured soils, such scoring functions are not yet available for this 
texture grouping. 

4. Conclusions 

Increased knowledge of the effects of soil texture, the most defining 
inherent soil property, and cropping system on soil health indicators is 
important to understanding how agricultural management affects soil 
functioning. Our study found important differences in soil health 
properties across four soil texture groups and five cropping systems. 
Several important findings were uncovered, including a reaffirmation of 
the strong texture dependence of SOM, POXC, Resp, and AWC. 
Furthermore, we demonstrated that cropping systems - presumably 
through differences in their carbon and nutrient balances that are sha
ped by crop rotation and perenniality, tillage practices, and applied 
organic amendments - greatly influence the health of New York State 
soils. Specifically, Pasture and Mixed Vegetable systems have the high
est soil health, followed by Dairy Crop, and then Annual Grain and 
Processing Vegetable cropping systems. We also demonstrated that the 
Resp, Protein, and WAS soil health indicators were strongly influenced 
by cropping system type, while AWC is mostly defined by soil texture. A 
specific output of this study is new scoring functions by soil texture and 
cropping system for NYS soils, which enables interpretation of soil 
health data within the context of specific crop production environments. 
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