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A B S T R A C T   

Using soil organic carbon (SOC) to generate carbon offsets requires reliably quantifying SOC sequestration. 
However, accuracy of SOC measurement is limited by inherent spatial heterogeneity, variability of laboratory 
assays, unmet statistical assumptions, and the relatively small magnitude of SOC changes over time, among other 
things. Most SOC measurement protocols currently used to generate offsets for C markets do not adequately 
address these issues, threatening to undermine climate change mitigation efforts. Using analyses and simulations 
from 1,117 soil samples collected from California crop and rangelands, we quantified measurement errors and 
sources of uncertainty to optimize SOC measurement. We demonstrate that (1) spatial heterogeneity is a primary 
driver of uncertainty; (2) dry combustion assays contribute little to uncertainty, although inorganic C can in-
crease error; (3) common statistical methods—Student’s t-test and its relatives—can be unreliable for SOC (e.g. at 
low to medium sample sizes or when the distribution of SOC is skewed), which can lead to incorrect in-
terpretations of SOC sequestration; and (4) common sample sizes (10–30 cores) are insufficiently powered to 
detect the modest SOC changes expected from management in heterogeneous agricultural landscapes. To reduce 
error and improve the reliability of future SOC offsets, protocols should: (1) require power analyses that include 
spatial heterogeneity to determine minimum sample sizes, rather than allowing arbitrarily small sample sizes; (2) 
minimize the use of compositing; (3) require dry combustion analysis, by the same lab for all assays; and (4) use 
nonparametric statistical tests and confidence intervals to control Type I error rates. While these changes might 
increase costs, they will make SOC estimates more accurate and more reliable, adding credibility to soil man-
agement as a climate change mitigation strategy.   

1. Introduction 

Interest in measuring soil organic carbon (SOC) is expanding 
dramatically because agricultural interventions that sequester C in soil 
may help to mitigate climate change. Recent policy initiatives and 
emerging soil C markets designed to accelerate management transitions 
require practical methods to measure SOC with low uncertainty or they 
may often reward false positives and fail to reward genuine sequestra-
tion. Indeed, the high uncertainty of SOC measurements likely contrib-
uted to the 2011 collapse of the Chicago Climate Exchange, the only 
prior U.S. voluntary C market (Gosnell et al., 2011). 

In practice, the accuracy of SOC measurements is limited by spatial 
heterogeneity, sampling design, variability in bulk density, and varia-
tion in soil processing methods and laboratory assays. Reliably detecting 
and accurately quantifying changes in SOC stocks is challenging 
because, compared to these sources of variation and uncertainty, the 

annual changes produced by agricultural management interventions are 
often small (Bai et al., 2019; Minasny et al., 2017), for instance ranging 
from<0.1 % absolute change for conversion to no-till (Franzluebbers, 
2005) to approximately 0.5 % with biochar application (Jones et al., 
2012; Majumder et al., 2019). Methods for estimating SOC must be 
precise and powerful enough to detect such small changes in a hetero-
geneous medium (Ellert et al., 2002; Homann et al., 1998; Lehmann 
et al., 2007; Robertson et al., 1997). Minimizing the errors that arise in 
each of the many steps in SOC measurement (see SI 1 and SI Table 1 for a 
full description) is especially important in the context of C offset mar-
kets. Only accurate estimates of SOC sequestration with transparent 
levels of uncertainty should be used for generating credits and allowing 
governments and industries to offset greenhouse gas (GHG) emissions. 

Yet protocols currently being used by C markets for measurement, 
reporting and verification (MRV) of SOC sequestration may be inade-
quate (Necpalova et al., 2014; Oldfield et al., 2021). Importantly, many 
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MRV protocols recommend but do not require—or else make no mention 
of—powering measurement campaigns using representative spatial 
heterogeneity information. Agricultural soils used to generate C credits 
have varying degrees of spatial heterogeneity and require different 
sample sizes to detect a given absolute or relative change in SOC. For 
example, spatial heterogeneity is typically higher on rangelands than 
croplands due to diverse topography, rocky soil horizons, low and pat-
chy soil fertility, and patchiness of grazing and manure deposition. 
Rather than tailoring sample size requirements to expected levels of 
heterogeneity, many protocols (including the Climate Action Reserve 
Soil Enrichment Protocol, Australian Carbon Methodology, and Verra 
VM0021) simply set a minimum sample size within designated areas (e. 
g., 3 samples per stratum). If the MRV protocol does not require deter-
mining the number of samples necessary to detect a reasonable level of 
SOC sequestration, it could fail to reward legitimate sequestration or 
have a large chance of erroneously rewarding nonexistent sequestration. 

Addressing knowledge gaps associated with sampling design-
—including sample placement, stratification, and compositing—could 
further reduce the measurement uncertainties of SOC offsets. For 
example, C market protocols often encourage the use of systematic 
sampling, but samples collected by simple or stratified random sampling 
are less likely to bias SOC estimates and allow more rigorous statistical 
analysis. While stratifying soil sampling into more homogeneous land 
subunits can increase the power to detect SOC sequestration, many 
protocols lack quantitative guidance for defining strata and some do not 
require field sampling at all, relying instead on model output (Oldfield 
et al., 2021), with notable exceptions (e.g. Australian Carbon Method-
ology). Compositing—combining samples to reduce analysis costs—is a 
common practice allowed in MRV protocols (e.g. Climate Action Reserve 
Soil Enrichment Protocol, Australian Carbon Methodology), though the 
impact on measurement error is often unknown (de Gruijter et al., 
2016). At one extreme, all samples collected within an experimental unit 
can be combined into a single sample for analysis (i.e., full compositing) 
(Carey et al., 2020; Tautges et al., 2019), making it impossible to esti-
mate spatial heterogeneity and substantially increasing measurement 
error (Spertus, 2021). 

The impact of compositing on measurement error depends in part on 
the error of laboratory analyses. The extent to which dry combustion 
assays contribute to overall error in measuring SOC from either intra-lab 
(replicated measurements on the same instrument) or inter-lab (mea-
surements on different instruments) analytical variability is not well 
known (Chatterjee et al., 2009; O’ Rourke and Holden, 2011), limiting 
the ability to optimize sampling campaigns and the reliability of esti-
mates and inferences. Compositing and subsequent laboratory analyses 
can be optimized to minimize contribution to error within a given 
budget, given estimates of spatial heterogeneity, analytical error, and 
laboratory costs (Spertus, 2021). To our knowledge, such an analysis has 
never been done to inform soil-sampling campaigns. 

Lastly, the choice of statistical methods for data analysis also in-
fluences the likelihood of false positives (Type I errors)—generating C 
offsets when SOC wasn’t sequestered—and false negatives (Type II 
errors)—failing to generate C offsets when SOC was sequestered. In a C 
market, Type I error can lead to allocation of payments without actual 
SOC sequestration, and possibly even increase net C emissions; while a 
Type II error can fail to generate C offsets when SOC is sequestered 
(Sanderman and Baldock, 2010). Both types of error undermine the 
utility of C markets, leading to missed opportunities for climate change 
mitigation. When the assumptions required of common statistical 
methods are not met (e.g., SOC is not normally distributed), standard 
hypothesis tests can have Type I error rates that greatly exceed their 
nominal significance level (e.g., 5 %), and confidence intervals can have 
coverage probabilities far lower than nominal (e.g., 95 %) (Lehmann 
and Romano, 2010). For example, the two-sample Student t-test is often 
used to assess changes in SOC stocks (Brus and de Gruijter, 2011; 
deGruijter et al., 2016; Kravchenko and Robertson, 2011). Student’s t- 
test assumes that SOC at both measurement times is normally 

distributed with the same variance. Since SOC generally does not have a 
normal distribution (Yan et al., 2011) and because agricultural man-
agement interventions can redistribute SOC without changing the total 
(Chappell et al., 2012), Student’s t confidence intervals can have true 
coverage probabilities far lower than the nominal confidence level (e.g., 
95 %), and Student’s t-tests can have true Type I error rates that greatly 
exceed the nominal significance level (e.g., 5 %) (Lehmann and Romano, 
2010). This undermines the validity of many standard methods for 
inference—including ANOVA, mixed effects models, geostatistical 
models, bootstrapping, Wilcoxon rank-sum tests, permutation tests, and 
Bayesian models. Quantifying the chance of false conclusions about 
whether and how much SOC has been sequestered is crucial for SOC 
offsets. 

Lesser-known statistical methods can strictly limit the Type 1 error 
rate and increase reliability. For example, there are nonparametric tests 
and confidence intervals that are valid for any SOC distribution 
(Anderson, 1969; Learned‑Miller and Thomas, 2019; Romano and Wolf, 
2000; Stark, 2009, 2023; Waudby-Smith and Ramdas, 2020). These 
methods are conservative or exact: the probability of Type I errors is not 
larger than the nominal significance level (e.g., 5 %), and the chance 
that confidence intervals include the true amount of SOC sequestered is 
not less than the nominal confidence level (e.g., 95 %). Suitable 
nonparametric tests and confidence intervals can produce reliable in-
ferences about SOC stocks and changes, though their widespread 
adoption has been hindered by their relatively low power. 

Below, we investigate these uncertainties and knowledge gaps and 
how they affect the cost and reliability of SOC sequestration measure-
ments. Using new, on-farm data from California crop and rangelands, we 
1) evaluate the relative impact of spatial heterogeneity, analytical 
variability, and compositing on measurement precision and power; 2) 
use simulations to examine the validity and power of common statistical 
tests to detect SOC sequestration using different sampling designs on 
high and low heterogeneity agricultural landscapes; and 3) compare the 
validity and power of the t-test to those of a new nonparametric method 
across a range of sample sizes and SOC changes. Based on our findings, 
we make straightforward recommendations, targeted toward SOC 
markets, to improve the accuracy and reliability of SOC sequestration 
measurements, yield more trustworthy C credits, and support progress 
towards climate change mitigation goals. 

2. Methods 

2.1. Collecting SOC data: Rangeland and cropland sampling and 
laboratory analysis 

We leverage new data collected from two intensive field sampling 
campaigns on California crop and rangelands. While these samples were 
originally collected for other purposes, we use them to study field-level 
spatial heterogeneity and to provide an empirical basis for simulations. 
We outline our sampling methods briefly below, with more details SI 
2.1. 

Rangeland samples were collected in December 2019 from a ranch in 
Paicines, California. The data were collected to quantify spatial het-
erogeneity of SOC in a constrained, field-scale setting, controlling for 
soil type, catenal position, slope aspect, and vegetation—not to quantify 
SOC stock for the whole ranch. We used soil survey information within 
the ranch boundaries (SSURGO; Soil Survey Staff et al., n.d.) to identify 
Auberry Fine Sandy Loam soils. Samples were collected using a stratified 
transect design with five 100 m transects on two adjacent hillslopes 
stratified by slope position: summit/shoulder (1 transect), backslope (2 
transects), and footslope (2 transects). Soils were sampled down to 100 
cm, or the point of refusal, and divided into 5 depth ranges (0–10 cm, 
10–30 cm, 30–50 cm, 50–75 cm and 75–100 cm). We attempted to 
collect 33 samples along each transect, but time constraints limited us to 
25 samples at one transect. In all, we attempted to collect 785 samples, 
but bedrock or rock obstructions limited the depth of sampling at some 
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locations (mostly along the summit position), resulting in 662 total 
samples. Each sample was air-dried and sieved to 2 mm. Visible plant 
materials were removed, and soils were ground using a ball mill (SI 2.1; 
Retsch, Newtown, PA). 

Cropland soil samples were collected in September and October 
2019, from seven farms across Southern California (SI Fig. 1) repre-
senting various soil types and cropping systems, including two orchards, 
a vineyard, two intensive cropping systems, and two diversified farms 
(full soil taxonomy in SI Table 2). Samples were collected along 50 m 
transects. At each site, transect locations were selected based on the 
dominant soil type (Soil Survey Geographic (SSURGO) Database, United 
States Department of Agriculture, Natural Resource Conservation Ser-
vice), consistent historic and current management, and cropping system. 
The number of transects ranged from two at the small, diversified farms 
to six at one of the larger cropland sites. Depth ranges were defined 
slightly differently at different sites based on tillage depths (0–10, 
10–20 cm vs 0–15, 15–30 cm) and genetic horizon in the subsurface. In 
all, 455 samples were collected from the seven farms. Samples were air- 
dried and sieved to 2 mm; visible plant materials were removed; and 
then soils were oven-dried at 60̊C and ground using a ball mill. 

Bulk density (BD) samples for croplands and rangelands were 
collected using the pit method (Walter et al., 2016). Cores were collected 
from the center of each depth increment used for bulk soil samples. For 
sampling depths greater than 10 cm, multiple cores were collected to 
ensure samples were representative. At the rangeland site, three 1.5 m 
deep soil pits were dug along each transect (one at each end, and one in 
the center at 50 m) using an excavator, a total of 15 pits. At the cropland 
sites, one soil pit was dug at the central location of each transect to 1.5 m 
or the point of refusal. Bulk density samples were oven-dried at 105̊C 
until their weight no longer decreased. Visible rock fragments were 
removed before weighing the samples and submerged in water to 
measure their volume. Rock volume was subtracted from core volume in 
estimating soil density. We used bulk density and TC% to calculate SOC 
stocks for each depth increment. 

Two different dry combustion analyzers were used to measure C 
concentrations (TC%) of prepared samples. All cropland soils were 
analyzed with a Costech ECS 4010 elemental analyzer (Costech, 
Valencia, CA)—a widely used instrument for dry combustion analysis. 
Rangeland samples were analyzed on an Elementar soliTOC cube (Ele-
mentar, Ronkonkoma, NY; see (Natali et al., 2020)), a relatively new 
instrument designed to improve precision by combusting higher sample 
masses (up to 3 g of soil vs ~ 50 mg) while separating total organic C 
(TOC), residual organic C (ROC), and total inorganic C (TIC) via a 
temperature ramping method, DIN19539. The ECS 4010 measures only 
the mass of total C (TC), and thus we compare only TC% between the 
two instruments. 

To quantify the precision and bias of each instrument, we re- 
analyzed 15 rangeland and 22 cropland samples that had the mini-
mum, median, and maximum TC% for each depth and land-use category 
(SI Fig. 2). Five analytical replicates of each sample were measured on 
each instrument. Samples with high TIC (greater than0.1 %), as 
measured by the soliTOC, were treated with HCl to remove TIC and re- 
assayed on the ECS 4010 (SI Figs. 2 and 3). Finally, we ran 25 additional 
replicates of two soil standards with known TC% on each instrument (SI 
Fig. 4). 

2.2. Assessing spatial heterogeneity of SOC and bulk density 

To visualize the relative heterogeneity of TC% by land use, depth, 
and transect, we used histograms, sample means, and coefficients of 
variation (CV). While TC% of the non-rocky component of the soil is the 
focus of this study, we also examined the variability of BD measurements 
by comparing the CV across depths for rangeland and cropland site 7, 
which had substantially more BD samples than other cropland sites. 

To assess differences in spatial heterogeneity across land uses, depth, 
strata (transects), and sites, we tested the hypotheses that population TC 

% distributions were equal across depths and transects on rangeland 
soils, or depths and sites on cropland soils using a nonparametric test 
called permutation ANOVA, a way of calibrating the ANOVA test statistic 
to control the rate of false rejections without any assumption about the 
distribution of SOC (Pesarin and Salmaso, 2010). Details of how the 
permutation ANOVA was performed are in SI 2.2. Code is available at: 
github.com/spertus/soil-carbon-statistics. 

2.3. Evaluating analytical variability 

We repeated analyses of the same samples to estimate the variability 
of laboratory assays. For each sample and instrument, analytical error 
was quantified by the estimated relative error (see SI 2.3 for the formula), 
which is approximately the CV. We report the median estimated relative 
error for each instrument. (The estimated relative error measures vari-
ability but not bias; we estimated bias using measurements of known 
standards.) To evaluate whether there were systematic differences in 
measurements between the two instruments (soliTOC and ECS 4010), 
we used permutation tests for the two-sample problem, which asks 
whether the difference between two samples would be unlikely if the 
samples were created by randomly partitioning their pooled values into 
the two groups. We used the difference in means as the test statistic and 
simulated 10,000 draws from the permutation distribution using the R 
package permuter (see SI 2.3 for more details). 

2.4. Quantifying relative uncertainty from spatial and analytical 
heterogeneity 

We quantified the contributions of analytical variability and spatial 
heterogeneity to uncertainty in estimates of the population mean TC% 
using the delta method (Goidts et al., 2009), which decomposes the total 
uncertainty into a sum of the contributions from analytical variability 
and spatial heterogeneity (SI 2.4). If the ratio of the contribution from 
spatial heterogeneity to total uncertainty is close to 1, spatial hetero-
geneity contributes more than analytical variability to overall uncer-
tainty, vice versa if the ratio is closer to 0. If the ratio is 0.5, analytical 
and spatial heterogeneity contribute equally to total uncertainty. To 
assess how compositing affects the relative contributions to uncertainty, 
we computed the proportion of total uncertainty due to spatial hetero-
geneity without compositing, and the corresponding proportion when 
90 cores are composited to one analytic sample (an extreme degree of 
compositing). We computed these ratios within depths for both land use 
types and both instruments. 

2.5. Comparing how sources of error affect statistical power 

We studied how spatial heterogeneity, assay variability, and 
compositing affect the ability to detect changes in average TC%. Spe-
cifically, we approximated the power of the unpaired two-sample t-test 
when samples are drawn by simple random sampling and there is no 
compositing, optimal compositing (derived in (Spertus,2021), or full 
compositing. We only examined the power for relatively large sample 
sizes (n ≥ 90 cores) because Student’s t-test is especially unreliable for 
small sample sizes (see below). 

Comparing compositing strategies requires a budget; if money were 
no object, assaying every sample separately (i.e., not compositing) 
minimizes error. Compositing involves a tradeoff between various costs 
and errors. To explore the tradeoff, we took the marginal cost of col-
lecting a single soil core in the field to be $20 USD and the cost of lab-
oratory analysis (including sample preparation) in an elemental 
analyzer to be $13.60 USD per sample, the average price charged by five 
commercial labs for TC% analysis. Given these unit costs, the cost to 
collect, prepare, and analyze 90 cores (without compositing) is $3,024 
USD. Using the same total budget, we explored what the uncertainty 
would have been had the money been used to take more cores and 
composite some of them (optimal compositing, which maximizes power 
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within the budget) or all of them (full compositing) instead of assaying 
them individually. The power calculations use the estimates of land-use- 
specific TC% average and spatial heterogeneity (averaged across sites 
for cropland) and instrument-specific median relative error to approxi-
mate the power to detect a change of a given magnitude. 

2.6. Power and validity of tests for detecting TC% change 

We performed two simulations to estimate the true significance level 
and power of different two-sample hypothesis tests. The “validity 
simulation” estimated the significance level (i.e., Type 1 error rate) of 
two tests—the chance a test erroneously rejects the null hypothesis 
when there is no change in total SOC—in four scenarios. The two tests 
were the usual two-sample Student t-test and a nonparametric test that 

uses a pre-specified upper bound on TC concentration (See SI 1.6 for 
details). We set this bound at 10 % or 20 % TC, established TC ranges in 
mineral soils. In each of the four scenarios, SOC means were set exactly 
equal, but the shapes of the SOC distributions could differ in ways that 
might plausibly result from agricultural interventions, inferred from our 
empirical crop and rangeland TC data. In the “unchanged normal dis-
tribution” scenario, both distributions were normal with SDs of 0.5 %; in 
the “tilled cropland” scenario, the distribution at the first time was the 
actual topsoil TC% samples from cropland site 5 (right-skewed, Fig. 1) 
and the distribution at the second time was normal with SD 0.5 %; in the 
“change in skew” scenario, the distribution at time 1 was rangeland 
topsoil samples (right-skewed) and the distribution at time 2 was the 
same but multiplied by − 1 (left-skewed); in the “extreme hotspot” sce-
nario, the distribution at time 1 had 99 % of its mass in a normal 

Fig. 1. Histograms TC% by (a) transect 
and depth in rangeland soils and (b) site 
and depth in cropland soils. Transect la-
bels in (a) refer to catental positions and 
replicates: Bx (footslope, replicate X), By 
(footslope, replicate Y), Mx (backslope, 
replicate X), My (backslope, replicate Y), 
and T (summit/shoulder, no replication). 
Site labels in (a) refer to cropland sites: 
CROP1 is a diversified farming system, 
CROP2 is a vineyard, CROP3 is an or-
chard, CROP4 and CROP 5 use conven-
tional cropping, CROP6 is a diversified 
farming system, and CROP7 is an or-
chard. Depth increments differed be-
tween rangeland and cropland sampling 
schemes. Plotted values are TC%, which 
is equal to TOC% in samples with zero 
TIC.   
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distribution centered at 2.8 % TC (SD: 0.05 %) and 1 % as a point-mass 
centered at about 20 % TC (Beem-Miller et al., 2016; Miller et al., 2016; 
Mishra and Riley, 2015). At the second time, the distribution was normal 
(SD: 0.05 %). We ran both tests at a nominal 5 % level 5000 times with 
sample sizes ranging from 5 to 150 at each epoch and recorded the rate 
of (false) rejections. We compared these simulated significance levels to 
the nominal 5 % significance level (Fig. 6). 

The “power simulation” estimated the chance of detecting increases 
in SOC of various magnitudes with sample sizes 10, 30, 90, and 200 
using the Student’s t-test with unstratified sampling, Student’s t-test 
with stratified sampling, and the nonparametric test with unstratified 
sampling. (Stratified nonparametric tests are in development.) The 
reference population distributions (at time 1) were taken to be the 
empirical distributions of samples from the rangeland site or from 
cropland site 5, which had median spatial heterogeneity and the most 
samples among the cropland sites. The hypothetical change in TC% was 
an additive shift of the reference distribution, with shifts ranging from 0 
% (no change) to 60 % of baseline. For example, the baseline average TC 
% across our cropland sites was 2.7 % TC, so the simulated TC% at time 
2 ranged from 2.7 % to 4.32 %. The stratified Student t-test was used 
only on rangeland samples because the cropland transects were not 
stratified and there were few samples per transect. For the purpose of 
this simulation, we treated each of the 5 transects as if it were a random 
sample from a distinct stratum. Under this assumption, samples from a 
transect are representative of the distribution of %TC within the corre-
sponding stratum. This assumption is probably false in a way that favors 
the stratified Student t-test—within-transect heterogeneity is likely 
lower and between-transect variation higher than the corresponding 
quantities in an actual stratified random sampling design. The simula-
tions sampled independently with replacement from each distribution 
(either pooled or stratified by transect), conducted the tests at nominal 
significance level 5 %, and recorded whether the null was rejected. The 
nonparametric test requires the user to specify an upper bound on the 
concentration: smaller bounds leads to more powerful tests, but mis-
specification can make the test invalid. We ran nonparametric tests with 
upper bounds of 10 %, which exceeds the maximum in any of our data 
(7.8 % TC), and 20 %, the established bound on TC in mineral soils. We 
also ran the nonparametric tests at a significance level of 10 % to 
examine how raising the significance level increases power. We ran each 
simulation 500 times, with 10, 30, 90, or 200 samples drawn from the 
population at each epoch. For stratified sampling, sample sizes were 
allocated proportional to “size,” measured by the number of samples in 
the original transect. 

All statistical analyses were conducted in R (version 3.6.1). Code is 
available at: https://github.com/spertus/soil-carbon-statistics. 

3. Results 

3.1. Spatial heterogeneity of SOC and bulk density 

In both rangeland and cropland soils, TC% generally decreased with 
depth (Fig. 1). In rangeland soils, mean TC% varied from 3.77 % in 
topsoils (0–10 cm) of the summit/shoulder transect to 0.47 % at 75–100 
cm of the footslope transect. Mean TC% in cropland soils varied from 
4.31 % at 0–15 cm (at CROP3) to 0.10 % at 60–100 cm (at CROP7). 
Permutation ANOVA found that variations in mean TC% were statisti-
cally significant across transects (p < 1e-4) and depth (p < 1e-4) in 
rangeland soils and across sites (p < 1e-4) and depth (p < 1e-4) in 
cropland soils. Mean TOC% at the rangeland site was similar to TC% (SI 
Fig. 10): most samples had low TIC%. 

The spatial heterogeneity of TC% varied with land use, depth, and 
geographic location (transect and site; Table 1). Heterogeneity of TC%, 
as measured by the coefficient of variation (CV), was higher in the 
rangeland site than in the cropland sites. The CV increased with depth in 
every rangeland transect and in cropland sites with diversified or 
perennial farming systems (vineyards and orchards), but not in 
conventionally managed croplands. 

Bulk density was highly variable with land use and across sites but 
generally not with depth. Heterogeneity was particularly high in the 
rangeland soils, where CV ranged from 0.08 at 30–50 cm and 75–100 cm 
to 0.16 at 0–10 cm and 50–75 cm. Heterogeneity within the cropland 
sites was lower with CV ranging from 0.04 at 0–15 cm and 15–30 cm to 
0.07 at 60–100 cm. Within a given depth, BD varied substantially across 
rangelands (15 soil pits) and the CROP7 site (16 soil pits), but no 
consistent patterns emerged (Fig. 2). BD for the six other cropland sites 
combined is plotted in SI Fig. 11. 

Rangeland SOC stocks were 30.3, 31.6, 22.5, 25.9, and 30.4 Mg C/ha 
at 0–10, 10–30, 30–50, 50–75, and 75–100 cm, respectively. Whole 
profile stocks (0–100 cm) were 141.7 Mg C/ha, SE: 6.7 (SI Table 3). Like 
most SOC stock estimates, the estimated SE does not reflect uncertainty 
and variability of bulk density (although we argue below that those 
uncertainties should be taken into account). In croplands, whole profile 
SOC stocks varied by site from 32.6 Mg C/ha (0–100 cm for CROP7) to 
230.0 Mg/ha (0–70 cm for CROP3) (SI Table 4). 

3.2. Analytical variability 

We compared measurements of 25 analytical replicates of two 
standard soils on the soliTOC and ECS 4010 dry combustion analyzers. 
Both instruments showed low variance and a small but consistent pos-
itive bias (SI Fig. 4). Based on analytical replicates of 36 samples 
measured on both instruments, the estimated median relative errors of 

Table 1 
Estimates of TC% means and coefficients of variation (CV; in parentheses) for cropland and rangeland. Mean and CV for rangeland sites are listed by transect. Mean and 
CV for croplands are listed by site. Cropland depths were not always consistent by site. For example, the second sampling depth ranged from 15–30, 15–35, and 15–40 
in some cases. We used the most common depth increments here.  

CROPLAND 

Depth (cm) CROP1 CROP2 CROP3 CROP4 CROP5 CROP6 CROP7 Total  

DFS Vineyard Orchard Crop Crop DFS Orchard  

0–15 2.45 (0.26) 0.82 (0.26) 4.31 (0.26) 2.37 (0.21) 2.74 (0.25) 0.94 (0.20) 0.64 (0.21) 2.04 (0.24) 
15–30 1.21 (0.19) 0.56 (0.41) 3.05 (0.31) 1.14 (0.15) 2.03 (0.21) 0.73 (0.27) 0.17 (0.36) 1.27 (0.25) 
30–60 0.73 (0.39) 0.36 (0.58) 2.36 (0.34) 0.88 (0.13) 1.60 (0.22) 0.50 (0.42) 0.10 (0.44) 0.93 (0.31) 
60–100 0.42 (0.77) 0.25 (0.62) – 0.56 (0.21) 1.22 (0.21) – 0.12 (1.14) 0.52 (0.38)  

RANGELAND 

Depth (cm) Bx By Mx My T Total 

0–10 1.55 (0.27) 1.63 (0.32) 2.02 (0.36) 1.63 (0.32) 3.77 (0.36) 2.16 (0.54) 
10–30 0.67 (0.48) 0.90 (0.27) 0.99 (0.32) 0.86 (0.20) 1.99 (0.36) 1.11 (0.56) 
30–50 0.60 (0.66) 0.64 (0.28) 0.82 (0.33) 0.71 (0.39) 1.32 (0.48) 0.78 (0.53) 
50–75 0.59 (0.75) 0.53 (0.41) 0.75 (0.51) 0.59 (0.36) 1.41 (0.63) 0.71 (0.70) 
75–100 0.65 (1.17) 0.47 (0.27) 1.01 (0.71) 0.94 (0.61) 0.96 (0.34) 0.84 (0.75)  
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the measurements were 0.024 for the soliTOC and 0.061 for the ECS 
4010 (Fig. 3). Permutation tests generally found little evidence of sys-
tematic differences between the instruments in replicated TC% mea-
surements, except for samples with TIC% greater than 10 % of TC%. In 
the most extreme case, average replicated TC% measured on the soliTOC 
was nearly triple that of ECS 4010 for a rangeland sample with ~ 90 % of 
TC% as TIC%. Removing inorganic C with HCl improved the agreement 
of measured TOC% between the two instruments (SI Fig. 2). 

3.3. Sources of uncertainty and their effects on statistical power 

In general, spatial heterogeneity contributes much more uncertainty 
than analytical variability does, both for rangelands and croplands 
(Fig. 4). However, compositing can mitigate or exacerbate the relative 

contributions to uncertainty from spatial heterogeneity and analytical 
variability. With no compositing, analytical variability contributes little 
to the overall uncertainty (Fig. 4). If all n = 90 cores are composited to 
k = 1 analytic sample (“full compositing”), analytical error becomes a 
major component of the uncertainty in estimates of TC% for cropland 
soils, especially for the less precise ECS 4010 analyzer (Fig. 4). The 
theoretical power of Student’s t-test under various compositing schemes 
reflects this tradeoff (Fig. 5). The power of Student’s t-test to detect TC% 
change generally depends more on spatial heterogeneity than analytical 
variability for both instruments, except for full compositing with the ECS 
4010, which had much less power (Fig. 5). 

There was relatively little difference in power between optimal 
compositing and no compositing for every land use and analytical in-
strument. When spatial heterogeneity is high (e.g., in rangeland) and lab 
analysis is precise (e.g., with soliTOC), power is maximized by allocating 
more of the budget to sampling and using some compositing to reduce 
the number of assays. On the other hand, when spatial heterogeneity is 
low (e.g., in cropland) and lab analysis is imprecise (e.g., ECS 4010), 
accuracy is maximized by allocating more of the budget to assays and 
reducing or avoiding compositing. 

3.4. Power and validity of tests for detecting TC% change 

The nominal significance level of Student’s t-test can greatly un-
derstate its actual chance of making a Type I error, i.e., of erroneously 
rejecting the null hypothesis when the hypothesis is true (Fig. 6). In the 
validity simulations, the true significance level of Student’s t-test was 
always larger than its nominal level, except when the distributions were 
both normal. In the “tilled cropland” and “change in skew” scenarios, 
the level was close to 10 % at very small sample sizes, but approached its 
nominal 5 % at larger sizes. In the “extreme hotspot” scenario, the true 
significance level was always many times higher than the nominal sig-
nificance level, and remained above 20 % for a sample size of 150. In 
contrast, the nonparametric test never erroneously rejected the null 
hypothesis. 

Our “power” simulation compared the power of the unstratified 
Student t-test, stratified Student t-test, and a nonparametric test for 

Fig. 2. Empirical distributions of bulk density (BD) samples across 16 soil pits on CROP7 (a) and 15 rangeland soil pits (b) by depth (in rows).  

Fig. 3. Histogram of relative error of replicated assays computed for each 
sample run on soliTOC (blue) and ECS 4010 (orange). Histograms bins are 1% 
relative error wide and stacked. The samples with relative error above 20% on 
ECS 4010 had high proportions of inorganic C. 

P. Stanley et al.                                                                                                                                                                                                                                 



Geoderma 430 (2023) 116323

7

detecting SOC shifts, for sample sizes of 10, 30, 90, and 200 from each 
time (Fig. 7). Both Student t-tests appear to have more power than the 
nonparametric test to detect shifts in TC% at all sample sizes; the 
stratified Student t-test was more powerful than the unstratified test at 
the same level. (Stratified nonparametric tests would presumably have 
higher power than the unstratified nonparametric test; they are the 
subject of ongoing research.) However, comparing Student’s t-test and 
the nonparametric test can be misleasing: Student’s t-test rejects more 
often than the nonparametric test when the null hypothesis is false, but it 
also rejects more often than it should when the null hypothesis is true. 

Student’s t-test at (nominal) significance level 5 % does not limit the true 
Type I error rate to 5 % unless the population has a normal distribution. 
In general, when the population distribution is not normal, the true Type 
I error rate of Student’s t-test rate cannot be determined unless the 
population distribution is known. The power of the nonparametric test 
improved as the population bounds were tightened and as the level was 
relaxed: the nonparametric test with 10 % max TC and significance level 
0.10 was the most powerful among the nonparametric tests. For 
example, to have 80 % power to detect a relative change of 20 % from 
baseline average TC% on rangeland soils requires about 30 samples with 

Fig. 4. Contributions to the variance of the sample 
mean from assay uncertainty and compositing. Pro-
portion of variance (y-axis) reflects assaying either 
all field samples individually (“No Compositing” 
panels) or 90 field samples together (“Full Compos-
iting”). Different panels correspond to different land 
uses (in columns) and instruments (in rows). Field 
heterogeneity is estimated using data from the ran-
geland site or averages across cropland sites, at 
various depths (x-axis). Assay variability is estimated 
either on ECS 4010 (top panels) or soliTOC (bottom 
panels) elemental analyzers. Rangeland depths: 
a:0–10 cm, b:10– 30 cm, c:30–50 cm, d:50–75 cm 
and e:75–100 cm. Cropland depths vary slightly by 
site (see Fig. 1).   

Fig. 5. Theoretical power of Student’s t-test to 
detect changes in topsoil TC% (if TC% is normally 
distributed) for two levels of compositing, for a 
budget that covers the cost of 90 cores and 90 
laboratory analyses without compositing, or 150 
cores and one laboratory analysis for full 
compositing. The X-axis shows the relative change 
in average TC% from baseline (2.16 TC% for 
rangeland or 2.04 TC% for cropland); the Y-axis is 
power. Different panels correspond to different 
land types (in columns) and instruments (in rows). 
Colors correspond to the compositing scheme. 
Optimal compositing for the same budget uses 140 
cores composited to 19 analytic samples (SI 1.4).   
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the stratified Student t-test, 90 with the unstratified Student t-test, and 
200 with the nonparametric test with 10 % max TC and/or a relaxed 
significance level of 0.1. All tests had more power to detect small 
changes in cropland soils than in rangeland soils due to lower spatial 
heterogeneity in croplands. For example, the power of the unstratified 
Student t-test to detect a 10 % change with 90 samples was 80 % for 
cropland soils but only about 30 % for rangelands. 

4. Discussion 

4.1. Crop and rangelands are spatially heterogeneous 

Given the rapid development of C markets, accurate detection and 
quantification of the impact of management interventions on SOC 
changes are more important than ever. Our study demonstrates how 

Fig. 6. Simulated significance levels of two nominal 5% level tests: the two-sample Student t-test and a nonparametric test. Each panel reflects 5000 simulations at 
each sample size (x-axis); random samples were drawn independently from each of two distributions that had identical means. The y-axis plots the rate of false 
rejections of the null hypothesis (the Type I error rate). The solid black line is the nominal 0.05 significance level, which both curves should be at or below. 

Fig. 7. Simulated power of three two-sample 
hypothesis tests (Student’s t-test for unstratified 
and stratified samples and a nonparametric test 
for unstratified samples based on (Learned-Miller 
and Thomas, 2019) to detect relative changes in 
TC% with sample sizes 10, 30, 90, or 200 from 
each of two populations. The first population 
distribution is the empirical distribution of TC% 
measurements for CROP5 (left column) or the 
rangeland site (right column) topsoil. The second 
population distribution is the same as the first, 
but each value was shifted by 0 % to 60 % of the 
mean of the first population, 2.7 % TC for the 
cropland samples and 2.2 % TC for the rangeland 
samples. Unstratified samples were simple 
random samples with replacement from the 
populations. Stratified samples from rangeland 
were simple random samples with replacement 
within transects, independent across transects, 
with sample sizes proportional to the original 
number of data in each transect. Stratified sam-
ples from cropland were not explored because 
there were no natural strata in the original data. 
Four curves are presented for the nonparametric 
test by varying pre-specified upper bounds on the 
population (10 % TC or 20 % TC) and the nom-
inal significance level (5 % or 10 %); both the 
Student t-tests used a nominal significance of 5 
%, which may understate the chance of false 
positives. NP = nonparametric.   
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tailoring sampling and analytical decisions to the high spatial hetero-
geneity often found in managed lands could improve the reliability and 
efficiency of SOC sequestration estimates and their associated C credits. 
As expected, SOC at the rangeland site was more heterogeneous than at 
the seven cropland sites, with roughly twice as large a CV at every depth 
(Table 1). This is consistent with other surveys of California rangelands, 
though differences in depths, spatial scales, and measures of variability 
limit quantitative comparisons (Carey et al., 2020; Devine et al., 2020; 
Silver et al., 2010). This is also consistent with the general notion that 
rangeland SOC is typically more heterogeneous than croplands because 
of variation in topography, presence of rock fragments, and patchiness 
of grazing and manure deposition. This makes accurately estimating 
SOC change on rangelands more challenging. 

Deep sampling is critical for making reliable conclusions about C 
sequestration and greenhouse gas mitigation (Kravchenko and Rob-
ertson, 2011; Kuzyakov and Blagodatskaya,2015), especially since SOC 
gains near the surface may be offset by losses at depth (Poffenbarger 
et al., 2020; Slessarev et al., 2021; Syswerda et al., 2011; Tautges et al., 
2019). The CV of SOC in our study tended to increase with depth, while 
standard deviations decreased. Hence, a given relative change (e.g., 10 
% gain from baseline TC%) is harder to detect in subsurface soils than in 
topsoil, but a given absolute change (e.g., 0.5 TC% gain) may be easier to 
detect. Since detecting an equivalent absolute change in the subsurface 
requires fewer samples, topsoil heterogeneity should generally guide 
decisions around sample size. 

Though we have emphasized TC% measurements, high variability of 
BD within sites (Fig. 2), especially in rangelands, contributes additional 
uncertainty to SOC stock estimates (Walter et al., 2016). Even where TC 
% is relatively homogeneous, variability in BD could lead to large un-
certainties in estimates of SOC stocks and of SOC stock changes, and 
ultimately prevent the reliable detection of these changes (Slessarev 
et al., 2021). Failing to account for BD variability (e.g., treating BD es-
timates as fixed) underestimates uncertainty and may lead to erroneous 
conclusions about SOC stock change. See SI 4.1. for further discussion 
on combining BD and TOC% uncertainties for SOC stock estimates. 

4.2. Analytical variability contributes little to measurement error 

Variability in assay measurements contributed far less to measure-
ment error than spatial heterogeneity of SOC, except when samples were 
highly composited (Fig. 4). Replicated measurements show that both the 
soliTOC and ECS 4010 analyzers have estimated median relative error 
below 0.07. 

TC%, however, differed substantially between instruments for sam-
ples with high TIC%, (see also SI Fig. 3). re-analysis on the ECS 4010 
after TIC removal improved agreement between TC% measurements on 
the ECS 4010 and TOC% on the soliTOC, indicating that TIC should be 
removed when using elemental analyzers like the ECS 4010. Larger 
sample masses (~10–20x the mass of traditional dry combustion in-
struments) may explain the higher precision of the soliTOC, which had 
about one-third the median relative error of the ECS 4010 (Fig. 3). 
Larger analytical subsamples should better represent the entire sample 
and reduce variability inherent to small subsamples. In the case of the 
ECS 4010, increased analytical replication may be necessary. SOC 
monitoring schemes could mitigate analytical error by using the same 
instrument, ideally in the same lab, for repeated analysis, and by 
including standards with comparable amounts of TIC, when analyzing 
samples known to contain TIC. 

4.3. Measurement protocol recommendations to reduce uncertainty 

Spatial heterogeneity is likely to dominate measurement uncertainty 
in many scenarios. We recommend three ways to for measurement 
protocols to reduce uncertainty in SOC estimates and increase the reli-
ability of C credits: provide stratified sampling guidance, minimize 
compositing, and, most importantly, require larger sample sizes. 

Stratification on variables such as catenal position, soil type, 
topography and historical management can increase the power of 
detecting SOC sequestration and generally reduces uncertainty for a 
given total sample size on heterogeneous landscapes (Devine et al., 
2020; deGruijter et al., 2016). Our simulations provide further evidence 
that stratification can be a useful sampling strategy: stratified sampling 
had higher power to detect increases in TC% at the rangeland site than 
simple random sampling (Fig. 7). Without stratification, far larger 
sample sizes are required to reliably detect and quantify SOC changes. 
While current protocols such as Climate Action Reserve’s (CAR) Soil 
Enrichment Protocol and Verra’s VM0021 allow and encourage strati-
fication, they do not provide straightforward and quantitative stratifi-
cation guidance. Preliminary field surveys, geospatial information 
regarding soil and landscape features, and expert pedological knowl-
edge are useful for defining strata in research settings (Post et al., 2001). 
C market protocols should look to incorporate algorithmic stratification 
(Devine et al., 2020; deGruijter et al., 2016), digital soil mapping, and 
user-friendly software tools (e.g. Stratifi; https://www.quickcarbon. 
org/tools), to help standardize and ease barriers to stratification for 
SOC measurement. 

Compositing can be optimized to minimize uncertainty within a cost 
budget, given estimates of the analytical precision, spatial heterogene-
ity, and the (marginal) unit cost of collecting, preparing, and analyzing a 
sample (Spertus,2021). Without such estimates, it is best to avoid 
compositing (especially when collecting baseline samples), because it 
reduces information on spatial heterogeneity, complicates sampling 
designs and analyses, and increases the contribution of analytical error 
(Fig. 5). Compositing also tends to reduce power by decreasing the 
effective sample size. Compositing is most helpful when SOC is highly 
heterogeneous, the cost of each laboratory assay is high, and the budget 
is small. In such cases, investigators should consider optimal, rather than 
full compositing (Spertus,2021). We’ve developed a web app for in-
vestigators (including for use in soil C measurement protocols) to help 
determine optimal compositing schemes, which is accessible at: htt 
ps://scf.berkeley.edu/shiny/bosf/soil-carbon-statistics/. 

Finally, many current sampling designs for the sale of C credits use 
sample sizes that are too small to allow any statistical test to have a 
reasonable chance of detecting moderate changes in SOC (Necpalova 
et al., 2014) or quantifying SOC changes on heterogeneous landscapes 
on relevant timescales. To illustrate, assume that compost application on 
rangelands increases relative TC% by 20 % (as per (Ryals et al., 2014) 
after 3 years of application). Based on the spatial heterogeneity we 
observed in rangeland soils, in order to have 80 % power to detect such 
an increase (using stratified sampling and Student’s t-test) would require 
collecting and analyzing nearly 100 soil samples at baseline and another 
100 samples after the compost was applied, with no compositing 
(Fig. 7). 

Most rangeland management interventions, however, such as 
improved grazing practices, are expected to produce much smaller C 
gains. For instance, (Conant et al., 2017) found a relative increase of ~ 
10 % from grazing improvements. The smaller the anticipated change in 
SOC, the larger the sample size must be to reliably detect and quantify 
the change. Similarly, using nonparametric tests—which may be needed 
to properly control the false positive rate—require larger sample sizes. 
For instance, it would require more than 200 samples to have an 80 % 
chance of detecting a 10 % relative increase in SOC using either the 
unstratified Student t-test or the nonparametric test (Fig. 7). No matter 
the sampling design or statistical test, the sample sizes typical in current 
campaigns and protocols (e.g., 8 samples for USDA GRACEnet; 9 sam-
ples composited to 1 for CDFA Healthy Soils Program; minimum of 3 
samples for the Australian Carbon Credits Methodology; Davis et al., 
2017) are far too small to have sufficient power to detect and quantify 
changes in rangeland SOC (Fig. 7). 

Our simulations suggest that detecting SOC changes in croplands 
may be easier than rangelands, but common sample sizes are still 
inadequate. Nonparametric tests have little chance of detecting 
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reasonable changes with only 10 samples, and Student’s t-test is likely to 
be misleading for such small samples and to lack sufficient power to 
detect realistic changes. With only 10 cropland samples, a relative in-
crease of 30 %—a very large change—would be needed for Student’s t- 
test to have 80 % power (Saby et al., 2008). At the CROP5 site, Student’s 
t-test required about 90 samples to have an 80 % chance of detecting a 
10 % relative change in TC%. 

Given that sampling campaigns are routinely underpowered, we 
suggest a priori power analyses to determine site-specific minimum 
sample sizes (Kravchenko and Robertson, 2011). This could include 
conducting a power analysis either by collecting and analyzing recon-
naissance samples, or with regional and relevant spatial heterogeneity 
information (e.g., from prior studies or soil survey information). We also 
suggest routinely conducting post hoc power analyses to determine 
whether studies that find no effect of management on SOC had sufficient 
power to detect expected differences. 

4.4. Tests must be valid to provide credible evidence of carbon change 

Even when sampling is well-designed and executed, statistical 
analysis matters. Student’s t-test and its relatives may erroneously 
conclude C was sequestered when it was not, at a much higher rate than 
the nominal significance level. As shown in Fig. 6, this occurs when even 
one of the TC distributions is skewed. The false positive rate for Stu-
dent’s t-test is particularly high when there are SOC hotspots or the 
distribution of TC (but not its mean) changes over time. Some man-
agement interventions redistribute SOC and create or destroy C hotspots 
(Baker et al., 2007; Kuzyakov and Blagodatskaya, 2015; Marin-Spiotta 
et al., 2014). For example, establishing perennial intercrops or hedge-
rows and spreading high-C inputs such as biochar and compost can 
create SOC hotspots. Valid inference is crucial to measure SOC seques-
tration credibly; Student’s t-test and related tests and confidence in-
tervals likely often understate the chance of false positives and have an 
inordinately large chance of false negatives. 

How can monitoring and verification campaigns ensure that esti-
mates and inferences are reliable? An important consideration is 
whether the soil population of interest might have skewed SOC, 
including from SOC hotspots. If so, it might be possible to stratify the 
sample so that SOC distributions within strata are not severely skewed. 
Skewness in the population distribution makes Student’s t-test behave 
particularly poorly. While transformations (e.g. logarithmic) are 
possible, skewness in the population that can undermine parametric 
statistical inferences may not be evident for realistic sample sizes. Larger 
sample sizes improve the approximations Student’s t-test relies on, but 
in general, it is not possible to determine how large the sample must be 
for the approximation to have a particular level of accuracy (Cochran, 
1977). 

If hotspots might exist but their locations are unknown prior to 
sampling, Student’s t-test should not be used. In our simulations, 
nonparametric tests were less powerful than Student’s t-test, but they 
control the false positive rate for every SOC distribution (Figs. 6 and 7), 
while Student’s t-test can fail for some SOC distributions. Thus, Stu-
dent’s t-test may appear more powerful, but it is wrong more often. Our 
simulations show that using prior geochemical knowledge to bound TC 
more tightly (e.g. 10 % instead of 20 %) can increase the power of 
nonparametric tests, as can testing at a higher significance level (e.g. 10 
% instead of 5 %). Deriving more powerful nonparametric tests is an 
active research area in Statistics (Romano and Wolf, 2000; Waud-
by‑Smith and Ramdas, 2020), which we hope to extend to stratified soil 
samples (e.g., (Wendell and Schmee, 1996)). We have written an R 
package to facilitate wider use of nonparametric tests, which can be 
installed from the R console by running devtools::install_github(“sper-
tus/nptests”). 

4.5. Study limitations and future research 

Our analyses relied on soil samples that were collected using com-
mon approaches, rather than the sampling protocols we recommend 
here (systematic rather than random samples). This could understate 
overall spatial heterogeneity, making our findings conservative, if SOC 
is spatially autocorrelated. However, we found little evidence of spatial 
autocorrelation in our rangeland samples (SI Figs. 5–9). These simula-
tions are a starting point; other changes to SOC distributions and deeper 
soil depths should be examined. The geographic extent of the soil 
sampling was also limited and thus does not fully represent the het-
erogeneity of croplands and rangelands worldwide, but we expect the 
qualitative differences in heterogeneity between them will be more 
broadly applicable. 

4.6. Broader implications for research, C markets, and policy 

There have been numerous calls to standardize protocols for 
measuring SOC (Bispo et al., 2017; Davis et al., 2017; Jandl et al., 2014), 
but complete standardization may not be practical given differences 
among project needs and budgets, landscape heterogeneity, and lab 
constraints. In particular, given the large contribution of spatial het-
erogeneity to the uncertainty of SOC estimates, protocols that require 
fixed sample sizes or generate C credits on the basis of a fixed, small, 
minimum number of samples are not appropriate. For instance, sam-
pling designs optimized to detect SOC changes for croplands may have 
little chance of detecting similar changes on rangelands, which typically 
require larger samples because they are more heterogeneous. Instead, 
sampling design processes should be standardized, such as the use of 
algorithmic stratification and a priori power analyses to select sample 
sizes adequate to detect plausible changes. In the case of C markets, 
verifiers should ensure that the sample size was adequate to detect and 
quantify SOC sequestration prior to generating and selling C offsets. 

The consequences of inaccurate estimates of SOC for C markets are 
large. Current verification sampling protocols used to quantify and 
generate C credits for C markets cannot reliably estimate SOC seques-
tration, especially on heterogeneous agricultural lands. This could result 
in SOC offsets having little connection to the true extent of sequestration 
(Jackson Hammond et al., 2021). Verification protocols for croplands 
include Climate Action Reserve’s (CAR) Soil Enrichment Protocol, Ver-
ra’s VM0021, Australia’s Carbon Credits Methodology (ACCM), and the 
Food and Agriculture Organization’s (FAO) Global Soil Organic Carbon 
(GSOC). All four protocols require a minimum of only three or more 
samples per stratum, far fewer than required to estimate the impact of 
management changes on a timescale of years. Some—though not 
all—protocols also lack details on how to stratify and analyze the 
resulting data to estimate SOC stocks and stock changes. Especially 
because they sanction such small sample sizes, these protocols may often 
reward “false positives” and fail to reward genuine sequestration. We 
recommend revising each of these protocols to require substantially 
more samples tailored to land-specific spatial heterogeneity, and, 
following ACCM as an example, provide much more detailed and useful 
guidelines for participants on when, where, and how to sample to 
minimize uncertainties. While governments, companies, and society 
must decide what level of confidence suffices to demonstrate SOC 
sequestration (e.g. the ACCM accepts SOC sequestration with only 60 % 
confidence, to encourage participation), protocols must actually be able 
to deliver that level of confidence. 

For some purposes, instead of estimating SOC stock changes on each 
participating farm or ranch, it might suffice to estimate the aggregate 
change across many farms/ranches, collecting few samples from each, to 
minimize costs. Alternatively, one might conduct intensive sampling on 
a random sample of sites or a network of regional research monitoring 
sites (which could be supported by the development of funding pro-
grams like AgARDA or through increases in funding to LTERs or Climate 
Hub networks). Limiting sampling efforts to a smaller number of 
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dedicated sites representing a range of climates, soil types, and cropping 
systems could allow for more intensive sampling—with higher power to 
detect SOC stock changes. This intensive sampling could then be used to 
calibrate, validate, and improve models such as MEMS 2.0 (Microbial 
Efficiency-Matrix Stabilization) (Zhang et al., 2021) that can estimate 
SOC change across broader landscapes and generate SOC credits for 
similar farms and ranches. This may be a more efficient use of resources 
and could drive more accurate verification in the long-term. However, 
both strategies represent a shift from paying for results to paying for 
practices that are expected—but not guaranteed—to produce results. 

5. Conclusions 

Spatial heterogeneity of SOC is a primary obstacle to accurately 
measuring changes in SOC stocks, even with careful sampling design and 
execution, accurate assays, and rigorous statistical analysis. Attempting 
to measure or verify SOC sequestration using too few samples, poor 
sampling design, imprecise laboratory instruments, or inappropriate 
statistical analysis can undermine climate change mitigation goals. We 
highlighted errors, quantified uncertainties, and demonstrated potential 
improvements in design and analysis, using data from California crop-
lands and rangelands. There are several straightforward ways that 
sampling schemes can be improved, especially for C markets. Collecting 
information on the degree and pattern of heterogeneity before a 
comprehensive sampling campaign can make it possible to use stratified 
sampling to advantage. Such information also makes it possible to 
perform power calculations and identify optimal compositing ap-
proaches, ensuring that the campaign has sufficient statistical power to 
detect anticipated changes in. In general, reliable inferences about the 
short-term effect of management interventions on soil C require larger 
sample sizes and less compositing than is commonly used. We demon-
strate that Student’s t-test has highly inflated false-positive rates in 
scenarios that may be common in the field and suggest caution when 
using Student’s t-tests and its relatives for verifying changes, especially 
when sample sizes are small. Nonparametric statistical methods can 
control false positives for any sample size, without assumptions about 
SOC distributions; providing more reliable, trustworthy results. The 
power of nonparametric tests can be increased using transparent, veri-
fiable assumptions (e.g. geochemical constraints on the maximum SOC). 
Careful planning and continued collaboration between soil scientists 
and statisticians will help improve accuracy and precision of SOC 
measurements. 
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thub.com/spertus/soil-carbon-statistics. A web application to facilitate 
investigators with pre-sample planning, including a priori power ana-
lyses, determining optimal compositing schemes, and budget planning, 
is available at: https://scf.berkeley.edu/shiny/bosf/soil-carbon-statistic 
s/. Our R package to facilitate wider use of nonparametric tests can be 
installed from the R console by running devtools::install_github(“sper-
tus/nptests”). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geoderma.2022.116323. 
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N.J., Harmsen, J., Jonassen, K., Lamé, F., Lhuillery, C., Maly, S., Martin, E., 
Mcelnea, A.E., Sakai, H., Watabe, Y., Eglin, T.K., 2017. Accounting for Carbon Stocks 
in Soils and Measuring GHGs Emission Fluxes from Soils: Do We Have the Necessary 
Standards? Front. Environ. Sci. 5 https://doi.org/10.3389/fenvs.2017.00041. 

Brus, D.J., de Gruijter, J.J., 2011. Design-based Generalized Least Squares estimation of 
status and trend of soil properties from monitoring data. Geoderma 164, 172–180. 
https://doi.org/10.1016/j.geoderma.2011.06.001. 

Carey, C.J., Weverka, J., DiGaudio, R., Gardali, T., Porzig, E.L., 2020. Exploring 
variability in rangeland soil organic carbon stocks across California (USA) using a 
voluntary monitoring network. Geoderma Regional 22, e00304. 

Chappell, A., Sanderman, J., Thomas, M., Read, A., Leslie, C., 2012. The dynamics of soil 
redistribution and the implications for soil organic carbon accounting in agricultural 
south-eastern Australia. Glob Change Biol 18, 2081–2088. https://doi.org/10.1111/ 
j.1365-2486.2012.02682.x. 

Chatterjee, A., Lal, R., Wielopolski, L., Martin, M.Z., Ebinger, M.H., 2009. Evaluation of 
different soil carbon determination methods. CRC Crit. Rev. Plant Sci. 28, 164–178. 
https://doi.org/10.1080/07352680902776556. 

Cochran, W., 1977. Sampling Techniques. John Wiley & Sons. 
Conant, R.T., Cerri, C.E.P., Osborne, B.B., Paustian, K., 2017. Grassland management 

impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668. https://doi. 
org/10.1002/eap.1473. 

Davis, M., Alves, B., Karlen, D., Kline, K., Galdos, M., Abulebdeh, D., 2017. Review of soil 
organic carbon measurement protocols: A US and Brazil comparison and 
recommendation. Sustainability 10, 53. https://doi.org/10.3390/su10010053. 

de Gruijter, J.J., McBratney, A.B., Minasny, B., Wheeler, I., Malone, B.P., Stockmann, U., 
2016. Farm-scale soil carbon auditing. Geoderma 265, 120–130. https://doi.org/ 
10.1016/j.geoderma.2015.11.010. 

Devine, S.M., O’Geen, A.T., Liu, H., Jin, Y., Dahlke, H.E., Larsen, R.E., Dahlgren, R.A., 
2020. Terrain attributes and forage productivity predict catchment-scale soil organic 
carbon stocks. Geoderma 368, 114286. https://doi.org/10.1016/j. 
geoderma.2020.114286. 

Ellert, B.H., Janzen, H.H., Entz, T., 2002. Assessment of a method to measure temporal 
change in soil carbon storage. Soil Sci. Soc. Am. J. 66, 1687–1695. https://doi.org/ 
10.2136/sssaj2002.1687. 

Franzluebbers, A., 2005. Soil organic carbon sequestration and agricultural greenhouse 
gas emissions in the southeastern USA. Soil Tillage Res. 83, 120–147. https://doi. 
org/10.1016/j.still.2005.02.012. 

Goidts, E., Van Wesemael, B., Crucifix, M., 2009. Magnitude and sources of uncertainties 
in soil organic carbon (SOC) stock assessments at various scales. Eur. J. Soil Sci. 60, 
723–739. https://doi.org/10.1111/j.1365-2389.2009.01157.x. 

Gosnell, H., Robinson-Maness, N., Charnley, S., 2011. Profiting from the sale of carbon 
offsets: A case study of the trigg ranch. Rangelands 33, 25–29. https://doi.org/ 
10.2111/1551-501X-33.5.25. 

Homann, P.S., Sollins, P., Fiorella, M., Thorson, T., Kern, J.S., 1998. Regional soil organic 
carbon storage estimates for western oregon by multiple approaches. Soil Sci. Soc. 
Am. J. 62, 789–796. https://doi.org/10.2136/sssaj1998.03615995006200030036x. 

Jackson Hammond, A.A., Motew, M., Brummitt, C.D., DuBuisson, M.L., Pinjuv, G., 
Harburg, D.V., Campbell, E.E., Kumar, A.A., 2021. Implementing the soil enrichment 

P. Stanley et al.                                                                                                                                                                                                                                 

https://github.com/spertus/soil-carbon-statistics
https://github.com/spertus/soil-carbon-statistics
https://scf.berkeley.edu/shiny/bosf/soil-carbon-statistics/
https://scf.berkeley.edu/shiny/bosf/soil-carbon-statistics/
https://doi.org/10.1016/j.geoderma.2022.116323
https://doi.org/10.1016/j.geoderma.2022.116323
https://doi.org/10.21236/AD0696676
https://doi.org/10.1111/gcb.14658
https://doi.org/10.1111/gcb.14658
https://doi.org/10.1016/j.agee.2006.05.014
https://doi.org/10.1016/j.agee.2006.05.014
https://doi.org/10.2136/sssaj2015.11.0405
https://doi.org/10.2136/sssaj2015.11.0405
https://doi.org/10.3389/fenvs.2017.00041
https://doi.org/10.1016/j.geoderma.2011.06.001
http://refhub.elsevier.com/S0016-7061(22)00630-9/h0035
http://refhub.elsevier.com/S0016-7061(22)00630-9/h0035
http://refhub.elsevier.com/S0016-7061(22)00630-9/h0035
https://doi.org/10.1111/j.1365-2486.2012.02682.x
https://doi.org/10.1111/j.1365-2486.2012.02682.x
https://doi.org/10.1080/07352680902776556
http://refhub.elsevier.com/S0016-7061(22)00630-9/h0050
https://doi.org/10.1002/eap.1473
https://doi.org/10.1002/eap.1473
https://doi.org/10.3390/su10010053
https://doi.org/10.1016/j.geoderma.2015.11.010
https://doi.org/10.1016/j.geoderma.2015.11.010
https://doi.org/10.1016/j.geoderma.2020.114286
https://doi.org/10.1016/j.geoderma.2020.114286
https://doi.org/10.2136/sssaj2002.1687
https://doi.org/10.2136/sssaj2002.1687
https://doi.org/10.1016/j.still.2005.02.012
https://doi.org/10.1016/j.still.2005.02.012
https://doi.org/10.1111/j.1365-2389.2009.01157.x
https://doi.org/10.2111/1551-501X-33.5.25
https://doi.org/10.2111/1551-501X-33.5.25
https://doi.org/10.2136/sssaj1998.03615995006200030036x


Geoderma 430 (2023) 116323

12

protocol at scale: opportunities for an agricultural carbon market. Front. Clim. 3 
https://doi.org/10.3389/fclim.2021.686440. 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., 
Harrison, R.B., Guerrini, I.A., Richter, D.D., Rustad, L., Lorenz, K., Chabbi, A., 
Miglietta, F., 2014. Current status, uncertainty and future needs in soil organic 
carbon monitoring. Sci. Total Environ. 468–469, 376–383. https://doi.org/10.1016/ 
j.scitotenv.2013.08.026. 

Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H., Murphy, D.V., 2012. Biochar- 
mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. 
Biochem. 45, 113–124. https://doi.org/10.1016/j.soilbio.2011.10.012. 

Kravchenko, A.N., Robertson, G.P., 2011. Whole-Profile Soil Carbon Stocks: The Danger 
of Assuming Too Much from Analyses of Too Little. Soil Sci. Soc. Am. J. 75 (1), 
235–240. 

Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: 
Concept & review. Soil Biol. Biochem. 83, 184–199. https://doi.org/10.1016/j. 
soilbio.2015.01.025. 

Learned-Miller, E., Thomas, P., 2019. A New Confidence Interval for the Mean of a 
Bounded Random Variable. University of Massachusetts. 

Lehmann, J., Kinyangi, J., Solomon, D., 2007. Organic matter stabilization in soil 
microaggregates: implications from spatial heterogeneity of organic carbon contents 
and carbon forms. Biogeochemistry 85, 45–57. https://doi.org/10.1007/s10533- 
007-9105-3. 

Lehmann, E.L., Romano, J.P., 2010. Testing Statistical Hypotheses (Springer Texts in 
Statistics), 3rd ed. Springer. 

Majumder, S., Neogi, S., Dutta, T., Powel, M.A., Banik, P., 2019. The impact of biochar 
on soil carbon sequestration: Meta-analytical approach to evaluating environmental 
and economic advantages. J. Environ. Manage. 250, 109466 https://doi.org/ 
10.1016/j.jenvman.2019.109466. 

Marin-Spiotta, E., Chaopricha, N.T., Plante, A.F., Diefendorf, A.F., Mueller, C.W., 
Grandy, A.S., Mason, J.A., 2014. Long-term stabilization of deep soil carbon by fire 
and burial during early Holocene climate change. Nature Geosci. 7, 428–432. 
https://doi.org/10.1038/ngeo2169. 

Miller, B.A., Koszinski, S., Hierold, W., Rogasik, H., Schröder, B., Van Oost, K., 
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